JP2008269821A - Catalyst carrier for solid polymer fuel cell - Google Patents

Catalyst carrier for solid polymer fuel cell Download PDF

Info

Publication number
JP2008269821A
JP2008269821A JP2007107769A JP2007107769A JP2008269821A JP 2008269821 A JP2008269821 A JP 2008269821A JP 2007107769 A JP2007107769 A JP 2007107769A JP 2007107769 A JP2007107769 A JP 2007107769A JP 2008269821 A JP2008269821 A JP 2008269821A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
polymer electrolyte
electrolyte fuel
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007107769A
Other languages
Japanese (ja)
Other versions
JP4963080B2 (en
Inventor
Hiroshi Shioyama
洋 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007107769A priority Critical patent/JP4963080B2/en
Publication of JP2008269821A publication Critical patent/JP2008269821A/en
Application granted granted Critical
Publication of JP4963080B2 publication Critical patent/JP4963080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of highly activating a catalyst metal such as platinum used as a catalyst component in a solid polymer fuel cell and reducing its using amount in order to obtain the solid polymer fuel cell suitable for practical application. <P>SOLUTION: In a manufacturing method of a catalyst carrier for the solid polymer fuel cell, a mixture containing a carbon material, a fullerene group and heat-reactive polycyclic aromatic hydrocarbon is heat-treated in an inactive gas atmosphere. The solid polymer fuel cell contains the catalyst carrier for the solid polymer fuel cell composed of the carbon material obtained by this method, and an electrode catalyst for the solid polymer fuel cell carrying the catalyst metal on the catalyst carrier as a constituent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子形燃料電池用触媒担体、その製造方法、該触媒担体を用いてなる固体高分子形燃料電池用電極触媒、及び固体高分子形燃料電池に関する。   The present invention relates to a catalyst support for a polymer electrolyte fuel cell, a production method thereof, an electrode catalyst for a polymer electrolyte fuel cell using the catalyst support, and a polymer electrolyte fuel cell.

固体高分子形燃料電池(PEFC)は、小型で効率が高く、また地球環境問題の観点からも、早期の実用化・普及が期待されている。   The polymer electrolyte fuel cell (PEFC) is small and highly efficient, and is expected to be put to practical use and spread at an early stage from the viewpoint of global environmental problems.

通常、固体高分子形燃料電池は単セルを多数積層した電池スタツクと、それに反応ガスを必要量供給するためのガス供給装置、および制御装置を基本として構成されている。固体高分子形燃料電池用のセルは、電解質膜を挟んでアノード(燃料極)触媒層とカソード(酸素極)触媒層が配されており、触媒層には白金、白金合金等がカーボン担体表面に高分散に担持されている(例えば、特許文献1、2参照)。   In general, a polymer electrolyte fuel cell is basically composed of a battery stack in which a large number of single cells are stacked, a gas supply device for supplying a necessary amount of reaction gas thereto, and a control device. A cell for a polymer electrolyte fuel cell has an anode (fuel electrode) catalyst layer and a cathode (oxygen electrode) catalyst layer sandwiching an electrolyte membrane, and platinum, a platinum alloy or the like is placed on the surface of the carbon support. (See, for example, Patent Documents 1 and 2).

この様な構造を有する固体高分子形燃料電池では、電極触媒として使用する白金、白金合金等の触媒金属成分が高コストであることが問題となっており、その実用化においては、触媒金属の使用量の低減が重要な課題である。   In the polymer electrolyte fuel cell having such a structure, there is a problem that the catalytic metal component such as platinum or platinum alloy used as an electrode catalyst is high in cost. Reduction of usage is an important issue.

例えば、固体高分子形燃料電池の触媒量の低減を可能とするために、白金微粒子を鉄などの金属を用いて合金化することによって触媒活性を向上させる方法が報告されている(非特許文献1)。しかしながら、この方法では、固体高分子形燃料電池の電解質が強酸性であるために、添加金属成分の溶出が生じるので、高活性化の効果を長期間持続させることができない。
特開2002−305000号公報 特開2003−157856号公報 Journal of Electroanalytical Chemistry, 第460巻、1999年、258〜262頁
For example, a method for improving catalytic activity by alloying platinum fine particles with a metal such as iron has been reported in order to reduce the amount of catalyst in a polymer electrolyte fuel cell (non-patent document). 1). However, in this method, since the electrolyte of the polymer electrolyte fuel cell is strongly acidic, the added metal component is eluted, so that the high activation effect cannot be sustained for a long time.
JP 2002-305000 A JP 2003-157856 A Journal of Electroanalytical Chemistry, 460, 1999, 258-262.

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、実用化に適した固体高分子形燃料電池を得るために、固体高分子形燃料電池において触媒成分として用いられている白金等の触媒金属を高活性化して、その使用量を低減できる方法を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main object is to obtain a catalyst component in a polymer electrolyte fuel cell in order to obtain a polymer electrolyte fuel cell suitable for practical use. The present invention is to provide a method capable of reducing the amount of catalyst metal such as platinum used as a high activity.

本発明は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、触媒担体として用いられている炭素材料に着目し、これをフラーレン類及び熱反応性を有する多環芳香族炭化水素と混合して、不活性ガス雰囲気中で熱処理を行う方法によれば、該炭素材料の表面においてフラーレン類の会合が生じて炭素材料の比表面積が増大することを見出した。そして、この方法で処理された炭素材料に白金を担持させる場合には、白金が微粒子状態で均一に担持されて高活性を有するものとなり、白金の使用量を低減することが可能となることを見出した。本発明は、この様な知見に基づいてなされたものである。   The present invention has been intensively studied to achieve the above-described object. As a result, according to the method of paying attention to the carbon material used as a catalyst carrier, mixing this with fullerenes and polycyclic aromatic hydrocarbons having thermal reactivity, and performing heat treatment in an inert gas atmosphere. The present inventors have found that the full surface area of the carbon material increases due to the association of fullerenes on the surface of the carbon material. When platinum is supported on the carbon material treated by this method, platinum is uniformly supported in a fine particle state and has high activity, and the amount of platinum used can be reduced. I found it. The present invention has been made based on such knowledge.

即ち、本発明は、下記の固体高分子形燃料電池用触媒担体、その製造方法、該触媒担体を用いてなる固体高分子形燃料電池用電極触媒、及び固体高分子形燃料電池を提供するものである。
1. 炭素材料、フラーレン類及び熱反応性多環芳香族炭化水素を含む混合物を不活性ガス雰囲気中で熱処理することを特徴とする固体高分子形燃料電池用触媒担体の製造方法。2. 炭素材料が、メソカーボンマイクロビーズ又はガラス状カーボンである上記項1に記載の固体高分子形燃料電池用触媒担体の製造方法。
3. 熱反応性多環芳香族炭化水素が、アセナフチレン、ナフタセン及びペンタセンからなる群から選ばれた少なくとも一種である上記項1又は2に記載の固体高分子形燃料電池用触媒担体の製造方法。
4. 炭素材料100重量部に対して、フラーレン類1〜30重量部及び熱反応性多環芳香族炭化水素1〜30重量部を用い、600〜2000℃で熱処理を行う上記項1〜3のいずれかに記載の固体高分子形燃料電池用触媒担体の製造方法。
5. 上記項1〜4のいずれかの方法によって得られる、原料とする炭素材料と比較して比表面積が増大した炭素材料からなる固体高分子形燃料電池用触媒担体。
6. 上記項5に記載の触媒担体上に触媒金属を担持してなる固体高分子形燃料電池用電極触媒。
7. 上記項6の電極触媒を構成要素として含む固体高分子形燃料電池。
That is, the present invention provides the following polymer carrier for a polymer electrolyte fuel cell, a method for producing the same, an electrode catalyst for a polymer electrolyte fuel cell using the catalyst carrier, and a polymer electrolyte fuel cell It is.
1. A method for producing a catalyst support for a polymer electrolyte fuel cell, comprising heat-treating a mixture containing a carbon material, fullerenes and a thermally reactive polycyclic aromatic hydrocarbon in an inert gas atmosphere. 2. Item 2. The method for producing a catalyst support for a polymer electrolyte fuel cell according to Item 1, wherein the carbon material is mesocarbon microbeads or glassy carbon.
3. Item 3. The method for producing a catalyst support for a polymer electrolyte fuel cell according to Item 1 or 2, wherein the heat-reactive polycyclic aromatic hydrocarbon is at least one selected from the group consisting of acenaphthylene, naphthacene, and pentacene.
4). Any of the above items 1 to 3, wherein heat treatment is performed at 600 to 2000 ° C. using 1 to 30 parts by weight of fullerenes and 1 to 30 parts by weight of a heat-reactive polycyclic aromatic hydrocarbon with respect to 100 parts by weight of the carbon material. A method for producing a catalyst support for a polymer electrolyte fuel cell as described in 1).
5. A catalyst support for a polymer electrolyte fuel cell comprising a carbon material having a specific surface area increased as compared with a carbon material used as a raw material, obtained by the method according to any one of Items 1 to 4.
6). 6. An electrode catalyst for a polymer electrolyte fuel cell obtained by supporting a catalyst metal on the catalyst carrier according to item 5.
7). 7. A polymer electrolyte fuel cell comprising the electrode catalyst according to item 6 as a constituent element.

以下、本発明の固体高分子形燃料電池用触媒担体の製造方法を具体的に説明する。   Hereinafter, the method for producing a catalyst support for a polymer electrolyte fuel cell of the present invention will be specifically described.

本発明の触媒担体は、炭素材料、フラーレン類及び熱反応性多環芳香族化合物を混合して、不活性ガス雰囲気中で熱処理することによって得ることができる。   The catalyst carrier of the present invention can be obtained by mixing a carbon material, fullerenes and a heat-reactive polycyclic aromatic compound and heat-treating them in an inert gas atmosphere.

炭素材料
炭素材料としては、例えば、従来から固体高分子形燃料電池用の触媒担体として用いられている炭素材料を特に限定なく使用できる。この様な炭素材料としては、カーボンブラック、活性炭、黒鉛等を例示できる。更に、本発明の処理方法によれば、比表面積が小さいために触媒担持量を増大できず、触媒担体としてあまり使用されていない炭素材料についても、熱処理によって比表面積を増大できるために、触媒担体として有効に使用することが可能となる。特に、後述する参考例1を参照すれば明らかな様に、メソカーボンマイクロビーズ(MCMB)、ガラス状カーボン等は、比表面積が小さいために触媒金属の担持量を増大できないが、担持された触媒金属の単位表面積当たりの活性が高い材料である。従って、メソカーボンマイクロビーズ(MCMB)、ガラス状カーボン等を炭素材料として用い、これを本発明の方法で処理することによって、比表面積が増大して微細な触媒金属を多量に担持させることが可能となり、優れた活性を有する触媒を得ることができる。メソカーボンマイクロビーズ(MCMB)、ガラス状カーボン等としては、例えば、平均粒径が0.1μm〜50μm程度であって、比表面積が10m/g〜0.1m/g程度の範囲内のものを用いることができる。
As the carbon material , for example, a carbon material conventionally used as a catalyst carrier for a polymer electrolyte fuel cell can be used without particular limitation. Examples of such a carbon material include carbon black, activated carbon, graphite and the like. Furthermore, according to the treatment method of the present invention, since the specific surface area is small, the amount of the catalyst supported cannot be increased, and the specific surface area of the carbon material which is not often used as the catalyst support can be increased by heat treatment. As a result, it can be used effectively. In particular, as is clear from Reference Example 1 described later, mesocarbon microbeads (MCMB), glassy carbon, and the like cannot increase the amount of catalyst metal supported due to their small specific surface area. It is a material with high activity per unit surface area of metal. Therefore, by using mesocarbon microbeads (MCMB), glassy carbon, etc. as the carbon material and treating it with the method of the present invention, it is possible to increase the specific surface area and to carry a large amount of fine catalytic metals. Thus, a catalyst having excellent activity can be obtained. Mesocarbon microbeads (MCMB), as a glassy carbon or the like, for example, the average particle size be about 0.1Myuemu~50myuemu, the specific surface area is within a range of about 10m 2 /g~0.1m 2 / g Things can be used.

尚、本明細書では、平均粒径は、電界放射型走査電子顕微鏡(Hitachi S-5000)による観察によって求めた値であり、比表面積は窒素を用いたBET比表面積測定(Quantachrome社のQuantasorb)によって求めた値である。   In the present specification, the average particle diameter is a value determined by observation with a field emission scanning electron microscope (Hitachi S-5000), and the specific surface area is measured by BET specific surface area using nitrogen (Quantasorb manufactured by Quantachrome). Is the value obtained by

フラーレン類
フラーレン類とは、炭素原子のみからなり、六員環と五員環で構成された球殻状分子である。本発明では、公知のフラーレン類を特に限定なく使用できる。例えば、C60、C70、C76,C82等の各種のフラーレン類を用いることができる。フラーレン類は、一種単独又は二種以上混合して用いることができる。
Fullerenes Fullerenes are spherical shell-like molecules consisting only of carbon atoms and composed of a six-membered ring and a five-membered ring. In the present invention, known fullerenes can be used without particular limitation. For example, various fullerenes such as C 60 , C 70 , C 76 , and C 82 can be used. Fullerenes can be used singly or in combination of two or more.

フラーレン類の使用量は、炭素材料100重量部に対して、1〜30重量部程度とすることが好ましく、5〜10重量部程度とすることがより好ましい。   The amount of fullerenes used is preferably about 1 to 30 parts by weight and more preferably about 5 to 10 parts by weight with respect to 100 parts by weight of the carbon material.

熱反応性多環芳香族炭化水素
熱反応性を有する多環芳香族炭化水素としては、本発明の触媒担体を製造する際の熱処理によって一部又は全体が炭素化して炭素質の残留物が残る多環芳香族炭化水素であれば特に限定なく使用できる。この様な熱反応性多環芳香族炭化水素としては、アセナフチレン、ナフタセン、ペンタセンなどを挙げることができる。熱反応性多環芳香族炭化水素は、一種単独又は二種以上混合して用いることができる。
Thermally-reactive polycyclic aromatic hydrocarbons Polycyclic aromatic hydrocarbons having thermal reactivity are partially or wholly carbonized by the heat treatment in producing the catalyst carrier of the present invention, and carbonaceous residues remain. Any polycyclic aromatic hydrocarbon can be used without particular limitation. Examples of such heat-reactive polycyclic aromatic hydrocarbons include acenaphthylene, naphthacene, and pentacene. The heat-reactive polycyclic aromatic hydrocarbon can be used singly or in combination of two or more.

熱反応性多環芳香族炭化水素の使用量は、炭素材料100重量部に対して、1〜30重量部程度とすることが好ましく、5〜10重量部程度とすることがより好ましい。   The amount of the heat-reactive polycyclic aromatic hydrocarbon used is preferably about 1 to 30 parts by weight and more preferably about 5 to 10 parts by weight with respect to 100 parts by weight of the carbon material.

触媒担体の製造方法
本発明の触媒担体を得るには、上記した素材料、フラーレン類及び熱反応性多環芳香族炭化水素を混合して、アルゴン、窒素等の不活性ガス雰囲気中で熱処理を行えばよい。熱処理温度は600〜2000℃程度とすることが好ましく、800〜1200℃程度とすることがより好ましい。熱処理温度が低すぎる場合には、フラーレン類の重合反応が十分に進行せず、炭素材料の比表面積を十分に増加させることができない。一方、熱処理温度が高くなりすぎると、炭素材料の黒鉛化が進行して比表面積が減少するので、不適切である。
Production method of catalyst carrier In order to obtain the catalyst carrier of the present invention, the above-mentioned raw materials, fullerenes and thermally reactive polycyclic aromatic hydrocarbons are mixed and heat-treated in an inert gas atmosphere such as argon or nitrogen. Just do it. The heat treatment temperature is preferably about 600 to 2000 ° C., more preferably about 800 to 1200 ° C. When the heat treatment temperature is too low, the polymerization reaction of fullerenes does not proceed sufficiently, and the specific surface area of the carbon material cannot be increased sufficiently. On the other hand, if the heat treatment temperature becomes too high, graphitization of the carbon material proceeds and the specific surface area decreases, which is inappropriate.

上記した方法で熱処理を行うことによって、炭素材料の表面においてフラーレン類同士の会合反応が進行して、該炭素材料の比表面積が増大する。これに対して、フラーレン類又は熱反応性多環芳香族炭化水素を単独で用いる場合には、炭素材料の比表面積を殆ど増大させることができない。   By performing the heat treatment by the above-described method, the association reaction between the fullerenes proceeds on the surface of the carbon material, and the specific surface area of the carbon material increases. In contrast, when fullerenes or heat-reactive polycyclic aromatic hydrocarbons are used alone, the specific surface area of the carbon material can hardly be increased.

固体高分子形燃料電池用触媒担体
上記した方法で熱処理を行って得られる炭素材料は、原料とする炭素材料と比較して比表面積が大きく増大したものとなる。この炭素材料に白金、白金合金などの触媒金属を担持させることによって、例えば、平均粒径3〜10nm程度の超微粒子状態で白金等の触媒金属を安定に担持させることができる。その結果、担持された触媒金属は高活性を有するものとなる。これに対して、上記した処理を行わない炭素材料を用いる場合には、担持された触媒金属は凝集し易く、活性の劣るものとなる。
Catalyst material for polymer electrolyte fuel cell The carbon material obtained by performing the heat treatment by the above-described method has a specific surface area greatly increased as compared with the carbon material used as a raw material. By supporting a catalytic metal such as platinum or a platinum alloy on the carbon material, for example, a catalytic metal such as platinum can be stably supported in an ultrafine particle state having an average particle diameter of about 3 to 10 nm. As a result, the supported catalyst metal has high activity. On the other hand, when a carbon material that is not subjected to the above-described treatment is used, the supported catalyst metal easily aggregates and becomes inferior in activity.

上記した方法で得られる炭素材料は、固体高分子形燃料電池の電極触媒用担体として好適に用いることができる。   The carbon material obtained by the above method can be suitably used as a support for an electrode catalyst of a polymer electrolyte fuel cell.

本発明の触媒担体に担持させる触媒金属としては、従来から、固体高分子形燃料電池の触媒物質として知られている白金、白金合金などを使用することができる。   As the catalyst metal to be supported on the catalyst carrier of the present invention, platinum, platinum alloys and the like that are conventionally known as catalyst materials for polymer electrolyte fuel cells can be used.

本発明の触媒担体に触媒金属を担持させる方法としては、例えば、含浸法、コロイド法、気相法などの公知の方法を適用できる。   As a method for supporting the catalyst metal on the catalyst carrier of the present invention, for example, a known method such as an impregnation method, a colloid method, or a gas phase method can be applied.

触媒担体上に担持させる触媒金属の量については特に限定はないが、本発明の触媒担体を用いると、通常のカーボン材料を担体とする場合と比べて触媒活性が向上するので、触媒金属の使用量を低減した場合にも優れた触媒活性を発揮することができる。例えば、触媒金属の担持量は、触媒担体と触媒金属の合計量を基準として5〜20重量%程度の範囲とすればよい。   The amount of catalyst metal to be supported on the catalyst carrier is not particularly limited. However, when the catalyst carrier of the present invention is used, the catalytic activity is improved as compared with the case of using a normal carbon material as a carrier. Even when the amount is reduced, excellent catalytic activity can be exhibited. For example, the supported amount of the catalyst metal may be in the range of about 5 to 20% by weight based on the total amount of the catalyst carrier and the catalyst metal.

上記した触媒担体を用いた固体高分子形燃料電池は、該触媒担体をカソード又はアノード用触媒担体として使用する以外は、その他の構造、例えば、高分子電解質膜、膜−電極接合体、セル構造等については、公知の固体高分子形燃料電池と同様とすればよい。   The polymer electrolyte fuel cell using the catalyst carrier described above has other structures, such as a polymer electrolyte membrane, a membrane-electrode assembly, and a cell structure, except that the catalyst carrier is used as a cathode or anode catalyst carrier. And the like may be the same as those of a known polymer electrolyte fuel cell.

例えば、高分子電解質膜としては、パーフルオロカーボン系、スチレン−ジビニルベンゼン共重合体系、ポリベンズイミダゾール系をはじめとする各種イオン交換樹脂膜、無機高分子イオン交換膜、有機―無機複合体高分子イオン交換膜等を使用することができる。   For example, polymer electrolyte membranes include various ion exchange resin membranes such as perfluorocarbon, styrene-divinylbenzene copolymer, polybenzimidazole, inorganic polymer ion exchange membrane, and organic-inorganic composite polymer ion exchange. A membrane or the like can be used.

固体高分子電解質膜と電極触媒との接合体は、公知の方法により作製することができる。例えば、触媒粉末と電解質溶液とを混合して作製した触媒インクを薄膜化させた後、電解質膜上にホットプレスする方法、あるいは直接高分子膜上に塗布・乾燥する方法などが適用される。また、ガス拡散層や集電体に直接触媒インクを塗布・乾燥するなどの方法によって電極を作製してもよい。   The joined body of the solid polymer electrolyte membrane and the electrode catalyst can be produced by a known method. For example, a method in which a catalyst ink produced by mixing catalyst powder and an electrolyte solution is thinned and then hot-pressed on the electrolyte membrane or directly applied and dried on the polymer membrane is applied. Alternatively, the electrode may be produced by a method such as applying and drying the catalyst ink directly on the gas diffusion layer or current collector.

得られた膜−電極接合体の両面をカーボンペーパー、カーボンクロスなどの集電体で挟んでセルに組み込むことによって、燃料電池セルを作製することができる。   A fuel battery cell can be produced by sandwiching both surfaces of the obtained membrane-electrode assembly between current collectors such as carbon paper and carbon cloth and incorporating them into the cell.

本発明の処理方法によれば、固体高分子形燃料電池の触媒担体用炭素材料の比表面積を大きく増大させて、白金などの触媒金属を非常に微細な状態で均一且つ多量に担持させることが可能となる。その結果、高活性の電極触媒を得ることができ、触媒金属量の低減が可能となる。   According to the treatment method of the present invention, the specific surface area of the carbon material for the catalyst support of the polymer electrolyte fuel cell can be greatly increased, and a catalytic metal such as platinum can be supported uniformly and in a large amount in a very fine state. It becomes possible. As a result, a highly active electrode catalyst can be obtained, and the amount of catalytic metal can be reduced.

また、比表面積が小さいために触媒担体としてあまり使用されていない炭素材料についても、触媒担体として有効に使用することが可能となる。特に、メソカーボンマイクロビーズ(MCMB)、ガラス状カーボン等の炭素材料に対して、本発明方法によって処理を行う場合には、比表面積が増大して微細な触媒金属を多量に担持させることが可能となり、優れた性能を有する触媒を得ることができる。   In addition, a carbon material that is rarely used as a catalyst carrier due to a small specific surface area can be effectively used as a catalyst carrier. In particular, when carbon materials such as mesocarbon microbeads (MCMB) and glassy carbon are processed by the method of the present invention, the specific surface area is increased and a large amount of fine catalyst metal can be supported. Thus, a catalyst having excellent performance can be obtained.

以下、参考例、実施例及び比較例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference examples, examples and comparative examples.

参考例1
以下の方法で、各種の炭素材料に白金を担持させて、炭素材料の種類による触媒活性の相違を確認した。
Reference example 1
In the following method, platinum was supported on various carbon materials, and the difference in catalytic activity depending on the type of carbon material was confirmed.

まず、カーボンブラック(比表面積254m/g、商標名:Vulcan XC 72、Cabot社
製)200mgをエタノール50mlに分散させた後、白金含有量10.3g/LのPt(NO2)2(NH3)2エタノール溶液2.21mlを加えて1時間放置した。その後、ロータリーエバポレーターによりエタノールを除去して、Pt(NO2)2(NH3)2が担体表面に付着した試料を得た。この試料を反応管につめ、10%H2−90%N2気流中に250℃で2時間保持し、Pt(NO2)2(NH3)2を白金微粒子に還元した。これらの操作により、白金微粒子とカーボンブラックの合計量を基準として10重量%の白金微粒子がカーボンブラック表面に担持された電極触媒が得られた。担持された白金の平均粒径は3nmであった。
First, 200 mg of carbon black (specific surface area of 254 m 2 / g, trade name: Vulcan XC 72, manufactured by Cabot) was dispersed in 50 ml of ethanol, and then Pt (NO 2 ) 2 (NH having a platinum content of 10.3 g / L. 3 ) 2.21 ml of 2 ethanol solution was added and left for 1 hour. Thereafter, ethanol was removed by a rotary evaporator to obtain a sample in which Pt (NO 2 ) 2 (NH 3 ) 2 was adhered to the support surface. This sample was put in a reaction tube and kept in a 10% H 2 -90% N 2 stream at 250 ° C. for 2 hours to reduce Pt (NO 2 ) 2 (NH 3 ) 2 to platinum fine particles. By these operations, an electrode catalyst having 10% by weight of platinum fine particles supported on the carbon black surface based on the total amount of platinum fine particles and carbon black was obtained. The average particle size of the supported platinum was 3 nm.

一方、カーボンブラックに代えて、メソカーボンマイクロビーズ(MCMB)(平均粒径6μm、比表面積3m/g)又はガラス状カーボン(平均粒径5μm、比表面積1m/g)を用いて、上記した方法と同様にして白金を担持させた。但し、メソカーボンマイクロビーズとガラス状カーボンについては、比表面積が小さいために触媒量を多くすると触媒金属が凝集するので、白金をカーボンブラックに担持させた触媒と同程度の白金粒径となるように担持量を減少させた。 On the other hand, instead of carbon black, mesocarbon microbeads (MCMB) (average particle size 6 μm, specific surface area 3 m 2 / g) or glassy carbon (average particle size 5 μm, specific surface area 1 m 2 / g) are used. In the same manner as described above, platinum was supported. However, for mesocarbon microbeads and glassy carbon, the catalyst surface aggregates when the amount of catalyst is increased because the specific surface area is small, so that the platinum particle size is about the same as that of a catalyst in which platinum is supported on carbon black. The loading amount was reduced.

得られた触媒では、メソカーボンマイクロビーズ(MCMB)に白金を担持させた場合には、白金担持量が1重量%、白金微粒子の平均粒径が3nmであり、ガラス状カーボンに白金を担持させた場合には、白金担持量が1重量%、白金微粒子の平均粒径が5nmであった。   In the obtained catalyst, when platinum was supported on mesocarbon microbeads (MCMB), the amount of platinum supported was 1% by weight and the average particle size of platinum fine particles was 3 nm, and platinum was supported on glassy carbon. In this case, the amount of platinum supported was 1% by weight, and the average particle size of the platinum fine particles was 5 nm.

触媒活性試験
上記した方法で得られた各電極触媒について、酸素還元に対する活性を次の方法で評価した。
Catalyst activity test Each electrode catalyst obtained by the above-described method was evaluated for its activity against oxygen reduction by the following method.

まず、電極触媒を回転ディスク電極のガラス状カーボン上に載せて、その上に水とエタノールとの混合溶媒に溶かした固体高分子電解質材料(商標名“ナフィオン”、デュポン社製)を滴下し、次いで加熱して溶媒を除去することにより、PEFC用の電極(カソード)を調製した。   First, the electrode catalyst is placed on the glassy carbon of the rotating disk electrode, and a solid polymer electrolyte material (trade name “Nafion”, manufactured by DuPont) dissolved in a mixed solvent of water and ethanol is dropped on the electrode catalyst, Next, an electrode (cathode) for PEFC was prepared by heating to remove the solvent.

次いで、この電極を使ってアルゴン置換した0.1M過塩素酸水溶液中で水素吸脱着波を測定し、その面積を見積もることにより、作製した作用電極の白金表面積を求めた。次いで、0.1M過塩素酸水溶液にバブリングするガス種を酸素に変えて30分間酸素置換を行った後、1V (可逆水素電極(RHE)基準)から0V(可逆水素電極基準)まで
1mV/秒の速度で電位走査を行い、電流−電位曲線を求めた。
Subsequently, the hydrogen adsorption / desorption wave was measured in a 0.1 M perchloric acid aqueous solution substituted with argon using this electrode, and the area of the electrode was estimated to obtain the platinum surface area of the produced working electrode. Next, after changing the gas species to be bubbled into 0.1M perchloric acid aqueous solution to oxygen and performing oxygen substitution for 30 minutes, 1 mV / second from 1 V (reversible hydrogen electrode (RHE) standard) to 0 V (reversible hydrogen electrode standard) A potential scan was performed at a speed of 1 to obtain a current-potential curve.

尚、ある電位における真の動力学的電流量ikinの値は、その電位で測定して得られた
実測値iobsと、拡散限界電流ilimを用いて、次の式で求めることができる。
The value of the true kinetic current amount i kin at a certain potential can be obtained by the following equation using the actual measurement value i obs obtained by measurement at the potential and the diffusion limit current i lim. .

Figure 2008269821
Figure 2008269821

表1に、0.8V(可逆水素電極基準)の電位での動力学的電流量ikinの計算値を示
す。得られたikinは、白金表面積あたりの数値であり、各電極触媒の酸素還元に対する
活性を示す指標となる。
Table 1 shows a calculated value of the kinetic current amount i kin at a potential of 0.8 V (reversible hydrogen electrode reference). The obtained i kin is a numerical value per platinum surface area and is an index indicating the activity of each electrode catalyst for oxygen reduction.

Figure 2008269821
Figure 2008269821

以上の結果から明らかなように、担体として、MCMB又はガラス状カーボンを用いた場合には、カーボンブラックを担体とする場合と比較すると、白金担持量が少ないにもかかわらず、高い触媒活性を示すことが確認できた。   As is clear from the above results, when MCMB or glassy carbon is used as the carrier, compared with the case where carbon black is used as the carrier, high catalytic activity is exhibited even though the amount of platinum supported is small. I was able to confirm.

実施例1
炭素材料として、メソカーボンマイクロビーズ(平均粒径6μm、比表面積3m/g)を用い、このメソカーボンマイクロビーズ80重量部に対してC60フラーレン10重
量部とアセナフチレン10重量部を添加し、メノウ乳鉢で混合・擂潰した後、管状炉を用いてアルゴンガス気流中1000℃で30分間熱処理を行った。その結果、メソカーボンマイクロビーズ及びフラーレンの重量減少はほとんど認められず、アセナフチレンの炭素化収量は、約19%であった。得られたメソカーボンマイクロビーズの比表面積は、26m/gであり、比表面積が大きく増大したことが確認できた。
Example 1
As the carbon material, mesocarbon microbeads (average particle diameter of 6 μm, specific surface area of 3 m 2 / g) were used, and 10 parts by weight of C 60 fullerene and 10 parts by weight of acenaphthylene were added to 80 parts by weight of the mesocarbon microbeads. After mixing and crushing in an agate mortar, heat treatment was performed at 1000 ° C. for 30 minutes in an argon gas stream using a tubular furnace. As a result, almost no decrease in the weight of mesocarbon microbeads and fullerene was observed, and the carbonization yield of acenaphthylene was about 19%. The specific surface area of the obtained mesocarbon microbeads was 26 m 2 / g, and it was confirmed that the specific surface area was greatly increased.

上記処理後のメソカーボンマイクロビーズに対して、参考例1と同様の方法で白金微粒子を担持させて、電極触媒を調製した。得られた電極触媒は、メソカーボンマイクロビーズと白金微粒子の合計量を基準として10重量%の白金が担持されたものであった。この電極触媒のSEM写真像を図1に示す。図1から上記した方法で得られた電極触媒では、平均粒径5nm程度の微細な白金微粒子が均一に担持されていることが確認できた。   An electrode catalyst was prepared by supporting platinum fine particles on the mesocarbon microbeads after the treatment in the same manner as in Reference Example 1. The obtained electrode catalyst had 10% by weight of platinum supported on the total amount of mesocarbon microbeads and platinum fine particles. An SEM photographic image of this electrode catalyst is shown in FIG. It was confirmed from FIG. 1 that the fine platinum particles having an average particle diameter of about 5 nm are uniformly supported on the electrode catalyst obtained by the above-described method.

一方、図2は、上記した処理を行う前のメソカーボンマイクロビーズに対して同様の方法で10重量%の白金を担持させた担持体のSEM写真像である。図2から未処理のメソカーボンマイクロビーズに10重量%の白金を担持させると、白金粒子が凝集することが明らかである。   On the other hand, FIG. 2 is a SEM photographic image of a carrier in which 10% by weight of platinum is carried by the same method on the mesocarbon microbeads before the above-described treatment. From FIG. 2, it is clear that platinum particles aggregate when 10% by weight of platinum is supported on untreated mesocarbon microbeads.

実施例2
実施例1で用いたアセナフチレンに代えて、ナフタセンを用いて実施例1と同様にしてアルゴンガス気流中1000℃で熱処理を行った。得られたメソカーボンマイクロビーズの比表面積は、31m/gであり、比表面積が大きく増大したことが確認できた。
Example 2
Instead of acenaphthylene used in Example 1, naphthacene was used and heat treatment was performed at 1000 ° C. in an argon gas stream in the same manner as in Example 1. The specific surface area of the obtained mesocarbon microbeads was 31 m 2 / g, and it was confirmed that the specific surface area was greatly increased.

処理後のメソカーボンマイクロビーズを用いて、実施例1と同様にして白金を10重量%担持させて、電極触媒を得た。   Using the treated mesocarbon microbeads, 10% by weight of platinum was supported in the same manner as in Example 1 to obtain an electrode catalyst.

実施例3
実施例1で用いたアセナフチレンに代えて、ペンタセンを用いて実施例1と同様にしてアルゴンガス気流中1000℃で熱処理を行った。得られたメソカーボンマイクロビーズの比表面積は、62m/gであり、比表面積が大きく増大したことが確認できた。
Example 3
In place of acenaphthylene used in Example 1, pentacene was used and heat treatment was performed at 1000 ° C. in an argon gas stream in the same manner as in Example 1. The specific surface area of the obtained mesocarbon microbeads was 62 m 2 / g, and it was confirmed that the specific surface area was greatly increased.

処理後のメソカーボンマイクロビーズを用いて、実施例1と同様にして白金を10重量%担持させて電極触媒を得た。   Using the treated mesocarbon microbeads, 10% by weight of platinum was supported in the same manner as in Example 1 to obtain an electrode catalyst.

比較例1
実施例1で用いたアセナフチレンに代えて、コロネンを用いて実施例1と同様にしてアルゴンガス気流中1000℃で熱処理を行った。コロネンは、加熱によって昇華し、炭素質の残留物を残さない物質である。
Comparative Example 1
Instead of acenaphthylene used in Example 1, coronene was used and heat treatment was performed at 1000 ° C. in an argon gas stream in the same manner as in Example 1. Coronene is a substance that sublimes by heating and does not leave a carbonaceous residue.

得られたメソカーボンマイクロビーズの比表面積は、13m/gであり、比表面積がわずかに増大しただけであった。 The specific surface area of the obtained mesocarbon microbeads was 13 m 2 / g, and the specific surface area was only slightly increased.

処理後のメソカーボンマイクロビーズを用いて、実施例1と同様にして白金を10重量%担持させて電極触媒を得た。   Using the treated mesocarbon microbeads, 10% by weight of platinum was supported in the same manner as in Example 1 to obtain an electrode catalyst.

実施例4
実施例1で用いたメソカーボンマイクロビーズに代えて、ガラス状カーボン(平均粒径5μm、比表面積1m/g)を用いて実施例1と同様にしてアルゴンガス気流中1000℃で熱処理を行った。得られたガラス状カーボンの比表面積は、132m/gであり、比表面積が大きく増大したことが確認できた。
Example 4
In place of the mesocarbon microbeads used in Example 1, glassy carbon (average particle size 5 μm, specific surface area 1 m 2 / g) was used, and heat treatment was performed at 1000 ° C. in an argon gas stream in the same manner as Example 1. It was. The specific surface area of the obtained glassy carbon was 132 m 2 / g, and it was confirmed that the specific surface area greatly increased.

処理後のガラス状カーボンを用いて、実施例1と同様にして白金を10重量%担持させて電極触媒を得た。   Using the glassy carbon after the treatment, 10% by weight of platinum was supported in the same manner as in Example 1 to obtain an electrode catalyst.

膜電極接合体(MEA)を用いた発電試験
上記した方法で得られた各電極触媒について、以下の方法で膜電極接合体(MEA)を作製した。
Power generation test using membrane electrode assembly (MEA) For each electrode catalyst obtained by the method described above, a membrane electrode assembly (MEA) was produced by the following method.

まず、Nafion 117(商標名、Du Pont社 Nafion PSFA Membrane N117)を電解質膜とし
て用い、各電極触媒を単位面積当たりの使用白金量が一定になるように電解質膜の両面に塗布し、集電材にカーボンクロスを用いてホットプレス(160℃、1 ton、10分間)することにより、膜電極接合体(MEA)を作製した。
First, Nafion 117 (trade name, Dufon Nafion PSFA Membrane N117) was used as the electrolyte membrane, and each electrode catalyst was applied to both sides of the electrolyte membrane so that the amount of platinum used per unit area was constant. A membrane electrode assembly (MEA) was produced by hot pressing (160 ° C., 1 ton, 10 minutes) using carbon cloth.

この膜電極接合体のカソード側に酸素(加湿ガス、大気圧)を400ml / 分、アノード側に水素(加湿ガス、大気圧)を500ml / 分で吹き込み、セル温度80℃で発電実験を行った。実験用セルとしては、JARI標準セル(電極面積25cm)を用い、酸素極として上記した電極触媒を用い、水素極として、田中貴金属製TEC10V40E(使用白金量0.5〜0.6 mg/cm2)を用いた。 The membrane electrode assembly was blown with oxygen (humidified gas, atmospheric pressure) at 400 ml / min on the cathode side and hydrogen (humidified gas, atmospheric pressure) at 500 ml / min on the anode side, and a power generation experiment was conducted at a cell temperature of 80 ° C. . The experimental cell is a JARI standard cell (electrode area 25 cm 2 ), the above-mentioned electrode catalyst is used as the oxygen electrode, and Tanaka Kikinzoku TEC10V40E (platinum used 0.5 to 0.6 mg / cm 2 ) is used as the hydrogen electrode. It was.

尚、比較試験として、カーボンブラック(比表面積254m/g、商標名:Vulcan XC 72、Cabot社製)、メソカーボンマイクロビーズ(平均粒径6μm、比表面積3m
g)及びガラス状カーボン(平均粒径5μm、比表面積1m/g)について、未処理の状態で白金10重量%を担持させて得られた電極触媒についても、同様の方法で発電試験を行った。表2に、0.7Vでの電流密度を示す。
As comparative tests, carbon black (specific surface area 254m 2 / g, trade name: Vulcan XC 72, manufactured by Cabot Corporation), mesocarbon microbeads (average particle size 6 [mu] m, a specific surface area of 3m 2 /
g) and glassy carbon (average particle size of 5 μm, specific surface area of 1 m 2 / g) were also subjected to a power generation test in the same manner for the electrode catalyst obtained by supporting 10% by weight of platinum in an untreated state. It was. Table 2 shows the current density at 0.7V.

Figure 2008269821
Figure 2008269821

また、未処理のカーボンブラック、未処理のメソカーボンマイクロビーズ、及び実施例1で処理したメソカーボンマイクロビーズを担体とした電極触媒を用いた場合についての発電試験の結果を図3に示し、未処理のカーボンブラック、未処理のガラス状カーボン、及び実施例4で処理したガラス状カーボンを担体とした電極触媒を用いた場合についての発電試験の結果を図4に示す。   In addition, FIG. 3 shows the results of a power generation test in the case of using an untreated carbon black, an untreated mesocarbon microbead, and an electrode catalyst using the mesocarbon microbead treated in Example 1 as a carrier. FIG. 4 shows the results of the power generation test in the case of using the treated carbon black, the untreated glassy carbon, and the electrode catalyst using the glassy carbon treated in Example 4 as a carrier.

以上の結果から明らかなように、メソカーボンマイクロビーズ又はガラス状カーボンに対してフラーレン類と熱反応性多環芳香族炭化水素の存在下で熱処理を行うことによって、比表面積が大きく増大し、これに白金を担持させることによって、高い活性を有する触
媒が得られることが確認できた。
As is clear from the above results, the specific surface area is greatly increased by heat-treating mesocarbon microbeads or glassy carbon in the presence of fullerenes and thermally reactive polycyclic aromatic hydrocarbons. It was confirmed that a catalyst having high activity can be obtained by supporting platinum on the catalyst.

実施例1で処理したメソカーボンマイクロビーズに白金を担持させた電極触媒のSEM写真像。2 is a SEM photograph image of an electrode catalyst in which platinum is supported on mesocarbon microbeads treated in Example 1. FIG. 未処理のメソカーボンマイクロビーズに白金を担持させた電極触媒のSEM写真像。The SEM photograph image of the electrode catalyst which made platinum carry | support on the unprocessed mesocarbon micro bead. 未処理のカーボンブラック、未処理のメソカーボンマイクロビーズ、及び実施例1で処理したメソカーボンマイクロビーズを担体とした電極触媒を用いた発電試験の結果を示すグラフ。The graph which shows the result of the electric power generation test using the electrode catalyst which used the untreated carbon black, the untreated mesocarbon microbead, and the mesocarbon microbead processed in Example 1 as a support | carrier. 未処理のカーボンブラック、未処理のガラス状カーボン、及び実施例4で処理したガラス状カーボンを担体とした電極触媒を用いた発電試験の結果を示すグラフ。The graph which shows the result of the electric power generation test using the electrode catalyst which used the untreated carbon black, the untreated glassy carbon, and the glassy carbon processed in Example 4 as the support | carrier.

Claims (7)

炭素材料、フラーレン類及び熱反応性多環芳香族炭化水素を含む混合物を不活性ガス雰囲気中で熱処理することを特徴とする固体高分子形燃料電池用触媒担体の製造方法。 A method for producing a catalyst support for a polymer electrolyte fuel cell, comprising heat-treating a mixture containing a carbon material, fullerenes and a thermally reactive polycyclic aromatic hydrocarbon in an inert gas atmosphere. 炭素材料が、メソカーボンマイクロビーズ又はガラス状カーボンである請求項1に記載の固体高分子形燃料電池用触媒担体の製造方法。 2. The method for producing a catalyst support for a polymer electrolyte fuel cell according to claim 1, wherein the carbon material is mesocarbon microbeads or glassy carbon. 熱反応性多環芳香族炭化水素が、アセナフチレン、ナフタセン及びペンタセンからなる群から選ばれた少なくとも一種である請求項1又は2に記載の固体高分子形燃料電池用触媒担体の製造方法。 3. The method for producing a catalyst support for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the thermally reactive polycyclic aromatic hydrocarbon is at least one selected from the group consisting of acenaphthylene, naphthacene and pentacene. 炭素材料100重量部に対して、フラーレン類1〜30重量部及び熱反応性多環芳香族炭化水素1〜30重量部を用い、600〜2000℃で熱処理を行う請求項1〜3のいずれかに記載の固体高分子形燃料電池用触媒担体の製造方法。 The heat treatment is performed at 600 to 2000 ° C using 1 to 30 parts by weight of fullerenes and 1 to 30 parts by weight of heat-reactive polycyclic aromatic hydrocarbons with respect to 100 parts by weight of the carbon material. A method for producing a catalyst support for a polymer electrolyte fuel cell as described in 1). 請求項1〜4のいずれかの方法によって得られる、原料とする炭素材料と比較して比表面積が増大した炭素材料からなる固体高分子形燃料電池用触媒担体。 A catalyst support for a polymer electrolyte fuel cell, which is obtained by the method according to any one of claims 1 to 4, and is made of a carbon material having a specific surface area increased as compared with a carbon material as a raw material. 請求項5に記載の触媒担体上に触媒金属を担持してなる固体高分子形燃料電池用電極触媒。 6. An electrode catalyst for a polymer electrolyte fuel cell comprising a catalyst metal supported on the catalyst carrier according to claim 5. 請求項6の電極触媒を構成要素として含む固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the electrode catalyst according to claim 6 as a constituent element.
JP2007107769A 2007-04-17 2007-04-17 Method for producing catalyst support for polymer electrolyte fuel cell, and catalyst support for polymer electrolyte fuel cell Expired - Fee Related JP4963080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107769A JP4963080B2 (en) 2007-04-17 2007-04-17 Method for producing catalyst support for polymer electrolyte fuel cell, and catalyst support for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107769A JP4963080B2 (en) 2007-04-17 2007-04-17 Method for producing catalyst support for polymer electrolyte fuel cell, and catalyst support for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2008269821A true JP2008269821A (en) 2008-11-06
JP4963080B2 JP4963080B2 (en) 2012-06-27

Family

ID=40049094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107769A Expired - Fee Related JP4963080B2 (en) 2007-04-17 2007-04-17 Method for producing catalyst support for polymer electrolyte fuel cell, and catalyst support for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4963080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199063A (en) * 2009-01-30 2010-09-09 Equos Research Co Ltd Catalytic metal-supported carbon
WO2022210912A1 (en) * 2021-03-30 2022-10-06 国立大学法人東京大学 Ammonia production method and ammonia production apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294817A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Electric double layer capacitor, electrode material therefor, manufacturing method thereof, and electrode for electric double layer capacitor
JP2007029931A (en) * 2005-07-29 2007-02-08 Kansai Coke & Chem Co Ltd Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294817A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Electric double layer capacitor, electrode material therefor, manufacturing method thereof, and electrode for electric double layer capacitor
JP2007029931A (en) * 2005-07-29 2007-02-08 Kansai Coke & Chem Co Ltd Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199063A (en) * 2009-01-30 2010-09-09 Equos Research Co Ltd Catalytic metal-supported carbon
WO2022210912A1 (en) * 2021-03-30 2022-10-06 国立大学法人東京大学 Ammonia production method and ammonia production apparatus

Also Published As

Publication number Publication date
JP4963080B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
Andersen et al. Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells
Kou et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction
Avasarala et al. Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells
Vinayan et al. Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications
JP4452889B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
KR101154315B1 (en) Electrode for polymer electrolyte membrane fuel cell and method for manufacturing membrane-electrode assembly using the same
JP2005527956A (en) Conductive polymer-grafted carbon materials for fuel cell applications
CN1801514A (en) Pt/Ru alloy catalyst for fuel cell
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
JP6244936B2 (en) Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
Wang et al. CN x-modified Fe 3 O 4 as Pt nanoparticle support for the oxygen reduction reaction
WO2006003831A1 (en) Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst
US20110281204A1 (en) Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
JP2009277360A (en) Catalyst carrier, catalyst body, and manufacturing method for them
Lyu et al. Manipulating the interaction of Pt NPs with N-hollow carbon spheres by F-doping for boosting oxygen reduction/methanol oxidation reactions
JP4764866B2 (en) Catalyst carrier, catalyst, method for producing catalyst carrier, and method for producing catalyst
KR102381910B1 (en) Porous n-doped graphitic carbon, a catalyst including the same and method for preparing the same
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Tsiouvaras et al. CO tolerant PtRu–MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells
Kuo et al. Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells
JP4759507B2 (en) Fuel cell electrode catalyst and fuel cell using the same
Abd Lah Halim et al. Performance of direct formic acid fuel cell using transition metal‐nitrogen‐doped carbon nanotubes as cathode catalysts
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Kuo et al. Controllable‐nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction
Shi et al. Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees