JP2008270582A - Radio wave absorber - Google Patents

Radio wave absorber Download PDF

Info

Publication number
JP2008270582A
JP2008270582A JP2007112618A JP2007112618A JP2008270582A JP 2008270582 A JP2008270582 A JP 2008270582A JP 2007112618 A JP2007112618 A JP 2007112618A JP 2007112618 A JP2007112618 A JP 2007112618A JP 2008270582 A JP2008270582 A JP 2008270582A
Authority
JP
Japan
Prior art keywords
radio wave
absorber
layer
wave absorber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007112618A
Other languages
Japanese (ja)
Other versions
JP4879077B2 (en
Inventor
Hiroshi Okata
浩 岡太
Shinichi Ochiai
慎一 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2007112618A priority Critical patent/JP4879077B2/en
Publication of JP2008270582A publication Critical patent/JP2008270582A/en
Application granted granted Critical
Publication of JP4879077B2 publication Critical patent/JP4879077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorber capable of absorbing radio waves having a center frequency in a frequency range of, especially, about 2 to 5.8 GHz more effectively than a conventional λ/4 type absorber while maintaining superior heat insulating property and sound absorptitivty. <P>SOLUTION: Disclosed is the radio wave absorber 1 formed as a λ/4 type absorber by stacking a resistance film layer 2 of 150 to 330 Ω in surface resistance value, a fiber-based heat insulating sound absorber layer 3, and a radio wave reflecting layer 4 in order. For the resistance film layer 2, paper can be used which contains a dielectric loss body. Radio waves having its center frequency in the frequency range can effectively be absorbed by setting the thickness of the fiber-based heat insulating sound absorber layer 3 to 10 to 30 mm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、優れた断熱性および吸音性を有するとともに、特定周波数域の電波を効果的に吸収可能な電波吸収体に関する。   The present invention relates to a radio wave absorber that has excellent heat insulation and sound absorption properties and can effectively absorb radio waves in a specific frequency range.

近年、移動体通信や無線LANなどの電磁波を使用する電子機器が普及しており、これらの電子機器から放出される電磁波や反射電磁波が他の電子機器に誤作動を起こさせるといった問題が生じている。そのため、このような問題を解決できる電波吸収体の開発が求められている。   In recent years, electronic devices using electromagnetic waves such as mobile communication and wireless LAN have become widespread, and problems have arisen that electromagnetic waves emitted from these electronic devices and reflected electromagnetic waves cause other electronic devices to malfunction. Yes. Therefore, the development of a radio wave absorber that can solve such problems is demanded.

このような電波吸収体の1つとしてλ/4型電波吸収体が開発されている。λ/4型電波吸収体は、図2に示すように、電波を透過しない金属板などの電波反射層10から吸収しようとする電波(平面波)の1/4波長分離れた位置に抵抗皮膜層11を配置した構造を備えるものである。   A λ / 4 type wave absorber has been developed as one of such wave absorbers. As shown in FIG. 2, the λ / 4 type wave absorber has a resistive film layer at a position separated by a quarter wavelength of a radio wave (plane wave) to be absorbed from a radio wave reflection layer 10 such as a metal plate that does not transmit radio waves. 11 is provided.

このλ/4型電波吸収体の電波吸収の原理は、図4を参照すると、以下のように説明される。この図において、抵抗皮膜層11がない状態で、自由空間13中を矢印Rの方向に伝播してきた電波が導電性の電波反射層10に入射すると仮定すると、この電波反射層10の入斜面における反射係数Sは次式で与えられる。
Γ=(Z10−Z12)/(Z10+Z12
ここで、Z10は電波反射層10の特性インピーダンス、Z12は媒体12の特性インピーダンスである。しかるに、電波反射層10は導体であり、特性インピーダンスZ10=0であるので、Γ=−1となり、電波は入斜面で完全反射し、入射する電波と干渉し合い、定在波が発生する。
The principle of radio wave absorption of the λ / 4 type radio wave absorber will be described as follows with reference to FIG. In this figure, assuming that the radio wave propagating in the free space 13 in the direction of the arrow R is incident on the conductive radio wave reflection layer 10 in the absence of the resistance film layer 11, at the entrance slope of the radio wave reflection layer 10. The reflection coefficient S is given by the following equation.
Γ = (Z 10 −Z 12 ) / (Z 10 + Z 12 )
Here, Z10 is the characteristic impedance of the radio wave reflection layer 10, and Z12 is the characteristic impedance of the medium 12. However, since the radio wave reflection layer 10 is a conductor and has a characteristic impedance Z 10 = 0, Γ = −1, and the radio wave is completely reflected by the incident slope, interferes with the incident radio wave, and a standing wave is generated. .

このとき、媒体12中での負荷インピーダンスZは、前記入射面で0であり、当該面から図中R方向とは反対方向に入射する電波の波長λの1/4だけ離れた位置では無限大(∞)となる。このλ/4だけ離れた位置にインピーダンス(面抵抗)Rの抵抗皮膜11を電波反射層10と平行に設置することで、この位置での負荷インピーダンスは、Rと∞との並列合成されたものとなるので、結果としてRに等しくなる。この場合、自由空間13における特性インピーダンスをZとすると、この位置での反射係数Γλ/4は、
Γλ/4=(R−Z)/(R+Z
で与えられるので、抵抗皮膜11の面抵抗Rを自由空間の特性インピーダンスZ(=377Ω/□)と完全に一致させることができれば、反射係数Γλ/4=0とすることができ、この吸収体における電波の吸収量S(=−20ln|Γλ/4|)は最大となる。
At this time, the load impedance Z in the medium 12 is 0 on the incident surface, and is infinite at a position away from the surface by a quarter of the wavelength λ of the radio wave incident in the direction opposite to the R direction in the figure. (∞). By installing a resistance film 11 of impedance (surface resistance) R at a position separated by λ / 4 in parallel with the radio wave reflection layer 10, the load impedance at this position is obtained by combining R and ∞ in parallel. As a result, it becomes equal to R. In this case, if the characteristic impedance in the free space 13 is Z 0 , the reflection coefficient Γ λ / 4 at this position is
Γλ / 4 = (R−Z 0 ) / (R + Z 0 )
Therefore, if the sheet resistance R of the resistance film 11 can be made to completely match the characteristic impedance Z 0 (= 377Ω / □) of the free space, the reflection coefficient Γ λ / 4 = 0 can be obtained. The amount of radio wave absorption S (= −20ln | Γλ / 4 |) in the absorber is maximized.

このλ/4型吸収体については、電波吸収層と抵抗皮膜層との間にスペーサーとして種々の材料を挟み込んだものなど多くの提案がなされている。例えば特許文献1では、軽量で取扱い性に優れ、かつ同時に吸音性能をも併せ持たせるために繊維間の空隙にバインダーを介して粉体を保持した吸音体を形成し、この吸音体の片面に導電層を形成するとともに、他の面に抵抗皮膜層を形成する電波吸収体を提案している。また、この文献には、この抵抗皮膜層として前記の特性インピーダンスZに略同等の面抵抗値(約377±38Ω)を持たせることができることが記載されている。
特開平8−181483号
For this λ / 4 type absorber, many proposals have been made, such as a material in which various materials are sandwiched as a spacer between the radio wave absorption layer and the resistance film layer. For example, in Patent Document 1, in order to have light weight, excellent handleability, and at the same time, sound absorption performance, a sound absorber holding powder is formed in a gap between fibers via a binder, and one side of the sound absorber is formed. A radio wave absorber has been proposed in which a conductive layer is formed and a resistive film layer is formed on the other surface. Further, this document discloses that it is possible to have substantially the same sheet resistance value to the characteristic impedance Z 0 of the as the resistive coating layer (about 377 ± 38Ω).
JP-A-8-181383

しかし、特許文献1の電波吸収体における抵抗皮膜層および導電層を用い、当該文献記載の吸音体の代わりに一般的なグラスウールなどの優れた断熱性および吸音性を有する繊維系断熱吸音体を用いて電波吸収体を形成した場合、例えば、無線LAN用の電波(中心周波数2.45GHz)に対しては十分な電波吸収特性が得られない場合があった。また、特許文献1記載の吸音体を用いて同文献記載の電波吸収体と同様の構成の電波吸収体とすることも考えられるが、繊維系断熱吸音体内部に粉体を保持させることは、製造におけるコストや作業性などの点から好ましくない。   However, the resistance film layer and the conductive layer in the radio wave absorber of Patent Document 1 are used, and a fiber-based heat-absorbing sound absorber having excellent heat insulation and sound absorption properties such as general glass wool is used instead of the sound absorber described in the document. When a radio wave absorber is formed, for example, there are cases where sufficient radio wave absorption characteristics cannot be obtained for radio waves for a wireless LAN (center frequency 2.45 GHz). In addition, it is possible to use the sound absorber described in Patent Document 1 as a radio wave absorber having the same configuration as the radio wave absorber described in the same document, but holding the powder inside the fiber-based heat-absorbing sound absorber, This is not preferable in terms of manufacturing cost and workability.

そこで、本発明は、前記課題を解決すべく、繊維系断熱吸音体を用いた場合でも、その優れた断熱性および吸音性を維持しつつ、数GHz帯、特に約2〜5.8GHzの周波数域に中心周波数を有する電波を従来のλ/4型吸収体よりも効果的に吸収できる電波吸収体を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention maintains a high heat insulating property and sound absorbing property even when a fiber heat insulating sound absorbing member is used, and has a frequency of several GHz band, particularly about 2 to 5.8 GHz. An object of the present invention is to provide a radio wave absorber capable of absorbing a radio wave having a central frequency in the region more effectively than a conventional λ / 4 type absorber.

本発明者らは、前記課題を解決するため鋭意検討を重ねた結果、λ/4型電波吸収体のスペーサーとして繊維系断熱吸音体を用いる場合、この一面に積層される抵抗皮膜層の面抵抗値を所定の範囲に設定することで、前記特定周波数域の電波を効果的に吸収でき、これによって前記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that when a fiber-based heat-absorbing sound absorber is used as a spacer of a λ / 4 type wave absorber, the sheet resistance of the resistive film layer laminated on the one surface is used. By setting the value within a predetermined range, it was found that radio waves in the specific frequency range can be effectively absorbed, thereby achieving the object, and the present invention has been completed.

すなわち、前記目的は、面抵抗値が150〜330Ωの抵抗皮膜層と、繊維系断熱吸音体層と、金属反射体層とを順次一体に積層してλ/4型吸収体に形成したことを特徴とする電波吸収体によって達成される。   That is, the object is to form a λ / 4 absorber by sequentially laminating a resistance film layer having a sheet resistance value of 150 to 330Ω, a fiber-based heat-absorbing sound absorber layer, and a metal reflector layer. Achieved by the featured wave absorber.

本発明の電波吸収体によれば、λ/4型電波吸収体のスペーサーとして繊維系断熱吸音体層を用いることで、優れた断熱性および吸音性を備えるとともに、抵抗皮膜層の面抵抗値を所定の範囲とすることで、従来のλ/4型吸収体に比べて十分に優れた電波吸収特性が得られる。その結果、電子機器から放散した電波やその反射波による他の電子機器などへの影響をなくすことができる。   According to the radio wave absorber of the present invention, by using a fiber-based heat-absorbing sound absorber layer as a spacer of the λ / 4 type radio wave absorber, it has excellent heat insulating properties and sound absorbing properties, and the surface resistance value of the resistive coating layer is reduced. By setting it within the predetermined range, sufficiently superior radio wave absorption characteristics can be obtained as compared with the conventional λ / 4 type absorber. As a result, it is possible to eliminate the influence on the other electronic devices and the like due to the radio waves radiated from the electronic devices and the reflected waves.

以下、添付図面を参照して本発明の実施形態について説明する。図1は、本発明の電波吸収体を示した側断面図である。この図において、本発明の電波吸収体1は、抵抗皮膜層2、繊維系断熱吸音体3および電波反射層4がこの順に一体に積層され、λ/4型吸収体に形成されたものである。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a side sectional view showing a radio wave absorber according to the present invention. In this figure, a radio wave absorber 1 according to the present invention is formed by laminating a resistive film layer 2, a fiber-based heat-absorbing sound absorber 3 and a radio wave reflection layer 4 in this order and forming a λ / 4 type absorber. .

抵抗皮膜層2は、その面抵抗値が150〜330Ω/□とされる。この範囲の面抵抗値を有する抵抗皮膜層は、特に繊維系断熱吸音体3と組み合わせた場合に好適であり、該繊維系断熱吸音体3を所定の厚さに設定することで、例えば無線LAN用の2.45GHzの電波などを効果的に吸収することができる。なお、この面抵抗値が150Ω/□未満の場合、それ自体が電波を反射するようになり、330Ω/□を超えた場合には、電波の吸収特性が悪化する。   The resistance film layer 2 has a sheet resistance value of 150 to 330Ω / □. The resistance film layer having a surface resistance value in this range is particularly suitable when combined with the fiber-based heat-absorbing sound absorber 3, and by setting the fiber-based heat-absorbing sound absorber 3 to a predetermined thickness, for example, a wireless LAN 2.45 GHz radio waves and the like can be effectively absorbed. When the sheet resistance value is less than 150Ω / □, the surface itself reflects radio waves, and when it exceeds 330Ω / □, the radio wave absorption characteristics deteriorate.

抵抗皮膜層2としては、前記の面抵抗値を備えていれば、その材質などに特に制限はない。例えば、金属酸化物、金属窒化物ないしはこれらの混合体をイオンプレーティング、蒸着、スパッタリングなどにより作成した公知の薄膜のほか、誘電損失体を含んだ紙などが挙げられる。前記金属酸化物としては、ITO(酸化インジウム/酸化錫)、酸化錫、酸化亜鉛などを使用できる。前記金属窒化物としては窒化チタンなどを用いることができる。また、前記薄膜には、有機高分子シート、有機高分子フィルム、有機高分子樹脂の塗膜などが含まれる。前記誘電損失体を含んだ紙としては、基材としての紙にカーボン粒子などの誘電損失体を担持させた(すき込んだ)ものや誘電損失体を表面に付着させたものなどが挙げられる。後者の場合、誘電損失材料を含んだ塗料を用意し、これを紙の表面全面に塗布してもよく、この塗料による塗膜を紙表面に所定形状に分散して付着させるようにしてもよい。   The resistance film layer 2 is not particularly limited in its material and the like as long as it has the above surface resistance value. For example, in addition to a known thin film prepared by ion plating, vapor deposition, sputtering, or the like using a metal oxide, metal nitride, or a mixture thereof, a paper containing a dielectric loss material may be used. As the metal oxide, ITO (indium oxide / tin oxide), tin oxide, zinc oxide, or the like can be used. As the metal nitride, titanium nitride or the like can be used. The thin film includes an organic polymer sheet, an organic polymer film, a coating film of an organic polymer resin, and the like. Examples of the paper containing the dielectric loss material include paper in which a dielectric loss material such as carbon particles is supported (infiltrated) on paper as a base material, and paper having a dielectric loss material attached to the surface. In the latter case, a paint containing a dielectric loss material may be prepared and applied to the entire surface of the paper, or a coating film of this paint may be dispersed and adhered to the paper surface in a predetermined shape. .

なかでも、前記の誘電損失体を含んだ紙は、繊維系断熱吸音体層と組み合わせることにより吸音性を向上させるだけでなく、誘電損失体の含有量を適宜変更して製造することが容易であるので、本発明における面抵抗値の範囲で用途に応じて面抵抗値を変えることが容易であることから、より好ましい。ここで、基材として使用する紙としては特にその材質に限定されず、パルプ、有機繊維、無機繊維などが挙げられ、形態としては不織布、織布のいずれであってもよい。安価な電波吸収体を製造する観点からは、抵抗皮膜層2としてこの誘電損失体を含んだ紙を用いるのが好ましい。   In particular, the paper containing the dielectric loss body not only improves sound absorption by combining with a fiber-based heat-absorbing sound absorber layer, but can be easily manufactured by appropriately changing the content of the dielectric loss body. Therefore, it is more preferable because it is easy to change the surface resistance value according to the application within the range of the surface resistance value in the present invention. Here, the paper used as the base material is not particularly limited to the material, and examples thereof include pulp, organic fiber, inorganic fiber, and the form may be any of a nonwoven fabric and a woven fabric. From the viewpoint of manufacturing an inexpensive radio wave absorber, it is preferable to use a paper containing this dielectric loss body as the resistive film layer 2.

繊維系断熱吸音体層3は、有機繊維や無機繊維を絡み合わせてマット状に形成されたものであり、断熱性および吸音性を備えている。このような有機繊維としては、ポリエステル繊維、ナイロン繊維、ポリアクリロニトリル繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリ塩化ビニル繊維、ポリフェニレンサルファイド繊維、ポリエーテルエーテルケトン繊維、ポリパラフェニレンベンゾビスオキザゾール繊維、ポリ乳酸繊維などの合成繊維;絹、羊毛などの天然繊維;木質ファイバー、木綿、麻繊維、竹、リンター(棉花の額)などのセルロース繊維(ウール)やレーヨンなどの再生セルロース繊維(ウール)などが挙げられる。また、無機繊維としては、グラスウールなどのガラス繊維、ロックウール、アルミナ繊維、炭化珪素繊維などが挙げられる。これらの繊維は、それぞれ単独でまたは2種以上を組み合わせて使用できる。なお、これらの繊維の直径およびアスペクト比などは特に限定されず、適宜設定できる。このような繊維をマット状に形成した繊維系断熱吸音体は、少なくともその表裏面が樹脂シートなどの被覆材で被覆されていてもよい。これらのうち、ロックウール、グラスウール、セルロースウールは断熱性および吸音性に優れるので、これらを用いるのが好ましい。   The fiber-based heat-absorbing sound absorber layer 3 is formed in a mat shape by intertwining organic fibers and inorganic fibers, and has heat insulating properties and sound absorbing properties. Examples of such organic fibers include polyester fibers, nylon fibers, polyacrylonitrile fibers, polypropylene fibers, polyethylene fibers, polyvinyl chloride fibers, polyphenylene sulfide fibers, polyether ether ketone fibers, polyparaphenylene benzobisoxazole fibers, and polylactic acid. Synthetic fibers such as fibers; natural fibers such as silk and wool; cellulose fibers (cotton, hemp fiber), cellulose fibers (wool) such as bamboo and linter (sum of flower), and regenerated cellulose fibers (wool) such as rayon It is done. Examples of inorganic fibers include glass fibers such as glass wool, rock wool, alumina fibers, and silicon carbide fibers. These fibers can be used alone or in combination of two or more. The diameter and aspect ratio of these fibers are not particularly limited and can be set as appropriate. The fiber-based heat-absorbing sound absorber having such fibers formed in a mat shape may be coated at least on the front and back surfaces with a coating material such as a resin sheet. Among these, rock wool, glass wool, and cellulose wool are preferable because they are excellent in heat insulation and sound absorption.

この繊維系断熱吸音体層3の厚さは、吸収しようとする電波の周波数および当該層3の比誘電率によって変える必要があり、一概には言えないが、約2〜5.8GHzの周波数域に中心周波数を有する電波に対しては、10〜30mmの範囲で設定するのが好ましく、15〜30mmの範囲で設定するのがより好ましい。この厚さを10mm未満に設定した場合、繊維計断熱吸音体は可とう性に優れ、好適な作業性が得られるが、所望の吸収周波数に適合しないことになる。例えば、室内LANに用いられる2.45GHzの電波の場合、その波長は122.4mmであるので、繊維系断熱吸音体層3は理論上、この波長の1/4の30.6mmの厚さを備えている必要があるが、本発明においては抵抗皮膜層2の厚さや後述する接着剤層の厚さなどを考慮して、繊維系断熱吸音体層3の厚さを前記理論厚さよりも小さく設定できる。また、前記例示の同種の繊維系断熱吸音体を同種のもの同士例えば2枚積層して前記所定の厚さとすることもできる。   The thickness of the fiber-based heat-absorbing sound absorber layer 3 needs to be changed depending on the frequency of the radio wave to be absorbed and the relative dielectric constant of the layer 3, and cannot be generally stated, but a frequency range of about 2 to 5.8 GHz. For a radio wave having a central frequency, it is preferably set within a range of 10 to 30 mm, and more preferably set within a range of 15 to 30 mm. When this thickness is set to less than 10 mm, the fiber meter heat insulating sound absorber is excellent in flexibility and suitable workability is obtained, but it does not conform to a desired absorption frequency. For example, in the case of a radio wave of 2.45 GHz used for an indoor LAN, the wavelength is 122.4 mm. Therefore, the fiber-based heat insulating sound absorber layer 3 theoretically has a thickness of 30.6 mm, which is 1/4 of this wavelength. In the present invention, in consideration of the thickness of the resistance film layer 2 and the thickness of the adhesive layer described later, the thickness of the fiber-based heat-absorbing sound absorber layer 3 is smaller than the theoretical thickness. Can be set. Further, for example, two of the same type of the same type of heat insulating sound absorbers of the same type may be laminated to have the predetermined thickness.

繊維系断熱吸音体層3の密度(重量)は、当該層3が前記所定の厚さにおいて前記特定周波数域における電波吸収能力とともに、吸音性および断熱性を備えていれば特に限定されない。例えば、当該層3にグラスウールを用いる場合、前記所定の厚さで当該マットの密度は10kg/cm〜96kg/cmの範囲で適宜設定できるが、より好ましくは15〜35kg/cmに設定するのがよい。この密度が10kg/cm未満では、十分な断熱性能が得られないばかりでなく、均一な厚さを有しない場合があり所望の電波吸収特性が得られず、また96kg/cmを超えた場合、この繊維系断熱吸音体の重量が大きくなり作業性が劣るので好ましくない。 The density (weight) of the fiber-based heat-absorbing sound absorber layer 3 is not particularly limited as long as the layer 3 has sound absorbing properties and heat insulating properties in addition to the radio wave absorption capability in the specific frequency region at the predetermined thickness. For example, when using glass wool to the layer 3, although the density of the mat a predetermined thickness can be appropriately set in the range of 10kg / cm 3 ~96kg / cm 3 setting, more preferably 15~35kg / cm 3 It is good to do. If the density is less than 10 kg / cm 3 , not only a sufficient heat insulation performance cannot be obtained, but also a uniform thickness may not be obtained, and a desired radio wave absorption characteristic cannot be obtained, and the density exceeds 96 kg / cm 3 . In this case, the weight of the fiber-based heat-absorbing sound absorber is increased, and workability is inferior.

電波反射層4は、導電性を備え、本発明の電波吸収体に抵抗皮膜層2側から入射した電波が透過しないものであれば特に制限なく使用できる。このような電波反射層としては、例えば金属(めっき、蒸着膜、箔、板等)、炭素繊維布、導電性インク、導電性プラスチックなどが挙げられるが、好ましくはアルミ箔などの金属箔やアルミシート(板)などの金属シート(板)を用いるのがよい。この電波反射層4はまた、前記の金属箔や金属シート(板)に例えばクラフト紙などの紙を貼付したものであってもよい。金属箔としてアルミ箔を用いる場合、このアルミ箔には種々の厚さのものが存在するが、完全に電波を反射させるためには7μm以上の厚さのものを用いるのが好ましい。また、金属シートとしてアルミシートを用いる場合には、それ自体が可とう性を備えていることが好ましく、そのためには約100μm以下とするのがよい。これにより、電波反射層を容易に湾曲させることができ、繊維系断熱吸音体層に確実に密着させることができるようになる。   The radio wave reflection layer 4 can be used without particular limitation as long as it has conductivity and does not transmit radio waves incident from the resistance film layer 2 side to the radio wave absorber of the present invention. Examples of such radio wave reflection layers include metals (plating, vapor deposition films, foils, plates, etc.), carbon fiber cloths, conductive inks, conductive plastics, etc., but preferably metal foils such as aluminum foils and aluminum It is preferable to use a metal sheet (plate) such as a sheet (plate). The radio wave reflection layer 4 may also be one obtained by pasting paper such as kraft paper on the metal foil or metal sheet (plate). When an aluminum foil is used as the metal foil, there are various thicknesses of the aluminum foil, but it is preferable to use a thickness of 7 μm or more in order to completely reflect radio waves. Further, when an aluminum sheet is used as the metal sheet, it is preferable that the sheet itself has flexibility, and for that purpose, the thickness is preferably about 100 μm or less. As a result, the radio wave reflection layer can be easily bent, and can be securely adhered to the fiber-based heat-absorbing sound absorber layer.

本発明の繊維系断熱吸音体3と抵抗皮膜層2および電波反射層4とは、それぞれ公知の接着剤を用いて接着積層することができる。これらを接着する際に、必要であれば、これらの間に例えばクラフト紙などの紙を介在させてもよい。このような接着剤としては、例えば酢酸ビニル樹脂系接着剤、ポリビニルアルコール樹脂系接着剤、ビニルアセタール樹脂系接着剤、塩化ビニル樹脂系接着剤、塩化ビニリデン樹脂系接着剤、アクリル樹脂系接着剤、メタクリ酸樹脂系接着剤、スチレン樹脂系接着剤、ポリエチレン樹脂系接着剤、ポリイソブチレン樹脂系接着剤、クマロン・インデン樹脂系接着剤、ポリアミド樹脂系接着剤、ポリアミドイミド樹脂系接着剤、ポリイミド樹脂系接着剤、尿素樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、レゾルシノール樹脂系接着剤、シリコーン樹脂接着剤、エポキシ樹脂系接着剤などの公知の接着剤のほか、これらの樹脂またはその他の樹脂の系列に含まれるホットメルト接着剤が挙げられる。これらの接着剤は、単独でまたは2種以上を組み合わせて用いることができる。これらのうちでは、ホットメルト接着剤を用いるのが製造ラインでの連続生産性に優れるため好ましい。   The fiber-based heat insulating sound absorber 3 of the present invention, the resistance film layer 2 and the radio wave reflection layer 4 can be bonded and laminated using a known adhesive. When bonding them, if necessary, paper such as kraft paper may be interposed between them. Examples of such adhesives include vinyl acetate resin adhesives, polyvinyl alcohol resin adhesives, vinyl acetal resin adhesives, vinyl chloride resin adhesives, vinylidene chloride resin adhesives, acrylic resin adhesives, Methacrylic acid resin adhesive, styrene resin adhesive, polyethylene resin adhesive, polyisobutylene resin adhesive, coumarone-indene resin adhesive, polyamide resin adhesive, polyamideimide resin adhesive, polyimide resin In addition to known adhesives such as adhesives, urea resin adhesives, melamine resin adhesives, phenol resin adhesives, resorcinol resin adhesives, silicone resin adhesives, epoxy resin adhesives, these resins or Examples include hot melt adhesives included in other resin series. These adhesives can be used alone or in combination of two or more. Among these, it is preferable to use a hot melt adhesive because it is excellent in continuous productivity in the production line.

ホットメルト接着剤としては、ポリエステル系;ポリエステル共重合体系;エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体などのポリオレフィン系;変性ポリオレフィン系;ポリウレタン系;ポリ塩化ビニル系;変成シリコーン系プレポリマー系;ポリアミド系;熱可塑性ゴム系、スチレン−ブタジエン共重合体系、スチレン−イソプレン共重合体系等などが挙げられる。これらは単独でまたは2種以上を組み合わせて用いることができる。   Hot melt adhesives include polyesters; polyester copolymers; polyolefins such as ethylene-vinyl acetate copolymers and ethylene-ethyl acrylate copolymers; modified polyolefins; polyurethanes; polyvinyl chlorides; Prepolymer systems; polyamide systems; thermoplastic rubber systems, styrene-butadiene copolymer systems, styrene-isoprene copolymer systems, and the like. These can be used alone or in combination of two or more.

前記接着剤は、繊維系断熱吸音体層3の各面に対して20〜300g/m付着するように塗布されるのが好ましい。この範囲を超えて塗布した場合には、接着剤の比誘電率が本発明の電波吸収体の電波吸収性能に悪影響を及ぼすので好ましくなく、前記範囲未満では、繊維系断熱吸音体層3と抵抗皮膜層2および電波反射層4との間の接着性が劣り、電波吸収体として一体に積層できず、その結果電波吸収性能が低下するだけでなく、各層間で剥離が生じやすくなるので好ましくない。 The adhesive is preferably applied so as to adhere to 20 to 300 g / m 2 with respect to each surface of the fiber-based heat-absorbing sound absorber layer 3. When it is applied beyond this range, the relative dielectric constant of the adhesive adversely affects the radio wave absorption performance of the radio wave absorber of the present invention. Adhesiveness between the coating layer 2 and the radio wave reflection layer 4 is inferior and cannot be laminated integrally as a radio wave absorber. As a result, not only is the radio wave absorption performance lowered, but peeling is likely to occur between the respective layers. .

前記各層をそれぞれ接着積層してλ/4型吸収体に形成された本発明の電波吸収体1は、抵抗皮膜層2の面抵抗値を所定の範囲に設定したので、繊維系断熱吸音体層3の厚さを前記所定の範囲で変更することで、従来の約377Ω/□の面抵抗値を有する抵抗皮膜を備えたλ/4型電波吸収体よりも数GHz帯、特に2〜5.8GHzの周波数域に中心周波数を有する電波に対して優れた吸収特性を有するものとなる。   In the radio wave absorber 1 of the present invention formed by bonding and laminating each of the above layers to a λ / 4 type absorber, the surface resistance value of the resistance film layer 2 is set within a predetermined range. By changing the thickness of 3 within the predetermined range, the conventional λ / 4 type wave absorber having a resistance film having a surface resistance value of about 377Ω / □ is several GHz band, particularly 2-5. It has excellent absorption characteristics for radio waves having a center frequency in the frequency range of 8 GHz.

また、本発明の電波吸収体1は、これを構成する材料、特には繊維系断熱吸音体の種類や密度などを適宜選定することで、その優れた断熱性能および吸音性能を変えることができるが、特に繊維系断熱吸音体層3が前記所定の厚さおよび密度を備え、抵抗皮膜層2として紙を基材とすることで、より良好な電波吸収特性が得られることに加え、断熱性能が、熱伝導率において0.034W/(m・K)以下で、かつ吸音性能がNRC(250、500、1000、2000Hzにおける残響法吸音率の平均値)0.9以上となり好ましい。   In addition, the radio wave absorber 1 of the present invention can change its excellent heat insulating performance and sound absorbing performance by appropriately selecting the material, particularly the type and density of the fiber heat insulating sound absorber. In particular, the fiber-based heat-absorbing sound absorber layer 3 has the predetermined thickness and density, and the resistance film layer 2 is made of paper as a base material. The thermal conductivity is 0.034 W / (m · K) or less, and the sound absorption performance is preferably NRC (average value of reverberation method sound absorption coefficient at 250, 500, 1000, 2000 Hz) 0.9 or more.

次に、実施例を挙げて本発明を具体的に説明する。
[実施例1〜6]
繊維系断熱吸音体層3として15mm、16mm、18mm、20mm、22mmおよび25mm厚の厚さの異なる500mm角のグラスウール(いずれも密度32kg/m)を用意し、それぞれのグラスウールの片面3aに誘電損失体を担持させた紙(抵抗皮膜層2)を、他方の面3bにアルミクラフト紙(アルミ箔の厚さ7μm)(電波反射層4)をホットメルト接着剤で接着して実施例1〜6の電波吸収体試料6体を得た(前記グラスウールの厚さの順にそれぞれ実施例1〜6の試料とした)。誘電損失体を担持させた高分子フィルムの面抵抗値は、210Ω/□であった。ホットメルト接着剤としては、酢酸ビニル樹脂系接着剤を用い、その塗布(付着)量はグラスウールの接着面1m当たり30gとした。
Next, the present invention will be specifically described with reference to examples.
[Examples 1 to 6]
500 mm square glass wool with different thicknesses of 15 mm, 16 mm, 18 mm, 20 mm, 22 mm and 25 mm thickness (each density is 32 kg / m 3 ) is prepared as the fiber-based heat-absorbing sound absorber layer 3 and dielectric is applied to one side 3a of each glass wool. A paper carrying a lossy body (resistive film layer 2) and an aluminum kraft paper (aluminum foil thickness 7 μm) (radio wave reflecting layer 4) were adhered to the other surface 3b with a hot melt adhesive. 6 radio wave absorber samples 6 were obtained (samples of Examples 1 to 6 in the order of the thickness of the glass wool). The sheet resistance value of the polymer film carrying the dielectric loss material was 210Ω / □. As the hot melt adhesive, a vinyl acetate resin adhesive was used, and the amount of application (adhesion) was 30 g per 1 m 2 of the glass wool adhesive surface.

[比較例1]
25mm厚、500mm角のグラスウールを用い、その片面3aに実施例1の誘電損失体を担持させた紙に代えて誘電損失体を担持させたテフロン(登録商標)系高分子フィルムを、他方の面3bに実施例1で用いたのと同様のアルミクラフト紙を実施例1で用いたホットメルト接着剤を同様の塗布量にてそれぞれ接着して電波吸収体試料1体を作製した。この誘電損失体を担持させた高分子フィルムの面抵抗値は、377Ω/□であった。
[Comparative Example 1]
A glass wool having a thickness of 25 mm and a square of 500 mm was used, and a Teflon (registered trademark) polymer film carrying a dielectric loss body instead of the paper carrying the dielectric loss body of Example 1 on one side 3a was used on the other side. The same aluminum kraft paper as used in Example 1 was bonded to 3b with the hot melt adhesive used in Example 1 at the same coating amount to produce one sample of wave absorber. The sheet resistance value of the polymer film carrying this dielectric loss body was 377 Ω / □.

[電波吸収特性の測定方法]
前記の実施例1〜6および比較例1で得られた電波吸収体試料について、これらの電波吸収特性を反射電力法に従い、電波暗室内で測定した。試料の表面とホーンアンテナとの間の距離は820mmとし、測定周波数域は0.1〜6GHzとした。また、電波の入射角度は10°とした。測定結果を表1および図2に示す。なお、表1は、各電波吸収体試料についての測定結果から、最大反射減衰量と、これが得られる電波周波数とをそれぞれ抽出したものであり、図2は各電波吸収体試料に前記周波数域の電波が入射したときの反射減衰量を示すグラフであり、横軸は試料に入射した電波の周波数(GHz)、縦軸は反射減衰量(dB)である。
[Measurement method of radio wave absorption characteristics]
For the radio wave absorber samples obtained in Examples 1 to 6 and Comparative Example 1, these radio wave absorption characteristics were measured in an anechoic chamber according to the reflected power method. The distance between the surface of the sample and the horn antenna was 820 mm, and the measurement frequency range was 0.1 to 6 GHz. The incident angle of radio waves was 10 °. The measurement results are shown in Table 1 and FIG. Table 1 shows the maximum return loss and the radio frequency at which the maximum return loss is extracted from the measurement results for each radio wave absorber sample. FIG. It is a graph which shows the return loss amount when a radio wave enters, the horizontal axis is the frequency (GHz) of the radio wave incident on the sample, and the vertical axis is the return loss (dB).

[吸音率の測定]
実施例1で得られた電波吸収体および実施例1で用いたグラスウール単体(参考例)について、JIS A1408に準拠した残響室法により吸音率の測定を行った。この測定結果を図3に示す。
[Measurement of sound absorption coefficient]
The sound absorption coefficient of the radio wave absorber obtained in Example 1 and the glass wool used in Example 1 (reference example) were measured by a reverberation chamber method based on JIS A1408. The measurement results are shown in FIG.

Figure 2008270582
Figure 2008270582

各電波吸収体試料の電波吸収特性を示す表1および図2によれば、実施例1〜6の電波吸収体試料は、いずれも使用したグラスウールの厚さに対して一定の関係のある特定の周波数の電波に対して反射減衰量が20dB以上の最大ピークを示し、2.3〜4.5GHzの周波数域の電波に対しては、グラスウールの厚さを変更することで、少なくとも反射減衰量にて18dB以上となる優れた吸収特性を示すことが示された。特に、無線LAN用の2.45GHzの電波に対しては、実施例6の電波吸収体試料を用いることで、反射減衰量にて20dB以上の吸収特性を得ることができることが明らかである。
これに対し、比較例1の試料では、2.6GHzの波長の電波に対してかろうじて16.2dBの吸収特性を示すものの、測定周波数域での電波吸収特性は全体として良好ではない。
According to Table 1 and FIG. 2 showing the radio wave absorption characteristics of each radio wave absorber sample, the radio wave absorber samples of Examples 1 to 6 are all specified with a certain relationship with the thickness of the glass wool used. For the radio wave of the frequency, the return loss shows a maximum peak of 20 dB or more, and for the radio wave in the frequency range of 2.3 to 4.5 GHz, the thickness of the glass wool is changed to at least reduce the return loss. It has been shown that it has excellent absorption characteristics of 18 dB or more. In particular, with respect to the 2.45 GHz radio wave for wireless LAN, it is clear that an absorption characteristic of 20 dB or more can be obtained in terms of return loss by using the radio wave absorber sample of Example 6.
On the other hand, the sample of Comparative Example 1 barely exhibits an absorption characteristic of 16.2 dB with respect to a radio wave with a wavelength of 2.6 GHz, but the radio wave absorption characteristic in the measurement frequency range is not good as a whole.

また、図3によれば、吸音性に優れるグラスウールに対し、本発明の電波吸収体は特に1600Hz以下の低周波数域において吸音性に優れていることが判明した。なお、実施例1および参考例の試料のNRCは、それぞれ0.61および0.51である。   In addition, according to FIG. 3, it was found that the radio wave absorber of the present invention is excellent in sound absorption particularly in a low frequency region of 1600 Hz or less, compared to glass wool having excellent sound absorption. In addition, NRC of the sample of Example 1 and the reference example is 0.61 and 0.51, respectively.

以上説明したように、本発明によれば、優れた断熱性および吸音性を備えるとともに、繊維系断熱吸音体層の厚さを変更することで、主に数GHz帯、特に2〜5.8GHzの周波数域に中心周波数を有する電波について従来の約377Ω/□の面抵抗を有する抵抗皮膜を備えたλ/4型吸収体よりも優れた吸収特性を備えた電波吸収体を得ることができる。   As described above, according to the present invention, it has excellent heat insulating properties and sound absorbing properties, and by changing the thickness of the fiber-based heat insulating sound absorbing layer, it is mainly a few GHz band, particularly 2 to 5.8 GHz. For a radio wave having a center frequency in the frequency range of λ / 4, a radio wave absorber having better absorption characteristics than a conventional λ / 4 type absorber provided with a resistive film having a surface resistance of about 377 Ω / □ can be obtained.

本発明の電波吸収体を示した側断面図である。It is the sectional side view which showed the electromagnetic wave absorber of this invention. 本発明の電波吸収態の一実施形態の電波吸収特性結果を示す図である。It is a figure which shows the electromagnetic wave absorption characteristic result of one Embodiment of the electromagnetic wave absorption state of this invention. 本発明の電波吸収態の一実施形態の吸音性能を示す図である。It is a figure which shows the sound absorption performance of one Embodiment of the electromagnetic wave absorption state of this invention. λ/4型電波吸収体の作用原理を示す図である。It is a figure which shows the principle of operation of a (lambda) / 4 type | mold electromagnetic wave absorber.

符号の説明Explanation of symbols

1 電波吸収体
2 抵抗皮膜層
3 繊維系断熱吸音体層
3a、3b 繊維系断熱吸音体層の面
4 電波反射層
DESCRIPTION OF SYMBOLS 1 Radio wave absorber 2 Resistance membrane | film | coat layer 3 Fiber type heat insulation sound absorber layer 3a, 3b Surface of fiber type heat insulation sound absorber layer 4 Radio wave reflection layer

Claims (8)

面抵抗値が150〜330Ωの抵抗皮膜層と、繊維系断熱吸音体層と、電波反射層とを順次積層してλ/4型吸収体に形成したことを特徴とする電波吸収体。   1. A radio wave absorber characterized in that a resistive film layer having a sheet resistance value of 150 to 330Ω, a fiber-based heat insulating sound absorber layer, and a radio wave reflection layer are sequentially laminated to form a λ / 4 type absorber. 前記抵抗皮膜層は、誘電損失体を含んだ紙からなる請求項1に記載の電波吸収体。   The radio wave absorber according to claim 1, wherein the resistance film layer is made of paper containing a dielectric loss body. 前記繊維系断熱吸音体層の厚さは、10〜30mmである請求項1または2に記載の電波吸収体。   The radio wave absorber according to claim 1 or 2, wherein a thickness of the fibrous heat-absorbing sound absorber layer is 10 to 30 mm. 前記電波反射層の厚さは7μm以上で、かつ可とう性を備えたものである請求項1〜3のいずれか1項に記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 3, wherein the radio wave reflection layer has a thickness of 7 µm or more and is flexible. 前記繊維系断熱吸音体層と前記抵抗皮膜層および前記電波反射層とはそれぞれホットメルト接着剤で接着されてなる請求項1〜4のいずれか1項に記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 4, wherein the fiber-based heat-absorbing sound absorber layer, the resistance film layer, and the radio wave reflection layer are bonded to each other with a hot melt adhesive. 断熱性能が熱伝導率にて0.034W/(m・K)以下であり、かつ吸音性能がNRC0.9以上である請求項1〜5のいずれか1項に記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 5, wherein the heat insulation performance is 0.034 W / (m · K) or less in terms of thermal conductivity, and the sound absorption performance is NRC 0.9 or more. 2〜5.8GHzの周波数域に中心周波数を有する電波の吸収能力が反射減衰量にて18dB以上である請求項1〜6のいずれか1項に記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 6, wherein an absorption capability of a radio wave having a center frequency in a frequency range of 2 to 5.8 GHz is 18 dB or more in terms of return loss. 中心周波数2.45GHzの電波の吸収能力が反射減衰量にて20dB以上である請求項1〜7のいずれか1項に記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 7, wherein an absorption capability of radio waves having a center frequency of 2.45 GHz is 20 dB or more in terms of return loss.
JP2007112618A 2007-04-23 2007-04-23 Radio wave absorber Expired - Fee Related JP4879077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112618A JP4879077B2 (en) 2007-04-23 2007-04-23 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112618A JP4879077B2 (en) 2007-04-23 2007-04-23 Radio wave absorber

Publications (2)

Publication Number Publication Date
JP2008270582A true JP2008270582A (en) 2008-11-06
JP4879077B2 JP4879077B2 (en) 2012-02-15

Family

ID=40049675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112618A Expired - Fee Related JP4879077B2 (en) 2007-04-23 2007-04-23 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP4879077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515624A1 (en) * 2009-12-15 2012-10-24 Asahi Kasei Fibers Corporation Noise absorbing fabric
KR101371822B1 (en) * 2011-09-26 2014-03-10 (주)엘지하우시스 Sound absorption panel for dry wall
CN109228587A (en) * 2018-09-30 2019-01-18 北京环境特性研究所 A kind of absorbing material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181483A (en) * 1994-12-22 1996-07-12 Matsushita Electric Works Ltd Electromagnetic wave absorbing fiber composite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181483A (en) * 1994-12-22 1996-07-12 Matsushita Electric Works Ltd Electromagnetic wave absorbing fiber composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515624A1 (en) * 2009-12-15 2012-10-24 Asahi Kasei Fibers Corporation Noise absorbing fabric
EP2515624A4 (en) * 2009-12-15 2013-11-27 Asahi Kasei Fibers Corp Noise absorbing fabric
US9972913B2 (en) 2009-12-15 2018-05-15 Asahi Kasei Fibers Corporation Noise absorbing fabric
KR101371822B1 (en) * 2011-09-26 2014-03-10 (주)엘지하우시스 Sound absorption panel for dry wall
CN109228587A (en) * 2018-09-30 2019-01-18 北京环境特性研究所 A kind of absorbing material and preparation method thereof

Also Published As

Publication number Publication date
JP4879077B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP6177110B2 (en) Radio wave absorber
JP2010157696A (en) Radiowave absorber
JP2004104063A (en) Electromagnetic wave absorber
CN105161803B (en) A kind of graphene film frequency-selective surfaces
JP2011233642A (en) Electromagnetic wave absorber
JP4879077B2 (en) Radio wave absorber
CN106058484A (en) Broadband electromagnetic wave-absorbing material with multilayer structure
JP5654249B2 (en) Laminated wood-based electromagnetic wave absorbing plate and method
JP2002164690A (en) Electromagnetic wave absorbing soundboard
JP2004119450A (en) Radio wave absorber and its manufacturing method
KR102168863B1 (en) Electromagnetic-wave-absorbing composite sheet
JP2004193460A (en) Radio wave absorber
JP2003298278A (en) Electromagnetic wave absorber
JP4314831B2 (en) Radio wave absorber
JP6089625B2 (en) Sheet material for radio wave absorber and radio wave absorber using the same
JP4303388B2 (en) Electromagnetic wave absorber and method for producing the same
CN204243207U (en) For antenna surface and the metamaterial flat antenna of metamaterial flat antenna
JP2001196782A (en) Electromagnetic wave absorber
TWI374007B (en) Electromagnetic wave absorbing sheet material and electromagnetic wave absorbin body using it
JP2005079247A (en) Electric wave absorber
JP2004247720A (en) Wave absorber
CN113692614A (en) Sound-absorbing material
WO2020213684A1 (en) Sound-absorbing material
JPH08181483A (en) Electromagnetic wave absorbing fiber composite
JP6948097B2 (en) A laminate, a coating member having the laminate, and a method for manufacturing the laminate.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4879077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees