JP2008268068A - Weighing apparatus - Google Patents

Weighing apparatus Download PDF

Info

Publication number
JP2008268068A
JP2008268068A JP2007113094A JP2007113094A JP2008268068A JP 2008268068 A JP2008268068 A JP 2008268068A JP 2007113094 A JP2007113094 A JP 2007113094A JP 2007113094 A JP2007113094 A JP 2007113094A JP 2008268068 A JP2008268068 A JP 2008268068A
Authority
JP
Japan
Prior art keywords
vibration
period
waveform
weighing
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007113094A
Other languages
Japanese (ja)
Other versions
JP4916373B2 (en
Inventor
Junichi Tamura
淳一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2007113094A priority Critical patent/JP4916373B2/en
Publication of JP2008268068A publication Critical patent/JP2008268068A/en
Application granted granted Critical
Publication of JP4916373B2 publication Critical patent/JP4916373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weighing apparatus capable of weighing at a high speed with high accuracy, by eliminating continual low period vibration component of a roller and belt, or the like, of a weighing conveyer and without causing delays. <P>SOLUTION: The weighing apparatus comprises a vibration period calculation means 31 for calculating the period of continual low period vibration of a conveying means, and generating a trigger corresponding to the period, a waveform condition storage means 32 for calculating and storing waveform generation conditions including a phase and amplitude, in order to generate a vibration corrected waveform approximating a waveform of a weighing signal without load output by a weighing means, when a conveying means does not convey articles from a basic waveform function formed of the period calculated by the vibration period calculation means; a corrected waveform generation means 33 for generating a correction signal for correcting the weighing signal from the conditions for generating the vibration waveform stored in the waveform condition storage means, on the basis of the trigger generated by the vibration period calculation means; and a correction means 34 for calculating the weighing value of the articles from the difference between the weighing signal output from the weighing means and the correction signal output from the corrected waveform generation means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、搬送される物品の重量を計量する計量装置、特に計量手段から出力される計量値に含まれる定常的な振動成分を除去する機能を有する計量装置に関する。   The present invention relates to a weighing device that measures the weight of an article to be conveyed, and more particularly, to a weighing device having a function of removing a steady vibration component included in a measured value output from a weighing means.

物品の搬送状態でその物品の重量を計量する計量装置は、物品の搬送ライン中に計量コンベアを挿入する形態で重量選別機等に多用されており、通常、前段コンベア及び後段コンベアの間に位置する計量コンベアを計量器に支持させている。そして、物品が計量コンベア上を通過する度に、その物品の重量を計量コンベアの重量と共に計量器に負荷させ、計量器の出力信号から計量コンベアの重量分を減算する処理を行うことで、物品重量を計量することができるようになっている。   A weighing device that measures the weight of an article in the state of conveying the article is often used in a weight sorter or the like in a form in which a weighing conveyor is inserted in the article conveyance line, and is usually located between the front conveyor and the rear conveyor. The weighing conveyor is supported by the weighing machine. Each time the article passes on the weighing conveyor, the weight of the article is loaded on the measuring instrument together with the weighing conveyor weight, and the weight of the weighing conveyor is subtracted from the output signal of the weighing instrument. The weight can be measured.

このような計量装置は、一般に生産ラインに組み込まれて設置されるため、他の生産設備等により起こる床振動や計量コンベアのローラやベルトによる低周期振動成分などが雑音成分として計量器の出力信号に重畳し計量精度を悪化させる。そのため、計量能力の限界まではLPFで計量器の出力信号からこの雑音成分を除去するが、計量能力の限界に設定されたLPFの遮断周波数より低い周波数の低周期振動成分についてはLPFによって雑音成分を除去することができなかった。   Since such weighing devices are generally installed and installed in the production line, floor vibrations caused by other production facilities, low-cycle vibration components due to the rollers and belts of the weighing conveyor, etc. are output as the noise components. The measurement accuracy is deteriorated by superimposing on. For this reason, the noise component is removed from the output signal of the meter by the LPF until the limit of the weighing capability, but the low-frequency vibration component having a frequency lower than the cutoff frequency of the LPF set to the limit of the metering capability is determined by the LPF. Could not be removed.

そこで、定常的な床振動の低周期振動成分を除去する方法として、計量器の1つである歪みセンサの出力信号を源信号として受け、源信号から連続性を有し且つ周期性を有する定常信号成分を抽出してから信号周期を検出し、この信号周期の位相を源信号の位相に対して同相または逆相となるように調整し、位相調整された定常信号成分を前記源信号に対して減算または加算し、前記源信号から定常信号成分を除去する歪みセンサ信号処理装置がある(例えば、特許文献1参照)。
特開2006−300868号公報
Therefore, as a method for removing the low-frequency vibration component of the stationary floor vibration, the output signal of the strain sensor, which is one of the measuring instruments, is received as the source signal, and the stationary signal is continuous and periodic from the source signal. After extracting the signal component, the signal period is detected, the phase of this signal period is adjusted to be in phase or opposite to the phase of the source signal, and the phase-adjusted stationary signal component is adjusted to the source signal. There is a distortion sensor signal processing device that removes a stationary signal component from the source signal by subtracting or adding (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2006-300868

しかしながら、この歪みセンサ信号処理装置は、源信号から連続性を有し且つ周期性を有する定常信号成分を抽出してから信号周期を検出し位相の調整を行っているため、定常信号成分を抽出するための遅延時間を必要として計量能力に影響を及ぼす。例えば通常はこの遅延時間は
1/(定常信号成分の周波数)秒 要するので、ローラの定常的な低周期振動成分は数Hzであることがあり、遅延時間に数百msec要することになり、高速・高精度で計量することができないという問題があった。
However, this distortion sensor signal processing device extracts the stationary signal component because it extracts the stationary signal component that has continuity and periodicity from the source signal and then detects the signal cycle and adjusts the phase. This requires a delay time to affect the weighing capacity. For example, this delay time usually takes 1 / (the frequency of the steady signal component) seconds, so the steady low-frequency vibration component of the roller may be several Hz, and the delay time will take several hundred msec.・ There was a problem that we could not measure with high accuracy.

本発明は、かかる従来技術の問題を解決するためになされたもので、計量コンベアのローラやベルト等の定常的な低周期振動成分を遅延が無く除去するようにして、高速・高精度で計量できる計量装置を提供することを目的とする。   The present invention has been made to solve such problems of the prior art, and is capable of measuring high-speed and high-accuracy by removing stationary low-period vibration components such as rollers and belts of a weighing conveyor without delay. An object of the present invention is to provide a weighing device that can be used.

上記目的を達成するために、本発明の請求項1に記載の計量装置は、所定の投入間隔で順次投入される物品(P)を搬送する搬送手段と、前記物品を前記搬送手段と共に計量して前記物品の重量に関連する計量信号を出力する計量手段と、前記搬送手段が持つ定常的な低周期振動の周期を算出し、その周期に対応したトリガを発生する振動周期算出手段と、前記搬送手段に物品が無い状態で前記計量手段が出力する無負荷の計量信号に重畳している低周期振動成分の波形と近似する振動補正波形を前記振動周期算出手段で算出された周期でなる基本の波形関数から生成するための位相及び振幅を含む波形生成条件を算出して記憶する波形条件記憶手段と、前記振動周期算出手段から発生されたトリガを基準として前記波形条件記憶手段に記憶された前記波形生成条件から前記計量信号を補正するための補正信号を生成する補正波形生成手段と、前記計量手段から出力された計量信号と前記補正波形生成手段から出力された補正信号との差分により前記物品の計量値を算出する補正手段とを備えている。   In order to achieve the above object, a weighing device according to a first aspect of the present invention comprises a conveying means that conveys articles (P) that are sequentially loaded at a predetermined charging interval, and measures the articles together with the conveying means. A weighing means for outputting a weighing signal related to the weight of the article, a vibration period calculating means for calculating a constant low-cycle vibration period of the conveying means, and generating a trigger corresponding to the period, Basically composed of a period calculated by the vibration period calculating means with a vibration correction waveform approximating the waveform of a low-period vibration component superimposed on an unloaded weighing signal output from the weighing means in the absence of an article in the conveying means A waveform condition storage means for calculating and storing a waveform generation condition including a phase and an amplitude to be generated from the waveform function, and storing in the waveform condition storage means with reference to a trigger generated from the vibration period calculation means A correction waveform generating means for generating a correction signal for correcting the measurement signal from the waveform generation conditions, and a difference between the measurement signal output from the measurement means and the correction signal output from the correction waveform generation means And a correction means for calculating a measurement value of the article.

このような構成によれば、搬送手段が持つ定常的な低周期振動の周期で形成される振動波形と無負荷の計量信号に重畳している低周期振動成分の波形と近似する振動補正波形を振動周期算出手段で算出された周期でなる基本の波形関数から生成するため位相及び振幅を含む波形生成条件を算出して記憶し、搬送手段が持つ定常的な低周期振動の周期に対応したトリガを基準にその波形生成条件から前記計量信号を補正するための補正信号を生成し、計量手段から出力される計量信号とこの補正信号との差分により物品の計量値を算出するので、位相ずれによる補正精度の悪化を防止でき、定常的な低周期振動成分を遅延無く除去して高精度に計量することができる。   According to such a configuration, the vibration correction waveform that approximates the vibration waveform formed in the period of the steady low-period vibration of the conveying means and the waveform of the low-period vibration component superimposed on the no-load measurement signal. Triggers corresponding to the period of steady low-frequency vibrations that the carrier means has, since the waveform generation conditions including phase and amplitude are calculated and stored in order to generate from the basic waveform function with the period calculated by the vibration period calculation means Based on the waveform generation conditions, a correction signal for correcting the weighing signal is generated, and the weighing value of the article is calculated from the difference between the weighing signal output from the weighing means and the correction signal. The correction accuracy can be prevented from deteriorating, and a steady low-period vibration component can be removed without delay and measured with high accuracy.

請求項2に記載の計量装置は、請求項1の計量装置において、前記波形条件記憶手段は、複数の波形関数の中から選択された波形関数に基づいて振動補正波形を生成するための条件を算出して記憶することを特徴とする。
このような構成によれば、複数の波形関数の中から選択された波形関数により補正信号が生成されるので、動作環境に適した補正信号を生成することができる。
According to a second aspect of the present invention, in the weighing apparatus according to the first aspect, the waveform condition storage means sets a condition for generating a vibration correction waveform based on a waveform function selected from a plurality of waveform functions. It is calculated and stored.
According to such a configuration, the correction signal is generated by a waveform function selected from among a plurality of waveform functions, so that a correction signal suitable for the operating environment can be generated.

請求項3に記載の計量装置は、請求項1の計量装置において、前記波形条件記憶手段は、前記無負荷の計量信号と前記振動周期算出手段で算出された周期でなる複数の波形関数との相関をとり、前記複数の波形関数の中で最も相関の高い波形関数を選択し設定する学習手段を有し、該学習手段で設定された波形関数に基づいて振動補正波形を生成するための条件を算出して記憶することを特徴とする。   According to a third aspect of the present invention, in the weighing apparatus according to the first aspect, the waveform condition storage means includes a plurality of waveform functions having the no-load measurement signal and a period calculated by the vibration period calculation means. A condition for generating a vibration correction waveform based on the waveform function set by the learning means, having a learning means for taking a correlation and selecting and setting a waveform function having the highest correlation among the plurality of waveform functions Is calculated and stored.

このような構成によれば、学習によって無負荷の計量信号と搬送手段が持つ定常的な低周期振動の周期で形成される振動補正波形を生成するための条件に複数の波形関数の中で最も相関の高い関数が設定されるので、より正確に低周期振動成分を除去するための補正信号を生成することができ、定常的な低周期振動成分を遅延無く除去して高精度に計量することができる。   According to such a configuration, a condition for generating a vibration correction waveform formed by learning with an unloaded weighing signal and a steady low-period vibration period of the conveying means is the most preferable among a plurality of waveform functions. Since a highly correlated function is set, a correction signal for removing low-frequency vibration components can be generated more accurately, and steady low-frequency vibration components can be removed without delay and measurement can be performed with high accuracy. Can do.

請求項4に記載の計量装置は、請求項1〜3の計量装置において、前記振動周期算出手段は、予め設定されている前記搬送手段の搬送速度に基づいて低周期振動の周期を算出することを特徴とする。
このような構成によれば、複雑な処理を必要とせず簡単に低周期振動の振動周期を求めることができる。
According to a fourth aspect of the present invention, in the weighing device according to the first to third aspects, the vibration period calculating means calculates a period of low-period vibration based on a preset conveying speed of the conveying means. It is characterized by.
According to such a configuration, the vibration period of the low-period vibration can be easily obtained without requiring complicated processing.

請求項5に記載の計量装置は、請求項1〜3の計量装置において、前記振動周期算出手段は、計量信号を解析して周期を算出する信号解析手段を有し、前記無負荷の計量信号を前記信号解析手段で解析して低周期振動の周期を算出することを特徴とする。
このような構成によれば、計量信号を解析して振動周期を算出するので、より正確に低周期振動の振動周期を求めることができる。
The weighing device according to claim 5 is the weighing device according to any one of claims 1 to 3, wherein the vibration period calculation means includes signal analysis means for analyzing a measurement signal to calculate a period, and the no-load measurement signal. Is analyzed by the signal analysis means to calculate the period of the low-frequency vibration.
According to such a configuration, since the vibration period is calculated by analyzing the measurement signal, the vibration period of the low-frequency vibration can be obtained more accurately.

請求項6に記載の計量装置は、請求項1〜3の計量装置において、前記搬送手段に設けられ、前記搬送手段の振動周期を検出する振動周期検出手段を備え、前記振動周期算出手段は、前記振動周期検出手段から出力される信号に基づいて低周期振動の周期を算出することを特徴とする。
また、請求項7に記載の計量装置は、請求項6の計量装置において、前記振動周期検出手段は、前記搬送手段の回転軸に設けられたロータリーエンコーダーからのパルスを計数して低周期振動の周期を算出することを特徴とする。
A weighing device according to a sixth aspect of the present invention is the weighing device according to the first to third aspects, further comprising a vibration period detecting unit that is provided in the conveying unit and detects a vibration period of the conveying unit, and the vibration period calculating unit includes: The low-cycle vibration cycle is calculated based on a signal output from the vibration cycle detection means.
According to a seventh aspect of the present invention, in the weighing device according to the sixth aspect, the vibration period detecting means counts pulses from a rotary encoder provided on a rotation shaft of the conveying means to generate low-period vibration. The period is calculated.

このような構成によれば、振動の主原因となる搬送手段に振動周期検出手段を設けて直接振動を検出するのでより正確な振動周期を求めることができる。   According to such a configuration, since the vibration period detecting means is provided in the conveying means which is the main cause of vibration and the vibration is directly detected, a more accurate vibration period can be obtained.

請求項1の発明によれば、搬送手段が持つ定常的な低周期振動の周期で形成される振動波形と無負荷の計量信号に重畳している低周期振動成分の波形とのとの偏差が最小となるような振動補正波形を生成するための条件を算出して記憶し、搬送手段が持つ定常的な低周期振動の周期に対応したトリガを基準にその条件から前記計量信号を補正するための補正信号を生成し、計量手段から出力される計量信号とこの補正信号との差分により物品の計量値を算出するので、位相ずれによる補正精度の悪化を防止でき、定常的な低周期振動成分を遅延無く除去して高精度に計量することができる。   According to the first aspect of the present invention, there is a deviation between the vibration waveform formed in the steady low-period vibration cycle of the conveying means and the low-cycle vibration component waveform superimposed on the unloaded weighing signal. To calculate and store a condition for generating a vibration correction waveform that minimizes the condition, and to correct the measurement signal from the condition based on a trigger corresponding to the period of the steady low-cycle vibration of the transport means Correction signal is generated, and the measurement value of the article is calculated from the difference between the measurement signal output from the weighing means and the correction signal, so that deterioration of the correction accuracy due to the phase shift can be prevented, and a steady low-period vibration component Can be accurately measured by removing without delay.

請求項2の発明によれば、複数の波形関数の中から選択された波形関数により補正信号が生成されるので、動作環境に適した補正信号を生成することができる。   According to the second aspect of the present invention, the correction signal is generated by the waveform function selected from the plurality of waveform functions, so that the correction signal suitable for the operating environment can be generated.

請求項3の発明によれば、学習によって無負荷の計量信号と搬送手段が持つ定常的な低周期振動の周期で形成される振動補正波形を生成するための条件に複数の波形関数の中で最も相関の高い関数が設定されるので、より低周期振動成分を除去するための補正信号を生成することができ、定常的な低周期振動成分を遅延無く除去して高精度に計量することができる。   According to the invention of claim 3, among a plurality of waveform functions, a condition for generating a vibration correction waveform formed with a constant low-period vibration period of the unloaded weighing signal and the conveying means by learning is obtained. Since the function with the highest correlation is set, it is possible to generate a correction signal for removing the low-frequency vibration component, and it is possible to accurately measure by removing the steady low-frequency vibration component without delay. it can.

請求項4の発明によれば、振動周期を予め設定されている搬送手段の搬送速度に基づいて算出するので、複雑な処理を必要とせず簡単に振動周期を求めることができる。   According to the fourth aspect of the present invention, since the vibration period is calculated based on the preset conveyance speed of the conveyance means, the vibration period can be easily obtained without requiring complicated processing.

請求項5の発明によれば、振動周期を、計量信号を解析して周期を算出するので、より正確に振動周期を求めることができる。   According to the invention of claim 5, since the vibration period is calculated by analyzing the measurement signal, the vibration period can be obtained more accurately.

請求項6の発明によれば、搬送手段の振動周期を検出する振動周期検出手段を前記搬送手段に設けて搬送手段の振動周波数を算出するので、振動の主原因となる搬送からの振動を直接検出するのでより正確な振動周期を求めることができる。   According to the sixth aspect of the present invention, since the vibration frequency detecting means for detecting the vibration period of the conveying means is provided in the conveying means to calculate the vibration frequency of the conveying means, the vibration from the conveying which is the main cause of the vibration is directly detected. Since it detects, a more exact vibration period can be calculated | required.

以下、本発明の好ましい実施の形態について、図面を参照しつつ説明する。
[第1の実施の形態]
図1は本発明の計量装置の第1の実施の形態を示す図であり、重量選別を行うシステムの一部として構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
FIG. 1 is a diagram showing a first embodiment of a weighing device according to the present invention, and is configured as a part of a system for performing weight selection.

本実施形態のシステムは、図1に示すように、前段コンベア11、計量コンベア12(搬送手段)及び後段コンベア13からなる搬送部10を備えており、前段コンベア11には上流側で物品Pが順次供給され載置される。計量コンベア12は、前段コンベア11から所定の投入間隔で順次投入される物品Pを個々に搬送するとともに、後段コンベア13に搬出する。また、後段コンベア13には図示しない振分け装置が装着されており、本計量装置の計量結果に応じて、例えば正常重量の良品と重量の過不足がある不良品との搬送先が振分けられるようになっている。   As shown in FIG. 1, the system according to the present embodiment includes a transport unit 10 including a front conveyor 11, a weighing conveyor 12 (transport means), and a rear conveyor 13. An article P is upstream of the front conveyor 11 on the upstream side. Sequentially supplied and placed. The weighing conveyor 12 individually transports the articles P sequentially fed from the front conveyor 11 at a predetermined charging interval, and carries them out to the rear conveyor 13. In addition, a sorting device (not shown) is attached to the rear conveyor 13 so that, for example, a transport destination of a good product with a normal weight and a defective product with excessive or insufficient weight is sorted according to the measurement result of the weighing device. It has become.

搬送部10のコンベア11〜13は、搬送方向の前後に配置されたローラに巻回された無端状の搬送ベルトで物品Pを搬送するようになっており、詳細を図示しない搬送駆動機構により同期してローラが回転駆動し、物品Pが前段コンベア11から計量コンベア12(搬送手段)に所定の投入間隔で順次投入され、計量コンベア12から後段コンベア13に搬出される。   The conveyors 11 to 13 of the transport unit 10 transport the article P by an endless transport belt wound around rollers disposed in the front and rear of the transport direction, and are synchronized by a transport drive mechanism (not shown in detail). Then, the roller is driven to rotate, and the articles P are sequentially fed from the front conveyor 11 to the weighing conveyor 12 (conveying means) at predetermined charging intervals, and are carried out from the weighing conveyor 12 to the subsequent conveyor 13.

前段コンベア11から計量コンベア12に物品Pが受け渡されて投入される位置、すなわち、両コンベア11、12の隣接部の近傍には、計量コンベア12に投入される物品Pを順次検知する投入検知センサ15(物品検知手段)が設置されおり、この投入検知センサ15により、計量コンベア12上に物品Pが存在するか否か判断される。   An input detection that sequentially detects the articles P to be input to the weighing conveyor 12 at the position where the articles P are delivered and input from the upstream conveyor 11 to the measuring conveyor 12, that is, in the vicinity of the adjacent portions of both conveyors 11 and 12. A sensor 15 (article detection means) is installed, and the input detection sensor 15 determines whether or not the article P exists on the weighing conveyor 12.

また、計量コンベア12は計量器20(計量手段)の一部を構成する計量台21に支持されており、計量コンベア12の重量とこの計量コンベア12上に投入された物品Pの重量が計量器20に負荷されるようになっている。この計量器20は、投入検知センサ15で検知された投入物品Pの重量を風袋となる計量コンベア12の重量と共に計量し、その物品P及び計量コンベア12の重量に対応する計量信号wg(物品の重量に関連する計量信号)を出力するようになっている。計量器20は、例えば公知の歪ゲージロードセルで構成されているが、差動トランス式や電磁平衡式の秤(はかり)であってもよい。   The weighing conveyor 12 is supported by a weighing table 21 that constitutes a part of the weighing instrument 20 (weighing means), and the weight of the weighing conveyor 12 and the weight of the article P put on the weighing conveyor 12 are measured by the weighing instrument. 20 is loaded. The measuring instrument 20 measures the weight of the input article P detected by the input detection sensor 15 together with the weight of the weighing conveyor 12 serving as a tare, and a weighing signal wg corresponding to the weight of the article P and the weighing conveyor 12 (the article's weight). (Weighing signals related to weight) are output. The measuring device 20 is constituted by, for example, a known strain gauge load cell, but may be a differential transformer type or electromagnetic balance type balance.

信号処理手段30は、計量器20から出力される計量信号wgを取り込み、計量器20が出力する計量信号から高周波成分を除去するために不図示のローパスフィルタによってフィルタ処理が実行されるようになっている。ローパスフィルタによってフィルタ処理された計量信号wfは、低周波振動成分を除去した計量値信号を作成するために補正手段に入力され、補正手段からは低周波振動成分が除去された計量値信号を基に物品Pの計量値が出力される。そして、重量選別システムの操作表示部42にその計量値を出力するとともに、判定部41にも物品Pの重量の計量値を出力する。そして、その判定部41では、物品Pの計量値が許容重量範囲内か否かが判定され、その判定結果に応じて後段コンベア13側の前記振分け装置が作動する。   The signal processing means 30 takes in the weighing signal wg output from the measuring instrument 20 and performs filtering by a low-pass filter (not shown) in order to remove high frequency components from the measuring signal output from the measuring instrument 20. ing. The weighing signal wf filtered by the low-pass filter is input to the correction unit to create a weighing value signal from which the low-frequency vibration component is removed, and the weighing value signal from which the low-frequency vibration component is removed is based on the weighing value signal. The measurement value of the article P is output to Then, the measurement value is output to the operation display unit 42 of the weight selection system, and the measurement value of the weight of the article P is also output to the determination unit 41. And in the determination part 41, it is determined whether the measured value of the articles | goods P is in an allowable weight range, and the said distribution apparatus by the side of the back | latter stage conveyor 13 act | operates according to the determination result.

信号処理手段30は、補正手段34の他に、振動周期算出手段31、波形条件記憶手段32および補正波形生成手段33から構成されている。   The signal processing unit 30 includes a vibration period calculation unit 31, a waveform condition storage unit 32, and a correction waveform generation unit 33 in addition to the correction unit 34.

振動周期算出手段31は、計量コンベア12が持つ定常的な低周期振動の周期を算出し、その周期に対応したトリガを発生させている。本実施形態では、低周期振動が計量コンベア12のローラに起因することに着目し、ベルト速度V、計量コンベアのローラ半径rから、計量コンベア12のローラが1回転する時間(2πr/V)を求めて低周期振動の振動周期として算出し、周期を示すトリガを出力している。なお、ベルト速度V、計量コンベアのローラ半径rは、通常生産ラインに設置されるときに決定されるが、生産ラインに設置後にベルト速度V等が変更となる場合には、操作表示部42から設定変更が可能となっている。   The vibration period calculation means 31 calculates a steady low-period vibration period of the weighing conveyor 12 and generates a trigger corresponding to the period. In this embodiment, paying attention to the fact that the low-cycle vibration is caused by the rollers of the weighing conveyor 12, the time (2πr / V) that the rollers of the weighing conveyor 12 make one rotation is determined from the belt speed V and the roller radius r of the weighing conveyor. It calculates | requires and calculates as a vibration period of a low period vibration, The trigger which shows a period is output. The belt speed V and the roller radius r of the weighing conveyor are determined when installed on the normal production line. However, if the belt speed V or the like is changed after installation on the production line, the operation display unit 42 Settings can be changed.

波形条件記憶手段32は、計量コンベアに物品Pが無い状態において計量器20から出力された計量信号wgに対しフィルタ処理された無負荷の計量信号wf‘に重畳している低周期振動成分の波形wzと近似する振動補正波形を、振動周期算出手段31で算出された周期でなる基本の波形関数から位相及び振幅を調整して求め、その振動補正波形を振動周期算出手段31で出力されるトリガを起点として再作成するための波形生成条件を算出し記憶するようになっている。すなわち、トリガを起点した基本波形となる基本の波形関数から位相及び振幅を変化させて、低周期振動成分の波形wzとほぼ一致するような振幅、トリガを起点した基本波形との位相差、波形関数の種類、周期、とトリガの数などが振動補正波形の波形生成条件として記憶される。   The waveform condition storage means 32 is a waveform of a low-period vibration component superimposed on an unloaded weighing signal wf ′ that has been filtered with respect to the weighing signal wg output from the weighing instrument 20 when the article P is not on the weighing conveyor. A trigger for outputting a vibration correction waveform approximated to wz by adjusting the phase and amplitude from a basic waveform function having a period calculated by the vibration period calculation means 31 and outputting the vibration correction waveform by the vibration period calculation means 31 The waveform generation conditions for re-creating from the starting point are calculated and stored. That is, the phase and amplitude are changed from the basic waveform function that is the basic waveform starting from the trigger, the amplitude almost matches the waveform wz of the low-period vibration component, the phase difference from the basic waveform starting from the trigger, and the waveform The function type, cycle, number of triggers, and the like are stored as waveform generation conditions for the vibration correction waveform.

また、波形条件記憶手段32は、生産ラインに設置された動作環境に適した振動補正波形が生成することができるように、正弦波、三角波、インパルス応答波形など複数の波形関数の中から操作表示部42によって選択が可能となっている。   Further, the waveform condition storage means 32 displays an operation from a plurality of waveform functions such as a sine wave, a triangular wave, and an impulse response waveform so that a vibration correction waveform suitable for the operating environment installed in the production line can be generated. Selection can be performed by the unit 42.

例えば、波形関数に正弦波が選択された場合の振動補正波形は図3で示すようになる。図3(a)で示す振動周期算出手段31で出力されるトリガを振動波形の起点として図3(b)で示す正弦波の基本波形ができる。一方このときの無負荷の計量信号に重畳している低周期振動成分の波形wzが図3(d)であったとすると、無負荷の計量信号に重畳している低周期振動成分の波形wzと近似する振動補正波形は図3(c)のようになり、記憶される振幅、位相差、周期はそれぞれA、θ、Tとなる。   For example, the vibration correction waveform when a sine wave is selected as the waveform function is as shown in FIG. The basic waveform of the sine wave shown in FIG. 3B can be obtained using the trigger output from the vibration period calculating means 31 shown in FIG. 3A as the starting point of the vibration waveform. On the other hand, if the waveform wz of the low-period vibration component superimposed on the no-load measurement signal at this time is shown in FIG. 3D, the waveform wz of the low-period vibration component superimposed on the no-load measurement signal The approximate vibration correction waveform is as shown in FIG. 3C, and the stored amplitude, phase difference, and period are A, θ, and T, respectively.

なお、物品Pの計量値の判定を行わず計量コンベア12上に物品Pが存在しない状態で振動補正波形の条件を算出して記憶する波形条件記憶手段32の実施は、学習モードのときに行われる。そして、この学習モードは操作表示部42によって指示され、振動波形の条件の算出と記憶が行われるようになっている。また、この学習モードのときだけ計量信号が波形条件記憶手段に入力されるように、例えば図2で示すように、計量信号切替手段35を設けるようにしても良い。
また、学習モードは、操作表示部42から指示される場合のほかに、例えば、投入検知センサ15により計量コンベア12上に物品Pが存在しない期間を検知し、所定の周期分の期間に物品Pが存在しなかった場合に学習モードと判断し、振動補正波形の波形生成条件を算出し記憶するようにしても良い。
Note that the waveform condition storage means 32 that calculates and stores the condition of the vibration correction waveform in a state where the article P is not present on the weighing conveyor 12 without determining the measurement value of the article P is performed in the learning mode. Is called. And this learning mode is instruct | indicated by the operation display part 42, and the calculation and the memory | storage of the conditions of a vibration waveform are performed. Further, for example, as shown in FIG. 2, a measurement signal switching unit 35 may be provided so that the measurement signal is input to the waveform condition storage unit only in the learning mode.
In addition to the case where the operation display unit 42 instructs the learning mode, for example, the period when the article P does not exist on the weighing conveyor 12 is detected by the input detection sensor 15, and the article P is detected during a predetermined period. If no is present, the learning mode may be determined, and the waveform generation condition of the vibration correction waveform may be calculated and stored.

補正波形生成手段33は、振動周期算出手段31で出力されるトリガを基準として波形条件記憶手段32に記憶されている振動補正波形を生成するための波形生成条件から前記計量信号を補正するための補正信号wcを生成するようになっている。例えば、波形関数が正弦波と選択された場合の振動波形は図4で示すようになる。図4(a)で示す振動周期算出手段31で出力されるトリガを振動波形の起点として、記憶されている振幅A、位相差θ、周期Tを基にして図4(b)で示す正弦波の波形が補正信号wcとして生成される。   The correction waveform generation unit 33 corrects the measurement signal from the waveform generation condition for generating the vibration correction waveform stored in the waveform condition storage unit 32 with the trigger output from the vibration period calculation unit 31 as a reference. A correction signal wc is generated. For example, the vibration waveform when the waveform function is selected as a sine wave is as shown in FIG. A sine wave shown in FIG. 4B is based on the stored amplitude A, phase difference θ, and period T with the trigger output from the vibration period calculating means 31 shown in FIG. 4A as the starting point of the vibration waveform. Is generated as the correction signal wc.

補正手段34は、ローパスフィルタによって高周波成分が除去された計量信号wfと補正波形生成手段33で生成された補正信号wcとの差分をとることにより、高周波成分及び定常的な低周波成分のノイズが除去された計量値信号が作成され、この計量値信号を重量に換算し、図示しない内部の減算器によって重量に換算された計量値から計量コンベア12の計量値を差し引く減算処理を実行して、物品Pの重量の計量値が算出されるようになっている。ここで差し引かれる計量コンベア12の計量値は、計量コンベア12に物品Pが無い状態で計量器20が出力する無負荷の計量信号wg’をローパスフィルタによって高周波成分が除去された計量信号wf’について補正信号wcとの差分をとり、重量に換算された計量値である。   The correction means 34 takes the difference between the measurement signal wf from which the high-frequency component has been removed by the low-pass filter and the correction signal wc generated by the correction waveform generation means 33, so that the noise of the high-frequency component and the steady low-frequency component can be reduced. A removed weighing value signal is created, this weighing value signal is converted into a weight, and a subtraction process for subtracting the weighing value of the weighing conveyor 12 from the weighing value converted into the weight by an internal subtractor (not shown) is performed, A metric value of the weight of the article P is calculated. The weighing value of the weighing conveyor 12 subtracted here is the weighing signal wf ′ from which the high-frequency component has been removed by the low-pass filter from the unloaded weighing signal wg ′ output from the weighing instrument 20 without the article P on the weighing conveyor 12. This is a measured value converted to weight by taking a difference from the correction signal wc.

以上、本実施形態の計量の構成について説明したが、判定手段41及び信号処理手段33は、CPU、ROM、RAM及び入出力インターフェース回路を装備し、CPUによって実行されるプログラムのモジュールで構成されていてもよい。
また、振動補正波形を生成するための条件を算出する際に用いる計量コンベア12に物品Pが無い状態で計量手段から出力される無負荷の計量信号と、補正手段34に入力される計量信号が、ローパスフィルタによって高周波成分が除去された計量信号wfを使用していたが、ローパスフィルタによって高周波成分が除去される前の計量器20から出力される計量信号wgを使用し、補正手段で差分をとった後にローパスフィルタによって高周波成分が除去して計量値信号を作成し、重量に換算して計量値を算出しても良い。
The measurement configuration of the present embodiment has been described above. The determination unit 41 and the signal processing unit 33 include a CPU, a ROM, a RAM, and an input / output interface circuit, and are configured by program modules executed by the CPU. May be.
In addition, there is an unloaded weighing signal output from the weighing unit and a weighing signal input to the correction unit 34 in a state where the article P is not present on the weighing conveyor 12 used when calculating the conditions for generating the vibration correction waveform. The weighing signal wf from which the high-frequency component has been removed by the low-pass filter is used, but the weighing signal wg output from the measuring instrument 20 before the high-frequency component is removed by the low-pass filter is used, and the difference is corrected by the correction means. After taking, a high-frequency component may be removed by a low-pass filter to create a measurement value signal, and the measurement value may be calculated by converting to a weight.

次に、無負荷の計量信号に重畳している低周期振動成分の波形wzと近似する振動補正波形をトリガを起点した基本の波形関数から生成するため位相及び振幅の求め方について、補正信号の関数に正弦波が選択された場合について説明する。   Next, in order to generate a vibration correction waveform that approximates the waveform wz of the low-period vibration component superimposed on the unloaded measurement signal from the basic waveform function starting from the trigger, how to obtain the phase and amplitude A case where a sine wave is selected as a function will be described.

振動周期算出手段で算出された周期を基準に正弦波の補正信号wcを作成する場合には、補正信号wcになる波形関数C(k)は(1)式のように表される。
C(k)= A・sin((2π・Ts・k)/ T +θ) (1)
A:振幅、θ:位相差、T:低周期振動の周期、Ts:サンプリング周期、
k=0,1,2,…(回転体の周期検出時をk=0としたときのサンプリング回数)
When the sine wave correction signal wc is created based on the period calculated by the vibration period calculation means, the waveform function C (k) that becomes the correction signal wc is expressed as in equation (1).
C (k) = A · sin ((2π · Ts · k) / T + θ) (1)
A: amplitude, θ: phase difference, T: period of low-period vibration, Ts: sampling period,
k = 0,1,2, ... (Number of samplings when k = 0 when the period of the rotating body is detected)

一方、無負荷の計量信号に重畳している低周期振動成分の波形wzは、図3(d)で示すように、振動周期算出手段31で出力されるトリガを振動波形の起点とした図3(b)で示す正弦波の基本波形に対し、振幅と位相が異なっている。そこで、波形関数C(k)が図3(d)で示すような正弦波と一致するように位相と振幅を求めれば、波形関数C(k)を無負荷の計量信号に重畳している低周期振動成分の波形wzと近似することができる。   On the other hand, the waveform wz of the low-period vibration component superimposed on the unloaded weighing signal is shown in FIG. 3 with the trigger output from the vibration period calculating means 31 as the starting point of the vibration waveform as shown in FIG. The amplitude and phase are different from the basic waveform of the sine wave shown in (b). Therefore, if the phase and amplitude are determined so that the waveform function C (k) matches a sine wave as shown in FIG. 3D, the waveform function C (k) is superimposed on the unloaded weighing signal. It can be approximated to the waveform wz of the periodic vibration component.

波形関数C(k)の振幅は、振動周期算出手段31で出力されるトリガを起点として低周期振動成分の波形wzをTsの間隔でサンプリングしていったときにピーク値を検出し、最初の正側のピーク値から最初の負側のピーク値(負の値)を引いて2分の1にして求められる低周期振動成分の波形wzの振幅A1を波形関数C(k)のAとしている。   As for the amplitude of the waveform function C (k), the peak value is detected when the waveform wz of the low-period vibration component is sampled at intervals of Ts starting from the trigger output from the vibration period calculation means 31. The amplitude A1 of the waveform wz of the low-period vibration component obtained by subtracting the first negative peak value (negative value) from the positive peak value to ½ is defined as A of the waveform function C (k). .

また、波形関数C(k)の位相は、振動周期算出手段31で出力されるトリガを起点として低周期振動成分の波形wzをTsの間隔でサンプリングしていったときにピーク値を検出し、最初の正側のピーク値を検出するまでの時間tpから求めることができる。すなわち、ここで、(2π・tp)/T+θ1 = π/2 の関係が成り立つことから位相θ1は、(2)式で求めることができる。
θ1 = π/2 − (2π・tp)/ T (2)
さらに、最初の正側のピーク値を検出するまでの時間tpはサンプリング周期Tsにサンプリング回数kpを乗じたものであるから(2)式は(3)式のようになる。
θ1 = π/2 − (2π・Ts・k)/ T (3)
そして、(3)式で求められたθ1を波形関数C(k)のθとしている。
The phase of the waveform function C (k) detects a peak value when the waveform wz of the low-period vibration component is sampled at intervals of Ts starting from the trigger output from the vibration period calculation means 31. It can be obtained from the time tp until the first positive peak value is detected. That is, here, since the relationship of (2π · tp) / T + θ1 = π / 2 holds, the phase θ1 can be obtained by the equation (2).
θ1 = π / 2− (2π · tp) / T (2)
Furthermore, since the time tp until the first positive peak value is detected is obtained by multiplying the sampling period Ts by the number of sampling times kp, the expression (2) becomes the expression (3).
θ1 = π / 2− (2π · Ts · k) / T (3)
Then, θ1 obtained by the equation (3) is set as θ of the waveform function C (k).

なお、波形関数C(k)の振幅Aおよび位相θを、振動周期算出手段31で出力されるトリガを起点として最初に得られる低周期振動成分の波形wzの振幅A1および位相θ1から求めたが、低周期振動成分の波形wzの振幅と周期がゆらぐ場合には、所定周期分の振幅の平均値および位相の平均値を算出し、波形関数C(k)の振幅Aおよび位相θとしても良い。   The amplitude A and the phase θ of the waveform function C (k) are obtained from the amplitude A1 and the phase θ1 of the waveform wz of the low-period vibration component that is initially obtained from the trigger output from the vibration period calculation means 31. When the amplitude and period of the waveform wz of the low-period vibration component fluctuate, the average value of the amplitude and the average value of the phase for a predetermined period may be calculated and used as the amplitude A and the phase θ of the waveform function C (k). .

また、波形関数C(k)の振幅Aおよび位相θを、波形wzの振幅のピークから個々に求めたが、低周期振動成分の波形wzを関数化して低周期振動成分の波形関数X(k)とし、波形関数X(k)から振幅Aを求め、その振幅Aを波形関数C(k)に設定した後、波形関数C(k)の位相を変化させて、波形関数X(k)と波形関数C(k)が一致する時の位相を求めるようにしても良い。或いは波形関数X(k)と波形関数C(k)の位相差を求めて波形関数X(k)と波形関数C(k)の位相を合わせた後、波形関数C(k)の振幅を変化させて、波形関数X(k)と波形関数C(k)が一致する時の振幅を求めるようにしても良い。   Further, the amplitude A and the phase θ of the waveform function C (k) are individually obtained from the amplitude peak of the waveform wz, but the waveform function X (k of the low-period vibration component is obtained by functionalizing the waveform wz of the low-period vibration component. ), The amplitude A is obtained from the waveform function X (k), the amplitude A is set to the waveform function C (k), the phase of the waveform function C (k) is changed, and the waveform function X (k) The phase when the waveform functions C (k) coincide may be obtained. Alternatively, after obtaining the phase difference between the waveform function X (k) and the waveform function C (k) and matching the phases of the waveform function X (k) and the waveform function C (k), the amplitude of the waveform function C (k) is changed. Thus, the amplitude when the waveform function X (k) and the waveform function C (k) match may be obtained.

上述のように構成された本実施形態の計量装置及び重量選別システムでは、振動波形と無負荷の計量信号に重畳している低周期振動成分の波形と近似する振動補正波形を振動周期算出手段で算出された周期でなる基本の波形関数から生成するため位相及び振幅を含む波形生成条件を算出して記憶し、搬送手段が持つ定常的な低周期振動の周期に対応したトリガを基準にその波形生成条件から前記計量信号を補正するための補正信号を生成し、計量手段から出力される計量信号とこの補正信号との差分から物品の計量値を算出するので、定常的な低周期振動成分を遅延無く除去して高精度に計量するこことができる。   In the weighing device and the weight selection system of the present embodiment configured as described above, the vibration correction waveform that approximates the vibration waveform and the waveform of the low-period vibration component superimposed on the no-load measurement signal is obtained by the vibration period calculation means. Calculates and stores waveform generation conditions including phase and amplitude for generation from the basic waveform function with the calculated period, and stores the waveform based on the trigger corresponding to the period of the steady low-frequency vibration of the transport means A correction signal for correcting the weighing signal is generated from the generation conditions, and the weighing value of the article is calculated from the difference between the weighing signal output from the weighing means and the correction signal. It can be removed without delay and weighed with high accuracy.

また、本実施形態では、ベルト速度、計量コンベアのローラの半径から、計量コンベアのローラが1回転する時間を求めて低周期振動の振動周期として算出し、周期を示すトリガを出力しているので、複雑な処理を必要とせず簡単に振動周期を求めることができる。   In this embodiment, since the time for which the roller of the weighing conveyor rotates once is calculated from the belt speed and the radius of the roller of the weighing conveyor, it is calculated as the vibration cycle of the low cycle vibration, and the trigger indicating the cycle is output. Thus, the vibration period can be easily obtained without requiring complicated processing.

[第2の実施の形態]
図5は本発明の計量装置の第2の実施の形態を示す図であり、重量選別を行うシステムの一部として構成されている。なお、本実施形態は振動周期算出手段および波形条件記憶手段に関する構成及び作用以外は第1の実施の形態と同様であるので、第1の実施の形態と同一の構成については図1に示したものと同一符号を用いながら、相違点について説明する。
[Second Embodiment]
FIG. 5 is a diagram showing a second embodiment of the weighing device of the present invention, and is configured as a part of a system for performing weight selection. The present embodiment is the same as the first embodiment except for the configuration and operation relating to the vibration period calculation means and the waveform condition storage means, and therefore the same configuration as the first embodiment is shown in FIG. Differences will be described using the same reference numerals.

本実施形態では、搬送手段10が持つ定常的な低周期振動の周期を計量手段が出力する計量信号から検出する構成となっており、計量信号から低周期振動の周期を検出するために、図5で示すように振動周期算出手段51は信号解析手段54を有しており、信号解析手段54で解析した低周期振動の周期に基づいて低周期振動の周期を算出し、トリガを出力するようになっている。   In the present embodiment, the stationary low-cycle vibration period of the conveying means 10 is detected from the measurement signal output from the measurement means. In order to detect the low-period vibration period from the measurement signal, FIG. 5, the vibration period calculation means 51 has a signal analysis means 54, which calculates the period of the low frequency vibration based on the period of the low frequency vibration analyzed by the signal analysis means 54 and outputs a trigger. It has become.

また、波形条件記憶手段51は、無負荷の計量信号と振動周期算出手段で算出された周期からなる複数の波形関数との相関をとり、複数の波形関数の中で最も相関の高い波形関数を算出する学習手段53を有しており、学習手段53で算出した波形関数に基づいて振動補正波形を生成するための条件を算出して記憶するようになっている。   The waveform condition storage means 51 correlates the unloaded weighing signal and a plurality of waveform functions having the period calculated by the vibration period calculating means, and selects the waveform function having the highest correlation among the plurality of waveform functions. A learning unit 53 for calculating is provided, and a condition for generating a vibration correction waveform is calculated and stored based on the waveform function calculated by the learning unit 53.

信号解析手段54は、計量器20から出力される計量信号をローパスフィルタによってフィルタ処理された計量信号wfの交流成分のピーク値を検出して振動周期を算出し、検出したピーク値を基準としてトリガを出力されるようになっている。例えば図6(a)に示すように、負側のピーク値を基準として図6(b)に示すようにトリガを出力している。   The signal analysis means 54 detects the peak value of the alternating current component of the weighing signal wf obtained by filtering the weighing signal output from the weighing instrument 20 with a low-pass filter, calculates the vibration period, and triggers based on the detected peak value. Is output. For example, as shown in FIG. 6A, a trigger is output as shown in FIG. 6B with reference to the negative peak value.

学習手段53は、操作表示部42から学習モードが指示されたときに行われ、計量コンベア12に物品Pが無い状態で計量器20から出力される無負荷の計量信号wgに対し低周期振動の周波数帯域の振動信号wbをバンドパスフィルタよってフィルタ処理して抽出するようになっている。そして抽出された振動信号wbについて複数の波形関数との相関をとり、複数の波形関数の中で最も相関の高い波形関数が選択されて設定されるようになっている。例えば、相関をとる複数の波形関数は、信号wbと同一周期の同位相の振幅の異なる正弦波であり、振幅を可変ささせたときに信号wbの振幅との差分が最小となる振幅の正弦波が波形関数の中で最も相関の高い波形関数として選択されて設定されるようになっている。   The learning unit 53 is performed when the learning mode is instructed from the operation display unit 42, and the low-frequency vibration is generated with respect to the unloaded weighing signal wg output from the weighing instrument 20 in a state where the article P is not on the weighing conveyor 12. The vibration signal wb in the frequency band is extracted by filtering with a band pass filter. The extracted vibration signal wb is correlated with a plurality of waveform functions, and the waveform function having the highest correlation among the plurality of waveform functions is selected and set. For example, the plurality of waveform functions for correlating are sine waves having the same period and the same phase amplitude as the signal wb, and the sine of the amplitude that minimizes the difference from the amplitude of the signal wb when the amplitude is varied. The wave is selected and set as the waveform function having the highest correlation among the waveform functions.

波形条件記憶手段51は、図6で示すように学習手段53で設定された波形関数(図6(c))を基に振動周期算出手段52で出力されるトリガ信号を起点として位相差θを求め、学習手段53で設定された波形関数C(k)及び振幅Aとともに記憶するようになっている。   As shown in FIG. 6, the waveform condition storage means 51 calculates the phase difference θ from the trigger signal output from the vibration period calculation means 52 based on the waveform function (FIG. 6C) set by the learning means 53. It is obtained and stored together with the waveform function C (k) and amplitude A set by the learning means 53.

なお、本実施形態では、信号解析手段54が、計量器20からの計量信号をフィルタ処理した信号を基にトリガを出力するようにしているが、学習モードのときに、計量器20から出力される計量信号を低周期振動の周波数帯域のバンドパスフィルタよってフィルタ処理された振動信号の周期を求め、求められた振動周期間隔でトリガを出力するようにすれば他のノイズに影響されることなく定常的な低周期振動に対応したトリガを発生することができる。   In the present embodiment, the signal analyzing unit 54 outputs a trigger based on a signal obtained by filtering the weighing signal from the measuring instrument 20, but is output from the measuring instrument 20 in the learning mode. If the weighing signal is filtered by a bandpass filter in the low-frequency vibration frequency band and the trigger is output at the determined vibration period interval, it will not be affected by other noises. A trigger corresponding to a steady low-period vibration can be generated.

このように構成された本実施形態においては、学習によって無負荷の計量信号と搬送手段が持つ定常的な低周期振動の周期で形成される振動補正波形を生成するための波形生成条件に複数の波形関数の中で最も相関の高い関数が設定されるので、より正確に低周期振動成分を除去するための補正信号を生成することができ、定常的な低周期振動成分を遅延無く除去して高精度に計量することができる。   In the present embodiment configured as described above, a plurality of waveform generation conditions for generating a vibration correction waveform formed with a constant low-cycle vibration cycle of the unloaded weighing signal and the conveying means by learning are set. Since the function with the highest correlation among the waveform functions is set, a correction signal for removing the low-frequency vibration component can be generated more accurately, and the steady low-frequency vibration component can be removed without delay. Can be measured with high accuracy.

[第3の実施の形態]
図7は本発明の計量装置の第3の実施の形態を示す図であり、重量選別を行うシステムの一部として構成されている。なお、本実施形態は、振動周期算出手段に関する構成及び作用以外は第1の実施の形態と同様であるので、第1の実施の形態と同一の構成については図1に示したものと同一符号を用いながら、相違点について説明する。
[Third embodiment]
FIG. 7 is a diagram showing a third embodiment of the weighing device of the present invention, and is configured as a part of a system for performing weight selection. Since the present embodiment is the same as the first embodiment except for the configuration and operation related to the vibration period calculation means, the same reference numerals as those shown in FIG. 1 are used for the same configurations as the first embodiment. Differences will be described with reference to FIG.

本実施形態では、搬送手段が持つ定常的な低周期振動の周期を搬送部10から直接検出する構成となっており、搬送部10から直接検出すために、図7に示すように計量コンベア12の回転体に振動周期検出手段62が設けられている。そして、振動周期算出手段61は、動周期検出手段からの検出信号を受けて、低周期振動の周期を算出し、トリガを出力するようになっている。   In this embodiment, it is the structure which detects directly the period of the regular low cycle vibration which a conveyance means has from the conveyance part 10, and in order to detect directly from the conveyance part 10, as shown in FIG. A vibration period detecting means 62 is provided on the rotating body. The vibration cycle calculation means 61 receives the detection signal from the dynamic cycle detection means, calculates the period of the low cycle vibration, and outputs a trigger.

例えば、振動周期検出手段62は、計量コンベアのローラの回転軸に設けられたロータリーエンコーダーであり、振動周期算出手段61は、計量コンベアのローラの回転軸が回転することによってロータリーエンコーダーから出力されるパルス数(図8(1))を計数し、パルス数がロータリーエンコーダーの一回転のパルス数に達した時間から計量コンベアのローラの回転によって生じる低周期振動の周期を算出する。そして、ロータリーエンコーダーが一回転するごとにトリガ(図8(2))を出力するようにしている。   For example, the vibration cycle detecting means 62 is a rotary encoder provided on the rotating shaft of the roller of the weighing conveyor, and the vibration cycle calculating means 61 is output from the rotary encoder by the rotation of the rotating shaft of the roller of the weighing conveyor. The number of pulses (FIG. 8 (1)) is counted, and the period of low-period vibration generated by the rotation of the rollers of the weighing conveyor is calculated from the time when the number of pulses reaches the number of pulses of one rotation of the rotary encoder. A trigger (FIG. 8 (2)) is output every time the rotary encoder makes one rotation.

なお、本実施形態では、計量コンベアのローラに設けられたロータリーエンコーダーによって低周期振動の周期を算出する構成としたが、搬送手段の低周期振動を検出する振動周期検出手段は、例えば、回転軸または回転軸に設けられた円盤に対し施されたマーク、穴、切り欠き等をフォトセンサ等で検出して回転軸の回転周期を検出しても良い。また、回転軸は、ローラの回転軸に限らず、駆動モータ、変速機等の回転軸であっても良い。
さらに、搬送手段の低周期振動を検出する振動周期検出手段は、回転軸に限らず、低周期振動源の周期に関連する周期信号であれば良く、例えば計量コンベアの搬送ベルトにマークを付してそのマークを検出するなど搬送速度を検出し、低周期振動源の周期に換算しても良い。
In this embodiment, the low-cycle vibration cycle is calculated by the rotary encoder provided on the roller of the weighing conveyor. However, the vibration cycle detection unit that detects the low-cycle vibration of the transport unit is, for example, a rotating shaft. Alternatively, the rotation period of the rotating shaft may be detected by detecting a mark, a hole, a notch or the like made on the disk provided on the rotating shaft with a photo sensor or the like. Further, the rotating shaft is not limited to the rotating shaft of the roller, but may be a rotating shaft such as a drive motor or a transmission.
Further, the vibration period detecting means for detecting the low period vibration of the conveying means is not limited to the rotating shaft, but may be any periodic signal related to the period of the low periodic vibration source. For example, a mark is attached to the conveying belt of the weighing conveyor. For example, the conveying speed may be detected by detecting the mark and converted into the period of the low-frequency vibration source.

このように構成された本実施形態においては、搬送手段に搬送手段の振動周期を検出する振動周期検出手段が設けられているので、振動の主原因となる搬送手段の振動を直接検出し、より正確な振動周期から補正をすることができるので計量精度が向上する。   In the present embodiment configured as described above, since the vibration means for detecting the vibration period of the conveying means is provided in the conveying means, the vibration of the conveying means which is the main cause of vibration is directly detected, and more Since the correction can be made from an accurate vibration cycle, the measurement accuracy is improved.

以上説明したように、搬送手段が持つ定常的な低周期振動を除去するための補正信号を生成し、計量手段から出力される計量信号とこの補正信号との差分から物品の計量値を算出するので、搬送手段を備えた計量装置全般に有用である。   As described above, the correction signal for removing the steady low-period vibration of the conveying unit is generated, and the weighing value of the article is calculated from the difference between the weighing signal output from the weighing unit and the correction signal. Therefore, it is useful for all weighing devices equipped with a conveying means.

本発明の第1の実施の形態に係る計量装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a weighing device according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る計量装置における信号処理手段の他の概略構成を示すブロック図である。It is a block diagram which shows the other schematic structure of the signal processing means in the measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る計量装置における低周期振動の周期、波形関数及び無負荷の計量信号の波形を示すタイミングチャートである。It is a timing chart which shows the waveform of the cycle of a low cycle vibration, the waveform function, and the waveform of an unloaded measuring signal in the measuring device concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る計量装置における低周期振動の周期と補正信号を示すタイミングチャートである。It is a timing chart which shows the period and correction signal of the low period vibration in the measuring device concerning a 1st embodiment of the present invention. 本発明の第2の実施の形態に係る計量装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the weighing | measuring device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る計量装置における低周期振動の周期、波形関数及び無負荷の計量信号の波形を示すタイミングチャートである。It is a timing chart which shows the period of a low period vibration, the waveform function, and the waveform of an unloaded measurement signal in the measuring device concerning a 2nd embodiment of the present invention. 本発明の第3の実施の形態に係る計量装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the weighing | measuring device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る計量装置における低周期振動の周期、波形関数及び無負荷の計量信号の波形を示すタイミングチャートである。It is a timing chart which shows the period of a low cycle vibration, the waveform function, and the waveform of an unloaded measuring signal in the measuring device concerning a 3rd embodiment of the present invention.

符号の説明Explanation of symbols

10 搬送部
11 前段コンベア
12 計量コンベア(搬送手段)
13 後段コンベア
15 投入検知センサ(物品検知手段)
20 計量器(計量手段)
21 計量台
30 信号処理手段
31、51、61 振動周期算出手段
32、52 波形条件記憶手段
33 補正波形生成手段
34 補正手段
35 計量信号切替手段
37 ゼロセット手段(ゼロ点補正手段)
39 表示・操作部
40 フィルタ設定部(ゼロ点補正手段)
41 判定部
42 表示・操作部
53 信号解析手段
54 学習手段
62 振動周期検出手段
DESCRIPTION OF SYMBOLS 10 Conveyance part 11 Pre-stage conveyor 12 Weighing conveyor (conveyance means)
13 Subsequent conveyor 15 Input detection sensor (article detection means)
20 Weighing device (measuring means)
DESCRIPTION OF SYMBOLS 21 Weighing table 30 Signal processing means 31, 51, 61 Vibration period calculation means 32, 52 Waveform condition storage means 33 Correction waveform generation means 34 Correction means 35 Weighing signal switching means 37 Zero set means (zero point correction means)
39 Display / Operation Unit 40 Filter Setting Unit (Zero Point Correction Unit)
41 Determination Unit 42 Display / Operation Unit 53 Signal Analysis Unit 54 Learning Unit 62 Vibration Period Detection Unit

Claims (7)

所定の投入間隔で順次投入される物品(P)を搬送する搬送手段(10)と、
前記物品を前記搬送手段と共に計量して前記物品の重量に関連する計量信号を出力する計量手段(20)と、
前記搬送手段が持つ定常的な低周期振動の周期を算出し、その周期に対応したトリガを発生する振動周期算出手段(31、51、61)と、
前記搬送手段に物品が無い状態で前記計量手段が出力する無負荷の計量信号に重畳している低周期振動成分の波形と近似する振動補正波形を前記振動周期算出手段で算出された周期でなる基本の波形関数から生成するための位相及び振幅を含む波形生成条件を算出して記憶する波形条件記憶手段(32、52)と、
前記振動周期算出手段から発生されたトリガを基準として波形条件記憶手段に記憶された波形生成条件から前記計量信号を補正するための補正信号を生成する補正波形生成手段(33)と、
前記計量手段から出力された計量信号と前記補正波形生成手段から出力された補正信号との差分により前記物品の計量値を算出する補正手段(34)と、を備えた計量装置。
Transport means (10) for transporting articles (P) that are sequentially placed at a predetermined throw-in interval;
Weighing means (20) for weighing the article together with the conveying means to output a weighing signal related to the weight of the article;
Vibration period calculating means (31, 51, 61) for calculating a period of steady low-period vibration possessed by the conveying means and generating a trigger corresponding to the period;
A vibration correction waveform that approximates the waveform of a low-period vibration component superimposed on an unloaded weighing signal output from the weighing means when there is no article in the conveying means is a cycle calculated by the vibration period calculating means. Waveform condition storage means (32, 52) for calculating and storing a waveform generation condition including a phase and amplitude for generation from a basic waveform function;
Correction waveform generation means (33) for generating a correction signal for correcting the measurement signal from the waveform generation conditions stored in the waveform condition storage means with reference to the trigger generated from the vibration period calculation means;
A weighing apparatus comprising: a correction unit (34) that calculates a weighing value of the article based on a difference between a weighing signal output from the weighing unit and a correction signal output from the correction waveform generation unit.
前記波形条件記憶手段(32)は、複数の波形関数の中から選択された波形関数に基づいて振動補正波形を生成するための条件を算出して記憶することを特徴とする請求項1に記載の計量装置。   The waveform condition storage means (32) calculates and stores a condition for generating a vibration correction waveform based on a waveform function selected from a plurality of waveform functions. Weighing equipment. 前記波形条件記憶手段(52)は、前記無負荷の計量信号と前記振動周期算出算出手段で算出された周期でなる複数の波形関数との相関をとり、前記複数の波形関数の中で最も相関の高い波形関数を選択し設定する学習手段(53)を有し、
該学習手段で設定された波形関数に基づいて振動補正波形を生成するための条件を算出して記憶することを特徴とする請求項1に記載の計量装置。
The waveform condition storage means (52) correlates the unloaded weighing signal with a plurality of waveform functions having the period calculated by the vibration period calculation calculating means, and is the most correlated among the plurality of waveform functions. Learning means (53) for selecting and setting a high waveform function,
2. The weighing apparatus according to claim 1, wherein a condition for generating a vibration correction waveform is calculated and stored based on the waveform function set by the learning means.
前記振動周期算出手段(31)は、予め設定されている前記搬送手段の搬送速度に基づいて低周期振動の周期を算出することを特徴とする請求項1〜3のいずれかに記載の計量装置。   The weighing apparatus according to any one of claims 1 to 3, wherein the vibration period calculating means (31) calculates a period of low-period vibration based on a preset conveying speed of the conveying means. . 前記振動周期算出手段(51)は、計量信号を解析して周期を算出する信号解析手段を有し、前記無負荷の計量信号を前記信号解析手段(54)で解析して低周期振動の周期を算出することを特徴とする請求項1〜3のいずれかに記載の計量装置。   The vibration period calculating means (51) has signal analysis means for calculating a period by analyzing a measurement signal, and analyzing the unloaded measurement signal by the signal analysis means (54) to obtain a period of low-period vibration. The weighing device according to claim 1, wherein the weighing device is calculated. 前記搬送手段に設けられ、前記搬送手段の振動周期を検出する振動周期検出手段(62)を備え、
前記振動周期算出手段(61)は、前記振動周期検出手段から出力される信号に基づいて低周期振動の周期を算出することを特徴とする請求項1〜3のいずれかに記載の計量装置。
Provided with a vibration period detecting means (62) provided in the conveying means for detecting a vibration period of the conveying means;
The weighing apparatus according to any one of claims 1 to 3, wherein the vibration period calculating means (61) calculates a period of low-period vibration based on a signal output from the vibration period detecting means.
前記振動周期検出手段(62)は、前記搬送手段の回転軸に設けられたロータリーエンコーダーからのパルスを計数して低周期振動の周期を算出することを特徴とする請求項6に記載の計量装置。   The weighing apparatus according to claim 6, wherein the vibration period detecting means (62) calculates a period of low-period vibration by counting pulses from a rotary encoder provided on a rotating shaft of the transport means. .
JP2007113094A 2007-04-23 2007-04-23 Weighing device Active JP4916373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113094A JP4916373B2 (en) 2007-04-23 2007-04-23 Weighing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113094A JP4916373B2 (en) 2007-04-23 2007-04-23 Weighing device

Publications (2)

Publication Number Publication Date
JP2008268068A true JP2008268068A (en) 2008-11-06
JP4916373B2 JP4916373B2 (en) 2012-04-11

Family

ID=40047759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113094A Active JP4916373B2 (en) 2007-04-23 2007-04-23 Weighing device

Country Status (1)

Country Link
JP (1) JP4916373B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249677A (en) * 2009-04-16 2010-11-04 Yamato Scale Co Ltd Weighing device
JP2011012993A (en) * 2009-06-30 2011-01-20 Yamato Scale Co Ltd Metering instrument
JP2011027424A (en) * 2009-07-21 2011-02-10 Yamato Scale Co Ltd Weighing device
JP2012173248A (en) * 2011-02-24 2012-09-10 Anritsu Sanki System Co Ltd Weighing device
JP2020122677A (en) * 2019-01-29 2020-08-13 アンリツインフィビス株式会社 Measuring device and measurement value correction method
JP7462295B2 (en) 2020-03-19 2024-04-05 株式会社イシダ Weighing Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178659B2 (en) * 2019-01-07 2022-11-28 ユニパルス株式会社 Weighing machine learning device, weighing machine learning system and weighing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771097A (en) * 1980-10-21 1982-05-01 Yamato Scale Co Ltd Method of removing constant period vibration wave
JP2000258237A (en) * 1999-03-12 2000-09-22 Yamato Scale Co Ltd Measuring device and fixed-cycle oscillatory wave removing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771097A (en) * 1980-10-21 1982-05-01 Yamato Scale Co Ltd Method of removing constant period vibration wave
JP2000258237A (en) * 1999-03-12 2000-09-22 Yamato Scale Co Ltd Measuring device and fixed-cycle oscillatory wave removing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249677A (en) * 2009-04-16 2010-11-04 Yamato Scale Co Ltd Weighing device
JP2011012993A (en) * 2009-06-30 2011-01-20 Yamato Scale Co Ltd Metering instrument
JP2011027424A (en) * 2009-07-21 2011-02-10 Yamato Scale Co Ltd Weighing device
JP2012173248A (en) * 2011-02-24 2012-09-10 Anritsu Sanki System Co Ltd Weighing device
JP2020122677A (en) * 2019-01-29 2020-08-13 アンリツインフィビス株式会社 Measuring device and measurement value correction method
JP7109388B2 (en) 2019-01-29 2022-07-29 アンリツ株式会社 Weighing device and weight value correction method
JP7462295B2 (en) 2020-03-19 2024-04-05 株式会社イシダ Weighing Device

Also Published As

Publication number Publication date
JP4916373B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916373B2 (en) Weighing device
JP4781982B2 (en) Weighing device
JP6150379B2 (en) Weighing device
DK1895280T3 (en) Weighing device, in particular dynamic weighing device, and weighing device therefor
JP5658594B2 (en) Weighing device
JP2012208083A (en) Measuring apparatus
JPH08136330A (en) Conveying-weighing equipment
JP5567875B2 (en) Weight measuring device
JP3779443B2 (en) Dynamic weighing value correction device
JP6108524B2 (en) Weighing device
JPS6079227A (en) Weighing apparatus
JP5550472B2 (en) Weight sorter
JP2021148659A (en) Measurement device
JP5553674B2 (en) X-ray inspection equipment
JP2011012993A (en) Metering instrument
JP7406242B2 (en) Weighing device
JP7200087B2 (en) Product inspection device and product inspection method
JPH0423727B2 (en)
JPH08297044A (en) Weight sorting system
JP7200159B2 (en) Weighing device
JP5539824B2 (en) Signal processing apparatus and signal processing method
JP7162635B2 (en) Product inspection equipment
JP7109388B2 (en) Weighing device and weight value correction method
JP3429374B2 (en) Weighing device
JP2013190353A (en) Metering device and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250