JP2008268763A - Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit - Google Patents

Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit Download PDF

Info

Publication number
JP2008268763A
JP2008268763A JP2007114747A JP2007114747A JP2008268763A JP 2008268763 A JP2008268763 A JP 2008268763A JP 2007114747 A JP2007114747 A JP 2007114747A JP 2007114747 A JP2007114747 A JP 2007114747A JP 2008268763 A JP2008268763 A JP 2008268763A
Authority
JP
Japan
Prior art keywords
waveguide
circuit
light
optical
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007114747A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuda
裕之 津田
Yuichiro Ikuma
雄一郎 伊熊
Daisuke Miyamoto
大輔 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2007114747A priority Critical patent/JP2008268763A/en
Publication of JP2008268763A publication Critical patent/JP2008268763A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light reflecting circuit which need not have high manufacturing precision and has small loss. <P>SOLUTION: The light reflecting circuit 10 is composed of a single-mode waveguide 11, a Y-branch waveguide 12, and a circulation waveguide 13. Light made incident on the single-mode waveguide 11 branches off through the Y-branch waveguide 12 to be demultiplexed into clockwise propagated light and counterclockwise propagated light in the circulation waveguide 13, which are multiplexed through the Y-branch waveguide 12 to be projected from the single-mode waveguide 11. Since the light beams propagated in the opposite directions through the circulation waveguide 13 are propagated in the same waveguide, they are incident on the Y-branch waveguide 12 again in an in-phase state, and they are coupled and output nearly without any loss in principle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い製造精度が求められず損失の少ない光反射回路、及びその光反射回路を用いた光共振回路、ハーフミラー回路、レーザ発振器及び光機能回路に関する。   The present invention relates to a light reflection circuit that does not require high manufacturing accuracy and has little loss, and an optical resonance circuit, a half mirror circuit, a laser oscillator, and an optical functional circuit that use the light reflection circuit.

従来の光反射回路は、光導波路に溝を形成し、その側面に金属等のミラーを積層して構成している(例えば、特許文献1参照。)。   A conventional light reflection circuit is formed by forming a groove in an optical waveguide and laminating a mirror such as a metal on the side surface (see, for example, Patent Document 1).

図10は、従来の光反射回路の構成を示す図である。図10(a)は上断面図、図10(b)は側断面図である。光反射回路110は、コア111とクラッド112から構成される光導波路の端に溝113を形成し、その側面に金属等のミラー114を積層して構成される。
国際公開第02/054120号パンフレット
FIG. 10 is a diagram showing a configuration of a conventional light reflection circuit. FIG. 10A is an upper sectional view, and FIG. 10B is a side sectional view. The light reflection circuit 110 is formed by forming a groove 113 at the end of an optical waveguide composed of a core 111 and a clad 112 and laminating a mirror 114 made of metal or the like on the side surface.
WO02 / 054120 pamphlet

しかし、金属等のミラー114には吸収損失がある。溝113の側面を光伝搬方向に対して垂直にするのが難しく、傾くと急激に反射損失が大きくなる。また、多層構造の半導体導波路では、平滑なエッチングが困難であり、反射面には散乱損失がある。したがって、従来の光反射回路には、高い製造精度が求められるとともに、相当程度高い精度で製造したとしても、なお損失が大きい。   However, the metal mirror 114 has an absorption loss. It is difficult to make the side surface of the groove 113 perpendicular to the light propagation direction, and when it is tilted, the reflection loss suddenly increases. In addition, in a multi-layered semiconductor waveguide, smooth etching is difficult, and the reflection surface has scattering loss. Therefore, the conventional light reflecting circuit is required to have high manufacturing accuracy, and even if manufactured with a considerably high accuracy, the loss is still large.

本発明は、上記問題点に鑑み、高い製造精度が求められず損失の少ない光反射回路、及びその光反射回路を用いた光共振回路、ハーフミラー回路、レーザ発振器及び光機能回路を提供することを目的とする。   In view of the above problems, the present invention provides an optical reflection circuit that does not require high manufacturing accuracy and has little loss, and an optical resonance circuit, a half mirror circuit, a laser oscillator, and an optical functional circuit that use the optical reflection circuit. With the goal.

本発明の光反射回路は、入力光が入射する単一モード導波路と、該単一モード導波路からの出射光を入射して2分岐するY分岐導波路と、該Y分岐導波路によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する略円弧の形状の周回導波路とを備えることを特徴とする。   The light reflection circuit of the present invention includes a single-mode waveguide into which input light is incident, a Y-branch waveguide that divides the light emitted from the single-mode waveguide into two branches, and a branch by the Y-branch waveguide And a circular waveguide having a substantially arc shape in which light emitted from the two waveguides is incident on the other waveguide.

また、本発明の光反射回路は、入力光が入射する単一モード導波路と、該単一モード導波路からの出射光を入射して2分岐するマルチモード干渉型1対2の分岐導波路と、該分岐導波路によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する略円弧の形状の周回導波路とを備えることを特徴とする。   In addition, the light reflection circuit of the present invention includes a single mode waveguide into which input light is incident and a multimode interference type one-to-two branch waveguide in which light emitted from the single mode waveguide is incident and branched into two. And a circular waveguide having a substantially arc shape in which light emitted from the two waveguides branched by the branching waveguide is incident on the other waveguide.

また、本発明の光反射回路は、入力光が入射する単一モード導波路と、該単一モード導波路からの出射光を入射して2分岐する方向性結合型の分岐導波路と、該分岐導波路によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する略円弧の形状の周回導波路とを備えることを特徴とする。   In addition, the light reflection circuit of the present invention includes a single mode waveguide into which input light is incident, a directional coupling type branch waveguide that divides the light emitted from the single mode waveguide into two, and And a circular waveguide having a substantially arc shape in which light emitted from two waveguides branched by the branching waveguide is incident on the other waveguide.

また、本発明のハーフミラー回路は、上記光反射回路を2つ備え、それぞれの前記周回導波路の途中に、第1の光反射回路の前記周回導波路の2つの前記導波路からの出射光を第1の入力及び第1の出力に入射する2対2光結合回路を備え、該2対2光結合回路の第2の入力及び第2の出力からの出射光を第2の光反射回路の前記周回導波路の2つの前記導波路に入射して、前記第1の光反射回路の単一モード導波路からの入射光の一部を反射し残りを前記第2の光反射回路の単一モード導波路に透過することを特徴とする。   Further, the half mirror circuit of the present invention includes two light reflection circuits, and light emitted from the two waveguides of the circular waveguide of the first light reflection circuit is provided in the middle of each of the circular waveguides. 2: 2 optical coupling circuit which injects into the 1st input and the 1st output, and the 2nd 2 optical coupling circuit is used as the 2nd light reflection circuit for the outgoing light from the 2nd input and 2nd output of this 2 to 2 optical coupling circuit Are incident on the two waveguides of the circular waveguide, and a part of the incident light from the single mode waveguide of the first light reflection circuit is reflected, and the rest is single-ended by the second light reflection circuit. The light is transmitted through a single mode waveguide.

また、本発明の光共振回路は、上記光反射回路を2つ備え、又は、上記ハーフミラー回路を複数備え、互いに相手の反射光を入射して、反射し、出射して光共振回路を構成することを特徴とする。   Further, the optical resonance circuit of the present invention includes two of the above-described light reflection circuits or a plurality of the above-described half mirror circuits, and forms the optical resonance circuit by entering, reflecting, and emitting the reflected light of the other party. It is characterized by doing.

また、本発明のレーザ発振器は、上記光共振回路の導波路の一部に利得導波路を備えることを特徴とする。   The laser oscillator of the present invention is characterized in that a gain waveguide is provided in a part of the waveguide of the optical resonance circuit.

また、本発明の光機能回路は、本来は対称型である光機能回路の中央に上記光反射回路を配置して本来は対称型である光機能回路の片側だけの構成としたことを特徴とする。   In addition, the optical functional circuit of the present invention is characterized in that the above-described light reflecting circuit is arranged in the center of an optical functional circuit that is originally symmetric and is configured on only one side of the optical functional circuit that is originally symmetric. To do.

本発明よって得られる代表的な効果を簡単に説明すれば、下記の通りである。
・高い製造精度を必要とする素子を用いずに光反射回路を構成するので、光反射回路の作製が容易であり、かつ、損失が少ない。
・波長依存性がほとんどない素子を用いることで、波長依存性が少ない光反射器を構成できる。
・偏光依存性がほとんどない素子を用いることで、偏光依存性が少ない光反射器を構成できる。
・温度依存性がほとんどない素子を用いることで、温度依存性が少ない光反射器を構成できる。
・光共振回路、複合光共振回路を構成できる。
・レーザ発振器を構成できる。
・反射型光機能回路を構成できる。また、任意の位置に光反射器を構成することができるので、小型になる。
A typical effect obtained by the present invention will be briefly described as follows.
Since the light reflection circuit is configured without using elements that require high manufacturing accuracy, the light reflection circuit is easy to manufacture and has little loss.
-An optical reflector having little wavelength dependency can be configured by using an element having almost no wavelength dependency.
-By using an element having almost no polarization dependence, a light reflector with little polarization dependence can be configured.
-By using an element having almost no temperature dependence, an optical reflector with little temperature dependence can be configured.
-An optical resonant circuit and a composite optical resonant circuit can be configured.
・ Laser oscillator can be configured.
-A reflective optical functional circuit can be configured. Further, since the light reflector can be configured at an arbitrary position, the size is reduced.

以下、添付図面を参照しながら本発明を実施するための最良の形態について詳細に説明する。なお、全図において、同一の機能を有するものは同一符号を付け、その繰り返しの説明は省略する。光導波路には、比屈折率差の大きい構造を利用することを前提として実施例を説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In all the drawings, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted. The embodiment will be described on the assumption that a structure having a large relative refractive index difference is used for the optical waveguide.

図1は、本発明の実施例1による光反射回路の構成を示す図である。本実施例1の光反射回路10は、単一モード導波路11、Y分岐導波路12、及び周回導波路13から構成される。周回導波路13は、略円弧の形状をしており、Y分岐導波路12によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する。単一モード導波路11に入射された光はY分岐導波路12によって分岐され、周回導波路13中の右回りの伝搬光と、左回りの伝搬光となり、更に、Y分岐導波路12によって合波され、単一モード導波路11から出射される。本実施例1において、周回導波路13中を逆方向に伝搬する光は、同じ導波路を伝搬するので、等位相で再びY分岐導波路12に入射するため、原理的にはほぼ無損失で結合して出力される。   FIG. 1 is a diagram illustrating a configuration of a light reflection circuit according to a first embodiment of the present invention. The light reflecting circuit 10 according to the first embodiment includes a single mode waveguide 11, a Y branch waveguide 12, and a circular waveguide 13. The circular waveguide 13 has a substantially arc shape, and light emitted from the two waveguides branched by the Y-branch waveguide 12 enters the other waveguide. The light incident on the single mode waveguide 11 is branched by the Y-branch waveguide 12 to become clockwise propagation light and counterclockwise propagation light in the circular waveguide 13, and further combined by the Y-branch waveguide 12. And is emitted from the single mode waveguide 11. In the first embodiment, light propagating in the reverse direction in the circular waveguide 13 propagates through the same waveguide, and therefore enters the Y-branch waveguide 12 again at an equal phase. Combined and output.

例えば、比屈折率差が40%前後の、半導体コアと誘電体又は空気クラッドからなる、導波路を利用すれば、周回導波路13の曲げ半径は3μm程度にすることができるのであり、光反射回路10の全体を10μm程度の寸法で構成できる。また、比屈折率差が10%前後の、誘電体コアと低屈折率樹脂又は空気クラッドからなる、導波路を利用すれば、周回導波路13の曲げ半径は200μm程度とすることができ、全体で500μm程度の寸法で構成できる。   For example, if a waveguide consisting of a semiconductor core and a dielectric or air clad having a relative refractive index difference of around 40% is used, the bending radius of the circular waveguide 13 can be reduced to about 3 μm. The entire circuit 10 can be configured with a dimension of about 10 μm. Further, if a waveguide made of a dielectric core and a low refractive index resin or air clad having a relative refractive index difference of about 10% is used, the bending radius of the circular waveguide 13 can be set to about 200 μm. Can be configured with dimensions of about 500 μm.

本実施例1の光反射回路10の損失は、主に、Y分岐導波路12の分岐損失によって生じる。また、単一モード条件を満たす入射光に対して分岐損失の波長依存性、偏光依存性は極めて僅かであり、その結果、本実施例1の光反射回路10の反射率の波長依存性と偏光依存性は小さい。   The loss of the light reflection circuit 10 according to the first embodiment is mainly caused by the branch loss of the Y branch waveguide 12. Further, the wavelength dependence and polarization dependence of the branching loss are very slight for incident light satisfying the single mode condition. As a result, the wavelength dependence and polarization of the reflectance of the light reflection circuit 10 of the first embodiment are as follows. The dependency is small.

なお、周回導波路13で、TE光とTM光に対する伝搬定数が異なる場合がある。この影響による反射光の位相揺らぎを低減するためには、TE光とTM光に対する周回光路長差を設計波長の整数倍にすることが有効である。   Note that the propagation constant for TE light and TM light may be different in the circular waveguide 13. In order to reduce the phase fluctuation of the reflected light due to this influence, it is effective to make the difference between the optical path lengths of the TE light and the TM light an integral multiple of the design wavelength.

図2は、本発明の実施例2による光反射回路の構成を示す図である。本実施例2の光反射回路20は、単一モード導波路11、マルチモード干渉型1:2分岐導波路22、及び周回導波路13から構成される。   FIG. 2 is a diagram showing a configuration of a light reflection circuit according to the second embodiment of the present invention. The light reflecting circuit 20 of the second embodiment includes a single mode waveguide 11, a multimode interference type 1: 2 branching waveguide 22, and a circular waveguide 13.

動作原理は、実施例1と同様であるが、マルチモード干渉型1:2分岐導波路22はY分岐導波路12よりも低損失であるため、光反射回路20も低損失となるが、素子寸法はやや大きくなる。マルチモード干渉型1:2分岐導波路22は、Y分岐導波路12と比較すると、Y分岐交差部にある鋭角なエッチング箇所がないため、作製も容易である。   The operation principle is the same as that of the first embodiment, but the multimode interference type 1: 2 branching waveguide 22 has a lower loss than the Y branching waveguide 12, so that the light reflection circuit 20 also has a lower loss. Dimensions are slightly larger. The multi-mode interference type 1: 2 branch waveguide 22 is easy to manufacture because there is no sharp etching portion at the Y branch intersection as compared with the Y branch waveguide 12.

図3は、本発明の実施例3による光反射回路の構成を示す図である。本実施例3の光反射回路30は、単一モード導波路31、方向性結合型2:2分岐導波路32、及び周回導波路13から構成される。   FIG. 3 is a diagram showing the configuration of the light reflection circuit according to the third embodiment of the present invention. The light reflecting circuit 30 according to the third embodiment includes a single mode waveguide 31, a directional coupling type 2: 2 branch waveguide 32, and a circular waveguide 13.

動作原理は、実施例1、2と同様であるが、方向性結合型2:2分岐導波路32は、作製精度が高い場合、マルチモード干渉型1:2分岐導波路22よりも更に低損失であるため、光反射回路30も低損失となる。   The operating principle is the same as in the first and second embodiments, but the directional coupling type 2: 2 branch waveguide 32 has a lower loss than the multimode interference type 1: 2 branch waveguide 22 when the fabrication accuracy is high. Therefore, the light reflection circuit 30 also has a low loss.

図4は、本発明の実施例4による光共振回路の構成を示す図である。図4(a)は、光共振回路の全体構成を示す図であり、図4(b)は、2:2光結合器42a周辺の拡大図である。本実施例4の光共振回路40は、単一モード導波路11、光反射回路41a、2:2光結合器42a、光反射回路41b、単一モード導波路43、光反射回路41c、2:2光結合器42b、光反射回路41d、及び単一モード導波路11を順に接続して構成される。   FIG. 4 is a diagram showing a configuration of an optical resonant circuit according to the fourth embodiment of the present invention. FIG. 4A is a diagram showing the overall configuration of the optical resonant circuit, and FIG. 4B is an enlarged view of the periphery of the 2: 2 optical coupler 42a. The optical resonant circuit 40 of the fourth embodiment includes a single mode waveguide 11, a light reflection circuit 41a, 2: 2 optical coupler 42a, a light reflection circuit 41b, a single mode waveguide 43, a light reflection circuit 41c, 2: The two-optical coupler 42b, the light reflection circuit 41d, and the single mode waveguide 11 are connected in order.

光反射回路41aと光反射回路41bは2:2光結合器42aを介して結合している。光反射回路41aは2:2光結合器42aの入力の一方と出力の一方に接続し、光反射回路41bは2:2光結合器42aの入力の他方と出力の他方に接続している。2:2光結合器42aの強度分岐比をk:1−kとする。この場合、光反射回路41aと光反射回路41bと2:2光結合器42aから構成される部分は、反射率k、透過率1−kのハーフミラーとして機能する。このため、本光共振回路40に入射した光は、二つのミラーの間で往復し、光共振回路を構成する。単一モード導波路43の光路長を制御して共振周波数を調整することが可能である。   The light reflection circuit 41a and the light reflection circuit 41b are coupled via a 2: 2 optical coupler 42a. The light reflection circuit 41a is connected to one input and one output of the 2: 2 optical coupler 42a, and the light reflection circuit 41b is connected to the other input and the other output of the 2: 2 optical coupler 42a. The intensity branching ratio of the 2: 2 optical coupler 42a is k: 1-k. In this case, the portion composed of the light reflection circuit 41a, the light reflection circuit 41b, and the 2: 2 optical coupler 42a functions as a half mirror having a reflectance k and a transmittance 1-k. For this reason, the light incident on the optical resonant circuit 40 reciprocates between the two mirrors to form an optical resonant circuit. It is possible to adjust the resonance frequency by controlling the optical path length of the single mode waveguide 43.

図5は、本発明の実施例5による複合光共振回路の構成を示す図である。本実施例5の複合光共振回路50は、実施例4の光共振回路を多段に構成してなる。   FIG. 5 is a diagram showing a configuration of a composite optical resonance circuit according to Embodiment 5 of the present invention. The composite optical resonance circuit 50 according to the fifth embodiment is configured by configuring the optical resonance circuit according to the fourth embodiment in multiple stages.

本実施例5は、光共振回路を周波数フィルタとして利用する場合ものであり、光共振回路を多段にすることによって、フィルタ特性を急峻にしたり、共振ピークを間引いたり、複雑な波長特性を実現可能となる。   The fifth embodiment is for the case where the optical resonant circuit is used as a frequency filter. By making the optical resonant circuit multi-stage, it is possible to make the filter characteristics steep, thin out the resonance peak, and realize complex wavelength characteristics. It becomes.

図6は、本発明の実施例6による光共振回路の構成を示す図である。本実施例6の光共振回路60は、単一モード導波路11、光反射回路10a、10b、及び2:2光結合器61からなる。   FIG. 6 is a diagram showing a configuration of an optical resonant circuit according to the sixth embodiment of the present invention. The optical resonant circuit 60 of the sixth embodiment includes a single mode waveguide 11, light reflecting circuits 10 a and 10 b, and a 2: 2 optical coupler 61.

本実施例6は、光共振回路であるが、共振器外部との光入出力を2:2光結合器61で行う構成である。実施例6は、実施例4と同様の原理で動作して同様の効果を有するが、更に小型に構成可能となる。   The sixth embodiment is an optical resonant circuit, and has a configuration in which a 2: 2 optical coupler 61 performs optical input / output with the outside of the resonator. The sixth embodiment operates on the same principle as the fourth embodiment and has the same effect, but can be configured more compactly.

図7は、本発明の実施例7によるレーザ発振器の構成を示す図である。本実施例7のレーザ発振器70は、実施例4の単一モード導波路43(本実施例7の単一モード導波路71)の一部に利得導波路72を備えて構成される。   FIG. 7 is a diagram showing a configuration of a laser oscillator according to a seventh embodiment of the present invention. The laser oscillator 70 of the seventh embodiment is configured by including a gain waveguide 72 in a part of the single mode waveguide 43 of the fourth embodiment (single mode waveguide 71 of the seventh embodiment).

利得導波路72は、半導体光増幅器又は希土類元素ドープ導波路等の光増幅機能を有する導波路である。半導体光増幅器の場合は電流注入によって、希土類元素ドープ導波路の場合は光ポンピングによって、利得を持たせると、本実施例7は、レーザ発振器70として動作する。従来、導波路型レーザ発振器では、劈開ミラー、エッチドミラー、又は分布反射型ミラーなどを利用しているが、いずれも高度な作製プロセスが必要である。本実施例7では、通常の導波路形成プロセスでミラーを構成するので、製造プロセスが容易になる利点がある。   The gain waveguide 72 is a waveguide having an optical amplification function such as a semiconductor optical amplifier or a rare earth element-doped waveguide. When gain is provided by current injection in the case of a semiconductor optical amplifier and by optical pumping in the case of a rare earth element doped waveguide, the seventh embodiment operates as a laser oscillator 70. Conventionally, a waveguide type laser oscillator uses a cleaved mirror, an etched mirror, a distributed reflection type mirror, or the like, all of which require an advanced manufacturing process. In the seventh embodiment, since the mirror is formed by a normal waveguide forming process, there is an advantage that the manufacturing process becomes easy.

図8は、本発明の実施例8による反射型アレイ導波路回折格子の構成を示す図である。本実施例8の反射型アレイ導波路回折格子80は、入出力導波路81、スラブ導波路82、及び導波路アレイ83から構成される。導波路アレイ83の終端には、光反射回路84が接続されている。   FIG. 8 is a diagram showing a configuration of a reflective arrayed waveguide diffraction grating according to the eighth embodiment of the present invention. The reflective arrayed waveguide diffraction grating 80 of the eighth embodiment includes an input / output waveguide 81, a slab waveguide 82, and a waveguide array 83. A light reflection circuit 84 is connected to the end of the waveguide array 83.

この構成は、光反射回路84が、導波路アレイ83内の任意の位置に配置できる利点を活用している。導波路アレイ83が長尺な場合に有効なレイアウトである。一般に、アレイ導波路回折格子のように、対称型の光機能回路は、対称型の回路の中央に光反射器を配置することにより、反射型の光機能回路として構成することができる。このように反射型の構成にすると、同様の機能で透過型に比較して素子寸法を半減できる利点がある。本実施例8で示したアレイ導波路回折格子だけでなく、光反射回路84を適用して、各種の光機能回路を反射型に構成できる。   This configuration takes advantage of the advantage that the light reflecting circuit 84 can be arranged at an arbitrary position in the waveguide array 83. This is an effective layout when the waveguide array 83 is long. In general, a symmetrical optical functional circuit such as an arrayed waveguide diffraction grating can be configured as a reflective optical functional circuit by disposing an optical reflector in the center of the symmetrical circuit. Thus, the reflection type configuration has an advantage that the element size can be halved by the same function as compared with the transmission type. In addition to the arrayed waveguide diffraction grating shown in the eighth embodiment, various light functional circuits can be configured in a reflective type by applying the light reflecting circuit 84.

図9は、本発明の実施例9による反射型アレイ導波路回折格子の構成を示す図である。本実施例9の反射型アレイ導波路回折格子90は、トポロジー的には実施例8の反射型アレイ導波路回折格子80の構成と同じであるが、導波路アレイ83を螺旋状に配置することでさらにコンパクトに構成している。   FIG. 9 is a diagram showing a configuration of a reflective arrayed waveguide diffraction grating according to the ninth embodiment of the present invention. The reflection type arrayed waveguide diffraction grating 90 of the ninth embodiment is topologically the same as the configuration of the reflection type arrayed waveguide diffraction grating 80 of the eighth embodiment, but the waveguide array 83 is arranged in a spiral shape. It has a more compact structure.

なお、本発明は上記実施の形態に限定されるものではない。   The present invention is not limited to the above embodiment.

本発明の実施例1による光反射回路の構成を示す図である。It is a figure which shows the structure of the light reflection circuit by Example 1 of this invention. 本発明の実施例2による光反射回路の構成を示す図である。It is a figure which shows the structure of the light reflection circuit by Example 2 of this invention. 本発明の実施例3による光反射回路の構成を示す図である。It is a figure which shows the structure of the light reflection circuit by Example 3 of this invention. 本発明の実施例4による光共振回路の構成を示す図である。It is a figure which shows the structure of the optical resonant circuit by Example 4 of this invention. 本発明の実施例5による複合光共振回路の構成を示す図である。It is a figure which shows the structure of the composite optical resonance circuit by Example 5 of this invention. 本発明の実施例6による光共振回路の構成を示す図である。It is a figure which shows the structure of the optical resonant circuit by Example 6 of this invention. 本発明の実施例7によるレーザ発振器の構成を示す図である。It is a figure which shows the structure of the laser oscillator by Example 7 of this invention. 本発明の実施例8による反射型アレイ導波路回折格子の構成を示す図である。It is a figure which shows the structure of the reflection type | mold array waveguide diffraction grating by Example 8 of this invention. 本発明の実施例9による反射型アレイ導波路回折格子の構成を示す図である。It is a figure which shows the structure of the reflection type | mold array waveguide diffraction grating by Example 9 of this invention. 従来の光反射回路の構成を示す図である。It is a figure which shows the structure of the conventional light reflection circuit.

符号の説明Explanation of symbols

10、10a、10b 光反射回路
11 単一モード導波路
12 Y分岐導波路
13 周回導波路
20 光反射回路
22 マルチモード干渉型1:2分岐導波路
30 光反射回路
31 単一モード導波路
32 方向性結合型2:2分岐導波路
40 光共振回路
41a〜41d 光反射回路
42a、42b 2:2光結合器
43 単一モード導波路
50 複合光共振回路
60 光共振回路
61 2:2光結合器
70 レーザ発振器
71 単一モード導波路
72 利得導波路
80 反射型アレイ導波路回折格子
81 入出力導波路
82 スラブ導波路
83 導波路アレイ
84 光反射回路
90 反射型アレイ導波路回折格子
110 光反射回路
111 コア
112 クラッド
113 溝
114 ミラー
DESCRIPTION OF SYMBOLS 10, 10a, 10b Light reflection circuit 11 Single mode waveguide 12 Y branch waveguide 13 Circulation waveguide 20 Light reflection circuit 22 Multimode interference type 1: 2 branch waveguide 30 Light reflection circuit 31 Single mode waveguide 32 Direction Sexual coupling type 2: 2-branch waveguide 40 Optical resonant circuit 41a to 41d Optical reflecting circuit 42a, 42b 2: 2 optical coupler 43 Single mode waveguide 50 Compound optical resonant circuit 60 Optical resonant circuit 61 2: 2 optical coupler Reference Signs List 70 Laser oscillator 71 Single mode waveguide 72 Gain waveguide 80 Reflective array waveguide diffraction grating 81 Input / output waveguide 82 Slab waveguide 83 Waveguide array 84 Optical reflection circuit 90 Reflective array waveguide diffraction grating 110 Optical reflection circuit 111 Core 112 Clad 113 Groove 114 Mirror

Claims (7)

入力光が入射する単一モード導波路と、
該単一モード導波路からの出射光を入射して2分岐するY分岐導波路と、
該Y分岐導波路によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する略円弧の形状の周回導波路と
を備えることを特徴とする光反射回路。
A single mode waveguide into which the input light is incident;
A Y-branch waveguide that divides the light emitted from the single-mode waveguide into two branches;
A light reflection circuit comprising: a circular waveguide having a substantially arc shape in which light emitted from two waveguides branched by the Y branch waveguide is incident on the other waveguide.
入力光が入射する単一モード導波路と、
該単一モード導波路からの出射光を入射して2分岐するマルチモード干渉型1対2の分岐導波路と、
該分岐導波路によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する略円弧の形状の周回導波路と
を備えることを特徴とする光反射回路。
A single mode waveguide into which the input light is incident;
A multimode interference type one-to-two branching waveguide that splits the light emitted from the single-mode waveguide into two branches;
An optical reflection circuit comprising: a circular waveguide having a substantially arc shape in which light emitted from two waveguides branched by the branching waveguide is incident on the other waveguide.
入力光が入射する単一モード導波路と、
該単一モード導波路からの出射光を入射して2分岐する方向性結合型の分岐導波路と、
該分岐導波路によって分岐された2つの導波路からの出射光を互いに他方の導波路に入射する略円弧の形状の周回導波路と
を備えることを特徴とする光反射回路。
A single mode waveguide into which the input light is incident;
A directional coupling type branched waveguide that divides the light emitted from the single mode waveguide into two branches;
An optical reflection circuit comprising: a circular waveguide having a substantially arc shape in which light emitted from two waveguides branched by the branching waveguide is incident on the other waveguide.
請求項1乃至3いずれかに記載の光反射回路を2つ備え、それぞれの前記周回導波路の途中に、第1の光反射回路の前記周回導波路の2つの前記導波路からの出射光を第1の入力及び第1の出力に入射する2対2光結合回路を備え、
該2対2光結合回路の第2の入力及び第2の出力からの出射光を第2の光反射回路の前記周回導波路の2つの前記導波路に入射して、前記第1の光反射回路の単一モード導波路からの入射光の一部を反射し残りを前記第2の光反射回路の単一モード導波路に透過することを特徴とするハーフミラー回路。
2. The two light reflection circuits according to claim 1 are provided, and light emitted from the two waveguides of the circular waveguide of the first light reflection circuit is provided in the middle of each of the circular waveguides. A two-to-two optical coupling circuit incident on the first input and the first output;
Light emitted from the second input and the second output of the two-to-two optical coupling circuit is incident on the two waveguides of the circular waveguide of the second light reflecting circuit, and the first light reflection is performed. A half mirror circuit, wherein a part of incident light from a single mode waveguide of the circuit is reflected and the rest is transmitted to the single mode waveguide of the second light reflection circuit.
請求項1乃至3いずれかに記載の光反射回路を2つ備え、又は、請求項4記載のハーフミラー回路を複数備え、互いに相手の反射光を入射して、反射し、出射して光共振回路を構成することを特徴とする光共振回路。   It comprises two light reflection circuits according to any one of claims 1 to 3 or a plurality of half mirror circuits according to claim 4, and each of them reflects, reflects and emits the reflected light of the other party, and optical resonance An optical resonant circuit comprising a circuit. 請求項5記載の光共振回路の導波路の一部に利得導波路を備えることを特徴とするレーザ発振器。   A laser oscillator comprising a gain waveguide in a part of the waveguide of the optical resonant circuit according to claim 5. 本来は対称型である光機能回路の中央に請求項1乃至3いずれかに記載の光反射回路を配置して本来は対称型である光機能回路の片側だけの構成としたことを特徴とする光機能回路。
The light reflecting circuit according to any one of claims 1 to 3 is arranged in the center of an optical functional circuit that is originally symmetric, and is configured only on one side of the optical functional circuit that is originally symmetric. Optical functional circuit.
JP2007114747A 2007-04-24 2007-04-24 Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit Pending JP2008268763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114747A JP2008268763A (en) 2007-04-24 2007-04-24 Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114747A JP2008268763A (en) 2007-04-24 2007-04-24 Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit

Publications (1)

Publication Number Publication Date
JP2008268763A true JP2008268763A (en) 2008-11-06

Family

ID=40048316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114747A Pending JP2008268763A (en) 2007-04-24 2007-04-24 Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit

Country Status (1)

Country Link
JP (1) JP2008268763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098472A (en) * 2010-11-01 2012-05-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
CN104714275A (en) * 2015-03-06 2015-06-17 兰州大学 Y-branch-based easily-integrated silica-based wave guide optical reflector
WO2018084238A1 (en) * 2016-11-07 2018-05-11 Nttエレクトロニクス株式会社 Optical circuit board, optical device, and alignment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098472A (en) * 2010-11-01 2012-05-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
CN104714275A (en) * 2015-03-06 2015-06-17 兰州大学 Y-branch-based easily-integrated silica-based wave guide optical reflector
WO2018084238A1 (en) * 2016-11-07 2018-05-11 Nttエレクトロニクス株式会社 Optical circuit board, optical device, and alignment method
JP2018077276A (en) * 2016-11-07 2018-05-17 Nttエレクトロニクス株式会社 Optical circuit board, optical device, and alignment method
US10908356B2 (en) 2016-11-07 2021-02-02 Ntt Electronics Corporation Optical device having a fiber array, and method of alignment thereof

Similar Documents

Publication Publication Date Title
JP5304158B2 (en) Optical resonator and tunable laser
JP5692387B2 (en) Semiconductor optical device
US9829630B2 (en) Tunable reflectors based on multi-cavity interference
JP6687060B2 (en) Optical waveguide, optical component using the same, and wavelength tunable laser
JP5867509B2 (en) Optical semiconductor device
JP2011253930A (en) Semiconductor optical device
JP5240095B2 (en) Wavelength tunable laser light source and driving method thereof
EP3158373B1 (en) Phase dependent multimode interference device for coupled cavity lasers
CN217332920U (en) Optical coupler
JP2021039277A (en) Optical waveguide terminal element and optical filter using the same
JP2010212472A (en) Wavelength variable light source and adjusting method of oscillation wavelength thereof
JP2008268763A (en) Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit
JP4377848B2 (en) Spot size converter
Cherchi et al. Deeply etched MMI-based components on 4 μm thick SOI for SOA-based optical RAM cell circuits
JP5375620B2 (en) Tunable light source
JP2006073549A (en) External resonator-type wavelength variable optical source
JP2011171355A (en) Wavelength-variable laser light source
JP5880087B2 (en) Grating element and optical element
WO2006103850A1 (en) Waveguide element and laser generator
WO2011001571A1 (en) Wavelength-variable laser light source and method for driving same
JP2014191088A (en) Optical wavelength filter
JP2010212610A (en) Variable wavelength light source and method for manufacturing the same
CN114006263B (en) Silicon-based integrated external cavity narrow linewidth laser
JP2010078648A (en) Optical resonator and wavelength tunable laser
WO2020145176A1 (en) Tunable laser