JP2008271728A - Series multiple inverter and overvoltage preventing method - Google Patents

Series multiple inverter and overvoltage preventing method Download PDF

Info

Publication number
JP2008271728A
JP2008271728A JP2007113074A JP2007113074A JP2008271728A JP 2008271728 A JP2008271728 A JP 2008271728A JP 2007113074 A JP2007113074 A JP 2007113074A JP 2007113074 A JP2007113074 A JP 2007113074A JP 2008271728 A JP2008271728 A JP 2008271728A
Authority
JP
Japan
Prior art keywords
voltage
phase
output
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007113074A
Other languages
Japanese (ja)
Other versions
JP2008271728A5 (en
JP5170370B2 (en
Inventor
Takashi Tanaka
貴志 田中
Ryuji Suenaga
龍二 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007113074A priority Critical patent/JP5170370B2/en
Publication of JP2008271728A publication Critical patent/JP2008271728A/en
Publication of JP2008271728A5 publication Critical patent/JP2008271728A5/ja
Application granted granted Critical
Publication of JP5170370B2 publication Critical patent/JP5170370B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and simple circuit for preventing an overvoltage in a series multiple inverter. <P>SOLUTION: A series multiple inverter comprises: a transformer (102) for generating a plurality of three-phase output AC voltages from a three-phase input AC voltage; and a plurality of a single-phase inverters (131) for generating single-phase AC voltages from the three-phase output AC voltages, connects the single-phase inverters in series, generates the three-phase output AC voltages based on an output voltage instruction, and drives a motor. The series multiple inverter also comprises: an input voltage detecting section (106) for detecting a voltage of a three-phase input AC power supply, and generating an input voltage detection signal; an output voltage detecting section (109) for detecting a voltage of a three-phase output AC power supply, and generating an output voltage detection signal; a DC voltage converting section (108) for converting the input voltage detection signal and the output voltage detection signal into an input voltage DC signal and an output voltage DC signal; and an overvoltage preventing section (110) for preventing the overvoltage based on the input voltage DC signal and the output voltage DC signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、単相インバータの出力を複数台直列接続して各相を構成し、高圧交流電圧出力を得るようにした直列多重インバータと過電圧防止方法に関する。   The present invention relates to a serial multiple inverter and an overvoltage prevention method in which a plurality of single-phase inverter outputs are connected in series to form each phase to obtain a high-voltage AC voltage output.

一般にインバータの過電圧防止方法は、直流電圧値を監視し、回生エネルギーによる電圧値の上昇を検知したら、モータの減速レートを緩やかにしたり、回生側のトルク制限値を小さくすることで、回生エネルギーを抑制し過電圧を防止している(例えば、非特許文献1参照)。   In general, the inverter overvoltage prevention method monitors the DC voltage value, and if an increase in voltage value due to regenerative energy is detected, regenerative energy can be reduced by slowing the motor deceleration rate or reducing the torque limit value on the regenerative side. It suppresses and prevents overvoltage (for example, refer nonpatent literature 1).

過電圧防止機能を持った直列多重インバータの構成例を図6に示す。602は三相トランスであり、2次側に設けられた巻線に631〜633、641〜643、651〜653の単相インバータが接続されている。前記単相インバータは、661コンバータ部の三相全波整流出力を662平滑コンデンサにより平滑された直流電圧を入力し単相を出力する663インバータ部により構成され、前記単相インバータの出力を各相3台ずつ直列に接続することで直列多重インバータを構成し、高圧交流電圧を出力して606交流電動機を駆動する。   FIG. 6 shows a configuration example of a series multiple inverter having an overvoltage prevention function. Reference numeral 602 denotes a three-phase transformer, and single-phase inverters 631 to 633, 641 to 643, and 651 to 653 are connected to windings provided on the secondary side. The single-phase inverter is composed of a 663 inverter unit that inputs a DC voltage obtained by smoothing the three-phase full-wave rectified output of the 661 converter unit by a 662 smoothing capacitor and outputs a single phase, and outputs the single-phase inverter for each phase. By connecting three units in series, a series multiple inverter is configured, and a high-voltage AC voltage is output to drive a 606 AC motor.

前記交流電動機により回生エネルギーが発生すると、前記平滑コンデンサの両端の直流電圧が上昇する。これを防止するため前記単相インバータ毎に664直流電圧検出回路を設け、その出力665直流電圧検出値を666過電圧防止回路に取り込み回生エネルギーを抑制することで過電圧を防止している。   When regenerative energy is generated by the AC motor, the DC voltage across the smoothing capacitor rises. In order to prevent this, a 664 DC voltage detection circuit is provided for each single-phase inverter, and the output 665 DC voltage detection value is taken into the 666 overvoltage prevention circuit to suppress regenerative energy, thereby preventing overvoltage.

このように、従来の直列多重インバータでは、単相インバータ毎に直流電圧検出回路を設け、その検出値を使って過電圧を防止する、という手順がとられていた。
株式会社安川電機編「インバータドライブ技術」日刊工業新聞社出版、2006年3月31日、p.169−170
Thus, in the conventional series multiple inverter, the procedure of providing a DC voltage detection circuit for each single-phase inverter and using the detected value to prevent overvoltage has been taken.
Yasukawa Electric Co., Ltd. “Inverter Drive Technology” published by Nikkan Kogyo Shimbun, March 31, 2006, p. 169-170

従来の直列多重インバータの過電圧防止方法では、単相インバータ毎に直流電圧検出回路を設け、その検出値を過電圧防止回路に送るという手順をとっているので、回路構成が複雑となり、装置が高価になってしまうという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、単相インバータごとの直流電圧検出回路がなくとも出力直流電圧が生成でき安価で簡素な回路構成で過電圧を防止できる直列多重インバータと過電圧防止方法を提供することを目的とする。
In the conventional overvoltage prevention method for series multiple inverters, a DC voltage detection circuit is provided for each single-phase inverter, and the detected value is sent to the overvoltage prevention circuit. This complicates the circuit configuration and makes the device expensive. There was a problem of becoming.
The present invention has been made in view of such problems, and a series multiplex inverter capable of generating an output DC voltage without a DC voltage detection circuit for each single-phase inverter and preventing overvoltage with an inexpensive and simple circuit configuration, and An object is to provide an overvoltage prevention method.

上記問題を解決するため、本発明は、次のようにしたのである。
請求項1に記載の発明は、3相交流入力電圧から複数の3相交流出力電圧を生成するトランスと、前記3相交流出力電圧から単相交流電圧を生成する複数の単相インバータを備え、前記単相インバータを直列接続し出力電圧指令に基づいて3相交流出力電圧を生成し交流電動機を駆動する直列多重インバータにおいて、前記3相交流入力電圧を検出し入力電圧検出信号を生成する入力電圧検出部と、前記3相交流出力電圧を検出し出力電圧検出信号を生成する出力電圧検出部と、前記入力電圧検出信号と前記出力電圧検出信号をそれぞれ直流入力電圧信号と直流出力電圧信号に変換する直流電圧変換部と、前記直流入力電圧信号と前記直流出力電圧信号に基づいて過電圧を防止する過電圧防止部と、を備えることを特徴とするものである。
請求項2に記載の発明は、請求項1記載の直列多重インバータにおいて、前記直流電圧変換部は、入力電圧検出信号から入力電圧信号を生成し、前記入力電圧信号から直流電圧指令を生成し、前記出力電圧検出信号と前記出力電圧指令との比を前記直流電圧指令に乗じて直流電圧を生成することを特徴とするものである。
請求項3に記載の発明は、請求項1記載の直列多重インバータにおいて、前記直流電圧変換部は、出力電圧検出信号を前記出力電圧指令の比を各相ごとに生成し、それぞれに前記直流電圧指令を乗じて各相ごとの直流電圧を生成することを特徴とするものである。
請求項4に記載の発明は、請求項1記載の直列多重インバータにおいて、前記直流電圧変換部は、直流電圧を3相電圧の自乗和平方根により生成することを特徴とするものである。
請求項5に記載の発明は、請求項1記載の直列多重インバータにおいて、前記直流電圧変換部は、直流電圧を3相電圧のdq軸座標変換により生成することを特徴とするものである。
請求項6に記載の発明は、請求項1記載の直列多重インバータにおいて、前記過電圧防止部は、前記出力電圧信号が所定の電圧以上でモータの減速率を前記入力電圧直流信号と前記出力電圧直流信号の関数で抑えることを特徴とするものである。
請求項7に記載の発明は、3相入力交流電圧から複数の3相出力交流電圧を生成するトランスと、前記3相出力交流電圧から単相交流電圧を生成する複数の単相インバータを備え、前記単相インバータを直列接続し出力電圧指令に基づいて3相出力交流電圧を生成しモータを駆動する直列多重インバータの過電圧防止方法において、前記3相入力交流電源の電圧を検出し入力電圧検出信号を生成するステップと、前記3相出力交流電源の電圧を検出し出力電圧検出信号を生成するステップと、前記入力電圧検出信号と前記出力電圧検出信号をそれぞれ入力電圧直流信号と出力電圧直流信号に変換するステップと、前記入力電圧直流信号と前記出力電圧直流信号に基づいて過電圧を防止するステップと、を備えたことを特徴とするものである。
In order to solve the above problem, the present invention is as follows.
The invention according to claim 1 includes a transformer that generates a plurality of three-phase AC output voltages from a three-phase AC input voltage, and a plurality of single-phase inverters that generate a single-phase AC voltage from the three-phase AC output voltage. An input voltage for detecting the three-phase AC input voltage and generating an input voltage detection signal in a serial multiple inverter that connects the single-phase inverters in series and generates a three-phase AC output voltage based on an output voltage command to drive an AC motor. A detection unit; an output voltage detection unit that detects the three-phase AC output voltage and generates an output voltage detection signal; and converts the input voltage detection signal and the output voltage detection signal into a DC input voltage signal and a DC output voltage signal, respectively. A DC voltage conversion unit that performs the above operation, and an overvoltage prevention unit that prevents overvoltage based on the DC input voltage signal and the DC output voltage signal.
According to a second aspect of the present invention, in the serial multiple inverter according to the first aspect, the DC voltage conversion unit generates an input voltage signal from the input voltage detection signal, generates a DC voltage command from the input voltage signal, The DC voltage command is generated by multiplying the DC voltage command by the ratio of the output voltage detection signal and the output voltage command.
According to a third aspect of the present invention, in the serial multiple inverter according to the first aspect, the DC voltage converter generates an output voltage detection signal for each phase of a ratio of the output voltage command, and each of the DC voltage converters A DC voltage for each phase is generated by multiplying the command.
According to a fourth aspect of the present invention, in the serial multiple inverter according to the first aspect, the DC voltage conversion unit generates a DC voltage by a square sum of squares of three-phase voltages.
According to a fifth aspect of the present invention, in the serial multiple inverter according to the first aspect, the DC voltage converter generates the DC voltage by dq-axis coordinate conversion of a three-phase voltage.
According to a sixth aspect of the present invention, in the serial multiple inverter according to the first aspect, the overvoltage prevention unit determines a motor deceleration rate when the output voltage signal is equal to or higher than a predetermined voltage and the input voltage direct current signal and the output voltage direct current. It is characterized by being suppressed by a signal function.
The invention according to claim 7 includes a transformer that generates a plurality of three-phase output AC voltages from a three-phase input AC voltage, and a plurality of single-phase inverters that generate a single-phase AC voltage from the three-phase output AC voltage, In the method for preventing overvoltage of a serial multiple inverter in which the single-phase inverters are connected in series and a three-phase output AC voltage is generated based on an output voltage command to drive a motor, an input voltage detection signal Generating the output voltage detection signal by detecting the voltage of the three-phase output AC power source, and converting the input voltage detection signal and the output voltage detection signal into an input voltage DC signal and an output voltage DC signal, respectively. A step of converting, and a step of preventing overvoltage based on the input voltage DC signal and the output voltage DC signal.

本発明によれば、各単相インバータの直流電圧検出回路を設けることなく、入力電圧と出力電圧の検出値から直流電圧を算出するので過電圧の発生を防止する直列多重インバータと過電圧防止方法を提供できる。   According to the present invention, there is provided a serial multiple inverter and an overvoltage prevention method for preventing the occurrence of overvoltage because the DC voltage is calculated from the detected values of the input voltage and the output voltage without providing a DC voltage detection circuit for each single-phase inverter. it can.

以下、本発明の方法の具体的実施例について、図1〜5に基づいて説明する。   In the following, specific examples of the method of the present invention will be described with reference to FIGS.

図1は、本発明の方法を実施する直列多重インバータ装置の構成を示す回路図である。図1において三相交流電源101が三相トランス102の1次巻線120の端子R,S,Tに入力されている。前記三相トランスの2次巻線121〜129から各単相インバータ131〜133、141〜143、151〜153に電力を供給している。前記単相インバータを3台一組としてその出力を直列に接続し、U相、V相、W相を構成し、高圧交流電圧を発生し、交流電動機107を駆動している。   FIG. 1 is a circuit diagram showing a configuration of a serial multiple inverter apparatus for carrying out the method of the present invention. In FIG. 1, a three-phase AC power source 101 is input to terminals R, S, and T of a primary winding 120 of a three-phase transformer 102. Electric power is supplied to the single-phase inverters 131 to 133, 141 to 143, and 151 to 153 from the secondary windings 121 to 129 of the three-phase transformer. A set of three single-phase inverters are connected in series, the U-phase, the V-phase, and the W-phase are formed, a high-voltage AC voltage is generated, and the AC motor 107 is driven.

前記1次巻線に入力される電圧を入力電圧検出回路106を用いて検出する。出力側も同様に出力電圧検出回路109を用いて検出し、前記入力電圧検出値とともに直流電圧演算回路108に入力する。前記直流電圧演算回路にて算出した直流電圧値を過電圧防止回路110に入力し、過電圧防止を行う。   A voltage input to the primary winding is detected using an input voltage detection circuit 106. Similarly, the output side is also detected using the output voltage detection circuit 109 and input to the DC voltage calculation circuit 108 together with the input voltage detection value. The DC voltage value calculated by the DC voltage calculation circuit is input to the overvoltage prevention circuit 110 to prevent overvoltage.

図2は、本発明の方法の実施形態1を示す直流電圧演算回路である。出力電圧Voutは、出力電圧指令Vrefに対して、次式で表される。
Vout=Vref×Vdc/Vdcref (1)
ここで、Vdcは実際の直流電圧値、Vdcrefは、入力電圧Vinから演算される直流電圧指令である。前記三相トランスの巻線比を

とすると直流電圧指令は次式にて演算される。
Vdcref=1.35×a×Vin (2)
以上から、直流電圧は既知の数値を用いて次式にて演算できる。
Vdc=Vdcref×Vout/Vref (3)
FIG. 2 is a DC voltage calculation circuit showing the first embodiment of the method of the present invention. The output voltage Vout is expressed by the following equation with respect to the output voltage command Vref.
Vout = Vref × Vdc / Vdcref (1)
Here, Vdc is an actual DC voltage value, and Vdcref is a DC voltage command calculated from the input voltage Vin. The winding ratio of the three-phase transformer

Then, the DC voltage command is calculated by the following equation.
Vdcref = 1.35 × a × Vin (2)
From the above, the DC voltage can be calculated by the following equation using known numerical values.
Vdc = Vdcref × Vout / Vref (3)

(3)式を使って直流電圧を演算するため、まず、入力電圧Vr、Vs、Vtを入力電圧検出部106を介して取り込み、入力電圧演算部201にて入力電圧Vinを演算し、その値から直流電圧指令生成部202により直流電圧指令Vdcrefを生成する。次に、出力電圧Vu、Vv、Vwを出力電圧検出部109を介して取り込み、出力電圧演算部203にて出力電圧Voutを演算し出力電圧指令Vrefとの比を演算し、先に演算した直流電圧指令Vdcrefと乗ずることで直流電圧Vdcを算出する。   In order to calculate the DC voltage using the equation (3), first, the input voltages Vr, Vs, and Vt are taken in via the input voltage detector 106, the input voltage Vin is calculated by the input voltage calculator 201, and the value The DC voltage command generator 202 generates a DC voltage command Vdcref. Next, the output voltages Vu, Vv, and Vw are taken in via the output voltage detection unit 109, the output voltage calculation unit 203 calculates the output voltage Vout, calculates the ratio with the output voltage command Vref, and the previously calculated DC The DC voltage Vdc is calculated by multiplying the voltage command Vdcref.

図4は、本発明の実施例1の過電圧防止回路である。直流電圧算出値が直流電圧指令を超えると回生エネルギーが発生していることになるので回生エネルギーを抑制するために減速レートを緩くする。ここでは、前記直流電圧演算値が直流電圧指令を超えた量に応じて減速レートを緩くするための補正係数を演算する。ここでは、減速レートを緩くするための係数を演算しているが、直流電圧の上昇量に応じて回生側のトルク制限値を小さくすることでも同様に過電圧を防止することが可能である。   FIG. 4 shows an overvoltage prevention circuit according to the first embodiment of the present invention. When the DC voltage calculation value exceeds the DC voltage command, regenerative energy is generated. Therefore, the deceleration rate is reduced in order to suppress the regenerative energy. Here, a correction coefficient for reducing the deceleration rate is calculated according to the amount by which the DC voltage calculation value exceeds the DC voltage command. Here, although a coefficient for reducing the deceleration rate is calculated, overvoltage can be similarly prevented by reducing the torque limit value on the regeneration side in accordance with the amount of increase in DC voltage.

図3は、本発明の方法の実施例2を示す直流電圧変換回路である。インバータが出力する3相電圧Vu、Vv、Vwは、3相電圧指令Vuref、Vvref、Vwrefに対して次式にて表される。
Vu=Vuref×Vdcu/Vdcref
Vv=Vvref×Vdcv/Vdcref
Vw=Vwref×Vdcw/Vdcref (4)
Vdcrefは(2)式にて演算されるので、各相の直流電圧値、Vdcu、Vdcv、Vdcwは次式により演算できる。
Vdcu=Vdcref×Vu/Vuref
Vdcv=Vdcref×Vv/Vvref
Vdcw=Vdcref×Vw/Vwref (5)
FIG. 3 is a DC voltage conversion circuit showing Embodiment 2 of the method of the present invention. The three-phase voltages Vu, Vv, and Vw output from the inverter are expressed by the following equations with respect to the three-phase voltage commands Vuref, Vvref, and Vwref.
Vu = Vuref × Vdcu / Vdref
Vv = Vvref × Vdcv / Vdref
Vw = Vwref × Vdcw / Vdcref (4)
Since Vdref is calculated by equation (2), the DC voltage value of each phase, Vdcu, Vdcv, Vdcw can be calculated by the following equation.
Vdcu = Vdref × Vu / Vuref
Vdcv = Vdref × Vv / Vvref
Vdcw = Vdcref × Vw / Vwref (5)

(5)式を使って直流電圧を演算するため、まず、入力電圧Vr、Vs、Vtを入力電圧検出部106を介して取り込み、入力電圧演算部301にて入力電圧Vinを演算し、直流電圧指令生成部302により直流電圧指令Vdcrefを生成する。次に、出力電圧Vu、Vv、Vwを出力電圧検出回路109を介して取り込み、各相電圧検出値Vu、Vv、Vwと各相電圧指令Vuref、Vvref、Vwrefとの比を演算し、先に演算した直流電圧指令Vdcrefを乗ずることで各相の直流電圧Vdcu、Vdcv、Vdcwを算出する。   In order to calculate the DC voltage using the equation (5), first, the input voltages Vr, Vs, and Vt are taken in via the input voltage detector 106, the input voltage Vin is calculated by the input voltage calculator 301, and the DC voltage is calculated. The command generation unit 302 generates a DC voltage command Vdcref. Next, the output voltages Vu, Vv, and Vw are taken in via the output voltage detection circuit 109, and the ratio between each phase voltage detection value Vu, Vv, Vw and each phase voltage command Vuref, Vvref, Vwref is calculated. The DC voltage Vdcu, Vdcv, Vdcw of each phase is calculated by multiplying the calculated DC voltage command Vdref.

図5は、本発明の方法の実施例2を示す過電圧防止回路である。前記各相の直流電圧のうち最大値選択回路502により一番上昇値が大きい相を選択し、その値を用いて過電圧防止処理を行う。過電圧防止回路501については、実施例1にて記載したものと同様である。直流電圧を相毎に演算することで各相のばらつきに対する過電圧防止効果を大きくすることができる。   FIG. 5 is an overvoltage prevention circuit showing Embodiment 2 of the method of the present invention. Of the DC voltages of each phase, the maximum value selection circuit 502 selects the phase having the largest increase value, and the overvoltage prevention process is performed using the value. The overvoltage prevention circuit 501 is the same as that described in the first embodiment. By calculating the DC voltage for each phase, it is possible to increase the effect of preventing overvoltage against variations in each phase.

直流電圧に変換するには、(6)式のように3相電圧の自乗和平方根をもとめてもよい。
Vin=√(Vr+Vs+Vt
Vout=√(Vu+Vv+Vw) (6)
また、直流電圧に変換するには、(7)式のようにdq軸座標変換などの座標変換を用いてもよい。ここでθはモータロータの電気角である。
In order to convert to a DC voltage, the square sum of squares of the three-phase voltage may be obtained as shown in Equation (6).
Vin = √ (Vr 2 + Vs 2 + Vt 2 )
Vout = √ (Vu 2 + Vv 2 + Vw 2 ) (6)
Moreover, in order to convert into a DC voltage, you may use coordinate transformations, such as dq axis coordinate transformation, like (7) Formula. Where θ is the electrical angle of the motor rotor.

図7は本発明の過電圧防止方法を示すフローチャートである。図7において、ステップST1で3相入力交流電源の電圧を検出し入力電圧検出信号を生成し、ステップST2で3相出力交流電源の電圧を検出し出力電圧検出信号を生成し、ステップST3で入力電圧検出信号と出力電圧検出信号をそれぞれ入力電圧直流信号と出力電圧直流信号に変換し、ステップST4で入力電圧直流信号と出力電圧直流信号に基づいて過電圧を防止する。   FIG. 7 is a flowchart showing the overvoltage prevention method of the present invention. In FIG. 7, in step ST1, the voltage of the three-phase input AC power supply is detected and an input voltage detection signal is generated. In step ST2, the voltage of the three-phase output AC power supply is detected and an output voltage detection signal is generated, and input in step ST3. The voltage detection signal and the output voltage detection signal are converted into an input voltage DC signal and an output voltage DC signal, respectively, and overvoltage is prevented based on the input voltage DC signal and the output voltage DC signal in step ST4.

このように、入力電圧と出力電圧の検出値から直流電圧値を算出することで過電圧を防止することが可能となり、単相インバータ毎に直流電圧を検出するための回路を設ける必要がなく、安価で簡素な回路構成で過電圧の防止ができるのである。   Thus, by calculating the DC voltage value from the detected values of the input voltage and output voltage, it becomes possible to prevent overvoltage, and it is not necessary to provide a circuit for detecting the DC voltage for each single-phase inverter, and it is inexpensive. Thus, overvoltage can be prevented with a simple circuit configuration.

本発明の方法を適用する直列多重インバータ装置の構成を示す回路図The circuit diagram which shows the structure of the serial multiple inverter apparatus to which the method of this invention is applied. 本発明の方法の実施形態1を示す直流電圧演算回路DC voltage arithmetic circuit showing Embodiment 1 of the method of the present invention 本発明の方法の実施形態2を示す直流電圧演算回路DC voltage calculation circuit showing Embodiment 2 of the method of the present invention 本発明の方法の実施形態1を示す過電圧防止回路Overvoltage prevention circuit showing Embodiment 1 of the method of the present invention 本発明の方法の実施形態2を示す過電圧防止回路Overvoltage prevention circuit showing Embodiment 2 of the method of the present invention 従来の方法を適用した直列多重インバータ装置の構成を示す回路図A circuit diagram showing a configuration of a serial multiple inverter device to which a conventional method is applied. 本発明の過電圧防止方法を示すフローチャートThe flowchart which shows the overvoltage prevention method of this invention

符号の説明Explanation of symbols

101 三相交流電源
102 三相トランス
103 U相ユニット
104 V相ユニット
105 W相ユニット
106 入力電圧検出部
107 交流電動機
108 直流電圧変換部
109 出力電圧検出部
110 過電圧防止部
120 1次巻線
121〜129 2次巻線
131〜153 単相インバータ
R,S,T 三相トランス1次側入力端子
r,s,t 単相インバータ入力端子
a,b 単相インバータ出力端子
U,V,W 出力端子
201 入力電圧演算部
202 直流電圧指令生成部
203 出力電圧演算部
301 入力電圧演算部
302 直流電圧指令生成部
401 過電圧防止部
501 過電圧防止部
502 最大値選択部
101 Three-phase AC power supply 102 Three-phase transformer 103 U-phase unit 104 V-phase unit 105 W-phase unit 106 Input voltage detection unit 107 AC motor 108 DC voltage conversion unit 109 Output voltage detection unit 110 Overvoltage prevention unit 120 Primary winding 121- 129 Secondary windings 131 to 153 Single-phase inverters R, S, T Three-phase transformer primary side input terminals r, s, t Single-phase inverter input terminals a, b Single-phase inverter output terminals U, V, W Output terminal 201 Input voltage calculation unit 202 DC voltage command generation unit 203 Output voltage calculation unit 301 Input voltage calculation unit 302 DC voltage command generation unit 401 Overvoltage prevention unit 501 Overvoltage prevention unit 502 Maximum value selection unit

Claims (7)

3相交流入力電圧から複数の3相交流出力電圧を生成するトランスと、前記3相交流出力電圧から単相交流電圧を生成する複数の単相インバータを備え、前記単相インバータを直列接続し出力電圧指令に基づいて3相交流出力電圧を生成し交流電動機を駆動する直列多重インバータにおいて、
前記3相交流入力電圧を検出し入力電圧検出信号を生成する入力電圧検出部と、
前記3相交流出力電圧を検出し出力電圧検出信号を生成する出力電圧検出部と、
前記入力電圧検出信号と前記出力電圧検出信号をそれぞれ直流入力電圧信号と直流出力電圧信号に変換する直流電圧変換部と、
前記直流入力電圧信号と前記直流出力電圧信号に基づいて過電圧を防止する過電圧防止部と、
を備えたことを特徴とする直列多重インバータ。
A transformer that generates a plurality of three-phase AC output voltages from a three-phase AC input voltage and a plurality of single-phase inverters that generate a single-phase AC voltage from the three-phase AC output voltage, and outputs the single-phase inverter connected in series In a series multiple inverter that generates a three-phase AC output voltage based on a voltage command and drives an AC motor,
An input voltage detector that detects the three-phase AC input voltage and generates an input voltage detection signal;
An output voltage detector that detects the three-phase AC output voltage and generates an output voltage detection signal;
A DC voltage converter for converting the input voltage detection signal and the output voltage detection signal into a DC input voltage signal and a DC output voltage signal, respectively;
An overvoltage prevention unit for preventing overvoltage based on the DC input voltage signal and the DC output voltage signal;
A serial multiple inverter characterized by comprising:
前記直流電圧変換部は、入力電圧検出信号から交流入力電圧信号を生成し、前記交流入力電圧信号から直流電圧指令を生成し、前記出力電圧検出信号と前記出力電圧指令との比を前記直流電圧指令に乗じて直流電圧を生成することを特徴とする請求項1記載の直列多重インバータ。   The DC voltage conversion unit generates an AC input voltage signal from an input voltage detection signal, generates a DC voltage command from the AC input voltage signal, and sets a ratio of the output voltage detection signal and the output voltage command to the DC voltage. The serial multiple inverter according to claim 1, wherein the direct current voltage is generated by multiplying the command. 前記直流電圧変換部は、出力電圧検出信号を前記出力電圧指令の比を各相ごとに生成し、それぞれに前記直流電圧指令を乗じて各相ごとの直流電圧を生成することを特徴とする請求項1記載の直列多重インバータ。 The DC voltage conversion unit generates an output voltage detection signal for each phase by a ratio of the output voltage command for each phase, and multiplies the DC voltage command by each to generate a DC voltage for each phase. Item 2. A serial multiple inverter according to item 1. 前記直流電圧変換部は、直流電圧を3相電圧の自乗和平方根により生成することを特徴とする請求項1記載の直列多重インバータ。   The serial multiple inverter according to claim 1, wherein the DC voltage conversion unit generates a DC voltage by a root sum square of three-phase voltages. 前記直流電圧変換部は、直流電圧を3相電圧のdq軸座標変換により生成することを特徴とする請求項1記載の直列多重インバータ。   The serial multiple inverter according to claim 1, wherein the DC voltage conversion unit generates a DC voltage by dq axis coordinate conversion of a three-phase voltage. 前記過電圧防止部は、前記出力電圧信号が所定の電圧以上でモータの減速率を前記入力電圧直流信号と前記出力電圧直流信号の関数で抑えることを特徴とする請求項1記載の直列多重インバータ。   2. The serial multiple inverter according to claim 1, wherein the overvoltage prevention unit suppresses a motor deceleration rate by a function of the input voltage DC signal and the output voltage DC signal when the output voltage signal is equal to or higher than a predetermined voltage. 3相入力交流電圧から複数の3相出力交流電圧を生成するトランスと、前記3相出力交流電圧から単相交流電圧を生成する複数の単相インバータを備え、前記単相インバータを直列接続し出力電圧指令に基づいて3相出力交流電圧を生成しモータを駆動する直列多重インバータの過電圧防止方法において、
前記3相入力交流電源の電圧を検出し入力電圧検出信号を生成するステップと、
前記3相出力交流電源の電圧を検出し出力電圧検出信号を生成するステップと、
前記入力電圧検出信号と前記出力電圧検出信号をそれぞれ入力電圧直流信号と出力電圧直流信号に変換するステップと、
前記入力電圧直流信号と前記出力電圧直流信号に基づいて過電圧を防止するステップと、
を備えたことを特徴とする直列多重インバータの過電圧防止方法。

A transformer that generates a plurality of three-phase output AC voltages from a three-phase input AC voltage and a plurality of single-phase inverters that generate a single-phase AC voltage from the three-phase output AC voltage, and outputs the single-phase inverter connected in series In a method for preventing overvoltage of a serial multiple inverter that generates a three-phase output AC voltage based on a voltage command and drives a motor,
Detecting the voltage of the three-phase input AC power supply and generating an input voltage detection signal;
Detecting a voltage of the three-phase output AC power supply and generating an output voltage detection signal;
Converting the input voltage detection signal and the output voltage detection signal into an input voltage DC signal and an output voltage DC signal, respectively;
Preventing overvoltage based on the input voltage DC signal and the output voltage DC signal;
A method of preventing overvoltage of a serial multiple inverter.

JP2007113074A 2007-04-23 2007-04-23 Series multiple inverter and overvoltage prevention method Expired - Fee Related JP5170370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113074A JP5170370B2 (en) 2007-04-23 2007-04-23 Series multiple inverter and overvoltage prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113074A JP5170370B2 (en) 2007-04-23 2007-04-23 Series multiple inverter and overvoltage prevention method

Publications (3)

Publication Number Publication Date
JP2008271728A true JP2008271728A (en) 2008-11-06
JP2008271728A5 JP2008271728A5 (en) 2011-06-30
JP5170370B2 JP5170370B2 (en) 2013-03-27

Family

ID=40050523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113074A Expired - Fee Related JP5170370B2 (en) 2007-04-23 2007-04-23 Series multiple inverter and overvoltage prevention method

Country Status (1)

Country Link
JP (1) JP5170370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849335A4 (en) * 2012-05-11 2016-04-13 Toshiba Mitsubishi Elec Inc Dc voltage detector and power conversion device using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261093A (en) * 1989-03-31 1990-10-23 Toshiba Corp Motor driver
JP2000308205A (en) * 1999-04-21 2000-11-02 Railway Technical Res Inst Ac electric vehicle drive apparatus
JP2002051580A (en) * 2000-08-03 2002-02-15 Matsushita Electric Ind Co Ltd Position-sensorless control method for synchronous motor, and position-sensorless controller
JP2002233180A (en) * 2001-01-31 2002-08-16 Toshiba Corp Power converter
JP2004208397A (en) * 2002-12-25 2004-07-22 Hitachi Ltd Power converter and control method thereof
JP2006217688A (en) * 2005-02-01 2006-08-17 Chugoku Electric Power Co Inc:The Instantaneous voltage drop compensation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261093A (en) * 1989-03-31 1990-10-23 Toshiba Corp Motor driver
JP2000308205A (en) * 1999-04-21 2000-11-02 Railway Technical Res Inst Ac electric vehicle drive apparatus
JP2002051580A (en) * 2000-08-03 2002-02-15 Matsushita Electric Ind Co Ltd Position-sensorless control method for synchronous motor, and position-sensorless controller
JP2002233180A (en) * 2001-01-31 2002-08-16 Toshiba Corp Power converter
JP2004208397A (en) * 2002-12-25 2004-07-22 Hitachi Ltd Power converter and control method thereof
JP2006217688A (en) * 2005-02-01 2006-08-17 Chugoku Electric Power Co Inc:The Instantaneous voltage drop compensation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849335A4 (en) * 2012-05-11 2016-04-13 Toshiba Mitsubishi Elec Inc Dc voltage detector and power conversion device using same
EP3139488A3 (en) * 2012-05-11 2017-03-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Dc voltage detector and power conversion device using same

Also Published As

Publication number Publication date
JP5170370B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US9214881B2 (en) Power conversion apparatus
JP2004320984A (en) Inverter controller for driving motor and air conditioner
US11218107B2 (en) Control device for power converter
CN111357186B (en) Power conversion system
JP2008228548A (en) Power converter and power conversion method for performing parallel operation of inverters
JP2010187431A (en) Uninterruptible power supply
WO2014049779A1 (en) Power conversion device
CA2598099C (en) Electric power converter apparatus
WO2014174865A1 (en) Power conversion device and method for controlling power conversion device
JP3773794B2 (en) Power converter
JP2008312281A (en) Power compensating system
US9231514B2 (en) Motor control apparatus and motor control method
JP2007082321A (en) Motor drive unit
JP2007110827A (en) Inverter device
JP5170370B2 (en) Series multiple inverter and overvoltage prevention method
JP2017163659A (en) Wind power generation system
JP2006230027A (en) Serial multiple inverter device
JP7193248B2 (en) power converter
JP6384060B2 (en) Power converter
JP5399955B2 (en) Power converter and control method of power converter
JP6435956B2 (en) Power converter
WO2015087437A1 (en) Power conversion device
JP2023104788A (en) Electric motor control method and electric motor control device
JP6043505B2 (en) Magnetic saturation suppression device
JP2008271728A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

LAPS Cancellation because of no payment of annual fees