JP2008270633A - Semiconductor-element integrating substrate - Google Patents

Semiconductor-element integrating substrate Download PDF

Info

Publication number
JP2008270633A
JP2008270633A JP2007113891A JP2007113891A JP2008270633A JP 2008270633 A JP2008270633 A JP 2008270633A JP 2007113891 A JP2007113891 A JP 2007113891A JP 2007113891 A JP2007113891 A JP 2007113891A JP 2008270633 A JP2008270633 A JP 2008270633A
Authority
JP
Japan
Prior art keywords
semiconductor element
substrate
metal
insulating layer
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113891A
Other languages
Japanese (ja)
Inventor
Manabu Yamada
学 山田
Yuji Kato
雄二 加藤
Mitsuhisa Takashima
光久 高島
Osamu Tanaka
統 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2007113891A priority Critical patent/JP2008270633A/en
Publication of JP2008270633A publication Critical patent/JP2008270633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor-element integrating substrate wherein the connective reliability present between the metal bumps of a semiconductor element and its conductor layer is excellent even when the pitch of the metal bumps to be the outer connecting electrodes of the semiconductor element is reduced. <P>SOLUTION: The semiconductor-element integrating substrate is provided with a semiconductor element integrated by a flip-chip mounting. In the substrate, metal bumps to be the outer connecting electrodes of the semiconductor element are fastened to the substrate by an adhesive agent, and are connected with the conductor layer constituted of metal plating. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子を内蔵した基板、特に、半導体素子の外部接続電極となる金属バンプのピッチが狭くても接続信頼性に優れる半導体素子内蔵基板に関する。   The present invention relates to a substrate with a built-in semiconductor element, and more particularly to a substrate with a built-in semiconductor element that has excellent connection reliability even when the pitch of metal bumps that serve as external connection electrodes of the semiconductor element is narrow.

従来の半導体素子内蔵基板の構造例を、図8を用いて説明する。図8において、Kは半導体素子内蔵基板で、銅箔802の上面に形成された絶縁層801の上方に、接着剤806を介して半導体素子804が搭載されていると共に、当該半導体素子804の外部接続電極となる金属バンプ805がはんだ813を介して金属層802に接続され、且つ当該半導体素子804の側方と上層には絶縁基材807が形成されていると共に、当該絶縁基材807の上面には銅箔808が形成されている。   A structural example of a conventional substrate with a built-in semiconductor element will be described with reference to FIG. In FIG. 8, K is a substrate with a built-in semiconductor element. A semiconductor element 804 is mounted on an upper surface of an insulating layer 801 formed on the upper surface of the copper foil 802 with an adhesive 806, and the outside of the semiconductor element 804 is provided. Metal bumps 805 serving as connection electrodes are connected to the metal layer 802 via solder 813, and an insulating base 807 is formed on the side and upper layers of the semiconductor element 804, and the upper surface of the insulating base 807 A copper foil 808 is formed on the substrate.

次に、図9を用いて斯かる従来の半導体素子内蔵基板の製造方法を説明する。
まず、半導体素子をフリップチップ実装するために、銅箔802に図9(a)に示す絶縁層801を張り合わせて図9(b)に示す基材を得る。次いで、図9(c)に示すように、半導体素子804の外部接続電極となる金属バンプ805に対応する開口部803を当該基材の絶縁層801にレーザ加工にて形成する。次いで、図9(d)に示すように、当該開口部803にクリームはんだを塗布した後、半導体素子804と絶縁層801の間に接着剤806を介して金属バンプ805を備えた半導体素子804を搭載し、リフローによる熱によりはんだ813を溶融接合する。次いで、図9(e)に示すように、当該半導体素子804の側方に半硬化状態の絶縁基材807及びその上面に銅箔808を配置し、積層して図9(f)に示す半導体素子内蔵基板Kを得る。尚、当該基板Kは更に写真法にてエッチングレジストを露光・現像にて形成し、上下の銅箔に回路形成される。
Next, a conventional method for manufacturing a substrate with a built-in semiconductor element will be described with reference to FIG.
First, in order to flip-chip mount a semiconductor element, an insulating layer 801 shown in FIG. 9A is bonded to a copper foil 802 to obtain a base material shown in FIG. 9B. Next, as shown in FIG. 9C, openings 803 corresponding to the metal bumps 805 to be external connection electrodes of the semiconductor element 804 are formed in the insulating layer 801 of the base material by laser processing. Next, as illustrated in FIG. 9D, after applying cream solder to the opening 803, the semiconductor element 804 including the metal bumps 805 is interposed between the semiconductor element 804 and the insulating layer 801 with an adhesive 806. It is mounted and the solder 813 is melted and joined by heat from reflow. Next, as shown in FIG. 9E, a semi-cured insulating base material 807 and a copper foil 808 are disposed on the side of the semiconductor element 804 and laminated, and the semiconductor shown in FIG. An element-embedded substrate K is obtained. The substrate K is further formed by exposing and developing an etching resist by photographic method and forming circuits on the upper and lower copper foils.

斯かる従来の製造方法によれば、半導体素子804の外部接続電極となる金属バンプ805のピッチが60μm以上であれば、半導体素子搭載用の絶縁層801に設ける開口部803のレーザ加工時の機械的な精度や回路形成時の露光によるズレ量を考慮しても半導体素子内蔵基板を製造することは可能であった。   According to such a conventional manufacturing method, if the pitch of the metal bumps 805 serving as the external connection electrodes of the semiconductor element 804 is 60 μm or more, the machine during laser processing of the opening 803 provided in the insulating layer 801 for mounting the semiconductor element It was possible to manufacture a substrate with a built-in semiconductor element even in consideration of the accuracy and the amount of deviation due to exposure during circuit formation.

しかしながら、半導体素子804の外部接続電極となる金属バンプ805のピッチが、50μm以下になると穴径やランド径も小さくなるため、加工上の位置ズレのマージンが少なくなり、前記機械的加工のズレ量を吸収できなくなる結果、回路形成時の酸洗浄薬液あるいはエッチング工程でエッチング液が固化しているはんだを溶解し、半導体素子の接合に問題が生じてしまうのが実状であった。図10は、当該固化したはんだ813が、回路809、810を形成する際の酸洗浄薬液あるいはエッチング液に溶解し、接合不良を起こしている半導体素子内蔵基板K2を示すもので、当該はんだ813には溶解欠損部Mが形成され、回路809との接続不良が避けられなかった。
更に、穴径やランド径も小さくなるため、クリームはんだの塗布が困難になると云う問題が生じることに加え、ピッチが狭くなるため、溶融したはんだによるブリッジの問題も発生していた。
However, when the pitch of the metal bumps 805 serving as the external connection electrodes of the semiconductor element 804 is 50 μm or less, the hole diameter and the land diameter are also reduced, so that the margin of positional deviation on processing is reduced, and the amount of mechanical processing deviation is reduced. As a result, the acid cleaning chemical solution at the time of circuit formation or the solder in which the etching solution is solidified in the etching process is dissolved, resulting in a problem in joining the semiconductor elements. FIG. 10 shows the semiconductor element built-in substrate K2 in which the solidified solder 813 is dissolved in an acid cleaning chemical solution or an etching solution when the circuits 809 and 810 are formed, and the bonding failure is caused. As a result, a dissolution defect M was formed, and a connection failure with the circuit 809 was inevitable.
Further, since the hole diameter and the land diameter are reduced, the problem that it becomes difficult to apply the cream solder is caused, and the pitch is narrowed, so that the problem of bridging due to the molten solder is also generated.

また、従来の半導体素子内蔵基板としては、フェイスアップ実装による半導体素子内蔵プリント配線板も既に報告されている(例えば特許文献1参照)が、加工上の位置精度や半導体素子の外部電極となる金属バンプの狭ピッチ化には対応し得なかった。   In addition, as a conventional substrate with a built-in semiconductor element, a printed wiring board with a built-in semiconductor element by face-up mounting has already been reported (for example, see Patent Document 1). It could not cope with the narrow pitch of the bumps.

特に、基材をザグリ加工により凹部を形成する場合は、加工精度が緩いため、半導体素子のフェイスアップによる搭載は、該半導体素子の外部接続電極が狭ピッチになるものにはむしろ不向きであった。
特開平9−321408号公報
In particular, when the concave portion is formed by counterboring the base material, since the processing accuracy is loose, mounting the semiconductor element by face up is rather unsuitable for the external connection electrode of the semiconductor element having a narrow pitch. .
JP-A-9-321408

本発明は、上記の問題点に鑑み、金属バンプと導体層の接続信頼性を向上させ、外部接続電極となる金属バンプの狭ピッチ化にも対応し得る半導体素子内蔵基板を提供することを課題としている。   In view of the above-mentioned problems, the present invention provides a semiconductor element-embedded substrate that can improve the connection reliability between a metal bump and a conductor layer, and can cope with a narrow pitch of the metal bump that serves as an external connection electrode. It is said.

本発明は、フリップチップ実装により半導体素子が内蔵された基板であって、該半導体素子の外部接続電極となる金属バンプが、接着剤で固定されていると共に、金属めっきからなる導体層と接続していることを特徴とする半導体素子内蔵基板により上記課題を解決したものである。   The present invention is a substrate in which a semiconductor element is incorporated by flip-chip mounting, and metal bumps serving as external connection electrodes of the semiconductor element are fixed with an adhesive and connected to a conductor layer made of metal plating. The above-described problems are solved by a substrate with a built-in semiconductor element.

外部接続電極となる金属バンプと金属めっきからなる導体層を接続することで、該外部接続電極となる金属バンプのピッチが狭くなっても接続信頼性を損なうことのない半導体素子内蔵基板を提供することが出来る。   A semiconductor element-embedded substrate that does not impair connection reliability even when the pitch of metal bumps that serve as external connection electrodes is narrowed by connecting metal bumps that serve as external connection electrodes and a conductor layer made of metal plating is provided. I can do it.

また、本発明は、前記金属バンプが、予め絶縁層に設けられた開口部において、半導体素子と絶縁層の間に介在する接着剤により固定されていると共に、絶縁層から露出していることを特徴としている。   In the present invention, the metal bump is fixed by an adhesive interposed between the semiconductor element and the insulating layer in an opening provided in the insulating layer in advance, and is exposed from the insulating layer. It is a feature.

金属バンプが絶縁層から露出しているので、金属めっきからなる導体層と安定した接続が可能となる。   Since the metal bumps are exposed from the insulating layer, stable connection with the conductor layer made of metal plating is possible.

また、本発明は、前記金属バンプが、絶縁層と面一に露出していることを特徴としている。   Further, the present invention is characterized in that the metal bump is exposed flush with the insulating layer.

金属バンプの端面が絶縁層に対して面一に露出しているので、金属めっきからなる導体層と安定した接続が可能となる。   Since the end face of the metal bump is exposed flush with the insulating layer, a stable connection with the conductor layer made of metal plating is possible.

また、本発明は、前記金属バンプが、絶縁層から凸形状に露出していることを特徴としている。   Further, the present invention is characterized in that the metal bump is exposed in a convex shape from the insulating layer.

金属バンプが絶縁層から凸形状に露出しているので、金属めっきからなる導体層との接続面積が増大し、機械加工よるズレ量を吸収することが可能となる。   Since the metal bumps are exposed in a convex shape from the insulating layer, the connection area with the conductor layer made of metal plating increases, and the amount of misalignment due to machining can be absorbed.

また、本発明は、前記金属バンプと接続する導体層が、セミアディティブにて回路形成されていることを特徴としている。   Further, the present invention is characterized in that a conductor layer connected to the metal bump is formed in a semi-additive circuit.

金属箔をサブトラクティブ法によって回路形成するよりも、セミアディティブ(無電解・電解めっき)で形成するほうがより位置精度よく回路形成できるので位置ズレが少なくなる。また、より微細な回路を形成することも可能になる。   Since the circuit can be formed with higher positional accuracy when the metal foil is formed by semi-additive (electroless / electrolytic plating) than when the circuit is formed by the subtractive method, the positional deviation is reduced. It is also possible to form a finer circuit.

本発明によれば、半導体素子の外部接続電極となる金属バンプピッチが狭ピッチ化されても、当該金属バンプと導体層との接続信頼性に優れた半導体素子内蔵基板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if the metal bump pitch used as the external connection electrode of a semiconductor element is narrowed, the board | substrate with a built-in semiconductor element excellent in the connection reliability of the said metal bump and a conductor layer can be provided.

本発明の半導体素子内蔵基板の第一の実施の形態を図1を用いて説明する。
図1において、Pは半導体素子内蔵基板で、絶縁層101の上方に接着剤106を介して半導体素子104が搭載されていると共に、当該半導体素子104の外部接続電極となる金属バンプ105が当該接着剤106によって固定されていると共に、無電解金属めっき109aと電解金属めっき109bからなる導体層109と接続している。また、当該半導体素子104の側方と上層には絶縁基材107が形成されていると共に、当該絶縁基材107の上面には金属めっき110a、110bからなる導体層110が形成されている。
A first embodiment of a substrate with a built-in semiconductor element according to the present invention will be described with reference to FIG.
In FIG. 1, P is a substrate with a built-in semiconductor element, on which a semiconductor element 104 is mounted above an insulating layer 101 via an adhesive 106, and metal bumps 105 serving as external connection electrodes of the semiconductor element 104 are bonded. While being fixed by the agent 106, it is connected to the conductor layer 109 made of the electroless metal plating 109a and the electrolytic metal plating 109b. In addition, an insulating base material 107 is formed on the side and upper layers of the semiconductor element 104, and a conductor layer 110 made of metal plating 110 a and 110 b is formed on the upper surface of the insulating base material 107.

次に、斯かる本発明の半導体素子内蔵基板Pの製造方法を図2及び図3を用いて説明する。
まず、図2(a)に示す絶縁層101を用意し、図2(b)に示す金属層102に貼り合わせる。次いで、図2(c)に示すように、半導体素子104の外部電極となる金属バンプ105に対応する開口部103を絶縁層101にレーザ加工にて形成する。次いで、図2(d)に示すように、半導体素子104と絶縁層101の間に接着剤106を介して金属バンプ105を備えた半導体素子104を搭載固定する。次いで、図2(e)に示すように、半導体素子104の側方にシート状の半硬化状態の絶縁基材107及びその上面に金属箔108を配置し、積層して、図2(f)に示す基板を得る。
Next, a method for manufacturing the semiconductor element-embedded substrate P of the present invention will be described with reference to FIGS.
First, the insulating layer 101 shown in FIG. 2A is prepared and bonded to the metal layer 102 shown in FIG. Next, as shown in FIG. 2C, openings 103 corresponding to the metal bumps 105 serving as external electrodes of the semiconductor element 104 are formed in the insulating layer 101 by laser processing. Next, as shown in FIG. 2D, the semiconductor element 104 including the metal bumps 105 is mounted and fixed between the semiconductor element 104 and the insulating layer 101 with an adhesive 106 interposed therebetween. Next, as shown in FIG. 2 (e), a sheet-like semi-cured insulating base material 107 is disposed on the side of the semiconductor element 104, and a metal foil 108 is disposed on the upper surface thereof, laminated, and FIG. A substrate shown in FIG.

ここで、金属層102に貼り合わせる絶縁層101としては、特に限定されないが、ガラスクロスは使用しないのが、開口部103をレーザ加工で形成する際、ガラスクロスのバリ等が発生しないため、きれいに穴を形成することができる上で好ましい。
また、絶縁層101としては、エポキシ樹脂に無機フィラーが充填されたものが好適に使用される。
Here, the insulating layer 101 to be bonded to the metal layer 102 is not particularly limited. However, a glass cloth is not used. However, when the opening 103 is formed by laser processing, no burr or the like of the glass cloth is generated. It is preferable because a hole can be formed.
As the insulating layer 101, an epoxy resin filled with an inorganic filler is preferably used.

半導体素子104は、外部接続電極となる金属バンプ104を備えているが、当該金属バンプ105としては、金バンプ、銀バンプ、銅バンプ、ニッケルバンプなどが挙げられる。   The semiconductor element 104 includes metal bumps 104 that serve as external connection electrodes. Examples of the metal bumps 105 include gold bumps, silver bumps, copper bumps, and nickel bumps.

半導体素子104を固定する接着剤106としては、NCP(Non-Conductive-Paste)やNCF(Non-Conductive-Film)などを使用することが出来るが、予め絶縁層101に半導体素子104の外部接続電極となる金属バンプ105を搭載するための仮設置の役割をする開口部103を設けるため、当該開口部103への接着剤106の充填性を考慮するとNCPを使用する方が好ましい。また、接着剤106は、シリコンからなる半導体素子104と絶縁層101の線膨張係数の違いを緩和する役目も果たしている。   As the adhesive 106 for fixing the semiconductor element 104, NCP (Non-Conductive-Paste), NCF (Non-Conductive-Film), or the like can be used. The external connection electrode of the semiconductor element 104 is previously formed on the insulating layer 101. In order to provide the opening 103 serving as a temporary installation for mounting the metal bump 105, it is preferable to use NCP in consideration of the filling property of the adhesive 106 into the opening 103. The adhesive 106 also serves to alleviate the difference in linear expansion coefficient between the semiconductor element 104 made of silicon and the insulating layer 101.

半導体素子104の側方に設けられたシート状の半硬化状態の絶縁基材107としては、プリント配線板の剛性を保つため、ガラスクロスにエポキシ樹脂を含浸したプリプレグやアラミド繊維にエポキシ樹脂を含浸させたシート状の絶縁基材が好適に使用される。   As the sheet-like semi-cured insulating substrate 107 provided on the side of the semiconductor element 104, a glass cloth impregnated with epoxy resin is impregnated with prepreg or aramid fiber impregnated with epoxy resin in order to maintain the rigidity of the printed wiring board. A sheet-like insulating base material is preferably used.

前記絶縁基材107は、半導体素子104にあたる部分は、金型やルータ加工にて、絶縁基材107をくり抜き加工を施した方が、ガラスクロスなどの補強材が半導体素子と重ならないため、加工性の点で好ましい。   The insulating base 107 is processed at the portion corresponding to the semiconductor element 104 because the reinforcing material such as glass cloth does not overlap the semiconductor element when the insulating base 107 is cut by a die or a router. From the viewpoint of sex.

前記絶縁基材107は、単一層の絶縁基材を使用しても複数層の絶縁基材、例えば、3枚のプリプレグを使用して形成しても構わない。
絶縁基材107に含浸されたエポキシ樹脂の充填量のコントロール性の点では、複数の絶縁基材を使用する方が、積層工程での樹脂流れが多く、樹脂の未充填を防止し得る上で好ましい。
The insulating base 107 may be formed using a single layer insulating base or a plurality of layers of insulating base, for example, three prepregs.
In terms of controllability of the filling amount of the epoxy resin impregnated in the insulating base material 107, the use of a plurality of insulating base materials increases the resin flow in the lamination process, and can prevent unfilling of the resin. preferable.

また、前記絶縁基材107は、シート状の絶縁基材に限らず、樹脂を静電スプレイなどで塗布し、硬化してからバフなどの機械研磨で平坦面を形成することも出来る。   The insulating substrate 107 is not limited to a sheet-like insulating substrate, and a flat surface can be formed by mechanical polishing such as buffing after applying resin by electrostatic spraying and curing.

さらに、上層に積層する金属層108は、銅箔、アルミ箔、ニッケル箔などを使用することも出来るが、安価で加工しやすい銅箔が好適に使用される。   Furthermore, although the copper layer, aluminum foil, nickel foil, etc. can be used for the metal layer 108 laminated | stacked on the upper layer, the copper foil which is cheap and easy to process is used suitably.

次いで、図3(g)に示すように、上下の金属層108をエッチングにて除去する。次いで、図3(h)に示すように、絶縁層101と接着層106をドライプロセスによる研磨、例えばエキシマレーザ、プラズマデスミア、バフ研磨、機械研磨などで、金属バンプ105が絶縁層101と面一になるまで研磨し、金属バンプ105の端面を当該絶縁層101から露出させる。次いで、全面に無電解金属めっきを施した後、当該無電解金属めっき上にめっきレジストを形成し、導体層109と110となる部分のめっきレジストを露光・現像にて除去する。次いで、電解金属めっきを施した後、めっきレジストを剥離し、露出した無電解金属めっきをフラッシュエッチングで除去して、図3(i)に示すように、金属バンプ105が無電解金属めっき109aと電解金属めっき109bからなる導体層109と接続している本発明半導体素子内蔵基板Pを得る。   Next, as shown in FIG. 3G, the upper and lower metal layers 108 are removed by etching. Next, as shown in FIG. 3 (h), the insulating layer 101 and the adhesive layer 106 are polished by a dry process, for example, excimer laser, plasma desmear, buffing, mechanical polishing, etc., so that the metal bumps 105 are flush with the insulating layer 101. Is polished until the end face of the metal bump 105 is exposed from the insulating layer 101. Next, after electroless metal plating is performed on the entire surface, a plating resist is formed on the electroless metal plating, and portions of the plating resist that become the conductor layers 109 and 110 are removed by exposure and development. Next, after performing electrolytic metal plating, the plating resist is peeled off, and the exposed electroless metal plating is removed by flash etching. As shown in FIG. A substrate P with a built-in semiconductor element of the present invention connected to the conductor layer 109 made of electrolytic metal plating 109b is obtained.

ここで、金属バンプ105の端面を露出せしめる研磨方法としては、上記のドライプロセスの研磨に代え、ウエットプロセスによる化学的な研磨にて、金属バンプ105を絶縁層101と面一になるまで研磨し、金属バンプ105の端面を絶縁層101から露出させても良い。   Here, as a polishing method for exposing the end surfaces of the metal bumps 105, the metal bumps 105 are polished until they are flush with the insulating layer 101 by chemical polishing by a wet process instead of the above-described dry process. The end face of the metal bump 105 may be exposed from the insulating layer 101.

また、絶縁層101と金属バンプ105の周囲の接着剤106を更にウエットプロセスで研磨し、図4に示すように、金属バンプ105が絶縁層101から凸形状に露出した構造とすれば、金属めっきからなる導体層109との接続面積が増大するので、より好ましい。   Further, if the adhesive 106 around the insulating layer 101 and the metal bump 105 is further polished by a wet process to form a structure in which the metal bump 105 is exposed from the insulating layer 101 as shown in FIG. Since the connection area with the conductor layer 109 made of is increased, it is more preferable.

上記ウエットプロセスによる研磨としては、デスミア処理などが挙げられる。ここに、デスミア処理液としては、過マンガン酸ナトリウム溶液などが用いられ、浸漬法により絶縁層101と接着剤106を溶解する。この場合、過マンガン酸ナトリウム溶液のように絶縁層101と接着剤106の溶解スピードがほぼ同じ材料を選択するのが好ましい。   Examples of the polishing by the wet process include desmear treatment. Here, as the desmear treatment liquid, a sodium permanganate solution or the like is used, and the insulating layer 101 and the adhesive 106 are dissolved by an immersion method. In this case, it is preferable to select a material having substantially the same dissolution speed of the insulating layer 101 and the adhesive 106 such as a sodium permanganate solution.

次に、本発明の半導体素子内蔵基板の第二の実施の形態を図5(a)を用いて説明する。
この第二の実施の形態に係る本発明半導体素子内蔵基板P2は、半導体素子104の側方の絶縁基材107中に、両面に導体回路が形成されたコア基板111が配置されている以外は第一の実施の形態に係る半導体素子内蔵基板Pと同様に構成されている。
斯様に、半導体素子104の側方に配置した絶縁基材107のスペースを有効利用することで、半導体素子104を内蔵した基板の厚みを薄くすることが出来る。
Next, a second embodiment of the substrate with a built-in semiconductor element according to the present invention will be described with reference to FIG.
The semiconductor element-embedded substrate P2 according to the second embodiment is different from the semiconductor element 104 except that the core substrate 111 having conductor circuits formed on both sides is disposed in the insulating base 107 on the side of the semiconductor element 104. The configuration is the same as that of the semiconductor element built-in substrate P according to the first embodiment.
In this manner, by effectively using the space of the insulating base material 107 disposed on the side of the semiconductor element 104, the thickness of the substrate in which the semiconductor element 104 is built can be reduced.

次に、本発明の半導体素子内蔵基板の第三の実施の形態を図5(b)を用いて説明する。
この第三の実施の形態に係る本発明半導体素子内蔵基板P3は、半導体素子104及び側方の絶縁基材107上に絶縁層112が設けられている以外は第一の実施の形態に係る半導体素子内蔵基板Pと同様に構成されている。ここに絶縁層112は、絶縁層101と異なる絶縁材料を用いても良いが、同一の材料を用いるのがより好ましい。すなわち、絶縁層101と絶縁層112について同一材料を用いることで、半導体素子104と側方の絶縁基材107を中心として上下対称構造となるので、基板としての反りを少なくすることができるからである。
Next, a third embodiment of the substrate with a built-in semiconductor element according to the present invention will be described with reference to FIG.
The semiconductor element-embedded substrate P3 according to the third embodiment is a semiconductor according to the first embodiment except that the insulating layer 112 is provided on the semiconductor element 104 and the side insulating base 107. The configuration is the same as that of the element-embedded substrate P. Here, an insulating material different from that of the insulating layer 101 may be used for the insulating layer 112, but it is more preferable to use the same material. That is, by using the same material for the insulating layer 101 and the insulating layer 112, the semiconductor element 104 and the side insulating base material 107 have a vertically symmetrical structure as the center, so that warpage as a substrate can be reduced. is there.

次に、本発明の半導体素子内蔵基板の第四の実施の形態を図6(a)を用いて説明する。 この第四の実施の形態に係る本発明半導体素子内蔵基板P6は、図1に示される半導体素子内蔵基板Pの上下にビルドアップ層を1段設けた構造となっている。   Next, a fourth embodiment of the substrate with a built-in semiconductor element according to the present invention will be described with reference to FIG. The semiconductor element-embedded substrate P6 according to the fourth embodiment has a structure in which one build-up layer is provided above and below the semiconductor element-embedded substrate P shown in FIG.

斯かる半導体素子内蔵基板P6は、例えば次の如くして製造される。
まず、図7(a)に示すように、図1に示される半導体素子内蔵基板Pを用意する。次いで、図7(b)に示すように、導体層109、110の上下にビルドアップ基材113からなる絶縁基材を積層し、貫通穴及び非貫通穴を形成して、全面に無電解・電解めっきを施す。次いで、写真法にて回路116を形成した後、図6(a)に示すように、最外層にソルダーレジスト117を形成することにより、層間接続ビア114と貫通めっきスルーホール115を有する、上下に1段のビルドアップ層を備えた半導体素子内蔵基板P4が得られる。
Such a semiconductor element built-in substrate P6 is manufactured, for example, as follows.
First, as shown in FIG. 7A, a semiconductor element-embedded substrate P shown in FIG. 1 is prepared. Next, as shown in FIG. 7B, insulating bases made of a build-up base 113 are laminated on the upper and lower sides of the conductor layers 109 and 110 to form through holes and non-through holes. Apply electrolytic plating. Next, after forming the circuit 116 by photographic method, as shown in FIG. 6A, the solder resist 117 is formed on the outermost layer, thereby having the interlayer connection via 114 and the through plating through hole 115. A semiconductor element-embedded substrate P4 having a single build-up layer is obtained.

前記セミアディティブ法で金属バンプ105との接続及び回路形成を行うことで従来技術の金属箔をサブトラクティブ法で形成する場合に比べ、精度よく回路を形成できるため、よりズレ量が少なくなる。また、より微細な回路を形成することも可能である。   By connecting the metal bumps 105 and forming a circuit by the semi-additive method, the circuit can be formed with higher accuracy than when the conventional metal foil is formed by the subtractive method. It is also possible to form a finer circuit.

次に、本発明の半導体素子内蔵基板の第五の実施の形態を図6(b)を用いて説明する。
この第五の実施の形態に係る本発明半導体素子内蔵基板P5は、図1に示される半導体素子内蔵基板Pの上下にビルドアップ層を2段設けた構造となっている。
Next, a fifth embodiment of the semiconductor element-embedded substrate of the present invention will be described with reference to FIG.
The semiconductor element embedded substrate P5 according to the fifth embodiment has a structure in which two build-up layers are provided above and below the semiconductor element embedded substrate P shown in FIG.

斯かる半導体素子内蔵基板P5は、図7(b)に示した基板に、図7(c)に示すように、更にビルドアップ基材118から成る絶縁基材を積層し、層間接続ビア用の非貫通穴を形成して、全面に無電解・電解めっきを施し、写真法にて回路を形成した後、最外層にソルダーレジスト120を形成することにより、図6(b)に示すように、層間接続ビア119を有する、上下に2段のビルドアップ層を備えた半導体素子内蔵基板P5が得られる。このとき、2段目のビルドアップ基材を積層する前に貫通めっきスルーホールに充填物121が充填される。尚、当該充填物121は、2段目のビルドアップ基材118積層前に充填しても良いし、ビルドアップ基材118積層後の穴に充填しても構わない。   In such a semiconductor element built-in substrate P5, as shown in FIG. 7C, an insulating base material composed of a build-up base material 118 is further laminated on the substrate shown in FIG. After forming a non-through hole, applying electroless / electrolytic plating to the entire surface, forming a circuit by photographic method, and forming a solder resist 120 on the outermost layer, as shown in FIG. A semiconductor element-embedded substrate P5 having an interlayer connection via 119 and having two build-up layers on the upper and lower sides is obtained. At this time, the filler 121 is filled in the through-plating through hole before the second-stage buildup base material is laminated. In addition, the said filling material 121 may be filled before the buildup base material 118 lamination | stacking of the 2nd step | paragraph, and you may fill the hole after buildup base material 118 lamination | stacking.

本発明の第四、第五の実施の形態として、1段及び2段のビルドアップ基材を積層した半導体素子内蔵基板の例を挙げて説明したが、図1に示した半導体素子内蔵基板Pを中心に色々な変形例が挙げられることは言うまでもない。   As the fourth and fifth embodiments of the present invention, the example of the semiconductor element-embedded substrate in which the one-stage and two-stage buildup base materials are laminated has been described, but the semiconductor element-embedded substrate P shown in FIG. Needless to say, there are various modifications centered on the above.

本発明半導体素子内蔵基板の第一の実施の形態を示す概略断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic cross-sectional explanatory drawing which shows 1st embodiment of the board | substrate with a built-in semiconductor element of this invention. 本発明半導体素子内蔵基板の製造方法を示す概略断面工程説明図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic cross-sectional process explanatory drawing which shows the manufacturing method of the board | substrate with a built-in semiconductor element of this invention. 図2に引き続く概略断面工程説明図。FIG. 3 is a schematic cross-sectional process explanatory diagram subsequent to FIG. 2. 金属バンプの他の露出状態を示す概略断面説明図。Schematic cross-sectional explanatory drawing which shows the other exposure state of a metal bump. (a)は本発明半導体素子内蔵基板の第二の実施の形態を示す概略断面説明図、(b)は同第三の実施の形態を示す概略断面説明図。(A) is schematic sectional explanatory drawing which shows 2nd embodiment of the board | substrate with a built-in semiconductor element of this invention, (b) is schematic sectional explanatory drawing which shows the 3rd embodiment. (a)は本発明半導体素子内蔵基板の第四の実施の形態を示す概略断面説明図、(b)は同第五の実施の形態を示す概略断面説明図。(A) is schematic sectional explanatory drawing which shows 4th embodiment of the board | substrate with a built-in semiconductor element of this invention, (b) is schematic sectional explanatory drawing which shows the 5th embodiment. 図6に示すビルドアップ基板の製造方法を示す概略断面工程説明図。FIG. 7 is a schematic cross-sectional process explanatory diagram showing a manufacturing method of the build-up substrate shown in FIG. 6. 従来の半導体素子内蔵基板の概略断面図説明図。Schematic sectional view explanatory drawing of the conventional semiconductor element built-in board | substrate. 従来の半導体素子内蔵基板の製造方法を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows the manufacturing method of the conventional semiconductor element built-in board | substrate. 従来の半導体素子内蔵基板のはんだ接続不良の状態を示す概略断面説明図。Schematic cross-sectional explanatory drawing which shows the state of the solder connection failure of the conventional board | substrate with a built-in semiconductor element.

符号の説明Explanation of symbols

101、112、801:絶縁層
102、108:金属層
103、803:開口部
104、804:半導体素子
105、805:金属バンプ
106、806:接着剤
107、807:絶縁基材
109、110、809、810:導体層
109a、110a:無電解金属めっき
109b、110b:電解金属めっき
111:コア基板
113、118:ビルドアップ基材
114、119:層間接続ビア
115:貫通めっきスルーホール
116:回路
117、120:ソルダーレジスト
121:充填物
802、808:銅箔
813:はんだ
P、P2、P3、P4、P5:本発明の半導体素子内蔵基板
K、K2:従来の半導体素子内蔵基板
M:溶解欠損部
101, 112, 801: Insulating layer 102, 108: Metal layer 103, 803: Opening 104, 804: Semiconductor element 105, 805: Metal bump 106, 806: Adhesive 107, 807: Insulating base material 109, 110, 809 810: Conductive layers 109a, 110a: Electroless metal plating 109b, 110b: Electrolytic metal plating 111: Core substrate 113, 118: Build-up base material 114, 119: Interlayer connection via 115: Through-plating through hole 116: Circuit 117, 120: Solder resist 121: Filler 802, 808: Copper foil 813: Solder P, P2, P3, P4, P5: Semiconductor device built-in substrate K of the present invention, K2: Conventional semiconductor device built-in substrate M: Dissolved defect portion

Claims (5)

フリップチップ実装により半導体素子が内蔵された基板であって、該半導体素子の外部接続電極となる金属バンプが、接着剤で固定されていると共に、金属めっきからなる導体層と接続していることを特徴とする半導体素子内蔵基板。   A substrate in which a semiconductor element is incorporated by flip-chip mounting, and metal bumps that are external connection electrodes of the semiconductor element are fixed with an adhesive and connected to a conductor layer made of metal plating A substrate with a built-in semiconductor element. 前記金属バンプが、予め絶縁層に設けられた開口部において、半導体素子と絶縁層の間に介在する接着剤により固定されていると共に、絶縁層から露出していることを特徴とする請求項1記載の半導体素子内蔵基板。   2. The metal bump is fixed in an opening provided in the insulating layer in advance by an adhesive interposed between the semiconductor element and the insulating layer, and is exposed from the insulating layer. The board | substrate with a built-in semiconductor element of description. 前記金属バンプが、絶縁層から面一に露出していることを特徴とする請求項2記載の半導体素子内蔵基板。   3. The semiconductor element-embedded substrate according to claim 2, wherein the metal bump is exposed from the insulating layer flush. 前記金属バンプが、絶縁層から凸形状に露出していることを特徴とする請求項2記載の半導体素子内蔵基板。   3. The semiconductor element built-in substrate according to claim 2, wherein the metal bumps are exposed in a convex shape from the insulating layer. 前記金属バンプと接続する導体層が、セミアディティブにて回路形成されていることを特徴とする請求項1〜4の何れか1項記載の半導体素子内蔵基板。   5. The semiconductor element-embedded substrate according to claim 1, wherein the conductor layer connected to the metal bump is formed in a semi-additive circuit. 6.
JP2007113891A 2007-04-24 2007-04-24 Semiconductor-element integrating substrate Pending JP2008270633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113891A JP2008270633A (en) 2007-04-24 2007-04-24 Semiconductor-element integrating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113891A JP2008270633A (en) 2007-04-24 2007-04-24 Semiconductor-element integrating substrate

Publications (1)

Publication Number Publication Date
JP2008270633A true JP2008270633A (en) 2008-11-06

Family

ID=40049718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113891A Pending JP2008270633A (en) 2007-04-24 2007-04-24 Semiconductor-element integrating substrate

Country Status (1)

Country Link
JP (1) JP2008270633A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082778A3 (en) * 2009-12-15 2011-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Method for producing a component that is embedded in an insulating material and comprises bumps and conductor tracks that overlap said bumps and corresponding device
JP2011249457A (en) * 2010-05-25 2011-12-08 Dainippon Printing Co Ltd Wiring board having embedded component, and manufacturing method for the same
KR101206289B1 (en) 2011-06-08 2012-11-29 아페리오(주) Method of processing holes for printed circuit board embedded with components
KR101206301B1 (en) 2011-06-02 2012-11-29 아페리오(주) Method of fabricating a hole for chip-embedded printed circuit board
JP2014063902A (en) * 2012-09-21 2014-04-10 Tdk Corp Semiconductor ic built-in substrate and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222334A (en) * 2005-02-14 2006-08-24 Matsushita Electric Ind Co Ltd Component built-in module, component built-in wiring substrate, method of manufacturing them and electronic device employing them
JP2007012761A (en) * 2005-06-29 2007-01-18 Tdk Corp Substrate with built-in semiconductor ic and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222334A (en) * 2005-02-14 2006-08-24 Matsushita Electric Ind Co Ltd Component built-in module, component built-in wiring substrate, method of manufacturing them and electronic device employing them
JP2007012761A (en) * 2005-06-29 2007-01-18 Tdk Corp Substrate with built-in semiconductor ic and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082778A3 (en) * 2009-12-15 2011-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Method for producing a component that is embedded in an insulating material and comprises bumps and conductor tracks that overlap said bumps and corresponding device
US8975116B2 (en) 2009-12-15 2015-03-10 Technische Universität Berlin Electronic assembly including an embedded electronic component
JP2011249457A (en) * 2010-05-25 2011-12-08 Dainippon Printing Co Ltd Wiring board having embedded component, and manufacturing method for the same
KR101206301B1 (en) 2011-06-02 2012-11-29 아페리오(주) Method of fabricating a hole for chip-embedded printed circuit board
KR101206289B1 (en) 2011-06-08 2012-11-29 아페리오(주) Method of processing holes for printed circuit board embedded with components
JP2014063902A (en) * 2012-09-21 2014-04-10 Tdk Corp Semiconductor ic built-in substrate and manufacturing method of the same
US9635756B2 (en) 2012-09-21 2017-04-25 Tdk Corporation Circuit board incorporating semiconductor IC and manufacturing method thereof
CN106024725B (en) * 2012-09-21 2018-12-28 Tdk株式会社 The built-in substrate of semiconducter IC and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5113114B2 (en) Wiring board manufacturing method and wiring board
JP5711472B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
JP5026400B2 (en) Wiring board and manufacturing method thereof
JP5210839B2 (en) Wiring board and manufacturing method thereof
JP4072176B2 (en) Manufacturing method of multilayer wiring board
JP4842167B2 (en) Manufacturing method of multilayer wiring board
US20110296681A1 (en) Printed wiring board and method for manufacturing same
US20110024898A1 (en) Method of manufacturing substrates having asymmetric buildup layers
JP2010135721A (en) Printed circuit board comprising metal bump and method of manufacturing the same
WO2004103039A1 (en) Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board
JP5355380B2 (en) Multilayer wiring board
JP2010135720A (en) Printed circuit board comprising metal bump and method of manufacturing the same
JP2016046418A (en) Electronic component device and manufacturing method of the same
JP2009277916A (en) Wiring board, manufacturing method thereof, and semiconductor package
WO2004014114A1 (en) Method for manufacturing board with built-in device and board with built-in device, and method for manufacturing printed wiring board and printed wiring board
JPWO2009118925A1 (en) Electronic component built-in wiring board and manufacturing method thereof
JP2007227586A (en) Substrate incorporating semiconductor element, and method of manufacturing same
JP2010118635A (en) Multilayer printed wiring board
JP2016063130A (en) Printed wiring board and semiconductor package
JP2004311849A (en) Wiring board and its producing process
JP5454681B2 (en) Module substrate and manufacturing method thereof
JP2008270633A (en) Semiconductor-element integrating substrate
JP4918780B2 (en) Multilayer wiring board manufacturing method and semiconductor device
US10080292B2 (en) Wiring board
JP7253946B2 (en) Wiring board and its manufacturing method, semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507