JP2008272539A - Method and apparatus for detoxifying dioxin polluted particle - Google Patents

Method and apparatus for detoxifying dioxin polluted particle Download PDF

Info

Publication number
JP2008272539A
JP2008272539A JP2006208150A JP2006208150A JP2008272539A JP 2008272539 A JP2008272539 A JP 2008272539A JP 2006208150 A JP2006208150 A JP 2006208150A JP 2006208150 A JP2006208150 A JP 2006208150A JP 2008272539 A JP2008272539 A JP 2008272539A
Authority
JP
Japan
Prior art keywords
particle size
contaminated
dioxins
powder particles
dioxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006208150A
Other languages
Japanese (ja)
Inventor
Yukio Kozai
幸男 香西
Shigenobu Okajima
重伸 岡島
Takeshi Kojima
健 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006208150A priority Critical patent/JP2008272539A/en
Publication of JP2008272539A publication Critical patent/JP2008272539A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus capable of always efficiently detoxifying pollutant of soil or the like polluted with dioxin up to a sufficient level. <P>SOLUTION: Particles polluted with dioxin are classified by a method including the mutual rubbing of the particles or the contact with a moving fluid (S1-S3). A particulate sample collected at the same place is trially classified in advance to measure the concentration of dioxin at every particle size and, on the basis of the measuring result, a set particle size is determined. The particles with the set particle size or below in the classified particles are chemically treated to detoxify dioxin (S5-S8) and the particles exceeding the set particle size are not chemically treated (S4). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

請求項に係る発明は、ダイオキシン類によって汚染された土壌等の粉粒体を無害化するための方法および装置に関するものである。   The invention which concerns on a claim is related with the method and apparatus for detoxifying the granular material, such as soil contaminated with dioxins.

工場跡地やごみ処理施設の周辺または廃棄物の不法投棄現場等において、ダイオキシン類による土壌等の汚染が問題になることがある。   Contamination of soil and the like with dioxins may become a problem in the vicinity of factory sites, waste disposal facilities, or illegal dumping sites.

ダイオキシン類による汚染物を無害化処理する方法については、下記の特許文献1〜3に記載がある。特許文献1に記載の方法は、ダイオキシン類など有機塩素化合物を含有する汚染物を乾燥・粉砕し、無害化薬剤を投入して加熱処理するものである。特許文献2に記載のものは、比較的低濃度の汚染土壌を熱水にて洗浄したうえ泥水を土壌から分離するという方法である。また特許文献3の技術は、汚染された土壌ないし粉体を水でスラリー化し、湿式分級(水を用いた分級)により小石や鉄片等の異物を除去し、そのスラリーを加熱等してダイオキシン類の分解等を行うものである。
特開2004−174372号公報 特開2002−86129号公報 特開2004−8872号公報
About the method of detoxifying the contaminant by dioxins, there are description in the following patent documents 1-3. The method described in Patent Document 1 is a method in which a contaminant containing an organic chlorine compound such as dioxins is dried and pulverized, and a detoxifying chemical is added and heat-treated. The thing of patent document 2 is a method of wash | cleaning a comparatively low concentration contaminated soil with hot water, and isolate | separating muddy water from soil. In the technique of Patent Document 3, a contaminated soil or powder is slurried with water, foreign matter such as pebbles and iron pieces is removed by wet classification (classification using water), and the slurry is heated to dioxins. Is to be decomposed.
JP 2004-174372 A JP 2002-86129 A JP 2004-8872 A

特許文献1に記載の方法は、ダイオキシン類による汚染物を無害化するのに適したものであるが、それらにしたがってつねに土壌等の全量を処理するとしたら、処理に要する時間やコストの点で効率的でない場合がある。特許文献2の方法は、ダイオキシン類が低濃度の場合にはよいが、濃度が高い場合等には十分な水準にまで処理を行えない可能性がある。特許文献3の方法は、土壌等をスラリー化することにより、異物を除去するとともに塊を解きほぐして加熱の効率を高めるものだが、異物以外の土壌等についてはやはり全量を処理することから、特許文献1と同じく効率上の課題がともなうことになる。   The method described in Patent Document 1 is suitable for detoxifying contaminants caused by dioxins. However, if the entire amount of soil and the like is always treated according to them, it is efficient in terms of time and cost required for the treatment. May not be right. The method of Patent Document 2 is good when the dioxins are at a low concentration, but there is a possibility that the treatment cannot be performed to a sufficient level when the concentration is high. The method of Patent Document 3 is a method of removing foreign substances and increasing the efficiency of heating by removing sludge by slurrying the soil or the like. As with 1, there will be an efficiency problem.

請求項に係る発明は、以上の点を考慮し、ダイオキシン類によって汚染された土壌等の汚染物を効率的に、しかもつねに十分な水準にまで無害化することができる方法および装置を提供するものである。   In consideration of the above points, the claimed invention provides a method and apparatus capable of detoxifying contaminants such as soil contaminated by dioxins efficiently and always to a sufficient level. It is.

請求項に記載したダイオキシン類汚染粉粒体の無害化方法は、
1) ダイオキシン類によって汚染された粉粒体を、粉粒体同士の擦れ合いまたは移動流体との接触をともなう方法で分級(粒径に応じて分けること)し、
2) 設定粒径以下の(または設定粒径に満たない)粉粒体を熱処理してダイオキシン類の無害化をはかるとともに、
3) 設定粒径を超える(または設定粒径以上の)粉粒体には(上記分級を行ったのち)熱処理を行わない
ことを特徴とする。
なお、「ダイオキシン類」とは、ポリ塩化ジベンゾフラン、ポリ塩化ジベンゾ−パラ−ジオキシン、およびコプラナ−ポリ塩化ビフェニル、すなわちダイオキシン類対策特別措置法に規定された化学物質をいう。「粉粒体」とは、土壌や灰のほか、建築廃材や投棄物等が破砕および粉砕されて粉粒状にされたものをさす。粉粒体同士の擦れ合いまたは移動流体との接触をともなう方法で粉粒体を分級するためには、それぞれ、いわゆる乾式または湿式(水等を用いる型式)の分級手段(振動ふるい等)を使用するとよい。「粉粒体同士の擦れ合いまたは移動流体との接触」とは、前者(粉粒体同士の擦れ合い)のみ、後者(移動流体との接触)のみ、前者および後者を合わせた場合を含む意味である。
The method of detoxifying the dioxin-contaminated powder particles described in the claim is:
1) Particles contaminated with dioxins are classified (separated according to particle size) by a method that involves rubbing particles or contacting with a moving fluid.
2) Dioxins are detoxified by heat-treating powder particles that are smaller than the set particle size (or less than the set particle size),
3) It is characterized in that heat treatment is not performed on the powder particles exceeding the set particle size (or larger than the set particle size) (after the above classification).
“Dioxins” refers to polychlorinated dibenzofurans, polychlorinated dibenzo-para-dioxins, and coplanar-polychlorinated biphenyls, that is, chemical substances stipulated in the Special Measures Countermeasures against Dioxins. “Powder and granular material” refers to those obtained by crushing and crushing soil and ash, as well as building waste materials and dumped materials, etc. In order to classify particles by a method involving friction between particles or contact with a moving fluid, so-called dry or wet (type using water) classification means (vibrating sieve, etc.) are used, respectively. Good. “Abrasion between powder particles or contact with moving fluid” means only the former (rubbing between particles), only the latter (contact with moving fluid), and the case where the former and the latter are combined It is.

発明者らの調査によれば、土壌等の粉粒体のうち粒径の大きなもの(たとえば石ころや大粒の砂)に付着したダイオキシン類は、粉粒体の表面を擦ったり水で流したりすることによって多くが取り除かれる。そのため、上記1)のような方法で粉粒体を分級すると、粉粒体のうち粒径の大きなものからは、その分級の過程でダイオキシン類の多くが除去される。
請求項の発明では、分級の境目とする粒径(設定粒径)を適切に定めたうえ、上記2)のようにその設定粒径以下のもののみを熱処理する一方、上記3)のように設定粒径を超えるものについては熱処理を行わない。設定粒径以上のものは、上記のとおり分級の過程で十分に除洗(付着していた汚染物を洗浄により取り除くこと)されて、除染物となるからである。
この発明にしたがうことにより、無害化のための熱処理を施す粉粒体の量を削減して処理時間およびコスト上の効率化をはかるとともに、汚染濃度によらず十分な水準にまで無害化を進めることが可能になる。
According to the investigation by the inventors, dioxins adhering to large particles (eg, stone or large sand) among particles such as soil rub the surface of the particles or flush with water. Many are removed. For this reason, when the granular material is classified by the method as described in 1) above, most of the dioxins are removed from the large granular material in the classification process.
In the claimed invention, after appropriately determining the particle size (set particle size) as the boundary of classification, only those having a particle size equal to or less than the set particle size are heat-treated as in 2) above, while as in 3) above No heat treatment is performed for those exceeding the set particle size. This is because a particle having a particle size larger than the set particle size is sufficiently decontaminated (removing adhering contaminants by washing) in the classification process as described above to become a decontaminated product.
According to the present invention, the amount of the granular material subjected to the heat treatment for detoxification is reduced to increase the efficiency in treatment time and cost, and the detoxification is promoted to a sufficient level regardless of the contamination concentration. It becomes possible.

発明の方法に関しては、設定粒径を超える分級ずみ粉粒体を、当該粉粒体の採取箇所に(つまり元の場所に、またはその近傍に)埋めることとするのがよい。
そうすれば、除洗された粉粒体を搬出する作業負担がなくなるほか、粉粒体が掘削土壌である場合には、その掘削箇所を埋め戻すための土壌を手配し搬入するという作業負担も軽減される。
With regard to the method of the invention, classified powder particles exceeding the set particle size may be buried in the collection point of the powder particles (that is, in the original place or in the vicinity thereof).
This eliminates the work burden of carrying out the cleaned granular material, and if the powder is excavated soil, the work burden of arranging and carrying in the soil to backfill the excavation site is also included. It is reduced.

設定粒径以下の粉粒体に対する熱処理としては、低酸素雰囲気で加熱(間接加熱)する加熱脱塩素化処理を、当該粉粒体の採取箇所付近にて(つまりオンサイトで)行うのが好ましい。
ここで加熱脱塩素化処理(ハーゲンマイヤ法)を用いて、ダイオキシン類による汚染粉粒体の無害化を適切に実現できる。そうした適切な無害化処理をオンサイトで行えば、汚染物を搬出する必要がなくなり、また、搬出の際にダイオキシン類が飛散する恐れもないという利点がある。化学的処理を施す粉粒体を前記のように設定粒径以下のものに限定し量的に削減することから、オンサイトで熱処理をすることにともなう設備上および作業上の負担は少ない。
As a heat treatment for a granular material having a particle size equal to or smaller than a set particle size, it is preferable to perform a heat dechlorination treatment in a low oxygen atmosphere (indirect heating) in the vicinity of the sampling point of the granular material (that is, on-site). .
Here, the detoxification of the contaminated powder particles by dioxins can be appropriately realized using heat dechlorination treatment (Hagenmeier method). If such an appropriate detoxification process is performed on-site, there is no need to carry out pollutants, and there is an advantage that dioxins are not scattered during the carry-out. As described above, the powder particles subjected to the chemical treatment are limited to those having a set particle size or less as described above and are quantitatively reduced. Therefore, the burden on facilities and work associated with on-site heat treatment is small.

上記した設定粒径は、上記粉粒体と同一採取箇所より採取する粉粒体試料を事前に試験分級したうえ粒径ごとのダイオキシン類濃度を測定し、その測定結果に基づいて定める(つまりダイオキシン類濃度に顕著な差ができる境目の粒径を見出し、それを設定粒径とする)のが好ましい。
設定粒径は実績・経験等にしたがって定めることもできる。しかし粉粒体(土壌等)の性状等によって汚染の状況も異なることが多いため、このように事前に試験分級を行ったうえで定めるのが最も適切である。設定粒径が適切であると、無害化のための化学的処理の量を大いに削減して効率化を進められるうえ、無害化の水準を高くすることができる。なお、事前の試験分級は、前記の分級と同じく粉粒体同士の擦れ合いまたは移動流体との接触をともなう方法で行うべきだが、粒径ごとのダイオキシン類濃度の差から設定粒径を定める必要上、ここでは、前記の分級時よりも多くの粒径区分に分けられるよう試験分級を行うのが有利である。
The set particle size described above is determined based on the measurement result after measuring and classifying the powder sample collected from the same sampling point as the powder and measuring the concentration of dioxins for each particle size (that is, dioxin). It is preferable to find the particle size of the boundary where a remarkable difference in the concentration of the compound is found and to use it as the set particle size).
The set particle size can also be determined according to actual results and experience. However, since the state of contamination often varies depending on the properties of the granular material (soil, etc.), it is most appropriate to determine it after conducting test classification in advance. When the set particle size is appropriate, the amount of chemical treatment for detoxification can be greatly reduced to increase efficiency, and the level of detoxification can be increased. In addition, prior test classification should be performed by a method involving friction between powder particles or contact with a moving fluid, similar to the above classification, but it is necessary to determine the set particle size from the difference in dioxin concentration for each particle size In addition, here, it is advantageous to perform the test classification so that the particle size can be divided into a larger number of particle sizes than in the classification.

被処理物が建築廃材や投棄物等であって粉粒体でないものを多量に含む場合には、下記の方法によってそれらを事前に粉粒体にしておけば、土壌等と同様に、分級過程を含む上記の方法によって無害化をはかることが可能である。
ダイオキシン類による汚染部分を含む被処理物が粉粒体でない場合には、それを事前に破砕することによって前記の汚染された粉粒体にするとよい。
If the objects to be treated include a large amount of building waste or dumped waste that is not granular, the classification process is the same as for soil, etc. It is possible to detoxify by the above method including
In the case where the object to be treated including the contaminated portion by dioxins is not a granular material, it is preferable to obtain the contaminated granular material by crushing it beforehand.

請求項に記載したダイオキシン類汚染粉粒体の無害化装置は、上記の無害化方法を実施するための装置であって、粉粒体同士の擦れ合いまたは移動流体との接触をともなう方法で粉粒体を分級する手段(たとえば振動ふるいを含む乾式または湿式の分級装置)と、設定粒径以下の粉粒体を熱処理してダイオキシン類の無害化をはかる手段(たとえばハーゲンマイヤ法のための装置)とを含むことを特徴とする。
こうした無害化装置によれば、上記の無害化方法を実施して、汚染物を効率的かつ高水準に無害化することが可能である。
The detoxifying device for dioxins-contaminated powder particles described in the claims is a device for carrying out the detoxification method described above, and the powder is crushed by a method in which the powder particles are rubbed or contacted with a moving fluid. Means for classifying granules (for example, a dry or wet classifier including a vibrating screen) and means for heat-treating particles having a particle size equal to or smaller than a set particle size to detoxify dioxins (for example, an apparatus for the Hagenmeier method) ).
According to such a detoxifying device, it is possible to carry out the above detoxifying method and detoxify pollutants efficiently and at a high level.

請求項に記載したダイオキシン類汚染粉粒体の無害化方法は、化学的処理を施す粉粒体(土壌等)の量を削減して処理時間およびコストについて効率化をはかるとともに、汚染濃度によらず十分な水準にまで無害化を進めることを可能にする。粉粒体の搬出等のための作業負担やダイオキシン類の飛散の危険性を軽減することもできる。
また、請求項に記載したダイオキシン類汚染粉粒体の無害化装置によれば、上記の無害化方法を実施して、汚染物を効率的かつ高水準に無害化することが可能である。
The method for detoxifying dioxin-contaminated powder granules described in the claims reduces the amount of powder (soil, etc.) subjected to chemical treatment to improve efficiency in terms of treatment time and cost, and depends on the contamination concentration. It is possible to promote detoxification to a sufficient level. It is also possible to reduce the work burden for carrying out the granular material and the risk of scattering of dioxins.
In addition, according to the detoxification device for dioxins-contaminated granular materials described in the claims, the detoxification method described above can be carried out to detoxify contaminants efficiently and at a high level.

図1〜図6に発明の実施形態を示す。図1は発明の無害化方法について基本的な手順を示すフローチャートであり、図2および図3は分級過程をそれぞれ乾式・湿式によって行う場合の手順の全体を具体的に示す説明図である。図4は、熱処理をなす無害化手段3について構成の概略を示すブロック図である。また、図5および図6は、試験分級をそれぞれ乾式・湿式によって行う場合のフローを示す説明図である。   1 to 6 show an embodiment of the invention. FIG. 1 is a flowchart showing a basic procedure for the detoxification method of the present invention, and FIGS. 2 and 3 are explanatory diagrams specifically showing the entire procedure in the case where the classification process is performed by a dry process and a wet process, respectively. FIG. 4 is a block diagram showing an outline of the configuration of the detoxifying means 3 that performs heat treatment. FIG. 5 and FIG. 6 are explanatory diagrams showing a flow when the test classification is performed by a dry method and a wet method, respectively.

ダイオキシン類(以下「DXN」と表す)によって汚染された土壌は、図1に示す手順によって無害化をはかることができる。すなわち、
まず、汚染された土壌を受け入れると(S1)、乾式または湿式の方法によって分級処理をする(S2)。その分級により、元の土壌を、あらかじめ定めた設定粒径を超える大きさのものとそれ以下のものとに分ける(S3)。
設定粒径を超える土壌(分級処理物)は、除洗されたものとしてその後は特別な処理を行わない(S4)。乾式の分級を行う場合には振動するふるいの中で粉粒体同士が擦れ合い、湿式分級の場合には粉粒体が流水と接触しあうことにより、設定粒径を超える大粒の粉粒体からはDXNの多くが取り除かれたはずだからである。
一方、設定粒径以下の土壌(分級処理物)は、除洗されてはいない汚染物として受け入れ(S5)、乾燥し粉砕したうえ(S6)、ハーゲンマイヤ(以下「HM」と表す)法による無害化処理を施して(S7)、DXNのほとんどが除去された土壌とする(S8)。
The soil contaminated with dioxins (hereinafter referred to as “DXN”) can be detoxified by the procedure shown in FIG. That is,
First, when contaminated soil is received (S1), classification is performed by a dry or wet method (S2). By the classification, the original soil is divided into those having a size exceeding a predetermined set particle size and those having a size smaller than that (S3).
The soil (classified product) exceeding the set particle size is not subjected to special treatment thereafter as it has been washed (S4). In the case of dry classification, the powder particles rub against each other in a vibrating screen, and in the case of wet classification, the powder particles come into contact with running water, resulting in a large particle size exceeding the set particle size. This is because most of DXN should have been removed.
On the other hand, soil (classified product) having a particle size equal to or smaller than the set particle size is accepted as a contaminant that has not been removed (S5), dried and pulverized (S6), and the Hagenmeier (hereinafter referred to as “HM”) method. Detoxification treatment is performed (S7), and the soil from which most of DXN has been removed is defined (S8).

上記の分級過程を乾式で行う場合の具体的なフローは図2に示すとおりである。図中の符号S1〜S8は、図1中の過程と対応づけて付してある。
図2のように、汚染された土壌はまず掘削して採取し、フレコン(フレキシブルな運搬用の袋)に入れ、風乾(室内乾燥等)させたうえ、ホッパに移して定量供給可能にする(S1)。掘削現場において、ホッパに移すまでに適切な破砕手段を用いて土壌(または他の被処理物)を破砕し粉粒体状にしておくのもよい。ホッパから取り出す土壌は、振動ふるいによって、設定粒径(図2の例では15mm)を超える大きさのものとそれ以外のものとに分け(S2・S3)、設定粒径を超えるものはふるい(分級)の際に除洗された処理物として掘削箇所に埋め戻す(S4)。振動ふるいで分級された設定粒径以下のものは、バイブロミル等の粉砕装置と第2の振動ふるいとによってさらに細かく(図2の例では粒径2mm以下に)粉砕し、汚染物としてサイロに供給する(S5)。なお、上記の振動ふるいとバイブロミル等の粉砕装置、第2の振動ふるいとによって乾式分級手段1を構成している。
サイズが設定粒径以下であって除洗されていない汚染物と考えられる土壌は、供給されたサイロから出して乾燥し粉砕したうえ(S6)、HM法による無害化処理機器に送り、土壌中のDXNを分解する熱処理を行って(S7)、無害化処理物にする(S8)。乾燥の際および無害化処理の際に発生する排ガスの処理も同時に行うこととし、無害化処理機器とその周辺の機器および排ガス処理の機器とによって無害化処理手段3を構成している。
A specific flow in the case where the above classification process is performed by a dry method is as shown in FIG. Reference numerals S1 to S8 in the figure are associated with the processes in FIG.
As shown in Fig. 2, contaminated soil is first excavated and collected, placed in a flexible container (flexible transport bag), air-dried (indoor drying, etc.), and then transferred to a hopper for quantitative supply ( S1). At the excavation site, the soil (or other object to be treated) may be crushed into a granular form using an appropriate crushing means before being transferred to the hopper. The soil taken out from the hopper is divided into a size exceeding the set particle size (15 mm in the example of FIG. 2) and the other size by vibration sieve (S2 · S3), and the soil exceeding the set particle size is sieved ( It is backfilled in the excavation site as a processed product removed during classification) (S4). Those below the set particle size classified by the vibration sieve are further finely pulverized (with a particle diameter of 2 mm or less in the example of FIG. 2) by a pulverizer such as a vibro mill and the second vibration sieve, and supplied to the silo as contaminants. (S5). The dry classification means 1 is constituted by the above-mentioned vibrating screen, a grinding device such as a vibro mill, and the second vibrating screen.
Soil that is considered to be uncontaminated soil whose size is less than the set particle size is taken out from the supplied silo, dried and crushed (S6), and sent to the detoxification equipment by the HM method. A heat treatment for decomposing DXN is performed (S7) to make a detoxified product (S8). The exhaust gas generated during the drying and the detoxification treatment is also treated at the same time, and the detoxification treatment means 3 is constituted by the detoxification treatment equipment, peripheral equipment and exhaust gas treatment equipment.

分級過程を湿式によって行う場合のフローは図3に例示した。この図においても、図1中の過程と対応づけて符号S1〜S8を記入している。
図3の場合には、汚染土壌は、掘削採取しフレコンからホッパに移し(S1)、工業用水とともに洗浄スクリーンを経由させて湿式の振動ふるいにかけ、設定粒径(図3の例では2mm)を超える大きさのものとそれ以外のものとを分ける(S2・S3)。そのうえで、設定粒径を超えるものは、分級過程で除洗された処理物であるとして掘削箇所に埋め戻す(S4)。振動ふるいの網目を通った設定粒径以下の土壌は、除洗されていない汚染物であるとして水とともに原水槽に送り、凝集・沈殿させて水(排水)と土壌(汚泥)とに分ける。水をろ過して処理水槽に貯める一方、土壌の方は脱水機にかけて脱水汚泥サイロに入れ、ポンプを含む搬送系に供給する(S5)。なお、図示の洗浄スクリーンや振動ふるい、原水槽・凝集槽・沈殿槽・脱水機等により、湿式分級手段2を構成している。
汚染物としての土壌は、図2の場合と同様、乾燥し粉砕したうえで(S6)、HM法による無害化処理機器に送り、土壌中のDXNを分解する熱処理を行って(S7)、無害化処理物とする(S8)。無害化処理機器とその周辺機器および排ガス処理のための機器とによって無害化処理手段3を構成している。
The flow in the case where the classification process is performed by a wet process is illustrated in FIG. Also in this figure, reference numerals S1 to S8 are entered in association with the process in FIG.
In the case of FIG. 3, the contaminated soil is excavated and collected, transferred from the flexible container to the hopper (S1), passed through a washing screen together with industrial water and passed through a wet vibrating screen, and the set particle size (2 mm in the example of FIG. 3) is set. Separate the ones that exceed the size and the others (S2, S3). In addition, those exceeding the set particle diameter are backfilled in the excavation site as treated products removed in the classification process (S4). Soil having a particle size equal to or smaller than the set particle size that passes through the mesh of the vibration sieve is sent to the raw water tank together with water as a contaminant that has not been removed, and is agglomerated and settled to separate water (drainage) and soil (sludge). Water is filtered and stored in the treated water tank, while the soil is put into a dewatered sludge silo through a dehydrator and supplied to a transport system including a pump (S5). The wet classifying means 2 is constituted by the illustrated cleaning screen, vibrating screen, raw water tank / coagulation tank / sedimentation tank / dehydrator.
As in the case of FIG. 2, the soil as a contaminant is dried and pulverized (S6), then sent to a detoxification device using the HM method, and subjected to a heat treatment for decomposing DXN in the soil (S7). (S8). The detoxification processing means 3 is composed of the detoxification processing equipment, its peripheral equipment and equipment for exhaust gas treatment.

図2および図3のフローにおいて使用する無害化処理手段3の構成と処理工程は図4のとおりである。すなわち、土壌等を定量的に供給するフィーダ3A・3Bの先にロータリーキルン(ヒーティングドラム)3Cを接続し、これらに窒素ガスを供給して内部を低酸素雰囲気にする。ロータリーキルン3Cを出る土壌等(固体)を冷却機3Dに供給し、さらに冷却貯留槽3Eに送り込んで貯留する一方、ロータリーキルン3Cにて発生するガスは、ガス冷却塔3Fに送って冷却し、活性炭充填槽3Gに通したうえで排気する。   The configuration and processing steps of the detoxification processing means 3 used in the flow of FIGS. 2 and 3 are as shown in FIG. That is, rotary kilns (heating drums) 3C are connected to the ends of feeders 3A and 3B that quantitatively supply soil and the like, and nitrogen gas is supplied to these to make the inside of the atmosphere low in oxygen. The soil, etc. (solid) exiting the rotary kiln 3C is supplied to the cooler 3D and further sent to the cooling storage tank 3E for storage, while the gas generated in the rotary kiln 3C is sent to the gas cooling tower 3F for cooling and filled with activated carbon. Exhaust after passing through tank 3G.

図1のフローにおいて、土壌の分級を図2のように乾式の方法で行うか図3のように湿式で行うかを決めるとともに設定粒径(すなわちふるい目の大きさ)を定めるためには、汚染土壌の掘削現場から事前に採取した土壌試料により、図5および図6にそれぞれ示す乾式および湿式の試験分級を行うこととしている。   In the flow of FIG. 1, in order to determine whether the soil classification is performed by a dry method as shown in FIG. 2 or wet as shown in FIG. 3 and to determine a set particle size (ie, sieve size), Dry and wet test classifications shown in FIGS. 5 and 6 are performed using soil samples collected in advance from the excavation site of the contaminated soil.

図5に示す乾式の試験分級は、試料を風乾したうえ、たとえば2mm、0.85mm、0.425mm、0.25mm、0.075mmの各ふるい目(網目)をもつ試験分級機11(電磁式振動ふるい11A、11B、11C、11D、11Eの集合体)にかける。試験分級の際の粒径区分、すなわちふるいの数および目の大きさはこれに限るものではないが、この例では、土壌試料は粒径2mmを超える礫と、粒径0.85mmを超えて2mm以下である粗砂1と、粒径0.425mmを超えて0.85mm以下である粗砂2と、粒径0.25mmを超えて0.425mm以下である細砂1と、粒径0.075mmを超えて0.25mm以下でである細砂2と、粒径0.075mm以下である粘土とに分けられる。   In the dry test classification shown in FIG. 5, the sample is air dried and, for example, a test classifier 11 (electromagnetic type) having sieves (mesh) of 2 mm, 0.85 mm, 0.425 mm, 0.25 mm, and 0.075 mm. (A collection of vibration sieves 11A, 11B, 11C, 11D, and 11E). The particle size classification in the test classification, that is, the number of sieves and the size of the eyes is not limited to this, but in this example, the soil sample is a gravel with a particle size exceeding 2 mm and a particle size exceeding 0.85 mm. Coarse sand 1 of 2 mm or less, Coarse sand 2 of particle size exceeding 0.425 mm and 0.85 mm or less, Fine sand 1 exceeding particle size of 0.25 mm and 0.425 mm or less, and particle size 0 It is divided into fine sand 2 exceeding 0.075 mm and not more than 0.25 mm and clay having a particle diameter of not more than 0.075 mm.

図6に示す湿式試験分級は、試料を洗浄水とともにドラムウォッシャーおよびトロンメルに通し、粒径5mm以上の礫分を除いたうえサンドスクラバで擦り合わせ、そののち、水を含む状態で湿式試験分級機12にて分級する。試験分級機12も、たとえば2mm、0.85mm、0.425mm、0.25mm、0.075mmの各ふるい目をもつ電磁式振動ふるい12A、12B、12C、12D、12Eの集合体である。これを使用することによって、土壌試料は、図5の試験分級と同様、礫と粗砂1、粗砂2、細砂1、細砂2、粘土に分けられる。最も細かいふるい目をもつ試験分級機12Eを水とともに通過した粘土(粒径0.075mm以下のもの)は、凝集・沈殿させたうえ、汚泥として脱水し脱水ケーキとして回収する。   In the wet test classification shown in FIG. 6, the sample is passed through a drum washer and a trommel together with washing water, the gravel having a particle size of 5 mm or more is removed and rubbed with a sand scrubber, and then wet test classifier in a state containing water. Classify at 12. The test classifier 12 is also an aggregate of electromagnetic vibration sieves 12A, 12B, 12C, 12D, and 12E having screens of 2 mm, 0.85 mm, 0.425 mm, 0.25 mm, and 0.075 mm, for example. By using this, the soil sample is divided into gravel and coarse sand 1, coarse sand 2, fine sand 1, fine sand 2, and clay, as in the test classification of FIG. The clay (having a particle size of 0.075 mm or less) that has passed through the test classifier 12E having the finest sieve is coagulated and precipitated, and then dehydrated as sludge and recovered as a dehydrated cake.

採取する土壌が乾式・湿式のいずれの分級に適しているかは、図5・図6に示す試験分級をともに行ってみて決める。たとえば、土壌が塊になっていてほぐれにくい等の理由で、乾式の試験分級では粒径の小さいものを適切に分離できない場合には、湿式の分級によることになる。また、設定粒径をいくらに定めるかは、上記の試験分級でふるい分けた各粒径区分ごとにDXNの濃度を測定して判断する。濃度に顕著な差ができる境目の粒径を見出し、それを設定粒径とするのである。   Whether the soil to be collected is suitable for dry or wet classification is determined by performing the test classification shown in FIGS. 5 and 6 together. For example, if the dry test classification cannot adequately separate the small particle size because the soil is agglomerated and difficult to loosen, it is based on the wet classification. Further, how much the set particle size is determined is determined by measuring the concentration of DXN for each particle size classification screened in the above test classification. The particle size of the boundary where a significant difference in density is found is taken as the set particle size.

DXNによる模擬汚染を受けた土壌を対象にし、発明の方法によってその土壌の無害化を行った例を以下に紹介する。この例では湿式分級を行うこととし、事前に行った試験分級によって設定粒径を定めたうえ、当該設定粒径にて分級をするとともに土壌の一部に無害化処理(HM法による熱処理)を施したのである。   An example of detoxification of the soil subjected to simulated contamination by DXN and detoxification by the method of the invention will be introduced below. In this example, wet classification is performed, and after setting the set particle size by test classification performed in advance, classification is performed at the set particle size and detoxification treatment (heat treatment by HM method) is performed on a part of the soil. It was given.

まず、湿式の試験分級を行った結果を表1に示す。土壌の粒径別の重量とDXN濃度についての測定値を示している。これらの値から、0.075mmを超える処理物(試験分級処理を受けている。これらの乾燥重量は全体の68%)についてはDXN濃度の低減が認められ、十分除洗されたものと判断した。一方、0.075mm以下の処理物(乾燥重量は全体の32%)にはDXN濃度の低減は認められなかったため、それらは汚染物として化学的処理が必要と判断した。ただし、表1では作業ロスを含まず回収できた各粒径別の乾燥重量の和を100%とした。   First, Table 1 shows the results of wet test classification. The measured value about the weight according to the particle size of soil and DXN density | concentration is shown. From these values, it was judged that DXN concentration was reduced for processed products exceeding 0.075 mm (test classification treatment was performed. These dry weights were 68% of the total), and they were sufficiently washed. . On the other hand, since a reduction in DXN concentration was not observed in treated products of 0.075 mm or less (dry weight was 32% of the total), it was judged that they need chemical treatment as contaminants. However, in Table 1, the sum of the dry weights for each particle size recovered without including work loss was 100%.

Figure 2008272539
Figure 2008272539

上記した試験分級の結果に基づき、DXNの模擬汚染土壌150kgに対する湿式分級を行い、土壌の粒径別の重量等を測定した。その結果を表2に示す。0.075mmを超える処理物(すなわち除洗物)の量は分級前の総量の約63%、0.075mm以下の処理物(すなわち汚染物)の量は約32%となった。ただし、表2では作業ロスは5%であった。後者のもののみに熱処理を施すことから、熱処理の対象が全体の3分の1にまで低減できたことになる。   Based on the results of the above test classification, wet classification was performed on 150 kg of DXN simulated contaminated soil, and the weight of each soil particle size was measured. The results are shown in Table 2. The amount of the processed material exceeding 0.075 mm (namely, the washed product) was about 63% of the total amount before classification, and the amount of the processed material (namely, contamination) equal to or less than 0.075 mm was about 32%. However, in Table 2, the work loss was 5%. Since heat treatment is performed only on the latter, the number of heat treatment objects can be reduced to one-third of the whole.

Figure 2008272539
Figure 2008272539

湿式分級を経た0.075mm以下の処理物(汚染物)について、HM法による無害化処理を行った。処理後の土壌について測定したDXN濃度を表3に示す。無害化処理によるDXNの除去率は、バイオアッセイによると99.6%であり、公定法では99.9%であった。   The treated product (contaminated matter) having a wet classification of 0.075 mm or less was detoxified by the HM method. Table 3 shows the DXN concentration measured for the treated soil. The removal rate of DXN by the detoxification treatment was 99.6% according to the bioassay, and 99.9% according to the official method.

Figure 2008272539
Figure 2008272539

なお、この実施例では湿式分級をしたのち化学的無害化処理を行ったが、湿式分級に代えて乾式分級を行う場合についても、同様の手順で処理することができる。   In this embodiment, the chemical detoxification treatment is performed after wet classification. However, the same procedure can be applied to dry classification instead of wet classification.

発明によるダイオキシン類汚染粉粒体の無害化方法について基本的な手順を示すフローチャートである。It is a flowchart which shows a basic procedure about the detoxification method of the dioxin contamination granular material by invention. 発明の無害化方法のうち分級過程を乾式で行う場合の手順の全体を具体的に示す説明図である。It is explanatory drawing which shows specifically the whole procedure in the case of performing a classification process by a dry type among the detoxification methods of invention. 発明の無害化方法のうち分級過程を湿式で行う場合の手順の全体を具体的に示す説明図である。It is explanatory drawing which shows specifically the whole procedure in the case of performing a classification process by wet among the detoxification methods of invention. 熱処理により無害化をはかる手段について構成の概略を示すフロー図である。It is a flowchart which shows the outline of a structure about the means which aims at detoxification by heat processing. 事前の試験分級を乾式によって行う場合のフローを示す説明図である。It is explanatory drawing which shows the flow in the case of performing prior test classification by a dry type. 事前の試験分級を湿式によって行う場合のフローを示す説明図である。It is explanatory drawing which shows the flow in the case of performing prior test classification by wet.

符号の説明Explanation of symbols

1 乾式分級手段
2 湿式分級手段
3 無害化処理手段
11 乾式試験分級機
12 湿式試験分級機
DESCRIPTION OF SYMBOLS 1 Dry classification means 2 Wet classification means 3 Detoxification treatment means 11 Dry type test classifier 12 Wet test classifier

Claims (6)

ダイオキシン類によって汚染された粉粒体を、粉粒体同士の擦れ合いまたは移動流体との接触をともなう方法で分級し、
設定粒径以下の粉粒体を化学的に処理してダイオキシン類の無害化をはかるとともに、設定粒径を超える粉粒体には化学的処理を行わない
ことを特徴とするダイオキシン類汚染粉粒体の無害化方法。
Classifying powders contaminated with dioxins by a method involving rubbing of the powders or contact with a moving fluid,
Dioxins-contaminated powder, characterized by chemical treatment of powder particles smaller than the set particle size to detoxify dioxins and no chemical treatment of particles larger than the set particle size How to detoxify your body.
設定粒径を超える分級ずみ粉粒体を、当該粉粒体の採取箇所に埋めることを特徴とする請求項1に記載したダイオキシン類汚染粉粒体の無害化方法。   2. The method for detoxifying dioxin-contaminated powder particles according to claim 1, wherein classified powder particles exceeding a set particle diameter are buried in the collection points of the powder particles. 設定粒径以下の粉粒体に対する熱処理として、低酸素雰囲気で加熱する加熱脱塩素化処理(ハーゲンマイヤ法)を、当該粉粒体の採取箇所にて行うことを特徴とする請求項1または2に記載したダイオキシン類汚染粉粒体の無害化方法。   3. A heat dechlorination treatment (Hagenmeier method) in which heating is performed in a low-oxygen atmosphere as a heat treatment for a granular material having a particle size equal to or smaller than a set particle diameter is performed at a sampling location of the granular material. Detoxification method for dioxin-contaminated powder particles described in 1. 上記粉粒体と同一箇所より採取する粉粒体試料を事前に試験分級したうえ粒径ごとのダイオキシン類濃度を測定し、その測定結果に基づいて上記の設定粒径を定めることを特徴とする請求項1〜3のいずれかに記載したダイオキシン類汚染粉粒体の無害化方法。   A granular sample collected from the same location as the granular material is subjected to test classification in advance, and the concentration of dioxins for each particle size is measured, and the set particle size is determined based on the measurement result. The detoxification method of the dioxin contamination granular material as described in any one of Claims 1-3. ダイオキシン類による汚染部分を含む被処理物を事前に破砕することによって、上記の汚染された粉粒体とすることを特徴とする請求項1〜4のいずれかに記載したダイオキシン類汚染粉粒体の無害化方法。   The dioxin-contaminated granular material according to any one of claims 1 to 4, wherein the contaminated granular material is obtained by crushing an object to be treated containing a contaminated portion by dioxins in advance. Detoxification method. 請求項1〜5のいずれかに記載したダイオキシン類汚染粉粒体の無害化方法を実施するための装置であって、
粉粒体同士の擦れ合いまたは移動流体との接触をともなう方法で粉粒体を分級する手段と、設定粒径以下の粉粒体を化学的に処理してダイオキシン類の無害化をはかる手段とを含むことを特徴とするダイオキシン類汚染粉粒体の無害化装置。
An apparatus for carrying out the detoxification method for dioxins-contaminated powder particles according to any one of claims 1 to 5,
Means for classifying powder particles by a method involving friction between particles or contact with a moving fluid; Means for chemically treating powder particles having a set particle size or less to detoxify dioxins An apparatus for detoxifying dioxin-contaminated powder particles, comprising:
JP2006208150A 2006-07-31 2006-07-31 Method and apparatus for detoxifying dioxin polluted particle Pending JP2008272539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208150A JP2008272539A (en) 2006-07-31 2006-07-31 Method and apparatus for detoxifying dioxin polluted particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208150A JP2008272539A (en) 2006-07-31 2006-07-31 Method and apparatus for detoxifying dioxin polluted particle

Publications (1)

Publication Number Publication Date
JP2008272539A true JP2008272539A (en) 2008-11-13

Family

ID=40051211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208150A Pending JP2008272539A (en) 2006-07-31 2006-07-31 Method and apparatus for detoxifying dioxin polluted particle

Country Status (1)

Country Link
JP (1) JP2008272539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208592A (en) * 2012-03-30 2013-10-10 Ube Machinery Corporation Ltd Method for treating contaminated soil and treatment system for contaminated soil
US9421589B2 (en) 2010-07-15 2016-08-23 Dowa Eco-System Co., Ltd. Soil cleaning method
TWI549764B (en) * 2015-06-30 2016-09-21 中臺科技大學 A treating method of removing heavy metals in soil grains with mobility
TWI554339B (en) * 2010-07-19 2016-10-21 Dowa Eco System Co Ltd Soil purification method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421589B2 (en) 2010-07-15 2016-08-23 Dowa Eco-System Co., Ltd. Soil cleaning method
TWI554339B (en) * 2010-07-19 2016-10-21 Dowa Eco System Co Ltd Soil purification method
JP2013208592A (en) * 2012-03-30 2013-10-10 Ube Machinery Corporation Ltd Method for treating contaminated soil and treatment system for contaminated soil
TWI549764B (en) * 2015-06-30 2016-09-21 中臺科技大學 A treating method of removing heavy metals in soil grains with mobility

Similar Documents

Publication Publication Date Title
JP5923039B2 (en) Soil purification method
JP3245071B2 (en) How to clean the soil
JP2013173085A (en) Treatment system of aqueous muddy material containing ferrous metals particle and heavy metals
JP2008272539A (en) Method and apparatus for detoxifying dioxin polluted particle
TWI549764B (en) A treating method of removing heavy metals in soil grains with mobility
JP4338029B2 (en) Combined contaminated soil purification equipment
JP2014180595A (en) Contaminated soil treating method
JP2009125610A (en) Method for cleaning contaminated soil
JP2020110739A (en) Method for converting refuse incineration ashes to resources and apparatus for converting to resources thereof
JP4595099B2 (en) Method and system for cleaning contaminated soil
JP2013138975A (en) Incineration ash treatment system
JP2003103232A (en) Method for treating incineration ash
JP2004275973A (en) Method for treating contaminated soil
JP5583360B2 (en) Purification equipment for contaminated soil
KR101194925B1 (en) Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation
JP2012166170A (en) Washing method for incineration ash and method for converting the incineration ash into cement raw material
JP6454293B2 (en) Sorting method and sorter for workpieces
JP2007175585A (en) Treatment method of contaminated soil
JP6578257B2 (en) Detoxification method for contaminated soil
JP3424609B2 (en) Detoxification method of dioxin pollutants
JP2003080106A (en) Treatment method of incineration ash
JP2003073153A (en) Method of disposing incinerated ash
JP2670417B2 (en) Recycling treatment method of incinerator ash of stalker type incinerator for waste
JP2011235213A (en) Pretreatment method for soil polluted by pcb
AU2021205880B2 (en) Spent activated carbon and industrial byproduct treatment system and method