JP2008268470A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2008268470A
JP2008268470A JP2007110188A JP2007110188A JP2008268470A JP 2008268470 A JP2008268470 A JP 2008268470A JP 2007110188 A JP2007110188 A JP 2007110188A JP 2007110188 A JP2007110188 A JP 2007110188A JP 2008268470 A JP2008268470 A JP 2008268470A
Authority
JP
Japan
Prior art keywords
charging
image carrier
forming apparatus
image forming
cleaning member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007110188A
Other languages
Japanese (ja)
Inventor
Masaya Kawada
将也 河田
Masayuki Hama
雅之 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007110188A priority Critical patent/JP2008268470A/en
Publication of JP2008268470A publication Critical patent/JP2008268470A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent image irregularity caused by contamination on a charging member 102 in an image forming apparatus that includes an image carrier 101 which can rotate and carries a developer, the charging member 102 which can rotate and charges the image carrier, and a transfer means 106 which transfers the developer from the image carrier to a transfer material P. <P>SOLUTION: The image forming apparatus has an inorganic particle supply means 111 for supplying inorganic particles S having perovskite crystals with an average particle diameter D of 0.03 to 0.50 [μm] to the surface of the image carrier 101, a rubbing means 111 for rubbing the surface of the image carrier after the developer is transferred to a transfer material while the inorganic particles are present, and a rotatable cleaning member 103 to be in contact with the charging member to clean the surface of the charging member. The cleaning member is an elastic member having a surface roughness Rzc in an amount 5 to 500 times the average particle diameter D. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、現像剤を担持する、回転可能な像担持体と、前記像担持体に対向して配設され、像担持体を帯電する、回転可能な帯電部材と、前記像担持体から前記現像剤を被転写体に転写する転写手段と、を有する画像形成装置に関するものである。   The present invention includes a rotatable image carrier that carries a developer, a rotatable charging member that is disposed to face the image carrier and charges the image carrier, and the image carrier to The present invention relates to an image forming apparatus including a transfer unit that transfers a developer to a transfer target.

転写方式の電子写真画像形成装置や静電記録画像形成装置等においては、電子写真感光体や静電記録誘電体等の回転可能な像担持体を有する。そして、像担持体の表面を帯電手段により所定の極性・電位に帯電する帯電工程を有する。その帯電面に情報書き込み手段により画像情報の静電像を形成する静電像形成工程を有する。その静電像を現像手段の現像剤により現像して顕像する現像工程を有する。そして、像担持体に形成担持された現像剤による像を被転写体に転写する転写工程を有する。像担持体は繰り返して画像形成に使用される。   A transfer type electrophotographic image forming apparatus, electrostatic recording image forming apparatus, or the like has a rotatable image carrier such as an electrophotographic photosensitive member or an electrostatic recording dielectric. Then, a charging step of charging the surface of the image carrier to a predetermined polarity and potential by a charging unit is provided. There is an electrostatic image forming step of forming an electrostatic image of image information on the charging surface by information writing means. A developing step of developing the electrostatic image with a developer of a developing unit to visualize the electrostatic image; Then, the image forming apparatus includes a transfer step of transferring the image formed by the developer carried on the image carrier to the transfer target. The image carrier is repeatedly used for image formation.

像担持体の帯電手段としては、非接触帯電手段と接触帯電手段とがある。   As charging means for the image carrier, there are non-contact charging means and contact charging means.

非接触帯電手段は、スコロトロンやコロトロン等のコロナ帯電器であり、ワイヤ電極等の放電電極と該放電電極を囲むシールド電極を備え、放電開口部を像担持体に対向させて非接触に配設される。そして、放電電極とシールド電極に高圧を印加することにより生じる放電電流(コロナシャワー)に像担持体の面をさらすことで像担持体の面を所定の極性・電位に帯電させるものである。   The non-contact charging means is a corona charger such as a scorotron or corotron, and includes a discharge electrode such as a wire electrode and a shield electrode surrounding the discharge electrode, and is disposed in a non-contact manner with the discharge opening facing the image carrier. Is done. Then, by exposing the surface of the image carrier to a discharge current (corona shower) generated by applying a high voltage to the discharge electrode and the shield electrode, the surface of the image carrier is charged to a predetermined polarity and potential.

接触帯電手段は、像担持体の面に、帯電部材として、ローラー型(帯電ローラー)、ファーブラシ型、磁気ブラシ型、ブレード型等の導電性部材(電極部材)を接触させて配設する。そして、この帯電部材に所定の帯電バイアスを印加して像担持体の面を所定の極性・電位に帯電させるものである。   The contact charging means is disposed by contacting a conductive member (electrode member) such as a roller type (charging roller), a fur brush type, a magnetic brush type, or a blade type as a charging member on the surface of the image carrier. A predetermined charging bias is applied to the charging member to charge the surface of the image carrier to a predetermined polarity / potential.

ここで、帯電部材は像担持体の面に必ずしも接触していなくてもよい。すなわち、帯電部材と像担持体との間に、ギャップ間電圧と補正パッシェンカーブで決まる放電可能領域が保証されていれば、帯電部材はは像担持体に対して、例えば数十μmの空隙(間隙)を存して非接触に近接配置されていてもよい。この場合も、像担持体の面は帯電される(近接帯電)。本発明においては、接触帯電手段にこの近接帯電も含むものとする。   Here, the charging member is not necessarily in contact with the surface of the image carrier. That is, if a dischargeable area determined by the voltage between the gap and the correction Paschen curve is ensured between the charging member and the image carrier, the charging member has a gap of, for example, several tens of μm from the image carrier. They may be arranged close to each other with no gap. Also in this case, the surface of the image carrier is charged (proximity charging). In the present invention, the contact charging means includes this proximity charging.

接触帯電手段は、非接触帯電手段であるコロナ帯電器と比較して、小型化できること、オゾン発生量を低減できること等の点から、レーザービームプリンターなどの画像形成装置に利用されている。   The contact charging unit is used in an image forming apparatus such as a laser beam printer because it can be downsized and the amount of ozone generation can be reduced as compared with a corona charger that is a non-contact charging unit.

接触帯電手段を有する画像形成装置では、帯電手段に付着したトナー粒子等の異物を除去する為に、パッドやファーブラシ等を当接させる清掃方法や、らせん状の清掃部材を駆動させてなる清掃手段などを具備させている(特許文献1)。   In an image forming apparatus having a contact charging unit, a cleaning method in which a pad, a fur brush, or the like abuts or a spiral cleaning member is driven to remove foreign matter such as toner particles attached to the charging unit. Means are provided (Patent Document 1).

また、その清掃手段の簡易化のために、清掃部材を帯電手段に従動させることが提案されている(特許文献2)。また、連泡メラミン樹脂発泡体からなる清掃部材が提案されている(特許文献3〜5)。また、ゴムからなり、帯電手段よりも硬度や粗さが小さい清掃部材が提案されている(特許文献6〜7)。また、清掃した異物蓄積の為に、単位長さあたりのセル数を規定したスポンジ状清掃部材が提案されている(特許文献8)。   In order to simplify the cleaning means, it has been proposed that the cleaning member is driven by the charging means (Patent Document 2). Moreover, the cleaning member which consists of open-cell melamine resin foam is proposed (patent documents 3-5). Further, cleaning members made of rubber and having hardness and roughness smaller than that of charging means have been proposed (Patent Documents 6 to 7). In addition, a sponge-like cleaning member that defines the number of cells per unit length has been proposed for the accumulation of cleaned foreign matter (Patent Document 8).

一方、画像形成装置では、クリーニング性や、画像流れ防止等のために、数10〜数100nm径の微粒子を使用する技術が提案されている。80〜300nm径の微粒子と研磨剤、潤滑剤をトナー粒子に外添して使用する例がある(特許文献9)。また、酸化セリウムと潤滑粒子を併用し、更に20〜300nm径の無機微粒子を使用する例ある(特許文献10)。また、一次粒子の平均粒径が30〜300nmの、粒子形状が規定されたペロブスカイト型結晶を有する粒子を有するトナー使用する例がある(特許文献11)。
特開平08−137208号公報 特開平05−297690号公報 特開2005−257966号公報 特開2005−221981号公報 特開2000−122505号公報 特開平10−063069号公報 特開平08−095350号公報 特開平09−152760号公報 特開2004−037734号公報 特開2003−140382号公報 特開2005−338750号公報
On the other hand, in an image forming apparatus, a technique using fine particles having a diameter of several tens to several hundreds of nanometers has been proposed for cleaning performance and prevention of image flow. There is an example in which fine particles having a diameter of 80 to 300 nm, an abrasive and a lubricant are externally added to toner particles (Patent Document 9). In addition, there is an example in which cerium oxide and lubricating particles are used in combination, and inorganic fine particles having a diameter of 20 to 300 nm are used (Patent Document 10). In addition, there is an example in which a toner having particles having a perovskite crystal whose particle shape is defined and having an average primary particle size of 30 to 300 nm is used (Patent Document 11).
Japanese Patent Laid-Open No. 08-137208 JP 05-297690 A JP 2005-257966 A Japanese Patent Laid-Open No. 2005-221981 JP 2000-122505 A Japanese Patent Laid-Open No. 10-063069 Japanese Patent Application Laid-Open No. 08-095350 JP 09-152760 A JP 2004-037734 A JP 2003-140382 A JP 2005-338750 A

これらの微粒子を使用した系では、上述のトナーだけでなく、微粒子も帯電部材に付着する。多量に、或いは不均一に付着すると、帯電部材での帯電が不均一になるため、これらの粒子も清掃する必要がある。   In a system using these fine particles, not only the above-described toner but also fine particles adhere to the charging member. When a large amount or non-uniform adhesion occurs, the charging of the charging member becomes non-uniform, and it is necessary to clean these particles.

しかしながら、微粒子は数10〜数100nmの粒径を有し、一般に帯電部材の表面粗さよりも小さい。また、小粒径である故に付着性が強く、従来の清掃手段では、帯電部材に付着したこれらの微粒子を均一に清掃する事が困難であった。清掃効率を上げるために、清掃手段を駆動させるなどすると、駆動系等、機構が複雑になるばかりでなく、帯電部材や清掃手段の損耗により一方乃至は双方の寿命が低下する場合があった。   However, the fine particles have a particle size of several tens to several hundreds of nanometers and are generally smaller than the surface roughness of the charging member. Further, since the particle size is small, the adhesion is strong, and it has been difficult for the conventional cleaning means to uniformly clean these fine particles adhering to the charging member. When the cleaning means is driven in order to increase the cleaning efficiency, not only the mechanism such as the drive system becomes complicated, but also the life of one or both may be reduced due to wear of the charging member or the cleaning means.

本発明は、上述のごとき問題点を解決した画像形成装置を提供することを目的とする。具体的には、帯電部材に付着した微粒子を長期に渡って、良好に除去できるクリーニング性を維持し、安定した画像特性を高水準で維持できる画像形成装置を提供することを目的とする。   An object of the present invention is to provide an image forming apparatus that solves the above-described problems. Specifically, an object of the present invention is to provide an image forming apparatus capable of maintaining cleaning properties that can satisfactorily remove fine particles adhering to a charging member over a long period of time and maintaining stable image characteristics at a high level.

上記の目的を達成するための本発明に係る画像形成装置の代表的な構成は、
現像剤を担持する、回転可能な像担持体と、前記像担持体に対向して配設され、像担持体を帯電する、回転可能な帯電部材と、前記像担持体から前記現像剤を被転写体に転写する転写手段と、を有する画像形成装置において、
前記像担持体の表面に、平均粒径Dが0.03〜0.50[μm]のペロブスカイト型結晶を有する無機粒子を供給する無機粒子供給手段と、
前記現像剤を前記被転写体に転写した後の前記像担持体の表面を、前記無機粒子が存在する状態で摺擦する摺擦手段と、
前記帯電部材に接触し前記帯電部材の表面を清掃する、回動可能な清掃部材と、
を有し、
前記清掃部材は、弾性部材であって、表面粗さRzcが、前記平均粒径Dの5〜500倍である事を特徴とする。
A typical configuration of the image forming apparatus according to the present invention for achieving the above object is as follows:
A rotatable image carrier that carries the developer, a rotatable charging member that is disposed opposite the image carrier and charges the image carrier, and the developer that is covered by the image carrier. In an image forming apparatus having a transfer means for transferring to a transfer body,
Inorganic particle supply means for supplying inorganic particles having perovskite crystals having an average particle diameter D of 0.03 to 0.50 [μm] to the surface of the image carrier;
Rubbing means for rubbing the surface of the image carrier after the developer is transferred to the transfer body in the presence of the inorganic particles;
A rotatable cleaning member that contacts the charging member and cleans the surface of the charging member;
Have
The cleaning member is an elastic member, and the surface roughness Rzc is 5 to 500 times the average particle diameter D.

本発明により、帯電部材の表面に付着した微粒子を、軽負荷で、且つ良好に清掃することができ、長期に渡り良好な画質を維持することができる。   According to the present invention, fine particles adhering to the surface of the charging member can be cleaned well with a light load, and good image quality can be maintained over a long period of time.

粒径や形状が規定された微粒子を使用することで、画像流れなどの画像欠陥を防止すると共に、帯電手段の汚損を防止し、メンテナンスの負荷を低減する事ができる。   By using fine particles having a prescribed particle size and shape, image defects such as image flow can be prevented, the charging means can be prevented from fouling, and the maintenance load can be reduced.

以下、図に基づいて本発明の一実施形態を説明するが、本発明は以下に説明する実施形態や実験例に何ら制限されるものではない。   Hereinafter, one embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiment and experimental examples described below.

《画像形成装置例の概略構成》
図1に、本発明に係る画像形成装置の一例の概略構成を示す。この画像形成装置は転写方式の電子写真画像形成装置である。
<< Schematic Configuration of Image Forming Apparatus Example >>
FIG. 1 shows a schematic configuration of an example of an image forming apparatus according to the present invention. This image forming apparatus is a transfer type electrophotographic image forming apparatus.

この画像形成装置は、現像剤を担持する、回転可能な像担持体としてのドラム型の電子写真感光体101を有する。この像担持体101は矢印Xの時計方向に所定の速度で回転駆動される。   This image forming apparatus has a drum-type electrophotographic photosensitive member 101 as a rotatable image carrier that carries a developer. The image carrier 101 is driven to rotate in the clockwise direction indicated by the arrow X at a predetermined speed.

回転する像担持体101の表面は、像担持体101に対向して配設され、像担持体101を帯電する、回転可能な帯電部材102により所定の極性・電位に一様に帯電処理される。帯電部材102は、本例においては、像担持体101に対して接触させて配設したローラー型の接触帯電部材(以下、帯電ローラーと記す)である。この帯電ローラー102は像担持体101の回転に従動して回転し、電源部(不図示)から所定の帯電バイアスが印加される。   The surface of the rotating image carrier 101 is disposed opposite to the image carrier 101 and is uniformly charged to a predetermined polarity and potential by a rotatable charging member 102 that charges the image carrier 101. . In this example, the charging member 102 is a roller-type contact charging member (hereinafter referred to as a charging roller) disposed in contact with the image carrier 101. The charging roller 102 rotates following the rotation of the image carrier 101, and a predetermined charging bias is applied from a power supply unit (not shown).

帯電ローラー102には、回動可能な清掃部材(以下、帯電清掃部材と記す)103を接触させて配設してある。この帯電清掃部材103は、帯電ローラー102の回転に従動して回転して、帯電ローラー102の表面に付着した微粒子等の異物(ローラー汚染物)を除去して帯電ローラー103を清掃する。   A rotating cleaning member (hereinafter referred to as a charging cleaning member) 103 is disposed in contact with the charging roller 102. The charging cleaning member 103 rotates following the rotation of the charging roller 102 to remove foreign matters such as fine particles (roller contaminants) adhering to the surface of the charging roller 102 and clean the charging roller 103.

次いで、像担持体101の帯電面に対して、情報書き込み手段としての画像露光手段104により画像情報の露光がなされて、像担持体101の面に露光した画像情報に対応した静電像が形成される。画像露光手段104は、例えば、レーザー走査露光手段である。LEDアレイ・螢光等などの光源と液晶シャッタ等の組み合わせなどによる、他のデジタル露光装置でもよい。画像結像投影光学装置等のアナログ露光手段でもよい。   Next, image information is exposed to the charged surface of the image carrier 101 by an image exposure unit 104 as information writing unit, and an electrostatic image corresponding to the image information exposed on the surface of the image carrier 101 is formed. Is done. The image exposure unit 104 is, for example, a laser scanning exposure unit. Other digital exposure apparatuses using a combination of a light source such as an LED array or fluorescent light and a liquid crystal shutter may be used. Analog exposure means such as an image imaging projection optical apparatus may be used.

デジタル画像形成方法では、静電像形成方式として、画像情報と露光部との関係で、大きく分けて2つの方式がある。1つは、帯電した像担持体101の表面に、画像情報の非画像部(背景部)を露光するバックグラウンド露光方式(背面露光方式:BAE、Back Area Exposure)である。もう1つは、帯電した感光体101の表面に、画像部を露光するイメージ露光方式(IAE、Image Area Exposure)である。BAE方式は、露光した背景部以外の部分を現像する正規現像方式が採用される。IAE方式は、逆に、非露光部分を現像する反転現像方式が採用される。   In a digital image forming method, there are roughly two types of electrostatic image forming methods depending on the relationship between image information and an exposure unit. One is a background exposure method (back exposure method: BAE, Back Area Exposure) in which a non-image portion (background portion) of image information is exposed on the surface of the charged image carrier 101. The other is an image exposure method (IAE: Image Area Exposure) in which an image portion is exposed on the surface of a charged photoreceptor 101. The BAE method employs a regular development method that develops portions other than the exposed background portion. In contrast, the IAE method employs a reversal development method in which a non-exposed portion is developed.

次いで、その静電像が現像手段105により現像剤の像(トナー像)として顕像される。現像手段105は、正規現像手段であっても、反転現像手段であってもよい。一般に、静電像のトナーによる現像方法には、1成分非接触現像方式と、1成分接触現像方式と、2成分接触現像方式と、2成分非接触現像方式と、の4種類に大別される。1成分非接触現像方式は、非磁性トナーをブレード等でスリーブ等の現像剤担持搬送部材上に塗布して、又は磁性トナーを現像剤担持搬送部材上に磁気力によって塗布して、像担持体に対して非接触状態で適用して静電像を現像する方法である。1成分接触現像方式は、上記のように現像剤担持搬送部材上に塗布した非磁性トナー又は磁性トナーを像担持体に対して接触状態で適用して静電像を現像する方法である。2成分接触現像方式は、トナーと磁性キャリアを混合した2成分現像剤を用いて磁気力により搬送して像担持体に対して接触状態で適用して静電像を現像する方法である。2成分非接触現像方式は、上記の2成分現像剤を像担持体に対して非接触状態で適用して静電像を現像する方法である。   Subsequently, the electrostatic image is developed as a developer image (toner image) by the developing means 105. The developing unit 105 may be a regular developing unit or a reversal developing unit. In general, development methods of electrostatic images using toner are roughly classified into four types: a one-component non-contact development method, a one-component contact development method, a two-component contact development method, and a two-component non-contact development method. The In the one-component non-contact developing method, non-magnetic toner is applied onto a developer carrying / conveying member such as a sleeve with a blade or the like, or magnetic toner is applied onto the developer carrying / conveying member by a magnetic force. In this method, the electrostatic image is developed in a non-contact state. The one-component contact development method is a method for developing an electrostatic image by applying the nonmagnetic toner or magnetic toner applied on the developer carrying member as described above in contact with the image carrier. The two-component contact development method is a method of developing an electrostatic image by using a two-component developer in which toner and a magnetic carrier are mixed and conveying the magnetic force and applying it in contact with an image carrier. The two-component non-contact developing method is a method for developing an electrostatic image by applying the above two-component developer to the image carrier in a non-contact state.

現像剤は、少なくともトナー粒子と外添剤を含む。トナー粒子は、高画質化、及びクリーニング性などの観点から、質量平均粒径が4乃至12μmが好ましく使用される。トナー粒子、外添剤は共に周知のものを使用することができる。トナー粒子は円形度が0.930以上0.970以下であると、後述する像担持体表面処理手段107でトナー粒子が拡散され、良好なクリーニング性が得られる。また、この拡散に伴い、後述する無機粒子Sのクリーニング手段の当接部近傍での、長手方向への均一性も向上するので好ましい。   The developer includes at least toner particles and an external additive. The toner particles preferably have a mass average particle diameter of 4 to 12 μm from the viewpoints of high image quality and cleanability. Well-known toner particles and external additives can be used. When the circularity of the toner particles is 0.930 or more and 0.970 or less, the toner particles are diffused by the image carrier surface treatment means 107 described later, and a good cleaning property is obtained. Further, with this diffusion, the uniformity in the longitudinal direction in the vicinity of the contact portion of the cleaning means for the inorganic particles S to be described later is also improved, which is preferable.

感光体101に形成された現像剤像が、転写手段106との対向部である転写部において、被転写体(記録媒体)としての転写材(記録材)Pに対して転写される。転写材Pは所定の制御タイミングで給送手段(不図示)から給送され、レジスト手段113により転写部に対して所定の制御タイミングで導入される。転写手段106は、本例では、接触転写部材である転写電ローラーを感光体1に接触させて用いている。像担持体101と転写電ローラー106との当接ニップ部が転写部である。転写電ローラー106には所定の制御タイミングで電源部(不図示)から所定に転写バイアス(トナーの帯電極性とは逆極性の転写バイアス)が印加される。これにより、転写部を挟持搬送される転写材Pに対して、像担持体101に形成されている現像剤像が静電的に転写される。   The developer image formed on the photoreceptor 101 is transferred to a transfer material (recording material) P as a transfer target (recording medium) in a transfer portion that is a portion facing the transfer means 106. The transfer material P is fed from a feeding unit (not shown) at a predetermined control timing, and is introduced into the transfer portion by the registration unit 113 at a predetermined control timing. In this example, the transfer unit 106 uses a transfer electric roller, which is a contact transfer member, in contact with the photoreceptor 1. A contact nip portion between the image carrier 101 and the transfer roller 106 is a transfer portion. A predetermined transfer bias (transfer bias having a polarity opposite to the charging polarity of the toner) is applied to the transfer electric roller 106 from a power source (not shown) at a predetermined control timing. As a result, the developer image formed on the image carrier 101 is electrostatically transferred to the transfer material P that is nipped and conveyed by the transfer portion.

転写部を通った転写材Pは像担持体101の面から分離され、搬送手段109により定着手段(不図示)に導入される。定着手段は、転写材P上の未定着の現像剤像を、熱、或いは熱と圧力、或いは圧力により転写材Pの面に固着画像として定着する。画像定着を受けた転写材Pが画像形成物として出力される。   The transfer material P that has passed through the transfer portion is separated from the surface of the image carrier 101 and is introduced into a fixing means (not shown) by the conveying means 109. The fixing unit fixes the unfixed developer image on the transfer material P as a fixed image on the surface of the transfer material P by heat, heat and pressure, or pressure. The transfer material P that has undergone image fixing is output as an image formed product.

転写材分離後の像担持体101の面は、イレーサランプ等の除電手段108により全面露光されて除電処理を受ける。更に、像担持体表面処理手段107により表面処理されて、繰り返して画像形成に供される。   The surface of the image carrier 101 after separation of the transfer material is exposed to the entire surface by a discharging unit 108 such as an eraser lamp and subjected to a discharging process. Further, the surface is processed by the image carrier surface processing means 107 and repeatedly used for image formation.

像担持体表面処理手段107は、容器114内に、像担持体101の面から転写残現像剤を除去して像担持体面を清掃するクリーニング部材110を有する。また、無機粒子供給・摺擦手段111を有する。クリーニング部材110は、本例においては、像担持体101に像担持体回転方向に対してカウンターに当接させたクリーニングブレードである。無機粒子供給・摺擦手段111は、クリーニング部材110よりも像担持体回転方向上流側において像担持体101に当接させたローラーである。このローラー111は、像担持体101との当接部において像担持体101の回転方向とは逆方向に回転駆動される。また、このローラー111は、無機粒子Sを収容させたトレイ115の無機粒子溜まり部に接触させてある。   The image carrier surface processing means 107 has a cleaning member 110 in the container 114 for removing the transfer residual developer from the surface of the image carrier 101 and cleaning the image carrier surface. In addition, inorganic particle supply / sliding means 111 is provided. In this example, the cleaning member 110 is a cleaning blade in which the image carrier 101 is brought into contact with the counter with respect to the rotation direction of the image carrier. The inorganic particle supplying / sliding means 111 is a roller that is brought into contact with the image carrier 101 on the upstream side in the image carrier rotation direction with respect to the cleaning member 110. The roller 111 is rotationally driven in a direction opposite to the rotation direction of the image carrier 101 at a contact portion with the image carrier 101. The roller 111 is brought into contact with the inorganic particle reservoir portion of the tray 115 in which the inorganic particles S are accommodated.

無機粒子Sは、平均粒径Dが0.03〜0.50[μm](30〜500nm)のペロブスカイト型結晶を有する粒子であり、像担持体101に対する研磨剤(クリーニング補助剤)である。トレイ115の無機粒子Sがローラー111の表面に付着してローラー111の回転によりローラー111と像担持体101との当接部に運ばれて、像担持体101の面に供給される。そして、このローラー111の回転により、転写後の像担持体101の表面が無機粒子Sが存在する状態で摺擦される。このローラー111による、像担持体101の表面に対する無機粒子Sの供給と摺擦により、像担持体101の表面が研磨されて、像担持体表面に付着する帯電生成物の除去がなされる。   The inorganic particles S are particles having perovskite crystals having an average particle diameter D of 0.03 to 0.50 [μm] (30 to 500 nm), and are abrasives (cleaning aids) for the image carrier 101. The inorganic particles S of the tray 115 adhere to the surface of the roller 111 and are carried to the contact portion between the roller 111 and the image carrier 101 by the rotation of the roller 111 and supplied to the surface of the image carrier 101. Then, by the rotation of the roller 111, the surface of the image carrier 101 after the transfer is rubbed in a state where the inorganic particles S are present. By supplying and rubbing the inorganic particles S to the surface of the image carrier 101 by the roller 111, the surface of the image carrier 101 is polished and the charged product adhering to the surface of the image carrier is removed.

本例においては、上記のローラー111が、像担持体101の表面に無機粒子Sを供給する無機粒子供給手段と、転写後の像担持体101の表面を無機粒子Sが存在する状態で摺擦する摺擦手段の両方の機能を兼ねている。   In this example, the roller 111 rubs the inorganic particle supply means for supplying the inorganic particles S to the surface of the image carrier 101 and the surface of the image carrier 101 after the transfer in a state where the inorganic particles S are present. It also functions as both the rubbing means.

ローラー111により摺擦された像担持体101の表面は、次いで、クリーニング部材110であるクリーニングブレードの当接エッジ部により拭掃される。これにより、像担持体101の表面に付着している転写残現像剤(転写残トナー)、シリカ粉などの現像剤外添剤、ローラー111により供給された無機粒子S等の残存付着物が掻き取られて除去される。クリーニングブレード110は、例えば、ポリウレタンゴムからなる弾性ブレードである。掻き取られた残存付着物はすくいシートにより受け取られ、トナー送り羽根やブラシローラー、スクリュー等によって廃トナーボックス(不図示)に送られる。   Next, the surface of the image carrier 101 rubbed by the roller 111 is wiped off by the contact edge portion of the cleaning blade which is the cleaning member 110. As a result, residual transfer substances (transfer residual toner) adhering to the surface of the image carrier 101, developer external additives such as silica powder, and residual deposits such as inorganic particles S supplied by the rollers 111 are scraped off. Taken and removed. The cleaning blade 110 is an elastic blade made of polyurethane rubber, for example. The scraped remaining deposit is received by the scooping sheet and sent to a waste toner box (not shown) by a toner feed blade, a brush roller, a screw, or the like.

画像形成装置の構成は図1のものに限定されるものではない。図2の画像形成装置は、図1の構成の画像形成装置において、像担持体表面処理手段107から、無機粒子Sを収容させたトレイ115を無しにした構成にしてある。転写後の像担持体101の表面を無機粒子Sが存在する状態で摺擦する摺擦手段としてのローラ112をクリーニング部材110よりも像担持体回転方向上流側において像担持体101に当接させて配設してある。このローラー112は、像担持体101との当接部において像担持体101の回転方向とは逆方向に回転駆動される。   The configuration of the image forming apparatus is not limited to that shown in FIG. The image forming apparatus of FIG. 2 has a configuration in which the tray 115 containing the inorganic particles S is omitted from the image carrier surface processing means 107 in the image forming apparatus having the configuration of FIG. A roller 112 as a rubbing means for rubbing the surface of the image carrier 101 after the transfer in the presence of the inorganic particles S is brought into contact with the image carrier 101 on the upstream side in the image carrier rotation direction with respect to the cleaning member 110. Arranged. The roller 112 is rotationally driven in a direction opposite to the rotation direction of the image carrier 101 at a contact portion with the image carrier 101.

そして、現像手段105に収容させた現像剤には、例えば、潤滑剤としてのシリカ粉等の平均粒径0.02μm以下の小粒径外添剤やその他の助剤が所定の割合で外添されている。また、本例における現像剤には、研磨剤としての無機粒子Sが所定の割合で外添されている。   The developer contained in the developing means 105 includes, for example, a small particle size external additive having an average particle size of 0.02 μm or less such as silica powder as a lubricant and other auxiliary agents at a predetermined ratio. Has been. Further, inorganic particles S as an abrasive are externally added to the developer in this example at a predetermined ratio.

現像剤に外添した潤滑剤や無機粒子Sは、像担持体表面の静電像の現像の際に、トナーと共に像担持体面に付着する。転写部においては、主としてトナーが転写材Pに移行し、潤滑剤や無機粒子Sはその多くが像担持体面に残留して像担持体表面処理手段107に持ち運ばれる。そして、無機粒子Sがローラー112と像担持体101との当接部に供給され、ローラー112により、転写後の像担持体101の表面が、無機粒子Sが存在する状態で摺擦される。   The lubricant and inorganic particles S externally added to the developer adhere to the surface of the image carrier together with the toner when developing the electrostatic image on the surface of the image carrier. In the transfer portion, toner mainly moves to the transfer material P, and most of the lubricant and inorganic particles S remain on the surface of the image carrier and are carried to the image carrier surface processing means 107. Then, the inorganic particles S are supplied to a contact portion between the roller 112 and the image carrier 101, and the surface of the image carrier 101 after the transfer is rubbed by the roller 112 in a state where the inorganic particles S are present.

また、像担持体101の表面に無機粒子Sを供給する無機粒子供給手段は、上記の図1や図2の手段構成に限られず、別の手段構成の供給手段であっても良い。   Further, the inorganic particle supply means for supplying the inorganic particles S to the surface of the image carrier 101 is not limited to the means configuration shown in FIGS. 1 and 2, and may be a supply means having another means configuration.

図3の画像形成装置は、図2の構成の画像形成装置において、除電手段108を像担持体表面処理手段107よりも像担持体回転方向下流側で、帯電ローラー102よりも像担持体回転方向上流側に配設した構成にしてある。除電手段108は転写手段106から帯電手段102の間の適宜の部位に配設することができる。   The image forming apparatus of FIG. 3 is the same as the image forming apparatus of FIG. 2 except that the charge removing unit 108 is downstream of the image carrier surface processing unit 107 in the rotation direction of the image carrier and the rotation direction of the image carrier from the charging roller 102. The configuration is arranged on the upstream side. The neutralization unit 108 can be disposed at an appropriate position between the transfer unit 106 and the charging unit 102.

図4の画像形成装置は、図2の構成の画像形成装置において、帯電ローラー102を、近接帯電部材にしたものである。即ち、帯電ローラー102を、像担持体101に対して僅少な空隙間隔αを存して非接触に対向させて配設したした構成にしてある。帯電ローラー102は、像担持体101に当接させたスペーサーコロを介して像担持体101の回転が伝達されて、像担持体101の回転に従動して回転する。   The image forming apparatus shown in FIG. 4 is the same as the image forming apparatus shown in FIG. 2 except that the charging roller 102 is a proximity charging member. That is, the charging roller 102 is arranged so as to face the image carrier 101 in a non-contact manner with a small gap α. The charging roller 102 receives the rotation of the image carrier 101 via a spacer roller abutted on the image carrier 101, and rotates following the rotation of the image carrier 101.

《像担持体》
像担持体101は、周知の感光体を使用することができるが、磨耗速度が小さいものが好ましい。磨耗速度が小さいと、像担持体の表面形状が長期に渡り維持され、無機粒子Sや現像剤外添剤などの異物が像担持体表面処理手段107のクリーニング部材110をすり抜ける状態の耐久変動が少なくなるので好ましい。
<Image carrier>
As the image carrier 101, a well-known photosensitive member can be used, but one having a low wear rate is preferable. When the wear rate is low, the surface shape of the image carrier is maintained over a long period of time, and there is a variation in durability in a state in which foreign particles such as inorganic particles S and developer external additives pass through the cleaning member 110 of the image carrier surface processing means 107. Since it decreases, it is preferable.

磨耗速度が小さい像担持体として、アモルファスシリコン系(a−Siと称する)の感光体や、表面保護層を有する有機感光体(OCL−OPCと称する)等が好ましく使用できる。   As an image carrier having a low wear rate, an amorphous silicon-based (referred to as a-Si) photoreceptor, an organic photoreceptor (referred to as OCL-OPC) having a surface protective layer, or the like can be preferably used.

また、転写残現像剤が像担持体表面処理手段107のクリーニング部材110をすり抜ける理由の一つに、像担持体の表面形状(像担持体の表面粗さ)が挙げられる。   Further, one of the reasons why the untransferred developer slips through the cleaning member 110 of the image carrier surface processing means 107 is the surface shape of the image carrier (surface roughness of the image carrier).

ここで、以下の説明において、表面粗さRz(Rzc、Rz)、表面粗さSm(Smc、Smd)は、JISB0601:1994で規定されるRz(10点平均粗さ),Sm(凹凸平均距離)である。Rzは凹凸の高さに関する指標、Smは凹凸の距離の指標で、Rzが大きかったり、Smが小さいと、表面が粗い、というイメージになる。   Here, in the following description, the surface roughness Rz (Rzc, Rz) and the surface roughness Sm (Smc, Smd) are Rz (10-point average roughness) and Sm (uneven average distance) defined by JISB0601: 1994. ). Rz is an index relating to the height of the unevenness, and Sm is an index indicating the distance of the unevenness. When Rz is large or Sm is small, the image is rough.

像担持体のRzdが大きすぎると、無機粒子Sや現像剤等のすり抜け物の山が高くなり、帯電ローラー102の清掃を清掃手段103でし難くなる。一方、像担持体の表面粗さRzdが小さすぎると、像担持体101の面から転写残現像剤を除去して像担持体の表面を清掃するクリーニング部材110である弾性ブレード部のビビリが生じやすくなる。そのために、いわゆるクリーニング不良の傾向が生じて、すり抜け物の量が増加し、やはり帯電清掃部材103による清掃効率の観点から好ましく無い。   If the Rzd of the image carrier is too large, the piles of slip-throughs such as inorganic particles S and developer become high, and it becomes difficult to clean the charging roller 102 with the cleaning means 103. On the other hand, if the surface roughness Rzd of the image carrier is too small, chattering of the elastic blade portion that is the cleaning member 110 that removes the transfer residual developer from the surface of the image carrier 101 and cleans the surface of the image carrier occurs. It becomes easy. Therefore, a so-called cleaning failure tendency occurs, and the amount of slip-through is increased, which is also not preferable from the viewpoint of cleaning efficiency by the charging cleaning member 103.

また、像担持体のSmdが小さすぎると、すり抜け物による山の間隔が狭くなりすぎ、帯電清掃部材103の清掃効率が低下する場合がある。一方、Smdが大きすぎると、Rzdが小さい時と同様にビビリが生じやすくなり好ましく無い。   Further, if the Smd of the image carrier is too small, the interval between the peaks due to the slip-through object becomes too narrow, and the cleaning efficiency of the charging cleaning member 103 may be lowered. On the other hand, if Smd is too large, chatter is likely to occur as in the case where Rzd is small, which is not preferable.

像担持体101のクリーニング部材110である弾性ブレードの特性等によっても異なるが、像担持体101の表面粗さRzdは0.1〜1.0μm、Smdは5〜30μmが好ましい。   The surface roughness Rzd of the image carrier 101 is preferably 0.1 to 1.0 μm, and Smd is preferably 5 to 30 μm, although it varies depending on the characteristics of the elastic blade that is the cleaning member 110 of the image carrier 101.

a−Si感光体は、その表面層が、シリコン原子及び炭素原子若しくはシリコン原子又は炭素原子を母体として水素原子及びハロゲン原子若しくは水素原子又はハロゲン原子を含有する非単結晶材料からなるものである。   The surface layer of the a-Si photosensitive member is made of a non-single crystal material containing a hydrogen atom, a halogen atom, a hydrogen atom, or a halogen atom with a surface layer of a silicon atom and a carbon atom or a silicon atom or a carbon atom as a base.

図10Aは、a−Si感光体の層構成の例を説明するための模式的構成図である。感光体101は、支持体101aの上に、感光層101bが設けられている。該感光層101bは光導電層101cと、表面層101dと、必要に応じて設けられる電荷注入阻止層101e、同101fとから構成され、各層は周知のa−Si感光体用材料、及びプラズマCVDなど周知の製造方法で作成できる。   FIG. 10A is a schematic configuration diagram for explaining an example of a layer configuration of an a-Si photosensitive member. In the photoreceptor 101, a photosensitive layer 101b is provided on a support 101a. The photosensitive layer 101b includes a photoconductive layer 101c, a surface layer 101d, and charge injection blocking layers 101e and 101f provided as necessary. Each layer is a well-known a-Si photosensitive material and plasma CVD. It can be created by a known manufacturing method.

a−Si感光体の表面形状は、例えば支持体101aの切削や、回転ボールミル等による処理を行い、支持体101aの表面形状を調整した上で感光層101bを形成する事で制御する事ができる。   The surface shape of the a-Si photosensitive member can be controlled by forming the photosensitive layer 101b after the surface shape of the supporting member 101a is adjusted by, for example, cutting the supporting member 101a or processing with a rotating ball mill or the like. .

具体的には、アルミシリンダー等の支持体101aを切削する際のバイトの種類、角度、或いは切削ピッチの調整により、該支持体の表面形状を制御することができる。また、製造されるa−Si感光体は、図10Bの如く、支持体101aの表面形状に応じた表面形状を有する。さらに、作成された感光体の表面を、研磨テープなどを用いて研磨し、表面形状を制御する事も可能である。また、a−Si感光層の成膜時の原料ガスの流量やプラズマ放電電力、基板温度等の成膜条件にも依存する。例えば、プラズマCVDで製造する場合、原料ガス流量を増やすとともに、放電電力/原料ガス流量比を増加させるとRzやRaが増加傾向になるなどである。これら表面形状を制御する手法は、単独で制御しても、また複合的に制御しても良い。   Specifically, the surface shape of the support can be controlled by adjusting the type, angle, or cutting pitch of the cutting tool when cutting the support 101a such as an aluminum cylinder. Further, the manufactured a-Si photosensitive member has a surface shape corresponding to the surface shape of the support 101a as shown in FIG. 10B. Furthermore, it is possible to control the surface shape by polishing the surface of the prepared photoreceptor using a polishing tape or the like. Further, it depends on the flow rate of the raw material gas at the time of forming the a-Si photosensitive layer, the film discharge conditions such as the plasma discharge power and the substrate temperature. For example, in the case of manufacturing by plasma CVD, when the source gas flow rate is increased and the discharge power / source gas flow rate ratio is increased, Rz and Ra tend to increase. These methods for controlling the surface shape may be controlled independently or in combination.

《帯電部材102》
帯電手段は、帯電ローラーを用いるローラー帯電手段が好ましく使用される。ローラー帯電手段は帯電部材として帯電ローラー102を像担持体101に当接乃至は近接して配される。当接配設の場合は接触帯電方式であり、近接配設の場合は近接帯電方式である。帯電ローラー102は、接触帯電方式の場合も近接帯電方式の場合も、像担持体101の回転に従動して回転させている。積極的に回転駆動させてもよい。帯電ローラー102には、電源部(不図示)により、像担持体に応じた極性のDCバイアスが印加される。更にACバイアスを重畳(AC/DCと称する)してもよい。
<< Charging member 102 >>
As charging means, roller charging means using a charging roller is preferably used. The roller charging unit is provided with a charging roller 102 as a charging member in contact with or close to the image carrier 101. In the case of contact arrangement, the contact charging method is used, and in the case of proximity arrangement, the proximity charging method is used. The charging roller 102 is rotated by the rotation of the image carrier 101 in both the contact charging method and the proximity charging method. It may be positively driven to rotate. A DC bias having a polarity corresponding to the image carrier is applied to the charging roller 102 by a power supply unit (not shown). Further, an AC bias may be superimposed (referred to as AC / DC).

接触帯電方式では、帯電ローラー102を所定の圧で像担持体101に当接させ、当接ニップ部および当接ニップ近傍の領域に於ける放電により、像担持体を帯電させる。像担持体上の異物が帯電ローラーに押付けられ、強固に付着するのを防ぐ為に、帯電ローラー102が像担持体101へ当接する圧力は30g/cm以下が好ましい。   In the contact charging method, the charging roller 102 is brought into contact with the image carrier 101 with a predetermined pressure, and the image carrier is charged by electric discharge in the contact nip portion and the region near the contact nip. In order to prevent foreign matter on the image carrier from being pressed against the charging roller and firmly attached thereto, the pressure at which the charging roller 102 contacts the image carrier 101 is preferably 30 g / cm or less.

一方、近接帯電方式(図4)に於いて、像担持体101と帯電ローラー102の空隙間隔αは、最近接部で500μm以下、好ましくは20〜300μm、より好ましくは100μm以下である。従って、像担持体との距離が数mmと大きい、コロナ帯電とは区別されるものである。近接帯電方式は、接触帯電方式とほぼ同等のバイアスで帯電を行う。この空隙αは、大きすぎた場合には、帯電が不安定になりやすく、また、小さすぎた場合には、像担持体に残留した研磨粒子等が存在する場合に、帯電ローラー表面が汚染され易くなる。   On the other hand, in the proximity charging method (FIG. 4), the gap interval α between the image carrier 101 and the charging roller 102 is 500 μm or less, preferably 20 to 300 μm, more preferably 100 μm or less at the closest part. Therefore, it is distinguished from corona charging, in which the distance from the image carrier is as large as several millimeters. In the proximity charging method, charging is performed with a bias substantially equal to that of the contact charging method. If the gap α is too large, charging is likely to be unstable. If the gap α is too small, the surface of the charging roller is contaminated when there are abrasive particles remaining on the image carrier. It becomes easy.

帯電ローラー102は周知の部材を使用することができるが、その表面は高離形性である事が好ましい。特に、フッ素原子を含有したポリシロキサンを紫外線などで架橋硬化させた表面層は、離形性が高い。更に、有機−ガラス体のハイブリッド構造を有し、いわゆる通常のガラスと異なり軟らかい為、帯電ローラーの表面としても好適に使用できる。   A known member can be used for the charging roller 102, but the surface thereof is preferably highly releasable. In particular, a surface layer obtained by crosslinking and curing polysiloxane containing fluorine atoms with ultraviolet rays or the like has high releasability. Furthermore, since it has a hybrid structure of organic-glass body and is soft unlike so-called normal glass, it can be suitably used as the surface of a charging roller.

表面層が薄すぎると、長期使用後など、帯電ローラーの内部物質が染み出す、いわゆるブリードアウトが生じる場合がある。また、清掃手段103の局所的な押圧等により、該帯電ローラーの表面形状が変形したり、該帯電ローラーに付着した異物が埋め込まれる等して、帯電性能が低下したり、像担持体101のキズなどが生じる場合がある。一方、厚すぎると、表面層と基層の密着性の低下や、帯電ローラーとしての抵抗増加が生じたり、表面層厚ムラが生じる場合がある。従って、表面層の厚さは、0.1μm〜1.0μmが好ましい。   If the surface layer is too thin, so-called bleed out may occur in which the internal material of the charging roller oozes out after long-term use. In addition, the surface shape of the charging roller may be deformed by a local pressing of the cleaning unit 103, or a foreign matter attached to the charging roller may be embedded. Scratches may occur. On the other hand, if it is too thick, the adhesion between the surface layer and the base layer may decrease, the resistance as a charging roller may increase, and the surface layer thickness may be uneven. Therefore, the thickness of the surface layer is preferably 0.1 μm to 1.0 μm.

近接帯電方式である場合には、帯電部材である帯電ローラー(電極)102と像担持体101との空隙αが所定に維持できるように、帯電ローラー102の端部にスペーサーコロなどの部材を設ける事もできる。   In the case of the proximity charging method, a member such as a spacer roller is provided at the end of the charging roller 102 so that the gap α between the charging roller (electrode) 102 as the charging member and the image carrier 101 can be maintained at a predetermined level. You can also do things.

近接帯電部材の材料は周知の物が使用できるが、接触帯電手段と比較して高硬度に設定されるのが一般的である。空隙αを維持できる硬度であれば良い。   Although a well-known thing can be used for the material of the proximity charging member, it is generally set to a higher hardness than the contact charging means. Any hardness that can maintain the gap α is acceptable.

近接帯電方式は、近接帯電部材である帯電ローラー102が像担持体101に接触していないことや、異物が帯電ローラー102に異物が加圧、擦り付けられ難い事などにより、汚れに対しては良好な傾向ではある。しかし、像担持体101のクリーニング部材110をすり抜けてきた現像剤、特に外添剤等が帯電ローラー102に静電的に付着してローラー表面が汚染される。   The proximity charging method is good against dirt due to the fact that the charging roller 102 which is a proximity charging member is not in contact with the image carrier 101, and that foreign matter is difficult to press and rub against the charging roller 102. It is a tendency. However, the developer that has passed through the cleaning member 110 of the image carrier 101, in particular, an external additive or the like electrostatically adheres to the charging roller 102 and the roller surface is contaminated.

帯電ローラー102に一旦付着した汚染物質、特、平均粒径Dが0.03〜0.50[μm]程度の、上述の無機粒子Sなどに代表される微小粒子は、静電的な付着力よりも、ファンデルワールス力などの非静電付着力の寄与が大きくなる。そのため、粒径が数μmと大きいトナー粒子と比較して、バイアスによる除去が困難である。そのような微小粒子の除去には接触式の清掃手段が好ましく使用できる。   Contaminants once adhering to the charging roller 102, in particular, fine particles represented by the above-mentioned inorganic particles S having an average particle diameter D of about 0.03 to 0.50 [μm] have electrostatic adhesion force. Than the non-electrostatic adhesion force such as van der Waals force. Therefore, it is difficult to remove by bias as compared with toner particles having a large particle size of several μm. For the removal of such fine particles, a contact-type cleaning means can be preferably used.

《帯電清掃部材103》
帯電ローラー102を清掃する帯電清掃部材103としては、上述の如く、接触式が好ましい。
<Charging cleaning member 103>
As described above, the contact cleaning type is preferable as the charging cleaning member 103 for cleaning the charging roller 102.

この帯電清掃部材103としては、ファーブラシ、弾性部材、磁気ブラシ等、周知の部材を使用することができる。クリーニングブレード110とは別に摺擦・回収工程を設ける事で、クリーニングブレード110における像担持体表面の摺擦研磨の負荷を低減でき、クリーニングブレード110の損耗を抑止するのに効果的である。   As the charging cleaning member 103, a known member such as a fur brush, an elastic member, or a magnetic brush can be used. By providing a rubbing / recovering process separately from the cleaning blade 110, it is possible to reduce the rubbing and polishing load on the surface of the image carrier on the cleaning blade 110, and it is effective in suppressing the wear of the cleaning blade 110.

帯電清掃部材103を帯電ローラー102に当接させ、帯電ローラー102に連れ回りさせる方式は、装置構成が簡略化され、小型化、低コスト化の観点で好ましい。   A method in which the charging cleaning member 103 is brought into contact with the charging roller 102 and is rotated along with the charging roller 102 is preferable from the viewpoint of simplification of the apparatus configuration and reduction in size and cost.

1)弾性清掃部材
帯電清掃部材103としては、弾性部材からなる清掃部材を使用することができる。帯電清掃部材103の硬度ZはアスカーC硬度で10〜60度が好ましく使用できる。帯電清掃部材103の表面粗さRzcは、無機粒子Sの粒径Dの5〜500倍であることが好ましい。また、硬度Zは、無機粒子Sの粒径Dに対して10≦Z×Rzc≦500が好ましい。更に、帯電清掃部材103のSmcは、粒径Dの1E2〜1E4倍(1×10〜1×10倍)である事が好ましい。
1) Elastic Cleaning Member As the charging cleaning member 103, a cleaning member made of an elastic member can be used. The hardness Z of the charging cleaning member 103 is preferably 10-60 degrees in terms of Asker C hardness. The surface roughness Rzc of the electrostatic cleaning member 103 is preferably 5 to 500 times the particle size D of the inorganic particles S. The hardness Z is preferably 10 ≦ Z × Rzc ≦ 500 with respect to the particle size D of the inorganic particles S. Furthermore, the Smc of the charging cleaning member 103 is preferably 1E2 to 1E4 times (1 × 10 2 to 1 × 10 4 times) the particle size D.

これらの範囲の時に、帯電ローラー102から無機粒子Sを掻き取り、帯電清掃部材自体に過剰に蓄積されずに弾き飛ばすのに好適である。   In these ranges, the inorganic particles S are scraped off from the charging roller 102, and are suitably blown off without being excessively accumulated in the charging cleaning member itself.

2)発泡清掃部材
また、帯電清掃部材103としては、発泡部材からなる清掃部材を使用することができる。この帯電清掃部材103の表面の空孔密度は40〜80%であることが好ましい。空孔密度が低すぎると、該清掃部材103に、無機粒子Sが過剰に蓄積され、清掃能力が低下する場合があるほか、樹脂部により、無機粒子Sが帯電ローラー102に擦り付けられ、強固に付着する場合がある。
2) Foam cleaning member As the charging cleaning member 103, a cleaning member made of a foam member can be used. It is preferable that the hole density on the surface of the charging cleaning member 103 is 40 to 80%. If the pore density is too low, inorganic particles S may be excessively accumulated on the cleaning member 103 and the cleaning ability may be reduced. In addition, the resin part rubs the inorganic particles S against the charging roller 102 to be strong. May adhere.

一方、空孔密度が高すぎると、樹脂部が脆くなり、該微小粒子を掻き取る能力が低下したり、機械的な耐久性が低下したり、掻き取ムラが生じる場合がある。また、空孔径Dcは、無機粒子Sの粒径Dに対して1E2〜1E4倍であることが好ましい。   On the other hand, if the pore density is too high, the resin portion becomes brittle, and the ability to scrape the fine particles may decrease, mechanical durability may decrease, and scraping unevenness may occur. The pore diameter Dc is preferably 1E2 to 1E4 times the particle diameter D of the inorganic particles S.

これらの範囲の時に、帯電ローラー102から無機粒子Sを掻き取り、帯電清掃部材自体への過剰な蓄積を抑止し、弾き飛ばすのに好適である。   In these ranges, the inorganic particles S are scraped off from the charging roller 102 to suppress excessive accumulation on the charging cleaning member itself, and it is suitable for flipping off.

空孔径Dc、及び空孔密度は、顕微鏡で清掃部材103の表面観察を行い、該帯電清掃部材の周方向、長手方向各々複数箇所に対してランダムに500個以上の空孔を観測して求めた。図8では、空孔を観測したときに円形である場合を示しているが、空孔径Dcを各空孔ごとに測定し、該Dc及び単位面積当りの空孔の個数から空孔密度を求めた。また、円形ではない場合には、該空孔部の、同一面積の円相当平均径、及びその個数から空孔密度を求めた。   The hole diameter Dc and the hole density are obtained by observing the surface of the cleaning member 103 with a microscope and observing 500 or more holes at random in a plurality of locations in the circumferential direction and the longitudinal direction of the charging cleaning member. It was. Although FIG. 8 shows a case where the holes are circular when observed, the hole diameter Dc is measured for each hole, and the hole density is obtained from the Dc and the number of holes per unit area. It was. Further, when the shape was not circular, the hole density was determined from the average equivalent circle diameter of the same area and the number of the holes.

3)帯電清掃部材103の表面形状と像担持体101の表面形状
図13に、像担持体101の表面形状と、帯電ローラー102に付着するすり抜け物質、及び帯電清掃部材103の表面形状の模式図を示す。簡略化のため、像担持体101、帯電清掃部材103とも表面はギザギザで模式化してあり、該ギザギザの間隔が、おのおのSmd、Smcとなる。
3) Surface shape of charge cleaning member 103 and surface shape of image carrier 101 FIG. 13 is a schematic diagram of the surface shape of image carrier 101, the slip-through substance adhering to charging roller 102, and the surface shape of charge cleaning member 103. Indicates. For simplification, the surfaces of both the image carrier 101 and the charging cleaning member 103 are schematically shown as jagged, and the intervals between the jagged edges become Smd and Smc, respectively.

像担持体101の表面形状Rzd、Smdに準じて、外添剤等のすり抜け物質が。図中の塗りつぶされた三角部のように帯電ローラー102に付着する(図中、102の下部)。   According to the surface shape Rzd and Smd of the image carrier 101, slipping-out substances such as external additives are used. It adheres to the charging roller 102 as shown by a filled triangle in the figure (lower part of 102 in the figure).

付着したすり抜け物質は帯電ローラー102の回転に伴い帯電清掃部材103への対向部へ移動する(図中、102の上部)。   The attached slip-through substance moves to a portion facing the charging cleaning member 103 as the charging roller 102 rotates (upper portion 102 in the figure).

SmcとSmdの比(Smc/Smd)が整数でない様に設定する事も好ましい。Smc/Smdが1、ずなわち同じ間隔の場合、図中の左側のようにすり抜け物質と帯電清掃部材103の間隔が合致し、清掃効率が低下する場合がある。また、Smc/Smdが2の場合は、図中の右側のように破線白抜きの山の如く良好に清掃される部位と、清掃が不十分な塗りつぶされた山の部位が生じる場合がある。清掃効率の差異が大きいと、該当部での帯電ローラー102の帯電均一性が低下し、スジ状の画像欠陥となる場合がある。このため、Smc/Smdは整数ではない方が好ましい。   It is also preferable to set the ratio of Smc to Smd (Smc / Smd) so that it is not an integer. When Smc / Smd is 1, that is, at the same interval, the gap between the slip-through substance and the charging cleaning member 103 matches as shown on the left side in the drawing, and the cleaning efficiency may be reduced. Further, when Smc / Smd is 2, there may be a portion that is satisfactorily cleaned, such as a dashed white mountain as shown on the right side of the drawing, and a portion of a filled mountain that is not sufficiently cleaned. When the difference in cleaning efficiency is large, the charging uniformity of the charging roller 102 at the corresponding portion is lowered, and a streak-like image defect may occur. For this reason, it is preferable that Smc / Smd is not an integer.

4)帯電清掃部材103と帯電ローラー102の外径比
また、帯電ローラー102と帯電清掃部材103の外径比、即ち[帯電ローラーの平均外径]/[帯電清掃部材の平均外径]は、整数ではない様に設定する。これにより、清掃不十分な点があっても、該帯電ローラー102周方向に蓄積されリング状の汚れに成長する事を防止でき、好ましい。
4) The outer diameter ratio between the charging cleaning member 103 and the charging roller 102 The outer diameter ratio between the charging roller 102 and the charging cleaning member 103, that is, [the average outer diameter of the charging roller] / [the average outer diameter of the charging cleaning member] is Set not to be an integer. Thereby, even if there is an insufficiently cleaned point, it can be prevented from accumulating in the circumferential direction of the charging roller 102 and growing into ring-shaped dirt.

5)表面形状の測定
帯電清掃部材103の表面形状Rzc、Smc、及び像担持体101の表面形状Rzd、Smdは、JISB0601:1994で規定されるRz、Smである。測定は、表面粗さ測定器(サーフコーダーSE−3400:コサカ研究所製)を用い、測定長8mm、速度0.05mm/sec、カットオフλc0.8mm、JIS1982モードにて、帯電清掃部材103、及び像担持体101の長手方向で測定した。
5) Measurement of surface shape The surface shapes Rzc and Smc of the charging cleaning member 103 and the surface shapes Rzd and Smd of the image carrier 101 are Rz and Sm defined in JIS B0601: 1994. The measurement is performed using a surface roughness measuring instrument (Surfcoder SE-3400: manufactured by Kosaka Laboratories), with a measurement length of 8 mm, a speed of 0.05 mm / sec, a cutoff λc of 0.8 mm, and a JIS 1982 mode. The measurement was performed in the longitudinal direction of the image carrier 101.

帯電清掃部材103、像担持体101とも、周方向8点、長手5点の、計40点について測定を行い、平均値をもって各々の表面形状の値とした。   For both the charging cleaning member 103 and the image carrier 101, measurements were made for a total of 40 points, 8 points in the circumferential direction and 5 points in the longitudinal direction, and the average value was used as the value of each surface shape.

6)帯電清掃部材103の製造
帯電清掃部材103の製造は、例えば、図14の様に、芯金103−Sと、帯電清掃部材103とを接着させる事で製造する事ができる。帯電清掃部材103は、少なくとも長手方向に加熱、及び/又は加圧圧縮された後に、芯金103−Sに接着すると好ましい。
6) Manufacture of the charging cleaning member 103 The charging cleaning member 103 can be manufactured, for example, by bonding the cored bar 103-S and the charging cleaning member 103 as shown in FIG. The electrified cleaning member 103 is preferably bonded to the core metal 103-S after being heated and / or compressed in at least the longitudinal direction.

元材のバルクを圧縮後に芯金103−Sを挿入するための穴を作成し、芯金103−Sを挿入して接着させた後に、切削等によりバルクの外形を成型する。この他にも、バルクを芯金103−Sに通した後に圧縮工程を経て、接着を完了させても良い。この場合は遅乾型の接着剤を使用するなどの対応をすればよい。   After compressing the bulk of the original material, a hole for inserting the cored bar 103-S is created, the cored bar 103-S is inserted and bonded, and then the bulk outer shape is formed by cutting or the like. In addition, after the bulk is passed through the core metal 103-S, the compression may be performed to complete the bonding. In this case, a countermeasure such as using a slow-drying adhesive may be used.

長手に圧縮工程を施す事で、特に長手方向へのねじれ、引張りに対する耐性が向上し、全体の硬度を大きく増加させずに、耐久性を向上する事ができる。   By subjecting the compression process to the longitudinal direction, resistance to twisting and pulling in the longitudinal direction is improved, and durability can be improved without greatly increasing the overall hardness.

また、特に帯電清掃部材103が発泡部材からなる場合、後述する様に、清掃効率の向上と高耐久性を両立させる事に有効である事を見出した。   Further, it has been found that particularly when the charging cleaning member 103 is made of a foam member, it is effective to achieve both improvement in cleaning efficiency and high durability, as will be described later.

一般に発泡体は、図16の模式図のように、空間部(セル)2a−1と壁(ソリッド)2a−2とから形成されている。そのため、発泡体の硬度に影響を及ぼす因子としては、単位体積中に占める空間部(セル)2a−1の体積の割合や壁(ソリッド)2a−2の硬度をあげることができる。従って、発泡体の硬度という観点から見た時、空間部2a−1の体積の割合が大きいほど、壁2a−2が低硬度であるほど、発泡体は低硬度にすることができる。   Generally, the foam is formed of a space (cell) 2a-1 and a wall (solid) 2a-2 as shown in the schematic diagram of FIG. Therefore, factors affecting the hardness of the foam include the volume ratio of the space (cell) 2a-1 in the unit volume and the hardness of the wall (solid) 2a-2. Therefore, when viewed from the viewpoint of the hardness of the foam, the foam can be made to have a lower hardness as the volume ratio of the space 2a-1 is larger and the wall 2a-2 is lower in hardness.

単位体積中に占める空間部2a−1の体積の割合を大きくするには、セル径を大きく、及び空間部2a−1を多くする、或いはセル径を大きくする、又は空間部2a−1を多くすればよい。しかし、弾性力を有するソリッド部2a−2が少なくなり、変形回復力の低下により永久変形が生じるなど、耐久性が低下する。このような問題があるため、セル径を大きくするにしても自ずと限界があるのが実情である。   To increase the volume ratio of the space 2a-1 in the unit volume, increase the cell diameter and increase the space 2a-1, or increase the cell diameter, or increase the space 2a-1. do it. However, the solid portion 2a-2 having elastic force is reduced, and the durability is lowered, for example, permanent deformation occurs due to a decrease in deformation recovery force. Due to these problems, there is a limit to the increase in cell diameter.

一方、壁2a−2を低硬度化するには可塑剤や軟化剤等の可塑化効果を有する材料を多量に添加する必要があるが、これらの材料は一般に室温では流動性を示すため、同様に耐久性の低下が生じる。これらの現象が起こらない範囲での添加量では硬度を大きく低下させることは実質的に困難である。   On the other hand, in order to reduce the hardness of the wall 2a-2, it is necessary to add a large amount of a material having a plasticizing effect, such as a plasticizer and a softening agent. This results in a decrease in durability. It is practically difficult to greatly reduce the hardness when the addition amount is within a range where these phenomena do not occur.

このような状況を鑑み、従来の発泡体を解析した結果、これらの現象はセル形状が真円またはそれに近いことが原因であることが判明した。図16を用いて考察する。   In view of such a situation, as a result of analyzing conventional foams, it has been found that these phenomena are caused by the cell shape being a perfect circle or close to it. Consider it with reference to FIG.

すなわち、従来の発泡体のようにセル2a−1の断面形状が真円に近い形状であれば、セル径を大きくしたとしても理論的に円の形状に添った形で厚み分布を有する壁2a−2ができてしまう。そのため、壁2a−2には、厚い(L1)ところと、薄い(L2)ところが共存することになり、壁2a−2を均一に薄くすることは困難である。この状態で硬度を測ると壁2a−2の厚い部分の影響が支配的に現れるようになるため思ったほど低硬度化しない。さらに、この発泡体に応力を加えた時には壁2a−2の薄い部分(L2)に応力が集中してしまうため、薄い部分(L2)に変形が集中するという現象が起こりやすい。   That is, if the cross-sectional shape of the cell 2a-1 is a shape close to a perfect circle like a conventional foam, the wall 2a having a thickness distribution in a shape that theoretically follows the shape of the circle even if the cell diameter is increased. -2 is made. Therefore, a thick (L1) place and a thin (L2) place coexist in the wall 2a-2, and it is difficult to make the wall 2a-2 thin uniformly. If the hardness is measured in this state, the influence of the thick part of the wall 2a-2 appears dominantly, so the hardness is not lowered as expected. Further, when stress is applied to the foam, the stress concentrates on the thin portion (L2) of the wall 2a-2, so that a phenomenon that deformation concentrates on the thin portion (L2) is likely to occur.

このような本質的な問題点を劇的に改善するために、セル形状の不定形化は有効である。セル形状を不定形化することによって壁2a−2はかなり均一な厚さにすることができる。この発泡体の硬度を測定すると、壁2a−2の厚い部分(L1)の影響がないので低硬度化が可能となる。また、この発泡体に負荷が加わった場合、壁2a−2の薄い部分(L2)の影響がないので応力が一部分に集中することなく壁全体に適度に分散するようになり、変形も壁全体に平均化した形で起こる。これにより、局部的な変形量の増大及び局部的な応力の増大とも軽減することができる。   In order to dramatically improve such essential problems, it is effective to make the cell shape irregular. By making the cell shape irregular, the wall 2a-2 can have a fairly uniform thickness. When the hardness of the foam is measured, there is no influence of the thick part (L1) of the wall 2a-2, so that the hardness can be reduced. Further, when a load is applied to this foam, there is no influence of the thin part (L2) of the wall 2a-2, so that stress is moderately dispersed throughout the wall without concentrating on a part, and deformation is also applied to the entire wall. Occurs in an averaged form. Thereby, it is possible to reduce both an increase in local deformation and an increase in local stress.

帯電清掃部材103としては、永久変形等を抑制し、耐久性を向上させる一方、帯電部材表面への追従性、或いは掻き取り性といった、柔軟性も必要である。そのため、帯電清掃部材103の長手方向側断面ではセル2a−1が非円形、一方、回転方向(周方向)断面では円形である事が好ましい。   The charging cleaning member 103 needs to have flexibility such as followability to the charging member surface or scraping property while suppressing permanent deformation and improving durability. Therefore, it is preferable that the cell 2a-1 is non-circular in the longitudinal cross section of the charging cleaning member 103, and circular in the rotational direction (circumferential direction) cross section.

また、任意の断面におけるセル径はある程度の分布を有することが好ましい。適度なセル径分布を有するとセル2a−1が最密充填されやすく、その結果、セル壁厚さやそのばらつきが小さくなり、本発明の効果がより一層得られやすいからである。この他にも、発泡の不均一性等による大径空孔等による清掃不具合に対しても有効である。   Moreover, it is preferable that the cell diameter in an arbitrary cross section has a certain distribution. This is because when the cell diameter distribution is appropriate, the cells 2a-1 are likely to be close-packed, and as a result, the cell wall thickness and variations thereof are reduced, and the effects of the present invention are more easily obtained. In addition to this, it is also effective for cleaning defects due to large-diameter holes due to foaming non-uniformity or the like.

このようなセル2a−1は、表面から観測すると、例えば図17に示すような楕円形等の非円形になる。使用する樹脂の物性等によっても異なるが、短径L−a/長径L−bの比(短径/長径比)が、0.6〜0.9であることが好ましい。   When such a cell 2a-1 is observed from the surface, it becomes a non-circular shape such as an ellipse as shown in FIG. Although it depends on the physical properties of the resin used, the ratio of minor axis La / major axis Lb (minor axis / major axis ratio) is preferably 0.6 to 0.9.

L−a/L−b比が0.9を超過するような場合は、圧縮を施した効果が得られない。一方、0.6未満の非常に細長い形状になると、帯電清掃部材103が帯電ローラー102に当接する際に、セル2a−1が塞がってしまったり、無機粒子等がセル2a−1にパッキングし易くなるなど、発泡体としての機能が低下する場合がある。   When the La / Lb ratio exceeds 0.9, the effect of compression cannot be obtained. On the other hand, when it becomes a very long and narrow shape of less than 0.6, when the charging cleaning member 103 comes into contact with the charging roller 102, the cell 2a-1 is blocked or inorganic particles or the like are easily packed in the cell 2a-1. For example, the function as a foam may deteriorate.

圧縮工程は、例えば図15の如き円筒状の容器1501にバルク状の元材を投入し、これを加圧部材1502、1503を用いて圧縮すればよい。その際、容器1501や加圧部材1502、1503を加熱するなどしてもよい。   In the compression step, for example, a bulk base material may be put into a cylindrical container 1501 as shown in FIG. 15 and compressed using pressure members 1502 and 1503. At that time, the container 1501 and the pressure members 1502 and 1503 may be heated.

これにより、帯電清掃部材103が、少なくとも長手方向に圧縮工程を経て作成された物となる。また、発泡部材からなる帯電清掃部材103の場合は、セル2a−1の形状が、長手方向に圧縮工程を経て作成された物となる。   Thereby, the electrification cleaning member 103 becomes a thing produced through the compression process at least in the longitudinal direction. In the case of the charging cleaning member 103 made of a foam member, the shape of the cell 2a-1 is a product created through a compression process in the longitudinal direction.

《無機粒子S》
像担持体の表面に付着する帯電生成物を除去する為の研磨剤である無機粒子としては、平均粒径Dが0.03〜0.50[μm]のペロブスカイト型結晶を有する無機粒子が好ましい。
<< Inorganic particle S >>
As the inorganic particles which are abrasives for removing the charged product adhering to the surface of the image carrier, inorganic particles having perovskite crystals having an average particle diameter D of 0.03 to 0.50 [μm] are preferable. .

ペロブスカイト型の結晶構造を有する材料としては、チタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。該研磨粒子は、平均粒径が0.03〜0.50[μm]である事が好ましい。より好ましくは0.10〜0.30[μm](100nm〜300nm)である。この範囲のとき、充分な研磨作用と、更にはクリーニングブレードニップ部での潤滑剤としての作用により、画像流れを効果的に防止しつつ良好なクリーニング性を維持し、クリーニングブレードや像担持体の損耗を抑止して、長期に良好な画像を得る事ができる。   Examples of the material having a perovskite crystal structure include strontium titanate and calcium titanate. The abrasive particles preferably have an average particle size of 0.03 to 0.50 [μm]. More preferably, it is 0.10 to 0.30 [μm] (100 nm to 300 nm). In this range, sufficient polishing action and further action as a lubricant at the cleaning blade nip portion can effectively prevent image flow and maintain good cleaning performance, and can be used for cleaning blades and image carriers. It is possible to suppress wear and obtain a good image for a long time.

0.03[μm](30nm)以下の小粒径では研磨作用が低減するほか、特に摺擦部材110としてクリーニングブレードを使用した場合、該クリーニングブレードをすり抜ける量が多く、除電光や潜像露光などの、像担持体101への照射を妨げる場合がる。また、凝集性が高くなり、流動性即ちクリーニングブレードへの均一供給性が低下したり、大粒径の2次粒子となって、クリーニングブレード乃至は像担持体の損耗が生じる場合があった。一方、0.50[μm](500nm)を超えるような大粒径の場合には、クリーニングブレードと像担持体のニップ近傍、特に楔形の部位や、更にクリーニングブレードニップ部に侵入しにくくなる。そのために、摺擦が不十分になったり、クリーニングブレード乃至は像担持体の損耗が生じる場合があった。   In the case of a small particle size of 0.03 [μm] (30 nm) or less, the polishing action is reduced. In particular, when a cleaning blade is used as the rubbing member 110, the amount of slipping through the cleaning blade is large. For example, the irradiation of the image carrier 101 may be hindered. In addition, the cohesiveness is increased, the fluidity, that is, the uniform supply to the cleaning blade is lowered, or the secondary particle has a large particle size, and the cleaning blade or the image carrier may be worn. On the other hand, in the case of a large particle size exceeding 0.50 [μm] (500 nm), it becomes difficult to enter the vicinity of the nip between the cleaning blade and the image carrier, particularly the wedge-shaped portion, and further the cleaning blade nip portion. For this reason, the rubbing may be insufficient or the cleaning blade or the image carrier may be worn.

0.60[μm](600nm)以上の粒径を有する凝集体の含有率が1個数%以下であれば、良好な結果が得られる。0.60[μm]以上の粒子及び凝集体を、1個数%を超えて含有している場合には、一次粒径が0.50[μm]未満であっても、静電荷潜像担持体にキズが発生する場合があった。しかし、BAEとa−Siとの組合せや、クリーニングを像担持体の上方に配置するなどして、クリーニング工程に於いて、該凝集体がほぐされ易くすることで、1個数%以下に抑制する事が容易となり好適である。   When the content of aggregates having a particle size of 0.60 [μm] (600 nm) or more is 1% by number or less, good results can be obtained. In the case where particles and aggregates of 0.60 [μm] or more are contained in excess of 1% by number, the electrostatic latent image bearing member even if the primary particle size is less than 0.50 [μm]. In some cases, scratches may occur. However, the combination of BAE and a-Si, or the cleaning is disposed above the image carrier, and the aggregate is easily loosened in the cleaning process, thereby suppressing the number to 1% or less. This makes it easy to do things.

無機粒子Sの平均粒径については、電子顕微鏡にて5万倍の倍率で撮影した写真から100個の粒径を測定して、その平均を求めた。粒径は、一次粒子の最長辺をa、最短辺をbとしたとき、(a+b)/2として求めた。   About the average particle diameter of the inorganic particle S, 100 particle diameters were measured from the photograph image | photographed by the magnification of 50,000 with the electron microscope, and the average was calculated | required. The particle size was determined as (a + b) / 2, where a is the longest side of the primary particles and b is the shortest side.

更に、無機粒子Sを現像剤に添加する場合(図2、図3、図4)は、トナー粒子に対する遊離率は20体積%以下であることが好ましく、15体積%以下が更に好ましい。   Furthermore, when the inorganic particles S are added to the developer (FIGS. 2, 3, and 4), the liberation rate with respect to the toner particles is preferably 20% by volume or less, and more preferably 15% by volume or less.

ここで遊離率とは、トナー粒子から遊離したペロブスカイト型結晶無機粒子の割合を体積%で求めたものである。即ち、パーティクルアナライザー(PT1000:横河電機(株)製)により公知の原理(「Japan Hardcopy 97論文集」65〜68頁(発行者:電子写真学会、発行日:1997年7月9日))で測定されたものである。   Here, the liberation rate is obtained by determining the ratio of perovskite-type crystalline inorganic particles liberated from the toner particles in volume%. That is, a known principle ("Japan Hardcopy 97 Proceedings" pages 65-68 (publisher: Electrophotographic Society, issue date: July 9, 1997)) by a particle analyzer (PT1000: manufactured by Yokogawa Electric Corporation) It was measured by.

無機粒子Sの形状は、不定形でも構わないが、円形度が0.930以下であると帯電性生物の除去に好適である。   The shape of the inorganic particles S may be indefinite, but if the circularity is 0.930 or less, it is suitable for removing charged organisms.

稜線或いは角を有する形状、例えば図11・図12の如き、直方体状であると更に好ましい。直方体状である粒子の含有率を50個数%以上にすることで、更に効率的に帯電生成物の除去が行えるので好ましい。   It is more preferable that the shape has a ridge line or a corner, for example, a rectangular parallelepiped shape as shown in FIGS. It is preferable that the content of the rectangular parallelepiped particles is 50% by number or more because the charged product can be more efficiently removed.

図11は直方体状の無機粒子Sの一例の電子顕微鏡写真(SEM写真)である。図12は直方体形状の概念図である。L1〜L4は稜線或いは角である。   FIG. 11 is an electron micrograph (SEM photograph) of an example of a rectangular parallelepiped inorganic particle S. FIG. 12 is a conceptual diagram of a rectangular parallelepiped shape. L1 to L4 are ridge lines or corners.

ペロブスカイト型結晶の無機粒子Sは、周知の焼結・粉砕法で製造できる。また、直方体状の無機粒子Sは、例えば、硫酸チタニル水溶液を加水分解して得た含水酸化チタンスラリーのpHを調整して得たチタニアゾルの分散液に、ストロンチウムの水酸化物を添加して、反応温度まで加温することで合成することができる。含水酸化チタンスラリーのpHは0.5〜1.0とすることで、良好な結晶化度及び粒径のチタニアゾルが得られる。   The inorganic particles S of perovskite crystals can be produced by a known sintering / pulverization method. In addition, the rectangular inorganic particles S, for example, by adding a strontium hydroxide to a titania sol dispersion obtained by adjusting the pH of a hydrous titanium oxide slurry obtained by hydrolyzing a titanyl sulfate aqueous solution, It can synthesize | combine by heating to reaction temperature. By setting the pH of the hydrous titanium oxide slurry to 0.5 to 1.0, a titania sol having good crystallinity and particle size can be obtained.

又、チタニアゾル粒子に吸着しているイオンを除去する目的で、チタニアゾルの分散液に、水酸化ナトリウムの如きアルカリ性物質を添加することが好ましい。このときナトリウムイオン等を含水酸化チタン表面に吸着させないために、スラリーのpHを7以上にしないことが好ましい。又、反応温度は60℃〜100℃が好ましく、所望の粒度分布を得るためには昇温速度を30℃/時間以下にすることが好ましく、反応時間は3〜7時間であることが好ましい。   For the purpose of removing ions adsorbed on the titania sol particles, it is preferable to add an alkaline substance such as sodium hydroxide to the titania sol dispersion. At this time, it is preferable that the pH of the slurry is not 7 or higher so that sodium ions and the like are not adsorbed on the surface of the hydrous titanium oxide. The reaction temperature is preferably 60 ° C. to 100 ° C., and in order to obtain a desired particle size distribution, the temperature rising rate is preferably 30 ° C./hour or less, and the reaction time is preferably 3 to 7 hours.

上記の如き方法により製造された無機粒子Sを脂肪酸又はその金属塩で表面処理を行う方法としては以下の方法がある。たとえば、Arガス又はNガス雰囲気下、無機粒子スラリーを脂肪酸ナトリウム水溶液中に入れ、ペロブスカイト型結晶表面に脂肪酸を析出させることができる。また、たとえばArガス又はNガス雰囲気下、無機微粒子スラリーを脂肪酸ナトリウム水溶液中に入れ、撹拌しながら、所望の金属塩水溶液を滴下することで、ペロブスカイト型結晶表面に脂肪酸金属塩を析出,吸着させることができる。例えばステアリン酸ナトリウム水溶液と硫酸アルミニウムを用いればステアリン酸アルミニウムを吸着させることができる。 As a method for subjecting the inorganic particles S produced by the above method to surface treatment with a fatty acid or a metal salt thereof, there are the following methods. For example, in an Ar gas or N 2 gas atmosphere, the inorganic particle slurry can be placed in a fatty acid sodium aqueous solution to precipitate the fatty acid on the perovskite crystal surface. In addition, for example, in an Ar gas or N 2 gas atmosphere, the inorganic fine particle slurry is placed in a fatty acid sodium aqueous solution, and the desired metal salt aqueous solution is dropped while stirring to precipitate and adsorb the fatty acid metal salt on the perovskite crystal surface. Can be made. For example, if a sodium stearate aqueous solution and aluminum sulfate are used, aluminum stearate can be adsorbed.

《実施例》
<無機粒子製造例>
下記製造例にて、無機粒子S、即ち、チタン酸ストロンチウムからなる研磨粒子を作成した。
"Example"
<Inorganic particle production example>
In the following production example, inorganic particles S, that is, abrasive particles made of strontium titanate were prepared.

四塩化チタン水溶液にアンモニア水を添加することにより加水分解して得られた含水酸化チタンを純水で洗浄し、該含水酸化チタンのスラリーに含水酸化チタンに対するSOとして0.3%の硫酸を添加した。 The hydrous titanium oxide obtained by hydrolysis by adding aqueous ammonia to the aqueous titanium tetrachloride was washed with pure water, and 0.3% sulfuric acid was added to the hydrous titanium oxide slurry as SO 3 with respect to the hydrous titanium oxide. Added.

次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを0.6に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを5.0に調整し、上澄み液の電気伝導度が50μS/cmになるまで洗浄をくり返した。   Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 0.6 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion to adjust the pH of the dispersion to 5.0, and washing was repeated until the electrical conductivity of the supernatant liquid reached 50 μS / cm.

該含水酸化チタンに対し、0.97倍モル量のSr(OH)・8HOを加えてSUS製の反応容器に入れ、窒素ガス置換した。更に、SrTiO換算で0.6mol/リットルになるように蒸留水を加えた。窒素雰囲気中で該スラリーを60℃まで10℃/時間で昇温し、60℃に到達してから7時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後、純水で洗浄をくり返し、その後、ヌッチェで濾過を行った。得られたケーキを乾燥し、焼結工程を経由していないチタン酸ストロンチウム微粒子を得た。このチタン酸ストロンチウム微粒子を無機粒子Aとした。 0.97-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Furthermore, distilled water was added so as to be 0.6 mol / liter in terms of SrTiO 3 . The slurry was heated to 60 ° C. at a rate of 10 ° C./hour in a nitrogen atmosphere, and reacted for 7 hours after reaching 60 ° C. After the reaction, the reaction solution was cooled to room temperature, and the supernatant was removed. Then, the washing was repeated with pure water, and then filtered with Nutsche. The obtained cake was dried to obtain strontium titanate fine particles not passing through the sintering step. The strontium titanate fine particles were designated as inorganic particles A.

更に、Sr(OH)・8HO量、pH、スラリーの昇温条件等、各製造条件を振り、粒径や形状の異なる無機微粒子B〜同M、比較微粒子A〜同Eを作成した。
これらの微粒子の物性を表1に示す。
Further, the production conditions such as the amount of Sr (OH) 2 · 8H 2 O, pH, slurry temperature rising conditions were varied to prepare inorganic fine particles B to M and comparative fine particles A to E having different particle sizes and shapes. .
Table 1 shows the physical properties of these fine particles.

<像担持体製造例>
外径30mm(φ30と記載する)の支持体101a(図10A・図10B)の表面を、市販の切削旋盤を使用して切削した。
<Example of image carrier production>
The surface of the support 101a (FIGS. 10A and 10B) having an outer diameter of 30 mm (described as φ30) was cut using a commercially available cutting lathe.

本例に於いては、平バイトを使用し、該バイトの設定角、ピッチを調整して切削を施した支持体101aに、周知のRF−CVD法で成膜し、像担持体P01としてa−Si感光体を得た。   In this example, a flat cutting tool is used, a film is formed by a well-known RF-CVD method on a support 101a that has been cut by adjusting the setting angle and pitch of the cutting tool, and the image carrier P01 is a A -Si photoconductor was obtained.

一般に、RF−CVD等のCVD法で作成されるa−Si感光体では、一般に図10Bの如く、支持体101aの形状が作成される感光体の表面形状に影響する。即ち、支持体101aの形状を制御する事で感光体の表面形状を制御できる。   In general, in an a-Si photoconductor produced by a CVD method such as RF-CVD, the shape of the support 101a generally affects the surface shape of the photoconductor produced as shown in FIG. 10B. That is, the surface shape of the photoconductor can be controlled by controlling the shape of the support 101a.

作成した像担持体P01の表面粗さRzd、Smdを表2に示す。   Table 2 shows the surface roughnesses Rzd and Smd of the created image carrier P01.

注)表面粗さの定義はJISB0601:1994に準ずる
なお、本例では詳細は割愛するが、プラズマCVDの条件を振ることでも表面形状を制御できる。例えば、同じ形状の基板を使用した場合、原料ガス流量を増加させるとともに、放電電力/ガス流量を増加させるとRzが増加する、などである。その他、基板温度の制御など各種製造条件を調整し表面形状の制御を行う事も可能である。
Note) Definition of surface roughness conforms to JISB0601: 1994. Although details are omitted in this example, the surface shape can be controlled by changing the conditions of plasma CVD. For example, when substrates having the same shape are used, Rz increases when the raw material gas flow rate is increased and the discharge power / gas flow rate is increased. In addition, the surface shape can be controlled by adjusting various manufacturing conditions such as control of the substrate temperature.

<現像剤製造例>
下記製造例にて、トナー粒子、及び各種添加剤からなる現像剤を作成した。
<Developer production example>
In the following production example, a developer composed of toner particles and various additives was prepared.

周知のポリエステル系結着樹脂 100質量部
磁性酸化鉄 100質量部
モノアゾ鉄化合物 2質量部
サリチル酸Al化合物 1質量部
フィッシャートロプシュワックス 4質量部
(DSCピークトップ温度=104℃、Mw/Mn=1.8)
の混合物をヘンシェルミキサーで前混合した。
Well-known polyester binder resin 100 parts by weight Magnetic iron oxide 100 parts by weight Monoazo iron compound 2 parts by weight Salicylic acid Al compound 1 part by weight Fischer-Tropsch wax 4 parts by weight (DSC peak top temperature = 104 ° C., Mw / Mn = 1.8 )
The mixture was premixed with a Henschel mixer.

これを、130℃に加熱された2軸エクストルーダで溶融混練し、冷却した混練物をハンマーミルで粗粉砕してトナー粗粉砕物を得た。   This was melt kneaded with a biaxial extruder heated to 130 ° C., and the cooled kneaded product was coarsely pulverized with a hammer mill to obtain a coarsely pulverized toner product.

得られた粗粉砕物を、機械式粉砕機ターボミルを用いて、粉砕機入り口エアー温度を−15℃、出口エアー温度を48℃、粉砕ローター及びライナーを冷却する冷媒の温度を−5℃に調整して機械式粉砕させて微粉砕した。   The obtained coarsely pulverized product is adjusted to -15 ° C at the inlet air temperature, 48 ° C at the outlet air temperature, and -5 ° C to cool the cooling rotor and liner, using a mechanical pulverizer turbo mill. And then pulverized by mechanical pulverization.

得られた微粉砕物を、コアンダ効果を利用した多分割分級装置(日鉄鉱業社製エルボジェット分級機)で微粉及び粗粉を同時に厳密に分級除去した。   The obtained finely pulverized product was subjected to strict classification and removal of fine powder and coarse powder at the same time using a multi-division classifier (elbow jet classifier manufactured by Nittetsu Mining Co., Ltd.) using the Coanda effect.

その後、機械式表面改質装置を用いて種々の円形度のトナー粒子を作成した。   Thereafter, toner particles having various degrees of circularity were prepared using a mechanical surface reformer.

該トナー粒子100質量部に、BET200m/gの乾式シリカに疎水化処理を施した、疎水化シリカ粒子1.5質量部を、ヘンシェルミキサーで混合した。これにより、重量平均粒子径Xが6.4μmで、表3に示すような平均円形度a(T)の負帯電性トナーT1〜T9を得た。 To 100 parts by mass of the toner particles, 1.5 parts by mass of hydrophobized silica particles obtained by subjecting dry silica of BET 200 m 2 / g to hydrophobization was mixed with a Henschel mixer. Thus, negatively chargeable toners T1 to T9 having a weight average particle diameter X of 6.4 μm and an average circularity a (T) as shown in Table 3 were obtained.

<評価装置>
評価装置として、キヤノン製複写機iR400を改造して、図1の如き評価機とした。具体的には、除電手段108としてピーク波長680nmのLEDを使用し、図1に示すように、転写工程とクリーニング工程の間に配した。
<Evaluation equipment>
As an evaluation apparatus, a Canon copier iR400 was modified to obtain an evaluation machine as shown in FIG. Specifically, an LED having a peak wavelength of 680 nm was used as the static elimination means 108, and was disposed between the transfer process and the cleaning process as shown in FIG.

像担持体101の面速度を250mm/secとし、正帯電a−Si感光体と、負帯電現像剤の正規現像用に、帯電、現像、転写の各手段に印加するバイアス条件を変更できる様にした。また、潜像露光手段104を、波長660nm、スポット径40μm、600dpiのBAEに改造した。   The surface speed of the image carrier 101 is 250 mm / sec, and the bias conditions applied to the charging, developing, and transfer means can be changed for regular development of the positively charged a-Si photosensitive member and the negatively charged developer. did. The latent image exposure means 104 was modified to a BAE having a wavelength of 660 nm, a spot diameter of 40 μm, and 600 dpi.

帯電手段である帯電ローラー102、及び帯電清掃部材103はiR400製品の物をそのまま使用した。帯電ローラー102は平均外径φ16のローラーである。
更に、iR400のカートリッヂの廃トナー送り羽を除去し、該カートリッヂ内に、無機粒子Sをセットし、像担持体に無機粒子Sを供給する部材111としてファーブラシを設置した。図1中、斜線部が無機粒子設置領域である。なお、供給部材111は、像担持体の表面との当接部に於いて、像担持体101の表面移動方向に対してカウンター方向で、像担持体の面速度の70%(−70%と表記する)の速度で回転駆動する様にした。
As the charging roller 102 and the charging cleaning member 103 as charging means, iR400 products were used as they were. The charging roller 102 is a roller having an average outer diameter φ16.
Further, the waste toner feed blade of the iR400 cartridge was removed, the inorganic particles S were set in the cartridge, and a fur brush was installed as a member 111 for supplying the inorganic particles S to the image carrier. In FIG. 1, the shaded area is the inorganic particle installation area. The supply member 111 is 70% (−70% of the surface speed of the image carrier) in the counter direction with respect to the surface movement direction of the image carrier 101 at the contact portion with the surface of the image carrier. It was made to rotate at a speed of (noted).

<実験例>
表2の像担持体P01、表3の現像剤T1〜T9を使用して、表1の無機微粒子A〜M、比較微粒子A〜Eの評価を行った。
<Experimental example>
Using the image carrier P01 in Table 2 and the developers T1 to T9 in Table 3, the inorganic fine particles A to M and the comparative fine particles A to E in Table 1 were evaluated.

前記の評価装置を用いて、温度30℃/湿度80%の(H/H)環境下で、図9に示すような、通紙方向に等間隔の罫線(500μm線を10mm間隔で配した。画像比率5%)を原稿として、連続で20k枚/日で通紙した後、各種評価用画像形成を行い、メインスイッチをオフして夜間放置した。翌朝、評価用画像形成後、同様に20k枚/日の耐刷試験を継続し、300kまでの耐刷試験を行った。   Using the evaluation apparatus described above, ruled lines (500 μm lines at equal intervals in the sheet passing direction as shown in FIG. 9 were arranged at 10 mm intervals in a (H / H) environment of 30 ° C./80% humidity. An image ratio of 5%) was used as a manuscript and was continuously fed at 20k sheets / day, and various evaluation images were formed. The main switch was turned off and left at night. The next morning, after the evaluation image was formed, the 20 k sheet / day printing durability test was continued in the same manner, and the printing durability test up to 300 k was performed.

次に、温度10℃/湿度15%の(L/L)環境下で、同様に、100k枚、合計400k枚の通紙耐久を行った。   Next, in a (L / L) environment at a temperature of 10 ° C./humidity of 15%, similarly, 100 k sheets, a total of 400 k sheets, was passed.

尚、評価用画像としては、300μm線を5mm間隔で交差させた格子画像、1ドット1スペース、1ドット2スペースのハーフトーン画像、ベタ黒、及び17階調画像を形成した。   In addition, as an image for evaluation, a grid image in which 300 μm lines were crossed at intervals of 5 mm, a halftone image of 1 dot 1 space, 1 dot 2 space, solid black, and a 17 gradation image were formed.

「画像流れ」は、H/H環境下で上記評価画像を目視で評価した。   For “image flow”, the evaluation image was visually evaluated in an H / H environment.

「クリーニング耐久性(CLN耐久性)」は、耐久前後でクリーニング部材のエッヂ部を顕微鏡観察し、損耗レベルを評価した。   For “cleaning durability (CLN durability)”, the edge portion of the cleaning member was observed with a microscope before and after the durability, and the wear level was evaluated.

「像担持体耐久性」は、該像担持体表面の磨耗量、及びキズで評価した。摩耗量は、反射分光式干渉計(商品名:MCPD−2000、大塚電子(株)社製)により測定し、1回転あたりの摩耗Rate[nm/回転]として算出した。また、像担持体表面のキズは、該像担持体表面の目視、及び画像上でのキズ又はスジの有無で判断した。   “Image carrier durability” was evaluated based on the amount of abrasion and scratches on the surface of the image carrier. The amount of wear was measured with a reflection spectroscopic interferometer (trade name: MCPD-2000, manufactured by Otsuka Electronics Co., Ltd.), and was calculated as wear rate [nm / rotation] per rotation. Further, the scratch on the surface of the image carrier was determined by visual observation of the surface of the image carrier and the presence or absence of scratches or streaks on the image.

評価基準は下記の通りである。   The evaluation criteria are as follows.

1)「画像流れ」(H/H環境)
耐刷翌朝のサンプル画像から判定した。判定基準は下記の通りである。
1) “Image flow” (H / H environment)
Judgment was made from the sample image of the morning after printing. The judgment criteria are as follows.

◎;非常に良好・・上記評価画像に於いて 線、及びドットのボケ無し
○;良好・・格子画像は流れ認識できず、ハーフトーン又は階調画像の一部領域でドットのボケ又は濃度低下あり。但しA4通紙50枚以内で回復
●;実用可能・・格子画像は流れ認識できず、ハーフトーン又は階調画像でドットのボケ又は濃度低下あり。回復まで50〜100枚
△;実用可能・・格子画像は流れ認識できず、ハーフトーン又は階調画像でドットのボケ又は濃度低下あり。回復まで100枚超過。または、格子画像で若干の流れ認識できるが、格子画象の流れ回復まで50枚以内
×;上記以外・・格子画像で流れ認識される
2)「CLN耐久性」
耐刷試験後にクリーニングブレードのカット面と当接面を顕微鏡観察し、クリーニングブレードの欠けや抉れ、トナーすり抜けや、ビビリ、捲れといったクリーニング不良を評価した。判定基準は下記の通りである。
◎: Very good ・ ・ No blurring of lines and dots in the above evaluation image ○; Good ・ ・ Lattice image cannot be recognized and dot blurring or density drop in some areas of halftone or gradation image Yes. However, it can be recovered within 50 sheets of A4 paper. ●: Practical use ・ Lattice image cannot be recognized and dot blurring or density decrease in halftone or gradation image. 50 to 100 sheets until recovery Δ: Practical use ・ Lattice image cannot be recognized and dot blurring or density decrease in halftone or gradation image. Over 100 sheets until recovery. Or, it is possible to recognize a little flow with the grid image, but within 50 images until the flow recovery of the grid image ×: Other than the above ・ ・ Flow recognition is performed with the grid image 2) “CLN durability”
After the printing durability test, the cut surface and the contact surface of the cleaning blade were observed with a microscope, and cleaning defects such as chipping and scuffing of the cleaning blade, toner slipping, chattering and scoring were evaluated. The judgment criteria are as follows.

◎;非常に良好・・ブレード欠け無し。トナー粒径以下の抉れ又は欠けが3箇所以内。すり抜けなし。めくれ、ビビリ、共鳴音、何れも無し
○;良好・・トナー粒径以下の抉れ又は欠けが4〜5箇所。トナー粒径以上の抉れ又は欠け無し。すり抜け無し。めくれ無し、共鳴音は像担持体停止時に発生する場合がある、又はビビリが発生する場合がある(頻度少)
●;実用可能・・トナー粒径以下の抉れ又は欠けが6〜10箇所。トナー粒径以上の抉れ又は欠けが有るが、トナー粒径の2倍以上のものは無し。すり抜け無し。共鳴音またはビビリが発生する場合がある(頻度少)
△;実用可能・・トナー粒径以下の抉れ又は欠けが10箇所以上。トナー粒径の2倍以上の抉れ又は欠けが有るが、すり抜け無し。共鳴音とビビリの双方が発生する場合がある(頻度少)
×;上記以外・・欠け/抉れ等のブレード損耗に起因するすり抜け有り、又はメクレが発生す場合がある。ビビリと共鳴音が発生する乃至は頻度が高い
3)「像担持体耐久性」
耐刷試験前後の像担持体の膜厚摩耗を測定した。像担持体の膜厚測定は、像担持体の表面層厚を周方向に6箇所、長軸方向で6箇所の、計36箇所で測定し、その平均値を、平均表面層厚とした。磨耗量の算出は、耐久前後の平均表面層厚の差分、該像担持体の回転数で除し、10,000回転あたりの摩耗Rate[nm/10k回転(rot)]として算出した。画像濃度は絶対濃度で測定し、各画像評価時における上記画像を濃度計「RD−918」(マクベス社製)を使用して測定した。判定基準は下記の通りである。
A: Very good ・ No blade chipping. No more than 3 spots or chippings below the toner particle size. No slip-through. No turn-over, chatter, or resonance sound. ○: Good. No wrinkles or chipping beyond the toner particle size. No slip-through. No turning, resonance may occur when the image carrier is stopped, or chatter may occur (frequently)
●: Practical use ・ 6-10 spots of wrinkles or chips below the toner particle size. There are wrinkles or chips larger than the toner particle size, but none more than twice the toner particle size. No slip-through. Resonance or chatter may occur (rare)
△: Practical use ・ Trenches or chips below the toner particle size are 10 or more. There are wrinkles or chippings twice or more than the toner particle size, but there is no slipping. Both resonance and chatter may occur (rare)
X: Other than the above--there may be slipping out due to blade wear such as chipping / skinning or mekre. 3) “Image carrier durability”
Film thickness wear of the image carrier before and after the printing durability test was measured. In the measurement of the film thickness of the image carrier, the surface layer thickness of the image carrier was measured at a total of 36 locations, 6 in the circumferential direction and 6 in the long axis direction, and the average value was defined as the average surface layer thickness. The amount of wear was calculated by dividing the difference in the average surface layer thickness before and after the endurance and the number of rotations of the image bearing member as wear rate per 10,000 rotations [nm / 10k rotation (rot)]. The image density was measured as an absolute density, and the above image at the time of each image evaluation was measured using a densitometer “RD-918” (manufactured by Macbeth). The judgment criteria are as follows.

◎;非常に良好・・摩耗Rateが1.5[nm/10krot]以下、且つ偏摩耗無し
○;良好・・摩耗Rateが1.5[nm/10krot]以下、偏摩耗あるが、2.0[nm/10krot]を超える測定点無し。且つ、偏磨耗部とその近傍の画像濃度差は0.2以下
×;上記以外・・摩耗Rateが1.5[nm/10krot]超過、または2.0[nm/10krot]を超える測定点あり。又は偏磨耗部とその近傍の画像濃度差は0.2超過
トナーT1〜T9何れもほぼ同等の結果が得られた。
◎: Very good ・ ・ Wear Rate is 1.5 [nm / 10 krot] or less and no uneven wear ○; Good ・ ・ Wear Rate is 1.5 [nm / 10 krot] or less, and there is uneven wear, but 2.0 No measurement points exceeding [nm / 10 krot]. In addition, the difference in image density between the unevenly worn portion and the vicinity thereof is 0.2 or less. X; Other than the above. · There are measurement points where the wear rate exceeds 1.5 [nm / 10 krot] or exceeds 2.0 [nm / 10 krot]. . Alternatively, the difference in image density between the unevenly worn portion and its vicinity exceeded 0.2. All the toners T1 to T9 obtained almost the same results.

トナーT4(円形度0.941)を使用したときの評価結果を表4に示す。   Table 4 shows the evaluation results when using toner T4 (circularity 0.941).

表4より、無機微粒子の平均一次粒径Dが0.03〜0.50、より好ましくは0.10〜0.30[μm]のとき、画像流れ、クリーニング耐久性、像担持体の損耗に好適である事が分る。また、円形度が0.930以下の時に更に良好な結果が得られた。   From Table 4, when the average primary particle diameter D of the inorganic fine particles is 0.03 to 0.50, and more preferably 0.10 to 0.30 [μm], the image flow, the cleaning durability, and the wear of the image carrier are deteriorated. It turns out that it is suitable. Further, a better result was obtained when the circularity was 0.930 or less.

また、無機粒子Sの供給方法はこれに限らず、例えば現像手段から供給する事もできる。使用する現像剤として、現像剤製造例で作成したトナー粒子100質量部に対して、疎水性シリカ粒子1.5質量部をヘンシェルミキサーで混合する。その際に、更に無機粒子1.0質量部を追加した。これ以外はトナーT4と同様にして作成したトナーT10を用いた。   Further, the method of supplying the inorganic particles S is not limited to this, and for example, the inorganic particles S can be supplied from the developing means. As a developer to be used, 1.5 parts by mass of hydrophobic silica particles are mixed with a Henschel mixer with respect to 100 parts by mass of toner particles prepared in the developer production example. At that time, 1.0 part by mass of inorganic particles was further added. Except for this, toner T10 prepared in the same manner as toner T4 was used.

一方、評価装置は、無機粒子Sを収容させたトレイ115(図1)と、無機粒子供給部材111は除去し、元の廃トナー送り羽根として、同様の評価を行ったところ、表4〜6と同様の結果が得られた。   On the other hand, the evaluation apparatus removed the tray 115 (FIG. 1) containing the inorganic particles S and the inorganic particle supply member 111 and performed the same evaluation as the original waste toner feed blade. Similar results were obtained.

送り羽根の替りに、無機粒子Sを介して像担持体表面を摺擦する、回動可能な摺擦部材112を設けてもよい。該摺擦部材112は弾性部材、ファーブラシなど、周知の部材を使用できる。また、現像剤が磁性トナーであれば磁性体を使用しても良い。   Instead of the feed blade, a rotatable rubbing member 112 for rubbing the surface of the image carrier through the inorganic particles S may be provided. As the rubbing member 112, a known member such as an elastic member or a fur brush can be used. Further, if the developer is a magnetic toner, a magnetic material may be used.

以降、実施例においては、特に断わりが無い場合は、トナーT10、上記良好な結果が得られた微粒子A〜Mを用いる。また、評価装置としては図2のごとく摺擦部材112を設けた装置を使用する。なお、摺擦部材112はアスカーC硬度で30度の発泡ウレタンからなるローラーを使用し、+40%の速度で駆動させた。   Thereafter, in the examples, unless otherwise specified, toner T10 and fine particles A to M obtained with the above-described good results are used. Further, as the evaluation apparatus, an apparatus provided with the rubbing member 112 as shown in FIG. 2 is used. The rubbing member 112 was a roller made of urethane foam with Asker C hardness of 30 degrees and was driven at a speed of + 40%.

<帯電清掃部材の保持方法>
図7のように、ローラー状の帯電清掃部材103の芯金部103−Sが上下動自在となる様にガイドスロットを追加し、更に帯電ローラー102に対して所定の圧で当接する様に、加圧手段(加圧バネ)S103を設けた。H103は帯電清掃部材保持具であり、ガイドスロットに沿って可動である。
<Method for holding electrified cleaning member>
As shown in FIG. 7, a guide slot is added so that the core metal part 103 -S of the roller-shaped charging cleaning member 103 can move up and down, and further, it contacts the charging roller 102 with a predetermined pressure. A pressurizing means (pressurizing spring) S103 is provided. H103 is a charging cleaning member holder and is movable along the guide slot.

更に、像担持体101の駆動に同期して、帯電清掃部材103を回転駆動させる不図示の駆動機構を設けた。   Further, a driving mechanism (not shown) that rotates the charging cleaning member 103 in synchronization with the driving of the image carrier 101 is provided.

帯電清掃部材103の帯電ローラー102への当接圧は、加圧手段S103を用いて行う。帯電清掃部材103の自重以下の当接圧にする場合には、加圧手段S103を逆方向(図7でいう下側)に付ければよい。   The contact pressure of the charging cleaning member 103 to the charging roller 102 is performed using the pressurizing unit S103. In order to set the contact pressure below the dead weight of the charging cleaning member 103, the pressurizing means S103 may be attached in the reverse direction (the lower side in FIG. 7).

帯電ローラー102も芯金部が上下動自在となる様にガイドスロットを追加し、更に像担持体101に対して所定の圧で当接する様に、加圧手段(加圧バネ)S102を設けた。H102は帯電ローラー保持具であり、ガイドスロットに沿って可動である。   The charging roller 102 is also provided with a guide slot so that the mandrel can be moved up and down, and further provided with a pressurizing means (pressurizing spring) S102 so as to come into contact with the image carrier 101 with a predetermined pressure. . H102 is a charging roller holder and is movable along the guide slot.

[実施例1]
<帯電清掃部材の製造例DR1〜DR5>
帯電清掃部材103として、周知の方法で、外径7mm(φ7)、長さ350mmの芯金上に、粒径の異なるカーボンを分散したウレタンゴムからなる弾性ローラーを作成した。
[Example 1]
<Production Examples DR1 to DR5 of the electrification cleaning member>
As the electrostatic cleaning member 103, an elastic roller made of urethane rubber in which carbons having different particle diameters are dispersed on a core metal having an outer diameter of 7 mm (φ7) and a length of 350 mm was prepared by a known method.

該弾性ローラーは、芯金上に成型した後、切削、研磨加工により、外径12mm(φ12)、実効長である、該弾性部材の長さが310mmの円筒状とし、帯電清掃部材DR1〜DR5を得た。   The elastic roller is formed on a cored bar, and then is cut and polished to form a cylindrical shape having an outer diameter of 12 mm (φ12) and an effective length of 310 mm, and the charging cleaning members DR1 to DR5. Got.

以降、特に断り無き場合は、芯金を含み上述の帯電清掃部材DR1〜DR5と同様の寸法に作成したものである。   Thereafter, unless otherwise specified, the cores are made to have the same dimensions as the above-described charging cleaning members DR1 to DR5.

帯電清掃部材DR1〜DR5の表面形状の制御は、分散するカーボンブラックの粒径、切削・研磨工程の砥石の調整等により行った。   The surface shapes of the electrostatic cleaning members DR1 to DR5 were controlled by adjusting the particle size of the dispersed carbon black, adjusting the grindstone in the cutting / polishing process, and the like.

なお、作成した帯電清掃部材DR1〜DR5はAsker−C硬度(Z)は20±3度になる様にした。各弾性ローラーDR1〜DR5の表面は、図5の模式図の如く、不規則な凹凸状になっていた。帯電清掃部材DR1〜5のRzc、Smcを表5に示す。   The prepared charging cleaning members DR1 to DR5 were set to have Asker-C hardness (Z) of 20 ± 3 degrees. The surface of each elastic roller DR1-DR5 was irregular uneven | corrugated like the schematic diagram of FIG. Table 5 shows Rzc and Smc of the charging cleaning members DR1 to DR5.

また、帯電清掃部材DRのRzcと上記微粒子の平均粒径Dの比を表6に、SmcとDの比を表7に、それぞれ示す。   Table 6 shows the ratio of Rzc of the electrostatic cleaning member DR to the average particle diameter D of the fine particles, and Table 7 shows the ratio of Smc to D.

これらの、帯電清掃部材DR1〜DR5を、帯電手段に3g/cmの線圧で当接させ、帯電ローラー102との当接部で、帯電ローラー102に対して順方向に110%の相対速度(+110%)で駆動する様にした。   These charging cleaning members DR1 to DR5 are brought into contact with the charging means at a linear pressure of 3 g / cm, and a relative speed of 110% in the forward direction with respect to the charging roller 102 at the contact portion with the charging roller 102 ( + 110%).

無機微粒子A〜Mを用いて、H/H環境、L/L環境で各々100k枚の耐刷試験を行い。両環境にて帯電均一性を評価した。具体的には、通常のハーフトーン画像、ベタ画像と、潜像露光を照射しない状態で、現像手段のバイアス条件を調整して作成したハーフトーン画像とから、帯電均一性を評価した。比較対照として、清掃部材なしで同様に耐刷、評価を行った。   Using inorganic fine particles A to M, a printing durability test of 100 k sheets was performed in an H / H environment and an L / L environment. The charging uniformity was evaluated in both environments. Specifically, charging uniformity was evaluated from a normal halftone image and a solid image and a halftone image prepared by adjusting the bias condition of the developing unit in a state where the latent image exposure was not performed. As a comparative control, printing durability and evaluation were similarly performed without a cleaning member.

帯電ローラー102が像担持体101に接触する場合は、帯電ローラー102の汚染はH/H環境の方が多く、一方、帯電ローラー102の汚染が帯電均一性に及ぼす影響はL/L環境の方が顕著であった。   When the charging roller 102 comes into contact with the image carrier 101, the contamination of the charging roller 102 is more in the H / H environment, whereas the influence of the contamination of the charging roller 102 on the charging uniformity is in the L / L environment. Was remarkable.

よって、H/H環境で耐刷した帯電ローラーの帯電均一性を評価した結果で判断した。   Therefore, the evaluation was made based on the result of evaluating the charging uniformity of the charging roller that was printed in an H / H environment.

◎;帯電均一性良好
○;良好
●;通常画像には汚染の影響でない
△;耐刷環境下では、通常画像問題無し
×;汚染による帯電不均一が通常画像に発生
結果を下表8に示す。
◎; Charge uniformity good ○; Good ●; Normal image is not affected by contamination △; Normal image problem does not occur in printing durability environment ×: Charge nonuniformity due to contamination occurs in normal image Table 8 shows the results .

帯電清掃部材103の表面のRzが、前記平均粒径Dの5〜500倍の時、帯電清掃部材103の汚染が画像に生じなかった。   When Rz on the surface of the charging cleaning member 103 is 5 to 500 times the average particle diameter D, the charging cleaning member 103 is not contaminated.

[実施例2]
上記弾性ローラーDR3を基準に、Smの異なる帯電清掃部材DR3−2〜DR3−5を作成した。表9に該ローラーの表面形状、表10に帯電清掃部材DR3〜DR3−5のSmcと無機微粒子の平均一次粒径Dの相関を示す。また、実施例1と同様の耐刷試験、評価を行った結果を表11に示す。
[Example 2]
Based on the elastic roller DR3, charged cleaning members DR3-2 to DR3-5 having different Sm were prepared. Table 9 shows the surface shape of the roller, and Table 10 shows the correlation between the Smc of the electrostatic cleaning members DR3 to DR3-5 and the average primary particle diameter D of the inorganic fine particles. Table 11 shows the results of the printing durability test and evaluation similar to those in Example 1.

表10〜11より、帯電清掃部材のSmcが前記平均粒径Dの1E2〜1E4倍の時、帯電ローラー102の汚染の抑制に好適であることが分る。   From Tables 10 to 11, it is found that when the Smc of the charging cleaning member is 1E2 to 1E4 times the average particle diameter D, it is suitable for suppressing the contamination of the charging roller 102.

[実施例3]
帯電清掃部材としてDR3を用い、無機微粒子Eを用いた。
[Example 3]
DR3 was used as the charging cleaning member, and inorganic fine particles E were used.

バネ、スペーサー等を使用し、帯電清掃部材DR3を帯電ローラー102に当接させる圧を振って、実施例1と同様の評価を行った。結果を下表12に示す。   The same evaluation as in Example 1 was performed by using a spring, a spacer, and the like and shaking the pressure for bringing the charging cleaning member DR3 into contact with the charging roller 102. The results are shown in Table 12 below.

表12より、帯電清掃部材が帯電ローラー102に、2〜10g/cmで当接するとき、良好な結果が得られた。当接圧が、上記範囲よりも小さいと、清掃能力が低下する。一方、高すぎると、帯電清掃部材のへたりや、帯電ローラー表面の損耗が生じたり、帯電ローラー表面にフィルミングが発生する場合がった。   From Table 12, good results were obtained when the charging cleaning member contacted the charging roller 102 at 2 to 10 g / cm. If the contact pressure is smaller than the above range, the cleaning ability is lowered. On the other hand, if it is too high, the charging cleaning member may sag, the charging roller surface may be worn out, or filming may occur on the charging roller surface.

[実施例4]
帯電清掃部材の駆動系を除し、帯電ローラーに従動し、等速で連れ回る様にした以外は実施例3と同様の評価を行った。結果を表13に示す。
[Example 4]
The same evaluation as in Example 3 was performed except that the drive system of the charging cleaning member was removed, the charging roller was driven, and the charging cleaning member was driven at a constant speed. The results are shown in Table 13.

表12と比較して、帯電清掃部材の損耗や、帯電ローラーのフィルミングが低減し、特に高圧側のラチチュードが広がると共に、駆動系を除すことで帯電手段の機構の簡易化、低コスト化に有利である。   Compared with Table 12, wear of the charging cleaning member and filming of the charging roller are reduced. In particular, the latitude on the high voltage side is widened, and the mechanism of the charging means is simplified and the cost is reduced by removing the drive system. Is advantageous.

また、帯電清掃部材が、帯電ローラーに対して周速差を持って従動する様にしても良い。周速差の値は、使用する帯電清掃部材や、当接圧等により、適宜選択できる。   Further, the charging cleaning member may be driven with a peripheral speed difference with respect to the charging roller. The value of the peripheral speed difference can be appropriately selected depending on the charging cleaning member to be used, the contact pressure, and the like.

この例では、帯電清掃部材は上記同様にDR3を用い、帯電清掃部材保持具H103(図7)の内側(帯電清掃部材103と摺動する部位)に負荷が付与されたベアリングを使用し、帯電ローラー102に対して95〜98%の速度で回動する様にした。この構成にて、上記と同様の評価を行った。結果、表14の如く、良好な結果が得られた。   In this example, the charging cleaning member uses DR3 as described above, and uses a bearing in which a load is applied to the inner side of the charging cleaning member holder H103 (FIG. 7) (the portion sliding with the charging cleaning member 103). The roller 102 is rotated at a speed of 95 to 98%. Evaluation similar to the above was performed with this configuration. As a result, good results were obtained as shown in Table 14.

[実施例5]
硬度Zが異なるウレタンゴムを使用し、表面のRzを振って、各種の帯電清掃部材Rz6〜9を作成した。
[Example 5]
Using various types of urethane rubbers having different hardness Z, various charging cleaning members Rz6 to 9 were prepared by shaking the surface Rz.

帯電清掃部材DR1、DR3、DR5及び上記帯電清掃部材DR6〜9を用いて、実施例3と同様の評価を行った結果を、表15に示す。   Table 15 shows the results of the same evaluation as in Example 3 using the charging cleaning members DR1, DR3, DR5 and the charging cleaning members DR6-9.

表15の各欄の記載は「耐汚れ」/「帯電清掃部材、帯電ローラーの損耗」である。表15より、帯電清掃部材DR1(Z×Rzc=4)や、帯電清掃部材DR9(Z×Rzc=580)と比較して、Z×Rzの積が10〜500の範囲のとき、低圧側の耐汚れ、高圧側での帯電清掃部材や帯電ローラーの損耗も抑制された。そのため、非常に良好な結果が得られた。   The description in each column of Table 15 is “dirt resistance” / “wear and tear of the charging cleaning member and charging roller”. From Table 15, when the product of Z × Rz is in the range of 10 to 500, compared with the charging cleaning member DR1 (Z × Rzc = 4) and the charging cleaning member DR9 (Z × Rzc = 580), Dirt resistance and wear of the charging cleaning member and charging roller on the high pressure side were also suppressed. Therefore, very good results were obtained.

[実施例6]
帯電清掃部材DR3の表面形状を、図6のAの如く多角形で構成される様に型を用いて作成し、帯電清掃部材DR10を得た。即ち、帯電清掃部材の表面が、複数の多角形から構成されている。
[Example 6]
The surface shape of the charging cleaning member DR3 was created using a mold so as to be formed in a polygon as shown in FIG. 6A to obtain a charging cleaning member DR10. That is, the surface of the charging cleaning member is composed of a plurality of polygons.

更に、帯電清掃部材の表面を図6のBの如く、帯電清掃部材の長手に非平行に切削して、帯電清掃部材DR11を得た。即ち帯電清掃部材の表面に凹凸を設け、この凹凸の配列が帯電ローラー、及び像担持体の表面の移動方向に対して非平行である帯電清掃部材である。   Further, as shown in FIG. 6B, the surface of the charging cleaning member was cut non-parallel to the length of the charging cleaning member to obtain a charging cleaning member DR11. That is, the surface of the charging cleaning member is provided with irregularities, and the arrangement of the irregularities is a charging cleaning member that is non-parallel to the moving direction of the surface of the charging roller and the image carrier.

上記の帯電清掃部材DR10,DR11を用いて、実施例2と同様の評価を行った結果を、表16に示す。欄内の記載は表15に準ずる。   Table 16 shows the results of the same evaluation as in Example 2 using the above-described charging cleaning members DR10 and DR11. The description in the column conforms to Table 15.

表16より、表面が多角形で構成される系で、より好適な結果が得られた。   From Table 16, a more favorable result was obtained with a system having a polygonal surface.

[実施例7]
<帯電清掃部材の製造例TR1〜TR5>
帯電清掃部材として、外径7mm(φ7)、長さ350mmの芯金上に、必要に応じて加熱圧縮、切削等の周知の方法で、発泡量を変化させた単泡の発泡ローラー(単泡ローラー;TR1〜5)を作成した。
[Example 7]
<Production Examples TR1 to TR5 of Charging Cleaning Member>
As a charging cleaning member, a single-foam foaming roller (single-bubble) with a foaming amount changed on a cored bar having an outer diameter of 7 mm (φ7) and a length of 350 mm as required by a known method such as heat compression and cutting Rollers; TR1-5) were prepared.

作成した帯電清掃部材TR1〜TR5について、レーザー顕微鏡で表面を観察し、平均空孔径Lと空孔の個数とから、帯電清掃部材の外径相当部の視野における、空孔の占める面積として、空孔密度を求めた。   About the created charging cleaning members TR1 to TR5, the surface is observed with a laser microscope, and from the average hole diameter L and the number of holes, the area occupied by the holes in the field of view corresponding to the outer diameter of the charging cleaning member is The pore density was determined.

なお、作成した帯電清掃部材TR1〜TR5はAsker−C硬度(Z)は20±3度、平均空孔径は50〜100μmになる様にした。   The prepared charging cleaning members TR1 to TR5 were set to have an Asker-C hardness (Z) of 20 ± 3 degrees and an average pore diameter of 50 to 100 μm.

実施例3と同様の評価を行った結果を表17に示す。欄内の記載は表15に準ずる。   The results of the same evaluation as in Example 3 are shown in Table 17. The description in the column conforms to Table 15.

表17より、空孔密度が20〜80%のときに、良好な結果が得られた。空孔密度が低いTR4では清掃の不均一性が生じたり、一部で帯電ローラーにフィルミングが生じる場合があった。一方、空孔密度が高いTR5では、清掃部材自体の損耗が生じる場合があった。   From Table 17, good results were obtained when the pore density was 20 to 80%. In TR4 having a low hole density, uneven cleaning may occur, or filming may occur in the charging roller in part. On the other hand, in TR5 having a high hole density, the cleaning member itself may be worn out.

また、帯電清掃部材TR1と同等の硬度Z、空孔密度で、空孔径Dcが異なる帯電清掃部材TR6〜10を作成した。同様に、帯電清掃部材TR2と同等のZ、空孔密度でDcが異なる帯電清掃部材TR11〜15、帯電清掃部材TR3と同等のZ、空孔密度でDcが異なる帯電清掃部材TR16〜20を夫々作成した。   Further, charging cleaning members TR6 to 10 having hardness Z and hole density equivalent to those of the charging cleaning member TR1 and different hole diameters Dc were prepared. Similarly, charging cleaning members TR11 to TR15 having the same Z as the charging cleaning member TR2 and different Dc in hole density, and charging cleaning members TR16 to TR20 having the same Z as the charging cleaning member TR3 and different Dc from the hole density, respectively. Created.

帯電清掃部材TR6〜20と無機微粒子A〜Mを使用して同様の評価を行った結果、平均空孔径Dcが10〜300μm、特に無機微粒子の平均粒径Dの1E2〜1E4倍の時に、良好な清掃能力と耐久性が得られた。   As a result of performing the same evaluation using the charging cleaning members TR6 to 20 and the inorganic fine particles A to M, it is good when the average pore diameter Dc is 10 to 300 μm, particularly 1E2 to 1E4 times the average particle diameter D of the inorganic fine particles. Cleanability and durability were obtained.

[実施例8]
帯電清掃部材として、帯電清掃部材TR1〜TR5に加え、平均空孔径Dc、及び空孔密度を調整し、硬度Zが異なる発泡ローラーを作成した。
[Example 8]
As the charge cleaning member, in addition to the charge cleaning members TR1 to TR5, the average hole diameter Dc and the hole density were adjusted, and foamed rollers having different hardness Z were prepared.

実施例5と同様の評価を行った結果、Z×Dcの積が10〜500の範囲のとき、低圧側の耐汚れ、高圧側での帯電清掃部材や帯電ローラーの損耗も抑制され、非常に良好な結果が得られた。   As a result of performing the same evaluation as in Example 5, when the product of Z × Dc is in the range of 10 to 500, dirt resistance on the low pressure side, wear of the charging cleaning member and charging roller on the high pressure side are suppressed, Good results were obtained.

[実施例9]
<帯電清掃部材の製造例RR1〜RR5>(発泡ローラーの空孔密度)
帯電清掃部材として、外径7mm(φ7)、長さ350mmの芯金上に、必要に応じて加熱圧縮、切削等の周知の方法で、発泡量を変化させた単泡の連泡ローラー(RR1〜5)を作成した。
[Example 9]
<Production Examples RR1 to RR5 of the charging cleaning member> (pore density of the foaming roller)
As a charging cleaning member, a single-bubble open-cell roller (RR1) in which the foaming amount is changed on a cored bar having an outer diameter of 7 mm (φ7) and a length of 350 mm by a known method such as heat compression and cutting as necessary. To 5).

この連泡ローラーRP1〜5は、複数個(1〜5個程度)のセルが繋がった連泡セルを有する。   These open cell rollers RP1 to RP5 have open cell cells in which a plurality of (about 1 to 5) cells are connected.

連泡材料では空孔が帯電清掃部材の内側にも連続しているが、単泡ローラー同様に、帯電清掃部材の外径相当部の空孔密度を求めた。   In the open cell material, the pores continue to the inside of the electrostatic cleaning member, but the pore density of the portion corresponding to the outer diameter of the electrostatic cleaning member was determined in the same manner as the single bubble roller.

実施例7と同様の評価を行った結果、同様に空孔密度が20〜80%のとき、さらには平均空孔径Dcが略10〜300μm、特に無機微粒子の平均粒径Dの1E2〜1E4倍の時に、良好な清掃能力と耐久性が得られた。   As a result of the same evaluation as in Example 7, when the pore density is 20 to 80%, the average pore diameter Dc is about 10 to 300 μm, particularly 1E2 to 1E4 times the average particle diameter D of the inorganic fine particles. At that time, good cleaning ability and durability were obtained.

[実施例10]
帯電ローラー102として、実施例1〜8で使用した帯電ローラー102の表面層の替りに、フッ化アルキル基およびオキシアルキレン基を有するポリシロキサンを含有する表面層のローラーを作成した。表面層は下記の要領で作成した。
[Example 10]
Instead of the surface layer of the charging roller 102 used in Examples 1 to 8, a roller having a surface layer containing a polysiloxane having an alkyl fluoride group and an oxyalkylene group was prepared as the charging roller 102. The surface layer was prepared as follows.

・加水分解性シラン化合物としてのグリシドキシプロピルトリエトキシシラン(GPTES)27.84g(0.1mol)
・メチルトリエトキシシラン(MTES)17.83g(0.1mol)
・トリデカフルオロ−1,1,2,2−テトラヒドロオクチルトリエトキシシラン(FTS、パーフルオロアルキル基の炭素数6)7.68g(0.0151mol(加水分解性シラン化合物総量に対して7mol%相当))
・水17.43g
・エタノール37.88g
とを混合しする。
-Glycidoxypropyltriethoxysilane (GPTES) 27.84 g (0.1 mol) as a hydrolyzable silane compound
・ Methyltriethoxysilane (MTES) 17.83 g (0.1 mol)
Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (FTS, carbon number 6 of perfluoroalkyl group) 7.68 g (0.0151 mol (equivalent to 7 mol% with respect to the total amount of hydrolyzable silane compound) ))
・ Water 17.43g
-Ethanol 37.88g
And mix.

そして、室温で攪拌し、次いで24時間加熱還流を行うことによって、加水分解性シラン化合物の縮合物Iを得た。   And the condensate I of a hydrolysable silane compound was obtained by stirring at room temperature and then performing a heating reflux for 24 hours.

この縮合物Iを2−ブタノール/エタノールの混合溶剤に添加することによって、固形分7質量%の縮合物含有アルコール溶IIを調製した。   By adding this condensate I to a mixed solvent of 2-butanol / ethanol, a condensate-containing alcohol solution II having a solid content of 7% by mass was prepared.

この縮合物含有アルコール溶液II100gに対して0.35gの光カチオン重合開始剤としての芳香族スルホニウム塩(商品名:アデカオプトマーSP−150、旭電化工業(株)製)を、縮合物含有アルコール溶液IIに添加する。これによって、表面層用塗布液IIIを調製した。   0.35 g of an aromatic sulfonium salt (trade name: Adekaoptomer SP-150, manufactured by Asahi Denka Kogyo Co., Ltd.) as a photocationic polymerization initiator is added to 100 g of this condensate-containing alcohol solution II. Add to Solution II. In this way, a surface layer coating solution III was prepared.

次に、表面層未装着の帯電ローラー上に表面層用塗布液IIIをリング塗布し、これに254nmの波長の紫外線を積算光量が9000mJ/cmになるように照射し、表面層用塗布液IIIを硬化(架橋反応による硬化)および乾燥させる。これによって、表面層を形成し、帯電ローラーCR−1を得た。CR−1の表面層厚をSEMで観測した所、100nmであった。 Next, the surface layer coating liquid III is ring-coated on the charging roller without the surface layer, and this is irradiated with ultraviolet light having a wavelength of 254 nm so that the integrated light quantity becomes 9000 mJ / cm 2. III is cured (cured by crosslinking reaction) and dried. As a result, a surface layer was formed to obtain a charging roller CR-1. When the surface layer thickness of CR-1 was observed by SEM, it was 100 nm.

更に、縮合物含有アルコール溶液IIの溶剤濃度の制御により、表面層用塗布液IIIの粘度を調整して、表面層厚が異なる帯電ローラーCR−2〜CR−5を作成した。   Furthermore, by controlling the solvent concentration of the condensate-containing alcohol solution II, the viscosity of the surface layer coating liquid III was adjusted to prepare charging rollers CR-2 to CR-5 having different surface layer thicknesses.

該表面層圧の調整方法としては、他にも塗工前の帯電ローラー表面を紫外線処理する等して、表面層用塗布液IIIに対する濡れ性を制御したり、膜厚制御用スペーサ粒子を使用するなどの方法がある。   Other methods for adjusting the surface layer pressure include controlling the wettability to the surface layer coating liquid III by treating the surface of the charging roller before coating with ultraviolet rays, or using spacer particles for controlling the film thickness. There are ways to do it.

作成した帯電ローラーCR−1〜CR−5の表面形状は実施例1〜9で使用した帯電ローラーと同様とした。帯電ローラー102として、該CR−1〜CR−5を用いた以外は実施例3と同様の評価を行った。結果を表18に示す。表中の記載は耐汚れ/帯電清掃部材、帯電ローラーの損耗である。参考に実施例3の結果も併記してある。   The surface shapes of the created charging rollers CR-1 to CR-5 were the same as those of the charging rollers used in Examples 1-9. The same evaluation as in Example 3 was performed except that the CR-1 to CR-5 were used as the charging roller 102. The results are shown in Table 18. The description in the table is the antifouling / charge cleaning member and the wear of the charging roller. For reference, the results of Example 3 are also shown.

帯電ローラーCR−1〜CR−5で清掃効率、乃至は、耐久性が向上した。特に表面層の厚さが0.1〜1μmのCR−1〜3を使用した系では、清掃効率が向上したのみならず、帯電清掃部材や帯電ローラー自体の損耗も低減し、非常に良好な結果が得られた。   Cleaning efficiency or durability was improved by the charging rollers CR-1 to CR-5. Particularly in the system using CR-1 to 3 having a surface layer thickness of 0.1 to 1 μm, not only the cleaning efficiency is improved, but also the wear of the charging cleaning member and the charging roller itself is reduced, which is very good. Results were obtained.

[実施例11]
各種条件で発泡させた発泡部材を、長手方向に圧縮を施し、圧縮後の硬度、平均空孔径、空孔密度が帯電清掃部材TR2と同等になる様に作成した帯電清掃部材TR1’〜TR7’を作成した。
[Example 11]
Charged cleaning members TR1 ′ to TR7 ′ prepared by compressing the foamed member foamed under various conditions in the longitudinal direction so that the post-compression hardness, average pore diameter, and pore density are equal to those of the charged cleaning member TR2. It was created.

なお、帯電清掃部材TR1’〜7’は、表面から観察した空孔が円形ではないため、該空孔の平均面積を求め、同面積の円相当径を空孔径Dcとした。   In addition, since the vacancies observed from the surface of the charging cleaning members TR1 'to 7' are not circular, the average area of the vacancies was obtained, and the equivalent circle diameter of the vacancies was defined as the vacancy diameter Dc.

上記帯電清掃部材を用いて、実施例7と同様の評価を行った結果を表19に示す。表中の記載は、表17に準ずる。   Table 19 shows the results of the same evaluation as in Example 7 using the above-described charging cleaning member. The description in the table conforms to Table 17.

表19より、長手方向に圧縮を施した帯電清掃部材、特に短径L−a/長径L−b比が0.6〜0.9の帯電清掃部材(TR3’〜6’)では、同様の硬度、空孔径、空孔密度等においても非圧縮の帯電清掃部材(’無し)に対して、同等以上の清掃能力を有する。そのため、更に良好な耐久性が得られた。   From Table 19, the same applies to the charge cleaning member compressed in the longitudinal direction, particularly the charge cleaning member (TR3 ′ to 6 ′) having a short diameter La / long diameter Lb ratio of 0.6 to 0.9. Also in terms of hardness, hole diameter, hole density, etc., it has a cleaning capability equal to or higher than that of a non-compressed charged cleaning member (nothing). Therefore, even better durability was obtained.

[実施例12]
実施例1で使用した帯電ローラーの端部にスペーサーを設けて、最近接部の空隙間隔αを50μmとし、図4の如き近接帯電手段102をセットした。
[Example 12]
A spacer was provided at the end of the charging roller used in Example 1, the gap interval α at the closest part was set to 50 μm, and the proximity charging unit 102 as shown in FIG. 4 was set.

また、帯電ローラーの硬度をアスカーC硬度で70度の高硬度なものに変更し、また帯電ローラーには不図示の駆動手段を設けて、像担持体101と同じ周速で、順方向に回転駆動する様にした。   In addition, the charging roller hardness is changed to an Asker C hardness of 70 degrees, and the charging roller is provided with a driving means (not shown) to rotate in the forward direction at the same peripheral speed as the image carrier 101. I tried to drive.

これらの帯電ローラーを使用し、実施例1と同様の評価を行った。実施例1よりも良好な結果が得られた。特に、ローラー形状の帯電手段102を回転駆動した場合は、非常に良好な結果が得られた。   These charging rollers were used, and the same evaluation as in Example 1 was performed. Better results than in Example 1 were obtained. In particular, when the roller-shaped charging unit 102 was driven to rotate, very good results were obtained.

近接帯電方式、更には駆動式の近接帯電で、像担持体101の表面近傍に気流が生じ、エアフロー等の作用が良好に働いているのではないかと考えられる。   It is considered that the proximity charging method or the drive-type proximity charging generates an air flow in the vicinity of the surface of the image carrier 101 so that the airflow or the like works well.

[実施例13]
像担持体P01に対し、R形状のバイトの種類を振った支持体101a(図10)、平バイトの設定角度及び侵入量、ピッチを制御した支持体101aを作成した。
[Example 13]
For the image carrier P01, a support 101a (FIG. 10) in which the type of the R-shaped tool was changed, and a support 101a in which the setting angle, the penetration amount, and the pitch of the flat tool were controlled were prepared.

上記支持体101aに、RF−CVDで、正帯電のa−Si感光体を成膜作成した。作成した感光体をその形状のまま、或いは市販のラッピングテープ等で研磨し、像担持体P02〜P08を得た。   A positively charged a-Si photosensitive member was formed on the support 101a by RF-CVD. The created photoreceptor was polished as it was or with a commercially available wrapping tape or the like to obtain image carriers P02 to P08.

得られた像担持体の表面形状を表20に、また像担持体のSmdと、帯電清掃部材DR1〜5のSmcの比を表21に、それぞれ示す。   Table 20 shows the surface shape of the obtained image carrier, and Table 21 shows the ratio of Smd of the image carrier to Smc of the charging cleaning members DR1 to DR5.

これらの像担持体、帯電清掃部材を用い、無機微粒子Eを使用して、帯電清掃部材が帯電ローラーに従動し、等速で連れ回る様にした。なお、帯電清掃部材が帯電ローラーに当接する圧力は2g/cmとなる様にした。この他は実施例4と同様の評価を行った。帯電ローラの耐汚れ評価結果を表22に、帯電清掃部材及び帯電ローラーの損耗の評価結果を表23に、それぞれ示す。   These image carrier and charge cleaning member were used, and inorganic fine particles E were used so that the charge cleaning member was driven by the charging roller and followed at a constant speed. The pressure at which the charging cleaning member abuts on the charging roller was set to 2 g / cm. The other evaluations were the same as in Example 4. Table 22 shows the results of evaluating the anti-smudge property of the charging roller, and Table 23 shows the results of evaluating the wear of the charging cleaning member and the charging roller.

表20〜23より、0.1≦Rzd≦1.0μm、且つ5≦Smd≦30μmのとき、非常に良好な耐汚染性能を得られ、損耗が抑制された。   From Tables 20 to 23, when 0.1 ≦ Rzd ≦ 1.0 μm and 5 ≦ Smd ≦ 30 μm, very good antifouling performance was obtained, and wear was suppressed.

Smc/Smdが自然数ではない時、更に良好な結果が得られた。また、帯電清掃部材の平均外径を、これまでの実施例のφ12の他、φ4〜φ20まで、1mm刻みで作成し、同様の評価を行った。その結果、[帯電ローラーの平均外径]/[帯電清掃部材の平均外径]が整数ではないとき、帯電ローラー上に付着した汚れの周方向への成長が抑制され、良好な結果が得られた。   Even better results were obtained when Smc / Smd was not a natural number. Further, the average outer diameter of the charging cleaning member was prepared in increments of 1 mm from φ4 to φ20 in addition to φ12 of the previous examples, and the same evaluation was performed. As a result, when [average outer diameter of charging roller] / [average outer diameter of charging cleaning member] is not an integer, the growth of dirt adhered on the charging roller in the circumferential direction is suppressed, and good results are obtained. It was.

[実施例14]
前記像担持体の表面粗さRz(以下Rzd)が0.1〜1.0μm、Sm(以下Smd)が5〜30μmであって、該SmdとDcの比が整数ではなく、且つ、帯電清掃部材の平均外径と、帯電ローラーの平均外径の比が整数ではない
単泡、連泡の帯電清掃部材について、発泡工程の制御を行い、様々な平均空孔径Dc[μm]を有する、平均外径φ12の清掃部材を作成した。更に同様の平均空孔径で外径をφ4〜φ20まで、1mm刻みで作成した。
[Example 14]
The surface roughness Rz (hereinafter Rzd) of the image carrier is 0.1 to 1.0 μm, Sm (hereinafter Smd) is 5 to 30 μm, the ratio of Smd to Dc is not an integer, and charging cleaning is performed. The ratio of the average outer diameter of the member and the average outer diameter of the charging roller is not an integer. For the single-cell and continuous-cell charging cleaning member, the foaming process is controlled, and the average has various average pore diameters Dc [μm]. A cleaning member having an outer diameter of φ12 was prepared. Further, the same average pore diameter and outer diameter of φ4 to φ20 were prepared in 1 mm increments.

実施例13と同様の評価を行った結果、0.1≦Rzd≦1.0μm、且つ5≦Smd≦30μmのとき、非常に良好な耐汚染性能を得られ、損耗が抑制された。   As a result of performing the same evaluation as in Example 13, when 0.1 ≦ Rzd ≦ 1.0 μm and 5 ≦ Smd ≦ 30 μm, very good antifouling performance was obtained and wear was suppressed.

またDc/Smdが自然数ではない時、更に良好な結果が得られた。また、実施例13同様に、[帯電ローラーの平均外径]/[帯電清掃部材の平均外径]が整数ではないとき、帯電ローラー上に付着した汚れの周方向への成長が抑制され、良好な結果が得られた。   When Dc / Smd is not a natural number, a better result was obtained. Further, as in Example 13, when [Average outer diameter of charging roller] / [Average outer diameter of charging cleaning member] is not an integer, the growth of dirt attached on the charging roller in the circumferential direction is suppressed, which is good. Results were obtained.

以上の各実施例は像担持体として電子写真感光体を用いたが、像担持体が静電記録誘電体にすることも出来る。   In each of the above embodiments, an electrophotographic photosensitive member is used as the image carrier, but the image carrier can also be an electrostatic recording dielectric.

また、像担持体に形成担持させた現像剤の像を、第一の被転写体としての中間転写体に一次転写させ、それを第二の被転写体としての転写材Pに二次転写する画像形成装置構成にすることもできる。   In addition, the developer image formed and supported on the image carrier is primarily transferred to an intermediate transfer member serving as a first transfer member, and then secondarily transferred to a transfer material P serving as a second transfer member. An image forming apparatus configuration can also be used.

回転可能な帯電部材は、ローラー形態の他、ベルト形態のものにすることもできる。   The rotatable charging member can be in the form of a belt as well as a roller.

実施態様例(その1)の画像形成装置の概略構成図Schematic configuration diagram of image forming apparatus of embodiment example (1) 実施態様例(その2)の画像形成装置の概略構成図Schematic configuration diagram of image forming apparatus of embodiment example (2) 実施態様例(その3)の画像形成装置の概略構成図Schematic configuration diagram of image forming apparatus of embodiment example (No. 3) 実施態様例(その4)の画像形成装置の概略構成図Schematic configuration diagram of image forming apparatus of embodiment example (4) 帯電清掃部材の表面形状の一例の模式図Schematic diagram of an example of the surface shape of the electrostatic cleaning member 帯電清掃部材の表面形状の他の例の模式図(A;多角形で構成される例、B;切削による凹凸を設けた例)Schematic diagram of another example of the surface shape of the electrostatic cleaning member (A: example composed of polygons, B: example provided with irregularities by cutting) 帯電部材と帯電清掃部材の各加圧手段の説明図Explanatory drawing of each pressing means of charging member and charging cleaning member 帯電清掃部材の表面形状の空孔率の概念を示す図The figure which shows the concept of the porosity of the surface shape of an electrostatic cleaning member 実施例の評価に使用した耐久チャートの概略図Schematic diagram of the durability chart used for evaluation of the examples a−Si感光体の層構成を示す概略モデル図Schematic model diagram showing layer structure of a-Si photoconductor −Si感光体の支持体形状と表面形状の関係を示す概略モデル図-Schematic model showing the relationship between the support shape and surface shape of the Si photoconductor 無機粒子Sの一例のSEM写真SEM photograph of an example of inorganic particles S 直方体形状の概念図Conceptual figure of rectangular parallelepiped shape 像担持体と帯電清掃部材の表面形状の関係を示すモデル図Model diagram showing the relationship between the surface shape of the image carrier and the charging cleaning member 帯電清掃部材の製造法の一例を示す図The figure which shows an example of the manufacturing method of an electrostatic cleaning member 帯電清掃部材の圧縮方法の一例を示す図The figure which shows an example of the compression method of an electrostatic cleaning member 発泡体の、セル形状と、該発泡部材の硬度、強度の関連を説明する為のモデル図Model diagram for explaining the relationship between the cell shape of foam and the hardness and strength of the foam member 圧縮工程後のセル形状の一例を示すモデル図Model diagram showing an example of the cell shape after the compression process

符号の説明Explanation of symbols

101;像担持体、102;帯電手段、103;帯電清掃部材、104;潜像形成露光手段、105;現像手段、106;転写手段、107;クリーニング手段、108;除電手段、109;搬送手段、110;クリーニング部材、111;無機微粒子供給・摺擦手段、115;無機粒子容器、101a;支持体、1002b;感光層、101c;光導電層、101d;表面層、101e・101f;電荷注入阻止層、1501;圧縮用円筒容器、1502・1503;加圧部材、P;転写材、X;像担持体進行方向、S;無機粒子   DESCRIPTION OF SYMBOLS 101; Image carrier, 102; Charging means, 103; Charge cleaning member, 104; Latent image forming exposure means, 105; Developing means, 106; Transfer means, 107; Cleaning means, 108; DESCRIPTION OF SYMBOLS 110; Cleaning member 111; Inorganic particle supply and rubbing means, 115; Inorganic particle container, 101a; Support, 1002b; Photosensitive layer, 101c; Photoconductive layer, 101d; Surface layer, 101e and 101f; 1501; cylindrical container for compression, 1502 and 1503; pressure member, P: transfer material, X: traveling direction of image carrier, S: inorganic particles

Claims (20)

現像剤を担持する、回転可能な像担持体と、前記像担持体に対向して配設され、像担持体を帯電する、回転可能な帯電部材と、前記像担持体から前記現像剤を被転写体に転写する転写手段と、を有する画像形成装置において、
前記像担持体の表面に、平均粒径Dが0.03〜0.50[μm]のペロブスカイト型結晶を有する無機粒子を供給する無機粒子供給手段と、
前記現像剤を前記被転写体に転写した後の前記像担持体の表面を、前記無機粒子が存在する状態で摺擦する摺擦手段と、
前記帯電部材に接触し前記帯電部材の表面を清掃する、回動可能な清掃部材と、
を有し、
前記清掃部材は、弾性部材であって、表面粗さRzcが、前記平均粒径Dの5〜500倍である事を特徴とする画像形成装置。
A rotatable image carrier that carries the developer, a rotatable charging member that is disposed opposite the image carrier and charges the image carrier, and the developer that is covered by the image carrier. In an image forming apparatus having a transfer means for transferring to a transfer body,
Inorganic particle supply means for supplying inorganic particles having perovskite crystals having an average particle diameter D of 0.03 to 0.50 [μm] to the surface of the image carrier;
Rubbing means for rubbing the surface of the image carrier after the developer is transferred to the transfer body in the presence of the inorganic particles;
A rotatable cleaning member that contacts the charging member and cleans the surface of the charging member;
Have
The image forming apparatus, wherein the cleaning member is an elastic member, and the surface roughness Rzc is 5 to 500 times the average particle diameter D.
前記清掃部材の表面粗さSmcが前記平均粒径Dの1E2〜1E4倍である事を特徴とする請求項1に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein a surface roughness Smc of the cleaning member is 1E2 to 1E4 times the average particle diameter D. 現像剤を担持する、回転可能な像担持体と、前記像担持体に対向して配設され、像担持体を帯電する、回転可能な帯電部材と、前記像担持体から前記現像剤を被転写体に転写する転写手段と、を有する画像形成装置において、
前記像担持体の表面に、平均粒径Dが0.03〜0.50[μm]のペロブスカイト型結晶を有する無機粒子を供給する無機粒子供給手段と、
前記現像剤を前記被転写体に転写した後の前記像担持体の表面を、前記無機粒子が存在する状態で摺擦する摺擦手段と、
前記帯電部材に接触し前記帯電部材の表面を清掃する、回動可能な清掃部材と、
を有し、
前記清掃部材は、発泡部材であって、表面の空孔密度が20〜80%である事を特徴とする画像形成装置。
A rotatable image carrier that carries the developer, a rotatable charging member that is disposed opposite the image carrier and charges the image carrier, and the developer that is covered by the image carrier. In an image forming apparatus having a transfer means for transferring to a transfer body,
Inorganic particle supply means for supplying inorganic particles having perovskite crystals having an average particle diameter D of 0.03 to 0.50 [μm] to the surface of the image carrier;
Rubbing means for rubbing the surface of the image carrier after the developer is transferred to the transfer body in the presence of the inorganic particles;
A rotatable cleaning member that contacts the charging member and cleans the surface of the charging member;
Have
The image forming apparatus according to claim 1, wherein the cleaning member is a foamed member and has a surface pore density of 20 to 80%.
前記清掃部材の平均空孔径Dcが前記平均粒径Dの1E2〜1E4倍である事を特徴とする請求項3に記載の画像形成装置。   The image forming apparatus according to claim 3, wherein an average pore diameter Dc of the cleaning member is 1E2 to 1E4 times the average particle diameter D. 前記清掃部材が、前記帯電部材に2〜10g/cmの圧力で当接する事を特徴とする請求項1乃至4のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the cleaning member contacts the charging member with a pressure of 2 to 10 g / cm. 前記清掃部材の硬度をZとした時、10≦Z×RD≦500(RDは、前記清掃部材が弾性部材の場合は表面粗さRzc、発泡部材の場合は平均空孔径Dcである)である事を特徴とする請求項1乃至5のいずれかに記載の画像形成装置。   When the hardness of the cleaning member is Z, 10 ≦ Z × RD ≦ 500 (RD is surface roughness Rzc when the cleaning member is an elastic member, and average pore diameter Dc when the cleaning member is a foam member). The image forming apparatus according to claim 1, wherein the image forming apparatus is an image forming apparatus. 前記像担持体の表面粗さRzdが0.1〜1.0μm、表面粗さSmdが5〜30μmである事を特徴とする請求項1乃至6のいずれかに記載の画像形成装置。   7. The image forming apparatus according to claim 1, wherein the image bearing member has a surface roughness Rzd of 0.1 to 1.0 [mu] m and a surface roughness Smd of 5 to 30 [mu] m. 前記清掃部材が、前記帯電部材の表面の移動に従動する事を特徴とする請求項1乃至7記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the cleaning member follows the movement of the surface of the charging member. 前記清掃部材の表面が、複数の多角形から構成される事を特徴とする,請求項1乃至8のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein a surface of the cleaning member includes a plurality of polygons. 前記清掃部材に凹凸を設け、前記凹凸の配列が前記帯電部材、及び前記像担持体の表面の移動方向に対して非平行であることを特徴とする請求項1乃至9のいずれかに記載の画像形成装置。   The unevenness is provided in the cleaning member, and the array of the unevenness is non-parallel to the moving direction of the surface of the charging member and the image carrier. Image forming apparatus. 前記無機粒子の平均粒径Dが0.10〜0.30[μm]であることを特徴とする請求項1乃至10のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein an average particle diameter D of the inorganic particles is 0.10 to 0.30 [μm]. 前記清掃部材が、前記帯電部材に対して周速差を有する事を特徴とする請求項1乃至11のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the cleaning member has a peripheral speed difference with respect to the charging member. 前記帯電部材が前記像担持体に当接される圧力が30g/cm以下である事を特徴とする請求項1乃至12のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein a pressure at which the charging member is brought into contact with the image carrier is 30 g / cm or less. 前記帯電部材の表面層がフッ化アルキル基およびオキシアルキレン基を有するポリシロキサンを含有する事を特徴とする請求項1乃至13のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the surface layer of the charging member contains polysiloxane having an alkyl fluoride group and an oxyalkylene group. 前記表面層の厚さが0.1〜1μmであることを特徴とする請求項14に記載の画像形成装置。   The image forming apparatus according to claim 14, wherein the surface layer has a thickness of 0.1 to 1 μm. 前記清掃部材が、少なくとも長手方向に圧縮工程を経て作成される物である事を特徴とする請求項1乃至15のいずれかに記載の画像形成装置。   The image forming apparatus according to any one of claims 1 to 15, wherein the cleaning member is formed by a compression process at least in a longitudinal direction. 前記清掃部材のセルの形状が、長手方向に圧縮工程を経て作成される物である事を特徴とする請求項3乃至16のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 3, wherein the shape of the cell of the cleaning member is a product created through a compression process in the longitudinal direction. 前記清掃部材のセルの短径/長径比が0.6〜0.9である事を特徴とする請求項17に記載の画像形成装置。   The image forming apparatus according to claim 17, wherein a ratio of a minor axis / major axis of the cell of the cleaning member is 0.6 to 0.9. 前記帯電部材が前記像担持体と空隙を有して対向する事を特徴とす、請求項1乃至18のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the charging member is opposed to the image carrier with a gap. 前記無機粒子の円形度が、0.930以下である事を特徴とする請求項1乃至19のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the inorganic particles have a circularity of 0.930 or less.
JP2007110188A 2007-04-19 2007-04-19 Image forming apparatus Pending JP2008268470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110188A JP2008268470A (en) 2007-04-19 2007-04-19 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110188A JP2008268470A (en) 2007-04-19 2007-04-19 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2008268470A true JP2008268470A (en) 2008-11-06

Family

ID=40048076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110188A Pending JP2008268470A (en) 2007-04-19 2007-04-19 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2008268470A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137858A (en) * 2009-12-25 2011-07-14 Kyocera Mita Corp Cleaning apparatus and image forming apparatus
JP2011137859A (en) * 2009-12-25 2011-07-14 Kyocera Mita Corp Cleaning apparatus and image forming apparatus
JP2011203594A (en) * 2010-03-26 2011-10-13 Fuji Xerox Co Ltd Image forming apparatus, image forming method, cleaning apparatus, and cleaning method
JP2013041203A (en) * 2011-08-19 2013-02-28 Canon Inc Method for manufacturing reproduction elastic roller
JP2018049068A (en) * 2016-09-20 2018-03-29 富士ゼロックス株式会社 Image forming apparatus
JP2019184738A (en) * 2018-04-05 2019-10-24 富士ゼロックス株式会社 Cleaning member, image formation device unit, and image formation device
JP2021012322A (en) * 2019-07-09 2021-02-04 株式会社リコー Toner contact member and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137858A (en) * 2009-12-25 2011-07-14 Kyocera Mita Corp Cleaning apparatus and image forming apparatus
JP2011137859A (en) * 2009-12-25 2011-07-14 Kyocera Mita Corp Cleaning apparatus and image forming apparatus
JP2011203594A (en) * 2010-03-26 2011-10-13 Fuji Xerox Co Ltd Image forming apparatus, image forming method, cleaning apparatus, and cleaning method
JP2013041203A (en) * 2011-08-19 2013-02-28 Canon Inc Method for manufacturing reproduction elastic roller
JP2018049068A (en) * 2016-09-20 2018-03-29 富士ゼロックス株式会社 Image forming apparatus
JP2019184738A (en) * 2018-04-05 2019-10-24 富士ゼロックス株式会社 Cleaning member, image formation device unit, and image formation device
JP7106951B2 (en) 2018-04-05 2022-07-27 富士フイルムビジネスイノベーション株式会社 CLEANING MEMBER, UNIT FOR IMAGE FORMING APPARATUS, AND IMAGE FORMING APPARATUS
JP2021012322A (en) * 2019-07-09 2021-02-04 株式会社リコー Toner contact member and image forming apparatus

Similar Documents

Publication Publication Date Title
EP1605317A2 (en) Charging apparatus, and image forming apparatus equipped with same
JP2008268470A (en) Image forming apparatus
JP2008058463A (en) Image forming method
JP2005157178A (en) Image forming method and image forming apparatus
JP4991374B2 (en) Image forming method
JP3796352B2 (en) Image forming method
JP4834383B2 (en) Image forming apparatus
JP2009058732A (en) Image forming method and image forming apparatus
JP4623651B2 (en) Electrophotographic equipment
JP5471171B2 (en) Cleaning device, process cartridge, image forming apparatus, and image forming method
JP2010281974A (en) Cleaning blade, image forming apparatus and process cartridge
JP2008129401A (en) Image forming method
JP2008122951A (en) Charging device and method, and image forming apparatus
JP2009145463A (en) Cleaning device and image forming apparatus
JP2006195154A (en) Image forming method
JP2007114418A (en) Image forming apparatus
JP5274090B2 (en) Cleaning device
JP2009069342A (en) Image forming method
JP6229441B2 (en) Image forming apparatus and process cartridge
JP2005140945A (en) Charging roller, method for manufacturing charging roller and image forming apparatus
JP2012083497A (en) Image forming method and image forming apparatus
JP2017173623A (en) Image carrier protective agent, protective layer forming device, image forming method, image forming apparatus, and process cartridge
JP2005165090A (en) Image forming apparatus
JP2007292985A (en) Image forming method
JP2007114419A (en) Image forming apparatus