JP2008270461A - Storage unit - Google Patents

Storage unit Download PDF

Info

Publication number
JP2008270461A
JP2008270461A JP2007110233A JP2007110233A JP2008270461A JP 2008270461 A JP2008270461 A JP 2008270461A JP 2007110233 A JP2007110233 A JP 2007110233A JP 2007110233 A JP2007110233 A JP 2007110233A JP 2008270461 A JP2008270461 A JP 2008270461A
Authority
JP
Japan
Prior art keywords
power storage
storage element
storage unit
lower case
holding hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007110233A
Other languages
Japanese (ja)
Inventor
Masato Shoji
理人 東海林
Takehiko Inoue
健彦 井上
Shusaku Kawasaki
周作 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007110233A priority Critical patent/JP2008270461A/en
Priority to US12/522,271 priority patent/US9034501B2/en
Priority to EP20080710364 priority patent/EP2104121B1/en
Priority to CN2008800042971A priority patent/CN101606210B/en
Priority to AT08710364T priority patent/ATE539440T1/en
Priority to PCT/JP2008/000210 priority patent/WO2008099602A1/en
Publication of JP2008270461A publication Critical patent/JP2008270461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage unit with which reliability high enough to secure an excellent heat dissipation property and certainly hold a storage element having an error in height can be obtained. <P>SOLUTION: A storage unit comprises a plurality of storage elements 11 having a pillar shape, a bus bar 21 for connecting electrodes of the storage elements 11, a lower case 31 which has a holding hole 33 in which the bottom 29 of the storage element 11 is inserted, and in which a plurality of elastic portions 35 in contact with the end face of the bottom 29 are provided on the bottom surface of the holding hole 33, and an upper case 43 in which the upper portion 45 of the storage element 11 is inserted and with which at least a portion of the end face of the upper portion 45 is in contact. The elastic portion 35 comprises a center portion 35a which is provided on the center of the bottom surface of the holding hole 33 and which comes into contact with the bottom 29 of the storage element 11 and a plurality of beams 35b formed to the upper center from a wall surface side on the bottom surface of the holding hole 33 and connected with the center portion 35a. A portion between the adjacent beams 35b is a through-hole 36. The width of the displacement of the elastic portion 35 is set to be larger than an error in the height of the plurality of storage elements 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は主に車両の補助電源等として利用される蓄電ユニットに関するものである。   The present invention relates to a power storage unit mainly used as an auxiliary power source for a vehicle.

近年、地球環境保護の観点からハイブリッドシステムやアイドリングストップシステムを搭載した自動車(以下、車両という)の開発が急速に進められており、それに伴い車両の制動エネルギーを電気エネルギーとして回生するシステムや、急加速時等でハイブリッド車のモータ駆動を補助するシステムについて各種の提案がなされてきている。   In recent years, automobiles (hereinafter referred to as vehicles) equipped with a hybrid system and an idling stop system have been rapidly developed from the viewpoint of protecting the global environment. Along with this, systems that regenerate braking energy of vehicles as electrical energy, Various proposals have been made on a system for assisting the motor drive of a hybrid vehicle during acceleration or the like.

このようなシステムにおいては、回生の場合は急変する制動エネルギーをできるだけ電気エネルギーとして蓄電素子に蓄える必要があり、モータ駆動補助の場合は車両を急加速できるだけの大電流を供給する必要があるので、いずれも蓄電素子としてバッテリよりも急速充放電特性に優れるキャパシタを用いたシステムが特に注目されている。   In such a system, in the case of regeneration, it is necessary to store braking energy that changes abruptly as much as possible in the energy storage element as electric energy, and in the case of motor drive assistance, it is necessary to supply a large current that can rapidly accelerate the vehicle. In any case, a system using a capacitor, which is superior in quick charge / discharge characteristics as compared with a battery, is attracting particular attention as a storage element.

しかし、車両を急加速できるほどの電力を蓄えるためには大容量キャパシタ(例えば電気二重層キャパシタ)が必要となり、さらにこのキャパシタの充電電圧は2.2V程度で低いので、多数のキャパシタを接続して電圧を上げる必要がある。   However, a large-capacity capacitor (for example, an electric double layer capacitor) is required to store electric power that can accelerate the vehicle rapidly. Further, since the charging voltage of this capacitor is as low as about 2.2 V, many capacitors are connected. To increase the voltage.

このように多数の蓄電素子を保持し接続した構成例が下記特許文献1に記載されている。これは蓄電素子に円筒型電池を用いた蓄電ユニットの例であるが、図7に示すように円筒型電池1(透視図で示す)は、その両端を上下の支持体2の電池穴2aに挿入することにより保持されている。この際、電池穴2aには図7の下側の支持体2に示すように段差が設けてあるので、この段差に円筒型電池1の両端周囲部が当接することにより固定できる。支持体2には電極孔2bが設けられており、電極孔2bを通して円筒型電池1の両端に設けた電極が露出する構成となっている。露出した電極は図示しない接続板(バスバー)で接続される。接続板は溝2cに収納される。このような構成とすることにより、多数の蓄電素子を同時に保持できる蓄電ユニットが得られる。   A configuration example in which a large number of power storage elements are held and connected as described above is described in Patent Document 1 below. This is an example of a power storage unit using a cylindrical battery as a power storage element, but as shown in FIG. 7, the cylindrical battery 1 (shown in a perspective view) is connected to the battery holes 2a of the upper and lower supports 2 at both ends. It is held by inserting. At this time, since a step is provided in the battery hole 2a as shown in the lower support 2 in FIG. 7, the battery hole 2a can be fixed by contacting the peripheral portions of both ends of the cylindrical battery 1 with this step. The support 2 is provided with electrode holes 2b, and the electrodes provided at both ends of the cylindrical battery 1 are exposed through the electrode holes 2b. The exposed electrodes are connected by a connection plate (bus bar) (not shown). The connection plate is accommodated in the groove 2c. With such a configuration, a power storage unit capable of simultaneously holding a large number of power storage elements can be obtained.

また、円筒型電池1に替わりキャパシタを用いた蓄電ユニットをハイブリッド車に適用した時には、急加速時や回生時におけるキャパシタの充放電が短時間の内に何度も繰り返され、キャパシタの内部抵抗やバスバーとの接続抵抗に起因した発熱が発生する。これをそのまま放置すると、キャパシタが劣化して寿命が短くなり、信頼性が低減するのであるが、図7の構成によるとキャパシタが上下の支持体2により保持されるので、キャパシタの両端部以外が露出しており、さらにキャパシタの両端の電極も電極穴2bにより露出している。従って、発生した熱はこもることなく露出部分より放熱されるので、キャパシタの劣化を低減できる高信頼な蓄電ユニットが得られる。
特許第3777748号公報
In addition, when a power storage unit using a capacitor instead of the cylindrical battery 1 is applied to a hybrid vehicle, charging and discharging of the capacitor during rapid acceleration or regeneration is repeated many times within a short time, and the internal resistance of the capacitor Heat is generated due to the connection resistance with the bus bar. If this is left as it is, the capacitor will deteriorate and its life will be shortened and the reliability will be reduced. However, according to the configuration of FIG. 7, the capacitor is held by the upper and lower supports 2, so In addition, the electrodes at both ends of the capacitor are also exposed through the electrode holes 2b. Therefore, since the generated heat is dissipated from the exposed portion without being trapped, a highly reliable power storage unit that can reduce deterioration of the capacitor can be obtained.
Japanese Patent No. 3777748

このような蓄電ユニットは確かに多数の蓄電素子を保持することができると同時に良好な放熱性が得られるのであるが、このような蓄電ユニットを車両に搭載すると、次のような問題があった。   Such a power storage unit can surely hold a large number of power storage elements and at the same time provide good heat dissipation. However, when such a power storage unit is mounted on a vehicle, there are the following problems: .

蓄電素子である円筒型電池1は例えば有底円筒の中に電池材料を投入後、上部を電極フタで封止する構造を有する。この場合、有底円筒は一般にプレスによる深絞り成型で製造されるので、円筒直径の誤差は小さい。一方、電極フタで封止を行う際は、絶縁部材を介して有底円筒と電極フタを重ね、これらの部材を同時にかしめることになるため、それぞれの部材の寸法誤差に加え、かしめ工程による誤差が加わるので、円筒直径の誤差に比べ円筒型電池1の高さ誤差は大きくなる。   The cylindrical battery 1 that is a power storage element has a structure in which, for example, a battery material is put into a bottomed cylinder and the upper part is sealed with an electrode lid. In this case, since the bottomed cylinder is generally manufactured by deep drawing using a press, the error of the cylinder diameter is small. On the other hand, when sealing with an electrode lid, the bottomed cylinder and the electrode lid are overlapped via an insulating member, and these members are caulked at the same time. In addition to the dimensional error of each member, the caulking process Since an error is added, the height error of the cylindrical battery 1 becomes larger than the error of the cylindrical diameter.

このような高さ方向の誤差が大きい複数の円筒型電池1を図7に示す支持体2に挿入保持すると、電池穴2aの段差は固定されているので、組み立てた時に上下の支持体2の間隔は高さが最も高い円筒型電池1により決定される。ゆえに、他の円筒型電池1は電池穴2aの段差に確実に当接することができず、高さ誤差に応じた隙間が生じた状態で保持されることになる。この状態で円筒型電池1は接続板で接続されるので、高さの低い円筒型電池1は上下の接続板によりいわゆる宙吊り状態で保持されていることになる。   When a plurality of cylindrical batteries 1 having large errors in the height direction are inserted and held in the support 2 shown in FIG. 7, the step of the battery hole 2a is fixed. The interval is determined by the cylindrical battery 1 having the highest height. Therefore, the other cylindrical battery 1 cannot be reliably brought into contact with the step of the battery hole 2a, and is held in a state where a gap corresponding to the height error is generated. In this state, the cylindrical battery 1 is connected by the connection plate, so the cylindrical battery 1 having a low height is held in a so-called suspended state by the upper and lower connection plates.

この蓄電ユニットに車両の振動が加わると、高さの低い円筒型電池1は電池穴2aの段差との間に隙間があるので、円筒型電池1が隙間の範囲で高さ方向に振動することになる。この振動応力は電極と接続板の接続部分や接続板自体に印加されるので、接続部分の強度が弱まり接触抵抗が増大したり、接続板の変動応力による機械的疲労を起こす可能性があり、その結果、信頼性が低下するという課題があった。   When a vehicle vibration is applied to the power storage unit, the cylindrical battery 1 having a low height has a gap between the step of the battery hole 2a, and thus the cylindrical battery 1 vibrates in the height direction within the gap. become. Since this vibration stress is applied to the connection part of the electrode and the connection plate and the connection plate itself, there is a possibility that the strength of the connection part will be weakened and the contact resistance will increase, or mechanical fatigue due to fluctuating stress of the connection plate may occur. As a result, there is a problem that reliability is lowered.

本発明は、前記従来の課題を解決するもので、良好な放熱性を確保し、かつ高さ誤差のある多数の蓄電素子を確実に保持できる高信頼性が得られる蓄電ユニットを提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a power storage unit that can secure high heat dissipation and can reliably hold a large number of power storage elements having a height error, and can obtain high reliability. Objective.

前記従来の課題を解決するために、本発明の蓄電ユニットは、柱形状を有する複数の蓄電素子と、前記蓄電素子の電極間を接続するバスバーと、前記蓄電素子の底部が挿入される保持穴を有するとともに、前記底部の端面と当接する弾性部を前記保持穴の底面に設けた下ケースと、前記蓄電素子の上部が挿入されるとともに、前記上部の端面の少なくとも一部が当接する上ケースとから構成され、前記弾性部は、前記保持穴の底面における中央に設けた、前記蓄電素子の底部と当接する中央部と、前記保持穴の底面において壁面側から中央上方に向かって形成され、前記中央部と接続された複数の梁とからなり、隣り合う前記梁の間を貫通孔とし、前記弾性部の変位幅は複数の前記蓄電素子の高さ誤差より大きくしたものである。   In order to solve the above-described conventional problem, the power storage unit of the present invention includes a plurality of power storage elements having a column shape, a bus bar connecting between the electrodes of the power storage elements, and a holding hole into which a bottom portion of the power storage element is inserted. And an upper case in which an upper portion of the power storage element is inserted and at least a part of the upper end surface is in contact with the lower case provided with an elastic portion in contact with the end surface of the bottom portion on the bottom surface of the holding hole The elastic portion is formed in the center of the bottom surface of the holding hole, and is formed in a central portion that comes into contact with the bottom portion of the electricity storage element, and from the wall surface side toward the upper center of the bottom surface of the holding hole, It consists of a plurality of beams connected to the central portion, and a through hole is formed between the adjacent beams, and the displacement width of the elastic portion is larger than the height error of the plurality of power storage elements.

本発明によれば、弾性部が蓄電素子の底部と当接する中央部と、保持穴の底面において壁面側から中央上方に向かって形成されて中央部と接続される複数の梁とから構成されているので、蓄電素子を下ケースに挿入した際に中央部が蓄電素子の底部に当接して下方向に押さえられる。これにより、中央部に接続された複数の梁は弾性を有するので撓み、蓄電ユニットを組み立てた時に弾性部(特に梁)が蓄電素子の高さ誤差を吸収する。その結果、高さ誤差があっても全ての蓄電素子が確実に保持固定され、振動による電極とバスバーの接続部分や、バスバー自身への影響を低減できる。さらに、隣り合う梁の間が貫通孔であるので、蓄電素子の底部が露出し良好な放熱性が確保できる。これらのことから、高信頼性が得られる蓄電ユニットを実現できる。   According to the present invention, the elastic portion is composed of a central portion that comes into contact with the bottom portion of the energy storage device, and a plurality of beams that are formed from the wall surface side toward the center upper portion on the bottom surface of the holding hole and are connected to the central portion. Therefore, when the power storage element is inserted into the lower case, the center part contacts the bottom of the power storage element and is pressed downward. As a result, the plurality of beams connected to the central portion are elastic and are bent, and the elastic portion (particularly the beam) absorbs the height error of the power storage element when the power storage unit is assembled. As a result, even if there is a height error, all the power storage elements are securely held and fixed, and the influence of vibration on the connection portion between the electrode and the bus bar and the bus bar itself can be reduced. Furthermore, since the space between the adjacent beams is a through hole, the bottom of the electricity storage element is exposed and good heat dissipation can be ensured. From these things, the electrical storage unit which can obtain high reliability is realizable.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。なお、ここでは車両用の蓄電ユニットの構成例について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings. In addition, the structural example of the electrical storage unit for vehicles is demonstrated here.

(実施の形態1)
図1は本発明の実施の形態1における蓄電ユニットの一部分解斜視図である。図2は本発明の実施の形態1における蓄電ユニットの蓄電素子とバスバーの斜視図である。図3は本発明の実施の形態1における蓄電ユニットの下ケースの平面図である。図4は本発明の実施の形態1における蓄電ユニットの完成斜視図である。図5は本発明の実施の形態1における蓄電ユニットの断面図であり、(a)は下ケースへの蓄電素子の挿入時の一部断面図を、(b)は完成後の断面図を示す。
(Embodiment 1)
FIG. 1 is a partially exploded perspective view of a power storage unit according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of a power storage element and a bus bar of the power storage unit according to Embodiment 1 of the present invention. FIG. 3 is a plan view of the lower case of the power storage unit according to Embodiment 1 of the present invention. FIG. 4 is a completed perspective view of the power storage unit according to Embodiment 1 of the present invention. 5A and 5B are cross-sectional views of the power storage unit according to Embodiment 1 of the present invention, where FIG. 5A is a partial cross-sectional view when the power storage element is inserted into the lower case, and FIG. 5B is a cross-sectional view after completion. .

図1において、電力を蓄える蓄電素子11は例えば直径3cmの円柱形状の電気二重層キャパシタである。蓄電素子11の製法は従来の円筒型電池と同様である。従って、蓄電素子11の一方の端面(図1では上面)にはかしめ工程により盛り上がった端面周囲部13が形成される。なお、蓄電素子11の円柱側面はアルミニウム製であり、負極になるように内部で接続されている。従って、蓄電素子11の円柱側面は全体が側面電極15を形成することになる。また、端面はアルミニウム製のフタであり、これをプレス成型することにより、端面周囲部13よりも高さが高い半円状の端面電極17が形成されている。端面電極17は正極になるように内部で接続される。ゆえに、蓄電素子11の円柱部分とフタ部分の間には絶縁部材(図示せず)が配されるようにしてかしめている。なお、フタ部分には端面電極17以外の位置に調圧弁19が設けてある。調圧弁19は蓄電素子11の内部に充填された電解液が気化した際に、それを逃がすためのものである。これにより、蓄電素子11の内圧上昇を防ぐことができる。   In FIG. 1, a power storage element 11 that stores electric power is, for example, a cylindrical electric double layer capacitor having a diameter of 3 cm. The manufacturing method of the electrical storage element 11 is the same as that of the conventional cylindrical battery. Therefore, an end surface peripheral portion 13 that is raised by the caulking process is formed on one end surface (the upper surface in FIG. 1) of the power storage element 11. In addition, the cylindrical side surface of the electricity storage element 11 is made of aluminum, and is connected internally so as to be a negative electrode. Accordingly, the entire cylindrical side surface of the electricity storage element 11 forms the side electrode 15. Further, the end face is an aluminum lid, and a semicircular end face electrode 17 having a height higher than that of the end face peripheral portion 13 is formed by press-molding the lid. The end face electrode 17 is internally connected so as to be a positive electrode. Therefore, an insulating member (not shown) is caulked between the cylindrical portion and the lid portion of the electricity storage element 11. A pressure regulating valve 19 is provided at a position other than the end face electrode 17 in the lid portion. The pressure regulating valve 19 is used to release the electrolyte filled in the electric storage element 11 when it vaporizes. Thereby, the internal pressure rise of the electrical storage element 11 can be prevented.

次に、このような蓄電素子11を複数個並べて互いに電気的、機械的に接続する際に用いるバスバー21について説明する。バスバー21は側面電極15や端面電極17と同一のアルミニウム製とした。なお、これらは同一の金属であれば他の金属でも構わないが、電気二重層キャパシタの内部電極がアルミニウム製であるため、内部電極を側面電極15や端面電極17に溶接接合する上で、これらもアルミニウム製としている。従って、後述するがバスバー21を側面電極15や端面電極17に接合する際も溶接するので、バスバー21もアルミニウム製としている。また、同一金属とすることで、溶接性が向上するだけでなく、湿気で局部電池を形成することがないので防食性も向上する。   Next, a description will be given of the bus bar 21 used when a plurality of such power storage elements 11 are arranged and electrically and mechanically connected to each other. The bus bar 21 is made of the same aluminum as the side electrode 15 and the end electrode 17. Note that these may be other metals as long as they are the same metal, but since the internal electrode of the electric double layer capacitor is made of aluminum, when the internal electrode is welded to the side electrode 15 or the end surface electrode 17, Is also made of aluminum. Therefore, as will be described later, the bus bar 21 is also made of aluminum because welding is performed when the bus bar 21 is joined to the side electrode 15 or the end electrode 17. Further, by using the same metal, not only the weldability is improved, but also the corrosion resistance is improved because a local battery is not formed by moisture.

バスバー21は図2に示すように蓄電素子11の側面にはめ込む円周部22と、隣の蓄電素子11の端面電極17に溶接接続するための平坦部23を有しており、これらは板厚0.5mmのアルミニウム板をプレス成型することにより一体で得られる。なお、バスバー21の形状は、端面電極17に接続する部分(平坦部23)と、側面電極15に接続する部分(円周部22)の間に屈曲部(図示せず)を設けてもよい。これにより、バスバー21に加わる溶接時や車両振動時の応力、あるいは熱膨張による変位を屈曲部で吸収できるので、さらに信頼性が高まる。なお、屈曲部は平坦部23に設ける方が加工しやすい。   As shown in FIG. 2, the bus bar 21 has a circumferential portion 22 that fits into the side surface of the power storage element 11 and a flat portion 23 that is welded to the end surface electrode 17 of the adjacent power storage device 11. It is obtained integrally by press molding a 0.5 mm aluminum plate. The bus bar 21 may have a bent portion (not shown) between the portion connected to the end face electrode 17 (flat portion 23) and the portion connected to the side electrode 15 (circumferential portion 22). . As a result, stress applied during welding or vehicle vibration applied to the bus bar 21 or displacement due to thermal expansion can be absorbed by the bent portion, so that reliability is further improved. In addition, it is easier to process the bent portion in the flat portion 23.

バスバー21は図2の矢印で示す方向に蓄電部11の側面にはめ込まれ、側面電極15と確実な電気的、機械的接続を得るために、レーザ溶接により接続される。レーザ溶接部位を図1の×印で示す。図1ではスポット状に多点を溶接しているが、これは溶接位置を順次ずらして線状に溶接接続してもよい。この場合はスポット状に比べ接続信頼性が向上する。このようにして、バスバー21と一体になった蓄電素子11が形成される。   The bus bar 21 is fitted to the side surface of the power storage unit 11 in the direction indicated by the arrow in FIG. 2 and is connected to the side electrode 15 by laser welding in order to obtain a reliable electrical and mechanical connection. The laser welding site is indicated by a cross in FIG. In FIG. 1, multiple points are welded in a spot shape, but this may be welded in a linear shape by sequentially shifting the welding position. In this case, the connection reliability is improved as compared with the spot shape. In this way, the storage element 11 integrated with the bus bar 21 is formed.

なお、バスバー21は複数の蓄電素子11の内、最も高い電圧、または最も低い電圧のいずれかとなる側面電極15を有する蓄電素子11を除いた他の蓄電素子11に接続されている。すなわち、本実施の形態1では図1に示すように蓄電素子11を5個直列に接続する構成であり、側面電極15が負極、端面電極17が正極であるので、これら5個の蓄電素子11を直列に接続すると、図1の最も手前の蓄電素子11の側面電極15が最も低い電圧となる。従って、最も手前の蓄電素子11を除く他の4個の蓄電素子11にバスバー21が接続されている。なお、蓄電素子11の内部接続を逆転させた場合は、最も手前の蓄電素子11の側面電極15は最も高い電圧となる。この場合であっても正極と負極が逆転するだけで、蓄電ユニットの構造は同じである。   The bus bar 21 is connected to other power storage elements 11 excluding the power storage element 11 having the side electrode 15 that has either the highest voltage or the lowest voltage among the plurality of power storage elements 11. That is, in the first embodiment, as shown in FIG. 1, five power storage elements 11 are connected in series, and the side electrode 15 is a negative electrode and the end face electrode 17 is a positive electrode. Are connected in series, the side electrode 15 of the foremost power storage element 11 in FIG. 1 has the lowest voltage. Accordingly, the bus bar 21 is connected to the other four power storage elements 11 except the frontmost power storage element 11. When the internal connection of the power storage element 11 is reversed, the side electrode 15 of the frontmost power storage element 11 has the highest voltage. Even in this case, the structure of the power storage unit is the same only by reversing the positive electrode and the negative electrode.

最も手前の蓄電素子11には、バスバー21に代わり負極端子バスバー25が接続されている。負極端子バスバー25の構成はバスバー21とほぼ同じであるが、隣の蓄電素子11がないので端面電極17に接続する部分が不要となる。しかし、蓄電ユニットの外部と電気的接続を行うために、負極端子バスバー25には電力線や後述する外部バスバーと接続するためのネジ穴27が設けられている。また、電力線や外部バスバーと接続しやすくするために、後述する上ケースの端部に嵌合するよう曲げ加工が施されている。この部分は図1の構造に限定されるものではなく、蓄電ユニットの形状や電力線の引き回し等により適宜変更すればよい。なお、最も手前の蓄電素子11の側面電極15と負極端子バスバー25の接続は他の蓄電素子11にバスバー21を接続する場合と同じ方法で溶接されている。   Instead of the bus bar 21, a negative electrode terminal bus bar 25 is connected to the foremost power storage element 11. The configuration of the negative electrode terminal bus bar 25 is substantially the same as that of the bus bar 21, but since there is no adjacent power storage element 11, a portion connected to the end face electrode 17 becomes unnecessary. However, in order to make an electrical connection to the outside of the power storage unit, the negative terminal bus bar 25 is provided with a screw hole 27 for connecting to a power line or an external bus bar described later. Moreover, in order to make it easy to connect with an electric power line or an external bus bar, the bending process is given so that it may fit in the edge part of the upper case mentioned later. This portion is not limited to the structure shown in FIG. 1, and may be appropriately changed depending on the shape of the power storage unit, the power line, and the like. Note that the connection between the side electrode 15 of the foremost power storage element 11 and the negative terminal bus bar 25 is welded in the same manner as when the bus bar 21 is connected to another power storage element 11.

こうしてバスバー21、または負極端子バスバー25が溶接接続された蓄電素子11の底部29は、下ケース31に設けた保持穴33に挿入される。この際、保持穴33の直径は蓄電素子11の外径より例えば0.1〜0.2mm程度大きくしているので、蓄電素子11をスムーズに収納することができる。   In this way, the bottom 29 of the power storage element 11 to which the bus bar 21 or the negative terminal bus bar 25 is welded is inserted into the holding hole 33 provided in the lower case 31. At this time, the diameter of the holding hole 33 is, for example, about 0.1 to 0.2 mm larger than the outer diameter of the power storage element 11, so that the power storage element 11 can be smoothly stored.

下ケース31は樹脂製であり、保持穴33の底面には弾性部35が一体形成されている。弾性部35は、保持穴33の底面における中央に設けた、蓄電素子11の底部29と当接する中央部35aと、保持穴33の底面において壁面側から中央上方に向かって形成され、中央部35aと接続された複数の梁35bとから構成されている。本実施の形態1では梁35bを8ヶ所に形成している。さらに、隣り合う梁35bの間を貫通孔36としている。このような複雑な弾性部35の形状は、下ケース31を射出成型することにより一体で形成している。   The lower case 31 is made of resin, and an elastic portion 35 is integrally formed on the bottom surface of the holding hole 33. The elastic portion 35 is formed at the center of the bottom surface of the holding hole 33 and is in contact with the bottom portion 29 of the power storage element 11, and is formed from the wall surface side toward the center upward on the bottom surface of the holding hole 33. And a plurality of beams 35b connected to each other. In the first embodiment, eight beams 35b are formed. Further, a through hole 36 is formed between adjacent beams 35b. Such a complicated shape of the elastic portion 35 is integrally formed by injection molding the lower case 31.

ここで、弾性部35の形状を図3に示す。図3は下ケース31を上面から見た際の平面図である。弾性部35は、保持穴33の底面の中央に設けた円形の中央部35aと、中央部35aを中心にした8方向の放射状の梁35bとが連続した形状としている。このように梁35bを両持ち梁構造としたことにより、梁35bの耐振動性を向上している。さらに、梁35bの両端は図3に示すようにアールを設けているので、梁35bの両端における応力集中を軽減することができ、梁35bの信頼性が向上する。なお、中央部35aは円形としているが、これに限定されるものではなく、例えば梁35bと中央部35aの接続部間を直線とする多角形(図3の例では八角形)としてもよい。   Here, the shape of the elastic part 35 is shown in FIG. FIG. 3 is a plan view of the lower case 31 as viewed from above. The elastic portion 35 has a shape in which a circular central portion 35a provided at the center of the bottom surface of the holding hole 33 and eight radial beams 35b centered on the central portion 35a are continuous. Thus, the vibration resistance of the beam 35b is improved by making the beam 35b have a double-supported beam structure. Further, since both ends of the beam 35b are rounded as shown in FIG. 3, stress concentration at both ends of the beam 35b can be reduced, and the reliability of the beam 35b is improved. In addition, although the center part 35a is circular, it is not limited to this, For example, it is good also as a polygon (an octagon in the example of FIG. 3) which makes straight between the connection parts of the beam 35b and the center part 35a.

前記したように、梁35bは保持穴33の壁面側から中央上方に向かう両持ち梁形状であるので、梁35bに接続した中央部35aは保持穴33の底面より高い位置になる。従って、蓄電素子11の底部29が弾性部35の一部分である中央部35aに当接すると、中央部35aが図1の下方向に押し下げられる。この際、中央部35aの押し下げられる距離、すなわち弾性部35全体としての変位幅は、あらかじめ求めた複数の蓄電素子11の高さ誤差よりも大きくなるようにしてあるので、どのような高さ誤差を有する蓄電素子11が保持穴33に挿入されても、弾性部35の一部分である梁35bが撓むように変位してその誤差を吸収するので、蓄電素子11を確実に保持できる。   As described above, the beam 35 b has a doubly-supported beam shape extending from the wall surface side of the holding hole 33 toward the upper center, and therefore the central portion 35 a connected to the beam 35 b is positioned higher than the bottom surface of the holding hole 33. Accordingly, when the bottom portion 29 of the electricity storage element 11 contacts the central portion 35a which is a part of the elastic portion 35, the central portion 35a is pushed downward in FIG. At this time, the distance by which the central portion 35a is pushed down, that is, the displacement width of the elastic portion 35 as a whole is set to be larger than the height error of the plurality of power storage elements 11 obtained in advance. Even if the electricity storage element 11 having the shape is inserted into the holding hole 33, the beam 35b, which is a part of the elastic portion 35, is displaced so as to bend and absorb the error, so that the electricity storage element 11 can be reliably held.

なお、梁35bの平均幅は貫通孔36の平均幅より小さくしている。ここで、梁35bの平均幅とは、梁35bの幅をアール部分も含めて平均した値として定義されるが、図3の場合はアール部分をほとんど無視できるので、梁35bの平均幅は梁35bの幅とほぼ等しくなる。一方、貫通孔36の平均幅とは、中央部35aを中心とした円周方向における貫通孔36の幅を平均した値として定義される。図3の場合は梁35bの形状が平行線状であるので、貫通孔36の平均幅は、最も狭い幅(貫通孔36において中央部35aの端部における幅)と最も広い幅(貫通孔36において保持穴33の壁面における幅)の平均値として近似される。これらの平均幅の定義により図3を参照すると、明らかに梁35bの平均幅が貫通孔36の平均幅より小さいことがわかる。これにより、蓄電素子11を保持穴33に挿入した時に、梁35bが十分に撓むことができるので、蓄電素子11の高さ誤差を有効に吸収することが可能となる。   The average width of the beam 35b is smaller than the average width of the through hole 36. Here, the average width of the beam 35b is defined as an average value of the width of the beam 35b including the rounded portion. In FIG. 3, the rounded portion can be almost ignored. It becomes substantially equal to the width of 35b. On the other hand, the average width of the through-holes 36 is defined as an average value of the widths of the through-holes 36 in the circumferential direction around the central portion 35a. In the case of FIG. 3, since the shape of the beam 35b is a parallel line, the average width of the through holes 36 is the narrowest width (the width at the end of the central portion 35a in the through hole 36) and the widest width (the through hole 36). , The average value of the width of the wall surface of the holding hole 33 is approximated. If FIG. 3 is referred by the definition of these average widths, it turns out that the average width of the beam 35b is clearly smaller than the average width of the through-hole 36. FIG. As a result, when the power storage element 11 is inserted into the holding hole 33, the beam 35b can be sufficiently bent, so that the height error of the power storage element 11 can be effectively absorbed.

また、保持穴33の底面には貫通孔36が設けられているので、蓄電素子11を保持穴33に挿入しても、蓄電素子11の底面は貫通孔36により露出する。ゆえに、従来の構成のように放熱性が確保され、さらに貫通孔36に通風するように蓄電ユニットを配すれば、さらなる放熱性が得られる。   Further, since the through hole 36 is provided in the bottom surface of the holding hole 33, the bottom surface of the power storage element 11 is exposed through the through hole 36 even if the power storage element 11 is inserted into the holding hole 33. Therefore, heat dissipation is ensured as in the conventional configuration, and further heat dissipation can be obtained by arranging the power storage unit so as to ventilate the through hole 36.

なお、良好な放熱性を得るために、保持穴33の底部において、貫通孔36の全面積(ここで、面積とは図3のように下ケース31を上面から見た時の投影面積と定義する。以下同様。)を弾性部35の面積より大きくし、底部29の端面をできるだけ露出する構成が望ましい。しかし、貫通孔36の全面積をあまりに大きくすると、次のような不具合が生じる。   In order to obtain good heat dissipation, the entire area of the through hole 36 at the bottom of the holding hole 33 (here, the area is defined as a projected area when the lower case 31 is viewed from the top as shown in FIG. 3). The same applies hereinafter) is preferably made larger than the area of the elastic portion 35 and the end face of the bottom 29 is exposed as much as possible. However, if the total area of the through-hole 36 is too large, the following problems occur.

すなわち、貫通孔36の全面積を大きくするには、中央部35aの面積を小さくするか、梁35bの幅を狭くするか、または梁35bの数を減らすことになる。中央部35aの面積を小さくすると、その分、梁35bが長くなり撓みやすくなるので、蓄電素子11に対する十分な保持力が得られなくなる可能性がある。また、梁35bの幅を狭くし過ぎたり、梁35bの数を減らし過ぎても蓄電素子11に対する十分な保持力が得られなくなる可能性がある。   That is, in order to increase the entire area of the through hole 36, the area of the central portion 35a is reduced, the width of the beam 35b is reduced, or the number of the beams 35b is reduced. When the area of the central portion 35a is reduced, the beam 35b is correspondingly elongated and is easily bent, so that there is a possibility that a sufficient holding force for the power storage element 11 cannot be obtained. Further, even if the width of the beam 35b is made too narrow or the number of the beams 35b is reduced too much, there is a possibility that a sufficient holding force for the power storage element 11 cannot be obtained.

従って、貫通孔36の全面積は弾性部35が蓄電素子11を十分保持できるだけの変位幅と保持力が確保できる範囲で、できるだけ大きくなるように設計することが望ましい。また、この際に梁35bの数も本実施の形態1では8本としたが、貫通孔36の全面積が上記条件においてできるだけ大きくなるように増減してもよい。これらの設計は使用する蓄電素子11の大きさや重さ、さらに印加される車両振動や必要な放熱特性等の条件により変わるので、それらを考慮して適宜設計すればよい。   Therefore, it is desirable to design the entire area of the through hole 36 to be as large as possible within a range in which the elastic portion 35 can secure a displacement width and a holding force sufficient to hold the power storage element 11. In this case, the number of beams 35b is eight in the first embodiment, but may be increased or decreased so that the entire area of the through hole 36 is as large as possible under the above conditions. These designs vary depending on conditions such as the size and weight of the power storage element 11 to be used, further applied vehicle vibrations and necessary heat dissipation characteristics, and may be appropriately designed in consideration of them.

ここで、図1の構成説明に戻る。下ケース31には後述する上ケースと強固に固定するために、あらかじめ固定棒37を取り付けておく。本実施の形態1では4本の固定棒37を用いた。固定棒37は両端にメネジが形成されており、一方下ケース31には固定ネジ穴39が設けられている。従って、固定棒37を固定ネジ穴39の位置に配した状態で固定ネジ41を締め込むことにより、下ケース31と固定棒37を固定している。この際、固定ネジ41の頭部が下ケース31から突出しないように、例えば固定ネジ41を皿ネジにしている。   Here, the description returns to the configuration of FIG. A fixing rod 37 is attached in advance to the lower case 31 in order to firmly fix it to an upper case described later. In the first embodiment, four fixing rods 37 are used. The fixing rod 37 is formed with female screws at both ends, while the lower case 31 is provided with a fixing screw hole 39. Therefore, the lower case 31 and the fixing rod 37 are fixed by tightening the fixing screw 41 in a state where the fixing rod 37 is arranged at the position of the fixing screw hole 39. At this time, for example, the fixing screw 41 is a countersunk screw so that the head of the fixing screw 41 does not protrude from the lower case 31.

次に、蓄電素子11を下ケース31の保持穴33に挿入する際、バスバー21の平坦部23は隣の蓄電素子11の端面電極17に被せる必要があるので、図1に示すように最も手前の蓄電素子11から順に奥に向かって挿入していく。これにより、端面電極17には隣の蓄電素子11に接続したバスバー21の平坦部23が当接する。但し、図1で最も奥の蓄電素子11の端面電極17には隣の蓄電素子11がないので、バスバー21が被されない。ここには後述する正極端子バスバーが接続される。   Next, when the power storage element 11 is inserted into the holding hole 33 of the lower case 31, the flat portion 23 of the bus bar 21 needs to cover the end surface electrode 17 of the adjacent power storage element 11, and as shown in FIG. Are sequentially inserted from the power storage element 11 toward the back. Accordingly, the flat portion 23 of the bus bar 21 connected to the adjacent power storage element 11 contacts the end surface electrode 17. However, the end electrode 17 of the innermost power storage element 11 in FIG. 1 does not have the adjacent power storage element 11, so the bus bar 21 is not covered. A positive electrode terminal bus bar, which will be described later, is connected here.

蓄電素子11を下ケース31に挿入した後は、上ケース43に蓄電素子11の上部45を挿入する。上ケース43はバスバー21や調圧弁19が露出するように、上面から見ると「ロ」の字形状をしている。また、上ケース43には蓄電素子11の端面周囲部13の一部が当接する当接部47が設けられている。当接部47は上ケースに一体形成されているので、当接部47が各蓄電素子11の固定位置の基準になる。なお、本実施の形態1では、当接部47は端面周囲部13の一部と当接する構成としたが、これは端面周囲部13の全部が当接する形状としてもよい。また、上ケース43にも固定棒37と機械的に接続するために下ケース31と同様の固定ネジ穴39が設けられている。さらに、負極端子バスバー25のネジ穴27に対向する位置にインサートナット49が埋め込まれている。なお、図1の最も奥の蓄電素子11に設けた端面電極17は最も高い電圧となるので、ここに外部配線を行うために正極端子バスバー51が取り付けられるが、正極端子バスバー51にも負極端子バスバー25のネジ穴27と同様のネジ穴(図示せず)を有している。従って、正極端子バスバー51のネジ穴に対向する位置にもインサートナット(図示せず)が埋め込まれている。また、上ケース43も下ケース31と同じ樹脂製であるので、射出成型により上記した構成要素を一体形成している。   After the storage element 11 is inserted into the lower case 31, the upper part 45 of the storage element 11 is inserted into the upper case 43. The upper case 43 has a “B” shape when viewed from above so that the bus bar 21 and the pressure regulating valve 19 are exposed. Further, the upper case 43 is provided with a contact portion 47 with which a part of the end surface peripheral portion 13 of the power storage element 11 contacts. Since the contact portion 47 is integrally formed with the upper case, the contact portion 47 serves as a reference for the fixed position of each power storage element 11. In the first embodiment, the abutting portion 47 is configured to abut against a part of the end surface surrounding portion 13, but this may be configured such that the entire end surface surrounding portion 13 abuts. The upper case 43 is also provided with a fixing screw hole 39 similar to that of the lower case 31 for mechanical connection with the fixing rod 37. Further, an insert nut 49 is embedded at a position facing the screw hole 27 of the negative terminal bus bar 25. In addition, since the end face electrode 17 provided in the innermost power storage element 11 in FIG. 1 has the highest voltage, a positive terminal bus bar 51 is attached to perform external wiring here, but the positive terminal bus bar 51 also has a negative terminal. A screw hole (not shown) similar to the screw hole 27 of the bus bar 25 is provided. Therefore, an insert nut (not shown) is also embedded at a position facing the screw hole of the positive terminal bus bar 51. Further, since the upper case 43 is made of the same resin as the lower case 31, the above-described components are integrally formed by injection molding.

上ケース43に蓄電素子11の上部45を挿入すると、蓄電素子11の端面周囲部13の一部が当接部47に当接する。しかし、弾性部35の中央部35aが蓄電素子11を図1の上方向に押し上げる状態であるので、その分、上ケース43と固定棒37の間には隙間が生じた状態となる。ここで、前記隙間がなくなるように上ケース43を押し下げた状態で固定ネジ41を締め込む。その結果、上ケース43と下ケース31が接続固定される。   When the upper portion 45 of the power storage element 11 is inserted into the upper case 43, a part of the end surface peripheral portion 13 of the power storage element 11 comes into contact with the contact portion 47. However, since the central portion 35 a of the elastic portion 35 pushes the power storage element 11 upward in FIG. 1, a gap is generated between the upper case 43 and the fixing rod 37 accordingly. Here, the fixing screw 41 is tightened in a state where the upper case 43 is pushed down so that the gap is eliminated. As a result, the upper case 43 and the lower case 31 are connected and fixed.

ここまで組み立てた状態を図4に示す。バスバー21は隣の蓄電素子11の端面電極17上に被さるので、ここをレーザ溶接して電気的、機械的に接続する。この際、端面電極17の高さは端面周囲部13より高いので、バスバー21が端面周囲部13に接触して短絡することはない。また、レーザ溶接部分は図4の×印で示しているが、側面電極15に対するレーザ溶接と同様に、スポット状に多点溶接しても線状に溶接してもよい。   The state assembled so far is shown in FIG. Since the bus bar 21 covers the end face electrode 17 of the adjacent power storage element 11, the bus bar 21 is laser-welded to be electrically and mechanically connected. At this time, since the height of the end face electrode 17 is higher than that of the end face peripheral portion 13, the bus bar 21 does not come into contact with the end face peripheral portion 13 to be short-circuited. Further, although the laser welding portion is indicated by a cross mark in FIG. 4, similarly to the laser welding with respect to the side electrode 15, it may be welded in a spot-like manner or in a linear manner.

この時、図4で最も奥の蓄電素子11の端面電極17には正極端子バスバー51を被せ、これも他のバスバー21と同様にレーザ溶接接続する。これにより、正極端子バスバー51に外部配線を行うことができる。一方、負極端子バスバー25は図4に示すように折り曲げ部分が上ケース43と嵌合するので、負極端子バスバー25にも外部配線を行うことができる。なお、本実施の形態1では外部配線を外部バスバー53により行っている。外部バスバー53は厚さ1mmの銅製であり、その一部に屈曲部55が一体形成されている。屈曲部55は外部バスバー53を固定した時に振動や熱膨張などによる応力を吸収するためのものである。また、ネジ固定を行うためのネジ穴57も設けられている。従って、外部バスバー53はネジ穴57が負極端子バスバー25のネジ穴27と合致するように配してネジ59をワッシャ60とともにインサートナット49に締め込むことにより、外部バスバー53と負極端子バスバー25を電気的に接続している。これは正極端子バスバー51に対しても同様に接続している。なお、図4では省略しているが、外部バスバー53の他端は別の蓄電ユニット61に接続している。これにより、さらに多くの蓄電ユニット61を接続することができる。   At this time, the end face electrode 17 of the innermost storage element 11 in FIG. 4 is covered with the positive terminal bus bar 51, and this is also laser-welded in the same manner as the other bus bars 21. Thereby, external wiring can be performed on the positive terminal bus bar 51. On the other hand, as shown in FIG. 4, since the bent portion of the negative terminal bus bar 25 is fitted to the upper case 43, external wiring can also be performed on the negative terminal bus bar 25. In the first embodiment, external wiring is performed by the external bus bar 53. The external bus bar 53 is made of copper having a thickness of 1 mm, and a bent portion 55 is integrally formed at a part thereof. The bent portion 55 is for absorbing stress due to vibration or thermal expansion when the external bus bar 53 is fixed. A screw hole 57 for fixing the screw is also provided. Accordingly, the external bus bar 53 is arranged so that the screw hole 57 is aligned with the screw hole 27 of the negative terminal bus bar 25 and the screw 59 is tightened into the insert nut 49 together with the washer 60, whereby the external bus bar 53 and the negative terminal bus bar 25 are connected. Electrically connected. This is similarly connected to the positive terminal bus bar 51. Although omitted in FIG. 4, the other end of the external bus bar 53 is connected to another power storage unit 61. Thereby, many more electrical storage units 61 can be connected.

なお、隣り合う蓄電素子11は、上ケース43と下ケース31に挿入した際に、隙間を有するようにしている。これにより、バスバー21の平坦部23が隙間の分、長くなるので、バスバー21の変位が容易になる。その結果、当接部47で蓄電素子11が押し込まれた時に、バスバー21が容易に変位できるので、他の蓄電素子11のバスバー21による押さえ付け等の影響が低減でき、各々の蓄電素子11を、より独立して固定することができる。なお、バスバー21に前記した屈曲部を設ければ、他の蓄電素子11のバスバー21による押さえ付け等の影響をさらに吸収できる。   The adjacent power storage elements 11 have a gap when inserted into the upper case 43 and the lower case 31. Thereby, since the flat part 23 of the bus bar 21 becomes long by the gap, the displacement of the bus bar 21 is facilitated. As a result, since the bus bar 21 can be easily displaced when the power storage element 11 is pushed in by the contact portion 47, the influence of pressing of the other power storage elements 11 by the bus bar 21 can be reduced. Can be fixed more independently. In addition, if the above-mentioned bending part is provided in the bus-bar 21, the influence of pressing by the bus-bar 21 of the other electrical storage element 11 etc. can be absorbed further.

ここで、図4の点線で示した部分の断面図を図5(a)、(b)に示す。図5(a)は、あらかじめ下ケース31に固定棒37を取り付けた状態で、保持穴33に蓄電素子11の底部29を矢印方向に挿入している様子を示す一部断面図である。また、図5(b)は蓄電ユニット61の完成時の断面図である。なお、図5(a)、(b)では蓄電素子11と保持穴33の直径差によるクリアランスを省略している。   Here, a cross-sectional view of a portion indicated by a dotted line in FIG. 4 is shown in FIGS. FIG. 5A is a partial cross-sectional view showing a state in which the bottom 29 of the power storage element 11 is inserted in the holding hole 33 in the direction of the arrow with the fixing rod 37 attached to the lower case 31 in advance. FIG. 5B is a cross-sectional view when the power storage unit 61 is completed. 5A and 5B, the clearance due to the difference in diameter between the storage element 11 and the holding hole 33 is omitted.

図5(a)に示すように、弾性部35は保持穴33の壁面側から中央上方に向かう複数の梁35bで中央部35aを持ち上げた形状を有している。蓄電素子11を保持穴33に挿入し終わり、弾性部35の中央部35aに底部29の端面が当接した状態で、蓄電素子11の上部45を上ケース43に挿入し、上ケース43を固定ネジ41で固定棒37に締め込むと、図5(b)に示すように、蓄電素子11は端面周囲部13の一部が当接部47により押し下げられる。但し、固定ネジ41は皿ネジであるので、図5(b)では図示していない。この構成により、蓄電素子11の底部29が中央部35aを押し下げる。これにより、梁35bが撓み蓄電素子11が固定される。この時の中央部35aの押し下げ幅、すなわち弾性部35の変位幅は、図5(b)に矢印で示したように、蓄電素子11の高さ誤差より大きくしているので、当接部47を基準として、蓄電素子11の高さに誤差があったとしても、弾性部35の変位量が変わることにより誤差を吸収できる。ゆえに、全ての蓄電素子11を確実に固定することができ、溶接接続部分やバスバー21への車両振動応力が低減され、高信頼性が得られる。また、隣り合う梁35bの間には貫通孔36を設けているので、例えば下ケース31の底面に通風するよう蓄電ユニット61を配置することにより、貫通孔36を介して蓄電素子11で発生した熱が放散される。従って、良好な放熱性が確保でき、高信頼性が得られる。   As shown in FIG. 5A, the elastic portion 35 has a shape in which the central portion 35 a is lifted by a plurality of beams 35 b extending from the wall surface side of the holding hole 33 toward the upper center. After the storage element 11 has been inserted into the holding hole 33, the upper portion 45 of the storage element 11 is inserted into the upper case 43 with the end face of the bottom 29 in contact with the central portion 35a of the elastic portion 35, and the upper case 43 is fixed. When the screw 41 is tightened to the fixing rod 37, as shown in FIG. 5B, a part of the end surface peripheral portion 13 of the power storage device 11 is pushed down by the contact portion 47. However, since the fixing screw 41 is a flat head screw, it is not shown in FIG. With this configuration, the bottom portion 29 of the power storage element 11 pushes down the central portion 35a. Thereby, the beam 35b bends and the electrical storage element 11 is fixed. At this time, the pressing width of the central portion 35a, that is, the displacement width of the elastic portion 35 is larger than the height error of the power storage element 11 as shown by the arrow in FIG. Even if there is an error in the height of the power storage element 11, the error can be absorbed by the displacement amount of the elastic portion 35 being changed. Therefore, all the power storage elements 11 can be reliably fixed, the vehicle vibration stress to the welded connection portion and the bus bar 21 is reduced, and high reliability is obtained. In addition, since the through hole 36 is provided between the adjacent beams 35b, for example, by arranging the power storage unit 61 so as to ventilate the bottom surface of the lower case 31, it is generated in the power storage element 11 through the through hole 36. Heat is dissipated. Therefore, good heat dissipation can be secured and high reliability can be obtained.

以上の構成により、貫通孔36による放熱性の向上、および蓄電素子11の高さ誤差の弾性部35による吸収のため、蓄電素子11の発熱やバスバー21の変動応力疲労が低減され、高信頼性が得られる蓄電ユニットを実現できた。   With the above configuration, heat dissipation by the through hole 36 and absorption by the elastic portion 35 of the height error of the power storage element 11 are reduced, so heat generation of the power storage element 11 and fluctuating stress fatigue of the bus bar 21 are reduced, and high reliability. We were able to realize a power storage unit with

なお、本実施の形態1ではネジ59をインサートナット49で締め込む構成としたが、これはナットが当接する内幅を有するナット収納部を、上ケース43の、ネジ穴27と対向する位置に一体成型で設け、ナット収納部にナットを収納する構成としてもよい。この場合、ナットの角がナット収納部の内幅部分の壁面に当接するので、ナットが空回りすることなくネジ59を締め込むことができる。これと同じ構成を正極端子バスバー51側にも設けてもよい。   In the first embodiment, the screw 59 is tightened with the insert nut 49. However, in this case, the nut housing portion having an inner width with which the nut abuts is placed at a position facing the screw hole 27 of the upper case 43. It is good also as a structure which provides by integral molding and accommodates a nut in a nut accommodating part. In this case, since the corners of the nut come into contact with the wall surface of the inner width portion of the nut storage portion, the screw 59 can be tightened without the nut idling. The same configuration may be provided on the positive electrode terminal bus bar 51 side.

(実施の形態2)
図6は、本発明の実施の形態2における蓄電ユニットの組立方法を示す一部断面図であり、(a)は下ケースへの蓄電素子の挿入時の一部断面図を、(b)は蓄電ユニットの完成後の一部断面図を、(c)は組立台から蓄電ユニットの取り外し時の一部断面図を、(d)は下ケース裏面への絶縁性高熱伝導グリス塗布時の一部断面図を、(e)は下ケース裏面への絶縁性高熱伝導グリス塗布後の一部断面図を、(f)は蓄電ユニットの台座への取り付け後の一部断面図を、それぞれ示す。なお、図6(a)〜(f)において、蓄電素子11と保持穴33の直径差によるクリアランスは、わかりやすくするために実際よりも誇張して示している。
(Embodiment 2)
6A and 6B are partial cross-sectional views illustrating a method for assembling the power storage unit according to Embodiment 2 of the present invention. FIG. 6A is a partial cross-sectional view when the power storage element is inserted into the lower case, and FIG. (C) is a partial cross-sectional view when the power storage unit is removed from the assembly table, and (d) is a partial cross-sectional view after applying the insulating high thermal conductive grease to the back surface of the lower case. Sectional view, (e) shows a partial cross-sectional view after application of insulating high thermal conductive grease to the back surface of the lower case, and (f) shows a partial cross-sectional view after attachment to the base of the power storage unit. In FIGS. 6A to 6F, the clearance due to the difference in diameter between the power storage element 11 and the holding hole 33 is exaggerated from the actual one for the sake of clarity.

本実施の形態2の構成要素において、実施の形態1と同じものには同一の番号を付して詳細な説明を省略する。すなわち、本実施の形態2の特徴は、蓄電ユニット61を複数個並べて蓄電装置を構成する際に、下ケース31の底面に通風しないように並べても放熱性を確保できる点である。これを実現するために、本実施の形態2では、実施の形態1の構成に対して以下の構成を追加した。   In the components of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted. That is, the feature of the second embodiment is that when a power storage device is configured by arranging a plurality of power storage units 61, heat dissipation can be ensured even if they are arranged so as not to ventilate the bottom surface of the lower case 31. In order to realize this, in the second embodiment, the following configuration is added to the configuration of the first embodiment.

1)下ケース31を金属製の台座71に固定することで、蓄電ユニット61を複数個並べる構成とした。   1) A configuration in which a plurality of power storage units 61 are arranged by fixing the lower case 31 to a metal base 71.

2)蓄電素子11の底部29と台座71の間、および下ケース31と台座71の間に絶縁性高熱伝導グリス73を配した。   2) Insulating high thermal conductive grease 73 was disposed between the bottom 29 of the energy storage device 11 and the pedestal 71 and between the lower case 31 and the pedestal 71.

3)下ケース31の台座71との対向部分の一部に段差74を設けた。   3) A step 74 is provided at a part of the lower case 31 facing the pedestal 71.

なお、金属製の台座71として、本実施の形態2では熱伝導性が良好で軽量なアルミニウム製とした。また、絶縁性高熱伝導グリス73は、例えばシリコン樹脂にセラミックス(アルミナ)製のフィラを混合した構成とした。また、段差74は下ケース31と一体で形成され、その高さは下ケース31から台座71へ、できるだけ良好な放熱性を得るために約0.2mmとした。このように段差74を設けることで、下ケース31と台座71が対向する部分に配される絶縁性高熱伝導グリス73の厚みは段差74の高さ(0.2mm)と等しくなる。その結果、複数の蓄電ユニット61を台座71に配置した際に、下ケース31と台座71の間の絶縁性高熱伝導グリス73の厚みがそれぞれ等しくなるので、蓄電ユニット61間の放熱バラツキを低減できる。   In the second embodiment, the metal pedestal 71 is made of aluminum with good thermal conductivity and light weight. The insulating high thermal conductive grease 73 has a structure in which a ceramic (alumina) filler is mixed with a silicon resin, for example. Further, the step 74 is formed integrally with the lower case 31 and its height is set to about 0.2 mm from the lower case 31 to the pedestal 71 in order to obtain as good heat dissipation as possible. By providing the step 74 in this way, the thickness of the insulating high thermal conductive grease 73 disposed in the portion where the lower case 31 and the pedestal 71 face each other becomes equal to the height of the step 74 (0.2 mm). As a result, when the plurality of power storage units 61 are arranged on the pedestal 71, the thickness of the insulating high thermal conductive grease 73 between the lower case 31 and the pedestal 71 becomes equal, so that variation in heat dissipation between the power storage units 61 can be reduced. .

次に、上記のような構成を実現するための組立方法を図6により説明する。   Next, an assembly method for realizing the above configuration will be described with reference to FIG.

まず図6(a)に示すように、あらかじめ固定棒37を固定した下ケース31を組立台75に取り付ける。取り付けは、いずれも図示していないが、下ケース31と一体で形成した固定部のネジ穴を介してネジを組立台75に締め込むことで行う。   First, as shown in FIG. 6A, the lower case 31 to which the fixing rod 37 is fixed in advance is attached to the assembly table 75. Although not shown, the attachment is performed by tightening the screw into the assembly base 75 through the screw hole of the fixing portion formed integrally with the lower case 31.

次に、保持穴33の底面に絶縁性高熱伝導グリス73を注入する。この時の注入量は蓄電ユニット61の台座71への取り付け後における底部29と台座71の間を埋めることができる量とし、あらかじめ決定しておく。本実施の形態2においては、所定量の絶縁性高熱伝導グリス73の注入によって、図6(a)の点線で示したように、弾性部35は絶縁性高熱伝導グリス73に埋没する。従って、貫通孔36には絶縁性高熱伝導グリス73が充填された状態となる。なお、決定した量だけ絶縁性高熱伝導グリス73を注入するために、ディスペンサを用いた。   Next, insulating high thermal conductive grease 73 is injected into the bottom surface of the holding hole 33. The injection amount at this time is determined in advance as an amount that can fill the space between the bottom 29 and the base 71 after the power storage unit 61 is attached to the base 71. In the second embodiment, the elastic portion 35 is buried in the insulating high heat conductive grease 73 by injecting a predetermined amount of the insulating high heat conductive grease 73 as shown by the dotted line in FIG. Accordingly, the through hole 36 is filled with the insulating high thermal conductive grease 73. A dispenser was used to inject the insulating high thermal conductive grease 73 by the determined amount.

次に、保持穴33に蓄電素子11の底部29を矢印方向に挿入し、図示していないが、実施の形態1と同様に上ケース43を固定棒37に固定し、バスバー21の溶接接続をすることにより、蓄電ユニット61の組み立てを完了する。この時の下ケース31近傍の断面図を図6(b)に示す。底部29を保持穴33に挿入することにより、底部29の底面が弾性部35の中央部35aと当接して押し下げられる。その結果、実施の形態1と同様に、蓄電素子11の高さ誤差を吸収でき、確実な保持が可能となる。   Next, the bottom portion 29 of the electric storage element 11 is inserted into the holding hole 33 in the direction of the arrow. Although not shown, the upper case 43 is fixed to the fixing rod 37 as in the first embodiment, and the bus bar 21 is welded. Thus, the assembly of the power storage unit 61 is completed. A cross-sectional view of the vicinity of the lower case 31 at this time is shown in FIG. By inserting the bottom portion 29 into the holding hole 33, the bottom surface of the bottom portion 29 comes into contact with the central portion 35 a of the elastic portion 35 and is pushed down. As a result, similar to the first embodiment, the height error of the power storage element 11 can be absorbed, and reliable holding can be achieved.

また、底部29の底面と保持穴33の壁面と組立台75で囲まれる空間が絶縁性高熱伝導グリス73で満たされる。同時に、底部29を保持穴33に挿入することで、絶縁性高熱伝導グリス73は両者の隙間(クリアランス部分)を通って上昇し、隙間を埋める。これらにより、底部29と保持穴33の隙間、すなわち前記空間と前記クリアランス部分において、全体が絶縁性高熱伝導グリス73で満たされる。この際、絶縁性高熱伝導グリス73を底部29で圧縮しながら蓄電素子11を保持穴33に挿入するので、熱伝導を悪化させる気泡を生じることなく絶縁性高熱伝導グリス73を配することができる。また、絶縁性高熱伝導グリス73の一部は段差74によって形成された、下ケース31と組立台75の隙間にも広がる。   In addition, the space surrounded by the bottom surface of the bottom portion 29, the wall surface of the holding hole 33, and the assembly table 75 is filled with the insulating high heat conductive grease 73. At the same time, by inserting the bottom 29 into the holding hole 33, the insulating high thermal conductive grease 73 rises through the gap (clearance portion) between the two, and fills the gap. As a result, the gap between the bottom 29 and the holding hole 33, that is, the space and the clearance portion, is entirely filled with the insulating high thermal conductive grease 73. At this time, since the power storage element 11 is inserted into the holding hole 33 while compressing the insulating high heat conductive grease 73 at the bottom 29, the insulating high heat conductive grease 73 can be disposed without generating bubbles that deteriorate the heat conduction. . Further, a part of the insulating high thermal conductive grease 73 also extends to the gap between the lower case 31 and the assembly table 75 formed by the step 74.

次に図6(c)に示すように、蓄電ユニット61を組立台75から取り外す。具体的には、両者を取り付けていたネジ(図示せず)を取り外してから蓄電ユニット61を持ち上げる。この工程により絶縁性高熱伝導グリス73は下ケース31側と組立台75側の両方に付着し、その表面は図6(c)に示すように凹凸状となる。   Next, as shown in FIG. 6C, the power storage unit 61 is removed from the assembly table 75. Specifically, the power storage unit 61 is lifted after removing a screw (not shown) to which both are attached. By this step, the insulating high thermal conductive grease 73 adheres to both the lower case 31 side and the assembly base 75 side, and the surface thereof becomes uneven as shown in FIG.

そこで、この凹凸を平滑化すると同時に下ケース31の底面に段差74の高さ分の絶縁性高熱伝導グリス73を塗布するために、取り外した蓄電ユニット61の上下をひっくり返す。この時の状態を図6(d)に示す。ここでスキージ77を用いて、それを矢印方向に動かすことにより、段差74以外の下ケース31の底面に対し絶縁性高熱伝導グリス73を塗布する。この際、実施の形態1で述べたように固定ネジ41を皿ネジとしているので、固定ネジ41の頭部が下ケース31から飛び出していない。従って、図6(e)に示すように、下ケース31の全底面(段差74を除く)に対してスキージ77により一度に平滑に絶縁性高熱伝導グリス73の塗布が行える。この際、万一オープンポア(開いた気泡)を有していても、再度スキージ77により絶縁性高熱伝導グリス73を塗布することで、オープンポアがない状態とすることができる。   Therefore, in order to smooth the unevenness and simultaneously apply insulating high heat conductive grease 73 corresponding to the height of the step 74 on the bottom surface of the lower case 31, the removed power storage unit 61 is turned upside down. The state at this time is shown in FIG. Here, by using the squeegee 77 and moving it in the direction of the arrow, the insulating high thermal conductive grease 73 is applied to the bottom surface of the lower case 31 other than the step 74. At this time, since the fixing screw 41 is a flat head screw as described in the first embodiment, the head of the fixing screw 41 does not protrude from the lower case 31. Therefore, as shown in FIG. 6E, the insulating high heat conductive grease 73 can be smoothly and smoothly applied to the entire bottom surface (excluding the step 74) of the lower case 31 by the squeegee 77 at a time. At this time, even if it has open pores (open bubbles), by applying the insulating high thermal conductive grease 73 again with the squeegee 77, there can be no open pores.

その後、図6(f)に示すように、蓄電ユニット61を上下ひっくり返して元に戻し、その状態で台座71にネジ(図示せず)で固定することで、蓄電ユニット61の取り付けが完了する。   Thereafter, as shown in FIG. 6 (f), the power storage unit 61 is turned upside down and returned to its original position, and in that state, fixed to the pedestal 71 with screws (not shown), thereby completing the mounting of the power storage unit 61. .

このような組立方法により、底部29の底面と保持穴33の壁面と台座71で囲まれる空間、保持穴33と底部29のクリアランス部分、および下ケース31と台座71の間のそれぞれに気泡を生じることなく均一な量の絶縁性高熱伝導グリス73を配することができるので、図6(f)の矢印で示したように、蓄電素子11の熱を台座71にバラツキなく効率的に伝達することが可能となる。   By such an assembling method, bubbles are generated in the space surrounded by the bottom surface of the bottom portion 29, the wall surface of the holding hole 33 and the pedestal 71, the clearance portion between the holding hole 33 and the bottom portion 29, and between the lower case 31 and the pedestal 71. Since a uniform amount of insulating high thermal conductive grease 73 can be disposed without any problem, the heat of the power storage element 11 can be efficiently transferred to the pedestal 71 without variation as shown by the arrows in FIG. Is possible.

以上の構成により、蓄電素子11の底部29が絶縁性高熱伝導グリス73を介して台座71と熱結合されることにより、下ケース31の底面への通風ができない構成であっても効率的に放熱することができる上に、高さ誤差のある蓄電素子11の確実な保持が可能となるので、高信頼な蓄電ユニットを実現できた。   With the above configuration, the bottom portion 29 of the power storage element 11 is thermally coupled to the base 71 via the insulating high thermal conductive grease 73, so that heat can be efficiently dissipated even in a configuration in which ventilation to the bottom surface of the lower case 31 is not possible. In addition, since the power storage element 11 having a height error can be securely held, a highly reliable power storage unit can be realized.

なお、台座71には放熱性をさらに改善するために、蓄電ユニット61が固定される面の裏側にフィンを設けたり、台座71の内部や外表面に冷却水を流す水路を設ける構成としてもよい。   In addition, in order to further improve the heat dissipation, the pedestal 71 may be provided with fins on the back side of the surface to which the power storage unit 61 is fixed, or may be provided with a water channel through which cooling water flows inside or outside the pedestal 71. .

また、本実施の形態2では蓄電ユニット61を組み立てる際に、一旦組立台75で組み立ててから台座71に取り付ける工程としたが、工程を簡略化するために組立台75を用いず最初から台座71に下ケース31を固定して組み立てる方法も考えられる。しかし、この場合は図6(c)のように下ケース31を組立台75から外す工程がないため、絶縁性高熱伝導グリス73が弾性部35の、特に中央部35aの裏面にも確実に充填されているか否かを確かめることができない上、もし充填されておらず気泡を有していた場合には、後からそこに絶縁性高熱伝導グリス73を充填することができない。さらに、多数の蓄電ユニット61を用いる蓄電装置であれば、台座71が大面積となり、組立作業性が極めて悪くなる。これらの理由から、組立台75を用いる工程が望ましい。   In the second embodiment, when assembling the power storage unit 61, the assembly unit 75 is once assembled and then attached to the base 71. To simplify the process, the base 71 is used from the beginning without using the assembly base 75. A method of fixing and assembling the lower case 31 is also conceivable. However, in this case, there is no step of removing the lower case 31 from the assembly base 75 as shown in FIG. 6C, so that the insulating high heat conductive grease 73 is reliably filled into the back surface of the elastic portion 35, particularly the central portion 35a. In addition, if it is not filled and has air bubbles, it cannot be filled with the insulating high thermal conductive grease 73 later. Furthermore, in the case of a power storage device using a large number of power storage units 61, the pedestal 71 has a large area and the assembling workability becomes extremely poor. For these reasons, a process using the assembly table 75 is desirable.

また、本実施の形態2では、下ケース31に段差74を一体で設ける構成としたが、これは段差74の替わりに、下ケース31と台座71の間の一部に例えば厚さ0.2mmのスペーサを介在させる構成としてもよい。スペーサの材料としては、少なくとも下ケース31と同等か、それ以上の高熱伝導性材料(例えば金属やカーボン)とすればよい。これにより、段差74を設けた場合に比べ、構成部品数は増えるものの、下ケース31から台座71へのさらなる放熱性の改善が図れる。   Further, in the second embodiment, the step 74 is integrally provided in the lower case 31, but instead of the step 74, for example, a thickness of 0.2 mm is provided at a part between the lower case 31 and the base 71. The spacer may be interposed. As a material for the spacer, a material having a high thermal conductivity (for example, metal or carbon) equal to or higher than that of the lower case 31 may be used. Thereby, compared with the case where the level | step difference 74 is provided, although the number of components increases, the improvement of the further heat dissipation from the lower case 31 to the base 71 can be aimed at.

また、実施の形態1、2では蓄電素子11が円柱形状であるとして説明したが、これは角柱形状でもよい。さらに、蓄電素子11に電気二重層キャパシタを用いた構成を説明したが、これは電気化学キャパシタ等の他のキャパシタや二次電池等でもよい。   Moreover, although Embodiment 1 and 2 demonstrated that the electrical storage element 11 was cylindrical, this may be prismatic shape. Furthermore, although the structure using the electric double layer capacitor for the power storage element 11 has been described, this may be another capacitor such as an electrochemical capacitor, a secondary battery, or the like.

また、実施の形態1、2で述べた蓄電ユニット61は車両の補助電源用に限定されるものではなく、一般の非常用補助電源等にも適用可能である。   Further, the power storage unit 61 described in the first and second embodiments is not limited to an auxiliary power source for a vehicle, and can be applied to a general emergency auxiliary power source.

本発明にかかる蓄電ユニットは、貫通孔による高放熱性と、蓄電素子の高さ誤差を弾性部が吸収する構成によるバスバーの変動応力疲労の低減とから高信頼性が得られるので、特に熱環境が厳しく、かつ振動を受ける車両用蓄電ユニット等として有用である。   The power storage unit according to the present invention has high reliability due to the high heat dissipation due to the through-holes and the reduced stress fatigue of the bus bar due to the configuration in which the elastic portion absorbs the height error of the power storage element. This is useful as a power storage unit for a vehicle which is severe and receives vibration.

本発明の実施の形態1における蓄電ユニットの一部分解斜視図The partial exploded perspective view of the electrical storage unit in Embodiment 1 of this invention 本発明の実施の形態1における蓄電ユニットの蓄電素子とバスバーの斜視図The perspective view of the electrical storage element and bus bar of the electrical storage unit in Embodiment 1 of this invention 本発明の実施の形態1における蓄電ユニットの下ケースの平面図Plan view of lower case of power storage unit in Embodiment 1 of the present invention 本発明の実施の形態1おける蓄電ユニットの完成斜視図Completion perspective view of power storage unit in Embodiment 1 of the present invention 本発明の実施の形態1における蓄電ユニットの断面図であり、(a)下ケースへの蓄電素子の挿入時の一部断面図、(b)完成後の断面図It is sectional drawing of the electrical storage unit in Embodiment 1 of this invention, (a) Partial sectional view at the time of insertion of the electrical storage element to a lower case, (b) Sectional drawing after completion 本発明の実施の形態2における蓄電ユニットの組立方法を示す一部断面図であり、(a)下ケースへの蓄電素子の挿入時の一部断面図、(b)蓄電ユニットの完成後の一部断面図、(c)組立台から蓄電ユニットの取り外し時の一部断面図、(d)下ケース裏面への絶縁性高熱伝導グリス塗布時の一部断面図、(e)下ケース裏面への絶縁性高熱伝導グリス塗布後の一部断面図、(f)蓄電ユニットの台座への取り付け後の一部断面図It is a partial cross section figure which shows the assembly method of the electrical storage unit in Embodiment 2 of this invention, (a) Partial sectional view at the time of insertion of the electrical storage element to a lower case, (b) One after completion of an electrical storage unit Partial sectional view, (c) Partial sectional view when removing the power storage unit from the assembly table, (d) Partial sectional view when applying the insulating high thermal conductive grease to the lower case back surface, (e) To the lower case rear surface Partial cross-sectional view after application of insulating high thermal conductive grease, (f) Partial cross-sectional view after attachment of power storage unit to pedestal 従来の蓄電ユニットの斜視図A perspective view of a conventional power storage unit

符号の説明Explanation of symbols

11 蓄電素子
21 バスバー
29 底部
31 下ケース
33 保持穴
35 弾性部
35a 中央部
35b 梁
36 貫通孔
43 上ケース
45 上部
47 当接部
71 台座
73 絶縁性高熱伝導グリス
74 段差
DESCRIPTION OF SYMBOLS 11 Power storage element 21 Bus bar 29 Bottom part 31 Lower case 33 Holding hole 35 Elastic part 35a Center part 35b Beam 36 Through-hole 43 Upper case 45 Upper part 47 Contact part 71 Base 73 Insulating high thermal conductivity grease 74 Step

Claims (8)

柱形状を有する複数の蓄電素子と、
前記蓄電素子の電極間を接続するバスバーと、
前記蓄電素子の底部が挿入される保持穴を有するとともに、前記底部の端面と当接する弾性部を前記保持穴の底面に設けた下ケースと、
前記蓄電素子の上部が挿入されるとともに、前記上部の端面の少なくとも一部が当接する上ケースとから構成され、
前記弾性部は、前記保持穴の底面における中央に設けた、前記蓄電素子の底部と当接する中央部と、
前記保持穴の底面において壁面側から中央上方に向かって形成され、前記中央部と接続された複数の梁とからなり、
隣り合う前記梁の間を貫通孔とし、
前記弾性部の変位幅は複数の前記蓄電素子の高さ誤差より大きくした蓄電ユニット。
A plurality of power storage elements having a columnar shape;
A bus bar connecting the electrodes of the electricity storage element;
A lower case having a holding hole into which a bottom portion of the power storage element is inserted, and an elastic portion on the bottom surface of the holding hole, which is in contact with an end surface of the bottom portion;
The upper part of the power storage element is inserted, and is configured from an upper case with which at least a part of the end face of the upper part comes into contact
The elastic portion is provided at the center of the bottom surface of the holding hole, and a central portion that comes into contact with the bottom portion of the power storage element;
The bottom surface of the holding hole is formed from the wall surface side toward the upper center, and consists of a plurality of beams connected to the central portion,
A through hole is formed between the adjacent beams,
A power storage unit in which a displacement width of the elastic portion is larger than a height error of the plurality of power storage elements.
前記梁の平均幅は前記貫通孔の平均幅より小さくした請求項1に記載の蓄電ユニット。 The power storage unit according to claim 1, wherein an average width of the beams is smaller than an average width of the through holes. 前記保持穴の底部において、前記貫通孔の全面積は前記弾性部の面積より大きくした請求項1に記載の蓄電ユニット。 The power storage unit according to claim 1, wherein an entire area of the through hole is larger than an area of the elastic portion at a bottom portion of the holding hole. 前記下ケースが金属製の台座に固定されるとともに、前記底部と前記台座の間、および前記下ケースと前記台座の間には絶縁性高熱伝導グリスを配した請求項1に記載の蓄電ユニット。 The power storage unit according to claim 1, wherein the lower case is fixed to a metal pedestal, and insulating high thermal conductive grease is disposed between the bottom and the pedestal, and between the lower case and the pedestal. 前記絶縁性高熱伝導グリスは樹脂にセラミックス製のフィラを混合した構成を有する請求項4に記載の蓄電ユニット。 The power storage unit according to claim 4, wherein the insulating high thermal conductive grease has a structure in which a ceramic filler is mixed with a resin. 前記下ケースの前記台座との対向部分の一部に段差を設けた請求項4に記載の蓄電ユニット。 The power storage unit according to claim 4, wherein a step is provided in a part of a portion of the lower case facing the pedestal. 前記下ケースと前記台座の間の一部にスペーサを介在させた請求項4に記載の蓄電ユニット。 The power storage unit according to claim 4, wherein a spacer is interposed in a part between the lower case and the pedestal. 前記スペーサは前記下ケースと同等以上の高熱伝導性材料からなる請求項7に記載の蓄電ユニット。 The power storage unit according to claim 7, wherein the spacer is made of a highly heat conductive material equivalent to or higher than the lower case.
JP2007110233A 2007-02-16 2007-04-19 Storage unit Pending JP2008270461A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007110233A JP2008270461A (en) 2007-04-19 2007-04-19 Storage unit
US12/522,271 US9034501B2 (en) 2007-02-16 2008-02-13 Electric storage unit
EP20080710364 EP2104121B1 (en) 2007-02-16 2008-02-13 Electric storage unit
CN2008800042971A CN101606210B (en) 2007-02-16 2008-02-13 Electricity accumulating unit
AT08710364T ATE539440T1 (en) 2007-02-16 2008-02-13 ELECTRICAL STORAGE UNIT
PCT/JP2008/000210 WO2008099602A1 (en) 2007-02-16 2008-02-13 Electric storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110233A JP2008270461A (en) 2007-04-19 2007-04-19 Storage unit

Publications (1)

Publication Number Publication Date
JP2008270461A true JP2008270461A (en) 2008-11-06

Family

ID=40049589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110233A Pending JP2008270461A (en) 2007-02-16 2007-04-19 Storage unit

Country Status (1)

Country Link
JP (1) JP2008270461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077232A (en) * 2009-09-30 2011-04-14 Nichicon Corp Capacitor
KR101156539B1 (en) * 2010-07-15 2012-06-20 삼성에스디아이 주식회사 Battery pack
US9097185B2 (en) 2009-05-26 2015-08-04 Alstom Technology Ltd Stabilizing a gas turbine engine via incremental tuning
WO2018159275A1 (en) * 2017-03-01 2018-09-07 パナソニックIpマネジメント株式会社 Battery module
CN116093528A (en) * 2023-03-06 2023-05-09 苏州时代华景新能源有限公司 Battery pack
JP7462674B2 (en) 2019-04-05 2024-04-05 ヴァレオ、シーメンス、イーオートモーティブ、フランス Capacitive block and electrical device with frame made of electrically insulating material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097185B2 (en) 2009-05-26 2015-08-04 Alstom Technology Ltd Stabilizing a gas turbine engine via incremental tuning
JP2011077232A (en) * 2009-09-30 2011-04-14 Nichicon Corp Capacitor
KR101156539B1 (en) * 2010-07-15 2012-06-20 삼성에스디아이 주식회사 Battery pack
US8859125B2 (en) 2010-07-15 2014-10-14 Samsung Sdi Co., Ltd. Battery pack frame with elastic members and battery fixing portions
WO2018159275A1 (en) * 2017-03-01 2018-09-07 パナソニックIpマネジメント株式会社 Battery module
JPWO2018159275A1 (en) * 2017-03-01 2019-12-26 パナソニックIpマネジメント株式会社 Battery module
JP7462674B2 (en) 2019-04-05 2024-04-05 ヴァレオ、シーメンス、イーオートモーティブ、フランス Capacitive block and electrical device with frame made of electrically insulating material
CN116093528A (en) * 2023-03-06 2023-05-09 苏州时代华景新能源有限公司 Battery pack

Similar Documents

Publication Publication Date Title
JP5018204B2 (en) Power storage unit
JP5162919B2 (en) Power storage unit
EP2104121B1 (en) Electric storage unit
US8194393B2 (en) Capacitor unit and its manufacturing method
JP4400234B2 (en) Assembled battery
JP4638528B2 (en) Assembled battery and assembled battery assembly method
JP5542558B2 (en) Secondary battery device
JP2008270461A (en) Storage unit
JP5849623B2 (en) Electricity storage element
JP5903564B2 (en) Assembled battery
JP2014511552A (en) Energy storage device, energy storage cell, and heat transfer element
JP5589955B2 (en) Prismatic secondary battery
JP2014514691A (en) Energy storage device, energy storage cell and heat conducting element having elastic means
KR20140016326A (en) Energy storage device
JP2008204982A (en) Capacitor unit
JP2008204987A (en) Electricity accumulating unit
JP2002157984A (en) Battery pack and battery module
JP5018203B2 (en) Power storage unit
JP2008204988A (en) Capacitor unit and manufacturing method therefor
KR20070104692A (en) Frame member for preparation of middle or large-sized battery module
JP6187820B2 (en) Method for manufacturing prismatic battery
KR20230102553A (en) Battery Module
JP2007311274A (en) Battery
JP2010015958A (en) Power storage module and its manufacturing method
JP2005116457A (en) Battery pack and manufacturing method of the same