JP2008268055A - Foreign material inspecting device, and foreign material inspection method - Google Patents

Foreign material inspecting device, and foreign material inspection method Download PDF

Info

Publication number
JP2008268055A
JP2008268055A JP2007112777A JP2007112777A JP2008268055A JP 2008268055 A JP2008268055 A JP 2008268055A JP 2007112777 A JP2007112777 A JP 2007112777A JP 2007112777 A JP2007112777 A JP 2007112777A JP 2008268055 A JP2008268055 A JP 2008268055A
Authority
JP
Japan
Prior art keywords
solid
foreign matter
processed image
image
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007112777A
Other languages
Japanese (ja)
Inventor
Takeshi Noda
武司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007112777A priority Critical patent/JP2008268055A/en
Publication of JP2008268055A publication Critical patent/JP2008268055A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foreign material inspecting device and a foreign material inspection method, capable of inspecting the existence of foreign materials in an assembly line of solid-state imaging element and optical components, and preventing an assembly with foreign material mixed from being delivered in a post-process. <P>SOLUTION: The foreign material inspecting device is provided with a first imaging camera 15 for imaging a jointing surface 2a of the optical component 2 and a second imaging camera 28 for imaging a jointing surface 1a of the solid-state imaging element 1. The optical component 2 held by a holding mechanism part 32 is cured temporarily with an adhesive, such as, UV resin on the solid-state imaging element 1 mounted on an adjusting base 13 to be jointed with the solid-state imaging element 1. In this state, the jointing surface of the solid-state imaging element 1 and the optical component 2 is imaged by the solid-state imaging element 1. The obtained respective image data is stored in a storage means 43, an image processing part 44 detects the contrasting density and distribution state generated by the foreign materials of each pixel, as gradation information and distribution information, and detects the existence of the foreign materials from the relation with previously set prescribed luminance data. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体撮像素子とレンズ等の光学部品の組立て時に於けるゴミや塵や埃などの異物を検査する異物検査装置及び異物検査方法に関する。   The present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method for inspecting foreign matters such as dust, dust, and dust when an optical component such as a solid-state imaging device and a lens is assembled.

従来、内視鏡やその他の光学製品において、固体撮像素子とその周辺の光学レンズ等の光学部品とが接合等の組み立てられた状態で撮像ユニットとして用いられることがある。例えば、図11においては、固体撮像素子1と例えば平板レンズ等からなる光学部品2とをUV樹脂等の接着剤による接着剤層によって接着することで撮像ユニット3が得られる。
これら撮像ユニット3の組み立て工程においては、組み立て工程の途中で混入するゴミ・塵・埃などの規格が厳しく決められている。万一、光学部品と接合した固体撮像素子自体の出力画像上にこれらのゴミや塵や埃などが写っていたとすると、組み立てた撮像ユニットは不良品となり、その撮像ユニットを不良品として廃棄するか、分解して混入しているゴミ・塵・埃を除去した後に再度組み立て直す必要が有る。
そのため、撮像ユニットを組み立てる前後にこれらの異物検査を行なう技術は必須であり、様々な異物検査の手法が採用されている。
2. Description of the Related Art Conventionally, in an endoscope or other optical product, a solid-state imaging device and an optical component such as an optical lens around the solid-state imaging device are sometimes used as an imaging unit in an assembled state. For example, in FIG. 11, the imaging unit 3 is obtained by bonding the solid-state imaging device 1 and the optical component 2 made of, for example, a flat lens or the like with an adhesive layer made of an adhesive such as UV resin.
In the assembling process of these imaging units 3, standards for dust, dust, dust and the like mixed during the assembling process are strictly determined. Should these dust, dust, and dust appear in the output image of the solid-state image sensor itself that is bonded to the optical component, the assembled imaging unit becomes a defective product, and is the imaging unit discarded as a defective product? It is necessary to reassemble after removing the dust, dust, and dust that have been decomposed and mixed.
Therefore, a technique for inspecting these foreign substances before and after assembling the imaging unit is essential, and various foreign substance inspection methods are employed.

このような異物検査装置や方法として、例えば下記特許文献1に記載されたものがある。図12に示す特許文献1に記載された異物検査装置100では、レールに沿って搬送される披検物101の表面に照明手段102により照明を照射し、ゴミや塵や埃などの異物を外部の撮像手段103により撮像する。撮像手段103で取り込まれた画像は制御装置104における記憶手段105に一旦記憶しておく。必要時に記憶手段105から読み出し、画像処理部106によって撮像画像における画素毎の濃淡情報を読み出して異物の有無を検出し、異物がある場合には異物の大きさや位置を検出するようにしている。
この異物検査装置100では、撮像手段103や画像処理部106の1ピクセルあたりの分解能分の大きさ以上の異物を記憶手段105や画像処理部106の濃淡レベルの階調分の精度で検出できる。異物の検査の合否は制御装置104で判定され、合否結果に基づいて、排出切り替え部107で良品と不良品に仕分けされて、不良品は排除される。異物検査装置100は被検物101単体について組み立てラインとは別個に検査を行うオフライン検査装置であるといえる。
As such a foreign substance inspection apparatus and method, there exists what was described in the following patent document 1, for example. In the foreign substance inspection apparatus 100 described in Patent Document 1 shown in FIG. 12, the illumination means 102 illuminates the surface of the specimen 101 conveyed along the rail, and foreign substances such as dust, dust, and dust are externally applied. The image is taken by the imaging means 103. The image captured by the imaging unit 103 is temporarily stored in the storage unit 105 in the control device 104. When necessary, the data is read from the storage unit 105, and the image processing unit 106 reads the density information for each pixel in the captured image to detect the presence or absence of a foreign object. When there is a foreign object, the size and position of the foreign object are detected.
In this foreign matter inspection apparatus 100, foreign matters having a size equal to or larger than the resolution for each pixel of the imaging means 103 and the image processing unit 106 can be detected with an accuracy corresponding to the gradation level of the storage means 105 and the image processing unit 106. Whether the inspection of the foreign matter is acceptable or not is determined by the control device 104. Based on the result of the acceptance / rejection, the discharge switching unit 107 classifies the defective product and the defective product, and rejects the defective product. It can be said that the foreign object inspection apparatus 100 is an off-line inspection apparatus that inspects the test object 101 alone separately from the assembly line.

一方、特許文献2は固体撮像素子の欠陥検査装置であり、固体撮像素子自体の画素単位での濃淡出力を所定の濃淡レベルと比較し、欠陥画素の数と位置を検出するという技術である。この欠陥検査装置はゴミや塵等の異物の検査にも適用できる技術である。
この欠陥検査方法も、特許文献1と同様に、固体撮像素子自体の1ピクセルあたりの分解能分の大きさ以上の異物を濃淡レベルの階調分の精度で検出でき、一般的には組み立てた物品の最終評価または部品単体での検査の際に行われるものである。
特開平7−280738 特開平6−315112
On the other hand, Patent Document 2 is a defect inspection apparatus for a solid-state image sensor, which is a technique for detecting the number and positions of defective pixels by comparing the grayscale output of each pixel of the solid-state image sensor itself with a predetermined grayscale level. This defect inspection apparatus is a technique that can also be applied to inspection of foreign matters such as dust and dirt.
In this defect inspection method as well, as in Patent Document 1, foreign matter having a resolution equal to or larger than the resolution per pixel of the solid-state imaging device itself can be detected with a precision corresponding to the gradation level, and generally an assembled article. This is performed at the time of final evaluation or inspection of a single part.
JP-A-7-280738 JP-A-6-315112

しかしながら、上述した従来技術のように外部の撮像手段による異物検査も固体撮像素子による異物検査も、光学部品の組立て前か組立て後に光学部品の組み立てラインとは別個に行なう検査である。仮に、組み立て装置へ組み立て用の光学部品を投入する前に光学部品単体で上述したような異物検査を行ったとしても、その後、組み立て装置へ光学部品を搬入した際にゴミなどの異物が混入する危険性があり、光学部品の搬入時に異物が混入・付着した場合、検出手段がないため異物が混入した状態で組立て作業が行なわれてしまうことになる。
このような場合、組立て後の光学部品のユニットについて異物検査を行なうことでしか光学部品の接合部に異物が混入したことを検出できなかった。そのため、組み立てた光学部品のユニットを分解して異物除去をした上で、再度組立て直す必要があり、組み立て時間のロスが大きい上に、分解した際に固体撮像素子やレンズ等の光学部品を傷つけたり破壊させるおそれがあり、損害額が膨大になってしまうという欠点があった。
However, as in the prior art described above, the foreign matter inspection by the external image pickup means and the foreign matter inspection by the solid-state image pickup device are inspections performed separately from the assembly line of the optical component before or after the assembly of the optical component. Even if the above-described foreign matter inspection is performed on the optical component alone before introducing the optical component for assembly into the assembly device, foreign matters such as dust are mixed when the optical component is subsequently carried into the assembly device. If there is a danger and foreign matter enters and adheres when the optical component is carried in, there is no detection means, and the assembly work is performed in a state where foreign matter is mixed.
In such a case, it was only possible to detect that foreign matter was mixed in the joint portion of the optical component by performing foreign matter inspection on the assembled optical component unit. For this reason, it is necessary to disassemble the assembled optical component unit to remove foreign matter, and then reassemble it. This results in a significant loss of assembly time and damages the optical components such as the solid-state image sensor and lens when disassembled. There was a drawback that the amount of damage would be enormous.

本発明は、このような実情に鑑みて、固体撮像素子と光学部品の組み立てラインで異物の有無を検査可能であると共に、異物が混入した組み立て品を後工程に送らないようにした異物検査装置及び異物検査方法を提供することを目的とする。   In view of such circumstances, the present invention is capable of inspecting the presence or absence of foreign matter on an assembly line of a solid-state imaging device and an optical component, and prevents foreign substances from being mixed into a subsequent process. And a foreign matter inspection method.

本発明による異物検査装置は、固体撮像素子と光学部品の接合面における異物の有無を検査する異物検査装置であって、接合前の固体撮像素子と光学部品の各接合面をそれぞれ第一被処理画像、第二被処理画像として撮像する撮像手段と、分離可能に接合された固体撮像素子と光学部品との接合面を第三被処理画像として撮像する固体撮像素子と、第一被処理画像、第二被処理画像及び第三被処理画像を記憶する記憶手段と、該記憶手段から読み出した第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて画像処理によって異物を検出する画像処理部とを備えていることを特徴とする。
また、本発明による異物検査方法は、固体撮像素子と光学部品の接合面における異物の有無を検査する異物検査方法であって、接合前の固体撮像素子と光学部品の各接合面をそれぞれ第一被処理画像、第二被処理画像として撮像する第一撮像工程と、第一被処理画像、第二被処理画像に基づいて画像処理によって異物を検出する第一検査工程と、固体撮像素子と光学部品を各接合面で分離可能に接合する組み立て工程と、接合された固体撮像素子と光学部品との接合面を当該固体撮像素子によって第三被処理画像として撮像する第二撮像工程と、第三被処理画像に基づいて画像処理によって異物を検出する第二検査工程とを備えていることを特徴とする。
A foreign matter inspection apparatus according to the present invention is a foreign matter inspection device for inspecting the presence or absence of foreign matter on a joint surface between a solid-state imaging device and an optical component, and each joint surface between the solid-state imaging device and the optical component before joining is subjected to a first treatment. An image, an imaging unit that captures an image as a second processed image, a solid-state image sensor that captures, as a third processed image, a joint surface between the solid-state imaging element and the optical component that are separably bonded, a first processed image, A storage means for storing the second processed image and the third processed image, and a foreign object is detected by image processing for each of the first processed image, the second processed image, and the third processed image read from the storage means. And an image processing unit.
The foreign matter inspection method according to the present invention is a foreign matter inspection method for inspecting the presence / absence of foreign matter on a joint surface between a solid-state image sensor and an optical component. A first imaging step for capturing an image to be processed and a second processed image; a first inspection step for detecting foreign matter by image processing based on the first processed image and the second processed image; a solid-state imaging device and an optical device An assembling step in which the parts are separably joined at each joining surface, a second imaging step in which the joining surface of the joined solid-state imaging device and the optical component is imaged as a third processed image by the solid-state imaging device, and a third And a second inspection step for detecting foreign matter by image processing based on the image to be processed.

本発明による異物検査装置と異物検査方法によれば、接合前の固体撮像素子と光学部品の各接合面をそれぞれ撮像して、画像処理部によってこれら接合面に異物があるか否かをそれぞれ検査し、異物を検出した場合には除去する。そして、これら固体撮像素子と光学部品の各接合面を分離可能に接合した状態で当該固体撮像素子によって接合面に異物が含まれる否かを検出し、異物を検出した場合には接合された固体撮像素子と光学部品を分離して異物を除去して再度接合することで接合面に異物を含まないユニットを異物の検査をしながら製造できる。
なお、本発明による異物検査方法において、固体撮像素子と光学部品を撮像する第一撮像工程と、第一被処理画像及び第二被処理画像に基づいて画像処理によって異物を検出する第一検査工程とは、固体撮像素子と光学部品について撮像と画像処理による異物検査を個々に連続して行ってもよいし、第一撮像工程の次に第一検査工程を行ってもよい。
According to the foreign matter inspection apparatus and the foreign matter inspection method of the present invention, each joint surface between the solid-state imaging device and the optical component before joining is imaged, and each of the joint surfaces is inspected by the image processing unit. If foreign matter is detected, it is removed. And in the state which joined each separation surface of these solid-state image sensors and optical parts so that separation was possible, it was detected whether the joint surface contained a foreign material by the solid-state image sensor, and when a foreign material was detected, it was joined solid By separating the image sensor and the optical component, removing the foreign matter, and re-joining, a unit that does not include the foreign matter on the joint surface can be manufactured while examining the foreign matter.
In the foreign matter inspection method according to the present invention, a first imaging step of picking up an image of the solid-state imaging device and the optical component, and a first inspection step of detecting foreign matter by image processing based on the first processed image and the second processed image Means that the solid-state imaging device and the optical component may be individually and continuously subjected to foreign matter inspection by imaging and image processing, or the first inspection step may be performed after the first imaging step.

本発明による異物検査装置と異物検査方法では、画像処理部は、第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて各画素毎に異物による濃淡及びその分布状況を階調情報及び分布情報として検出して異物の有無を検出することが好ましい。
第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて、異物によって生じた影の濃淡とその分布状況を画素毎に階調情報及び分布情報として検出した濃淡情報(輝度データ)を、予め規定した輝度値との関係で異物として検出できる。これにより、各画素毎に精度のよい異物検査を行える。
In the foreign matter inspection apparatus and the foreign matter inspection method according to the present invention, the image processing unit determines the density and distribution state of the foreign matter for each pixel for each of the first processed image, the second processed image, and the third processed image. It is preferable to detect the presence or absence of foreign matter by detecting the tone information and the distribution information.
For each of the first processed image, the second processed image, and the third processed image, the shade information (luminance data) that detects the shade of the shadow caused by the foreign matter and its distribution state as gradation information and distribution information for each pixel. ) Can be detected as a foreign object in relation to a predetermined luminance value. Thereby, it is possible to perform a foreign object inspection with high accuracy for each pixel.

また、本発明による異物検査装置と異物検査方法では、画像処理部は、第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて、画像全体または複数に分割された画像エリアの輝度累積値情報に基づいて異物の検出を行なうようにしてもよい。
この場合には、1つまたは分割された画像エリア毎に輝度累積値情報を検出して予め規定した輝度累積値情報との関係で画像エリア毎に異物を検出できる。画像エリア毎に異物を検出するから画素毎に検出するよりも短時間で異物検査を行える。
In the foreign matter inspection apparatus and the foreign matter inspection method according to the present invention, the image processing unit includes the entire image or a plurality of divided image areas for each of the first processed image, the second processed image, and the third processed image. Foreign matter may be detected based on the accumulated luminance value information.
In this case, the luminance accumulated value information is detected for each image area or one divided image area, and foreign matter can be detected for each image area in relation to the previously defined accumulated luminance value information. Since foreign matter is detected for each image area, foreign matter inspection can be performed in a shorter time than detection for each pixel.

また、画像処理部は、第一被処理画像、第二被処理画像のそれぞれについて各画素の濃淡画像に基づいて固体撮像素子と光学部品の位置情報を検出し、これらの位置情報に基づいて固体撮像素子と光学部品を接合面で分離可能に接合するようにしてもよい。
接合に際して、各画素の濃淡画像から固体撮像素子と光学部品の位置情報を検出することで各接合面の接合位置を精度よく設定して組み立てることができる。
The image processing unit detects the position information of the solid-state imaging device and the optical component based on the grayscale image of each pixel for each of the first processed image and the second processed image, and based on these position information You may make it join an image pick-up element and an optical component so that isolation | separation is possible on a joint surface.
At the time of joining, by detecting the position information of the solid-state imaging device and the optical component from the grayscale image of each pixel, the joining position of each joining surface can be accurately set and assembled.

また、本発明による異物検査方法は、組み立て工程において固体撮像素子と光学部品を分離可能に接合した状態に保持して、第二撮像工程と第二検査工程を処理し、その後に固体撮像素子と光学部品が分離しないように固定することにした。
第二撮像工程及び第二検査工程の前段階で、例えばUV樹脂等の接着剤によって固体撮像素子と光学部品を分離可能に接合し、固体撮像素子と光学部品の接合面に異物が混入していないことを確認した後で分離しないように固定するから、万一、異物が混入していた場合には固体撮像素子と光学部品を損傷するおそれなく分離して除去できる。
In the foreign matter inspection method according to the present invention, the solid-state imaging device and the optical component are held in a separable state in the assembly step, the second imaging step and the second inspection step are processed, and then the solid-state imaging device We decided to fix the optical parts so that they would not separate.
Before the second imaging step and the second inspection step, the solid-state imaging device and the optical component are joined in a separable manner with an adhesive such as UV resin, and foreign matter is mixed in the joint surface between the solid-state imaging device and the optical component. Since it is fixed so as not to be separated after confirming that there is no foreign matter, it should be possible to separate and remove the solid-state imaging device and the optical component without any possibility of damage if foreign matter is mixed.

また、第二撮像工程において、透光性の光学部品を通して固体撮像素子との接合面を照明手段で照射し、この状態で固体撮像素子によって焦点深度を光学部品の接合面に対向する面を含まない深さに設定して撮像するようにしてもよい。
光学部品の固体撮像素子との接合面と反対側の面を通して照明光を接合面に照射し、固体撮像素子による接合面の撮像に際しては焦点深度を浅くすることで光学部品の反対側の面に異物が付着していても撮像画像に含まれることはない。
In addition, in the second imaging step, the illumination unit irradiates the joint surface with the solid-state image sensor through the translucent optical component, and in this state, the solid-state image sensor includes a surface facing the joint surface of the optical component. You may make it image-pick by setting to the depth which is not.
Illumination light is irradiated to the joint surface through the surface opposite to the joint surface of the optical component with the solid-state image sensor, and when the joint surface is imaged by the solid-state image sensor, the focal depth is reduced to the surface opposite to the optical component. Even if a foreign object adheres, it is not included in the captured image.

本発明による異物検査装置及び異物検査方法によれば、固体撮像素子と光学部品の各接合面について接合前と接合状態とでそれぞれ撮像することができ、接合前に固体撮像素子と光学部品の各接合面にそれぞれ異物が検出された場合には異物を取り除き、接合状態で接合面に異物が検出された場合には接合状態から固体撮像素子と光学部品を分離して異物を取り除いて再度接合することができ、異物の混入した固体撮像素子と光学部品のユニットを後工程に搬送しないようにすることができる。これによって、固体撮像素子と光学部品が接合・固化された後に分離して異物を排除して組み立て直すという手間や、その際の固体撮像素子や光学部品の損傷等を確実に防止でき、不良ユニットの発生を格段に低減できる。
また、本発明による異物検査装置や方法を組み立てラインで採用して効率的なユニットの製造と異物検査を行えて製造コストを抑制できて歩留まりを向上できる。
According to the foreign matter inspection apparatus and the foreign matter inspection method according to the present invention, it is possible to image each of the joint surfaces of the solid-state imaging device and the optical component before joining and in the joined state. If foreign matter is detected on the joint surface, remove the foreign matter. If foreign matter is detected on the joint surface in the joined state, separate the solid-state image sensor and optical components from the joined state, remove the foreign matter, and then join again. Therefore, it is possible to prevent the unit of the solid-state imaging device and the optical component mixed with foreign matter from being conveyed to a subsequent process. As a result, it is possible to reliably prevent the trouble of separating and reassembling after the solid-state image sensor and the optical component are joined and solidified, eliminating the foreign matter, and damaging the solid-state image sensor and the optical component at that time. Can be significantly reduced.
Further, the foreign matter inspection apparatus and method according to the present invention can be employed in the assembly line to efficiently manufacture the unit and foreign matter, thereby suppressing the manufacturing cost and improving the yield.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
本発明の第一実施形態による異物検査装置を図1乃至図9により説明する。
図1は本第一実施形態による異物検査装置の全体構成を示す説明図、図2は異物検査装置の第二撮像部で固体撮像素子を撮像する第二撮像部側の第一撮像工程を示す図、図3(a)は固体撮像素子の斜視図、(b)は異物が付着した有効画素部を示す図、図4は固体撮像素子の第一被処理画像におけるm列画素上にある異物を含む輝度分布を示す図、図5は同じくn行画素上にある異物を含む輝度分布を示す図、図6〜図9は第一撮像部で光学部品を撮像する第一撮像部側の第一撮像工程、接着剤塗布工程、組み立て工程、第二撮像工程を示す図1と同様な異物検査装置の要部を示す図である。
図1において、固体撮像素子1とその周辺に位置する平板レンズや各種レンズ等を含む光学部品2とを接合して撮像ユニット3を製造する(図11参照)ための組み立てライン上に設けられた異物検査装置10の全体概略構成が示されている。異物検査装置10は、例えば四角形枠形状のフレーム本体11が設けられ、異物検査機構と組み立て機構とを含んでいる。なお、図1に示す紙面に直交する方向に組み立てラインが配設されているものとする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A foreign substance inspection apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an explanatory diagram showing the overall configuration of the foreign substance inspection apparatus according to the first embodiment, and FIG. 2 shows a first imaging process on the second imaging unit side that images a solid-state imaging device by the second imaging unit of the foreign substance inspection apparatus. 3A is a perspective view of the solid-state imaging device, FIG. 3B is a diagram showing an effective pixel portion to which foreign matter is attached, and FIG. 4 is a foreign matter on the m-th column pixel in the first processed image of the solid-state imaging device. FIG. 5 is a diagram illustrating a luminance distribution including foreign matters on the n-row pixels, and FIGS. 6 to 9 are diagrams illustrating a first imaging unit side that images an optical component by the first imaging unit. It is a figure which shows the principal part of the foreign material inspection apparatus similar to FIG. 1 which shows one imaging process, an adhesive agent application process, an assembly process, and a 2nd imaging process.
In FIG. 1, the solid-state imaging device 1 is provided on an assembly line for manufacturing an imaging unit 3 (see FIG. 11) by joining an optical component 2 including a flat lens and various lenses positioned in the vicinity thereof. An overall schematic configuration of the foreign matter inspection apparatus 10 is shown. The foreign matter inspection apparatus 10 is provided with a frame body 11 having a rectangular frame shape, for example, and includes a foreign matter inspection mechanism and an assembly mechanism. Assume that assembly lines are arranged in a direction perpendicular to the paper surface shown in FIG.

図1に示す異物検査装置10において、フレーム本体11上にはベース部12が設けられ、ベース部12上には固体撮像素子1を載置して吸着手段等で吸着固定状態に支持する調整台13が設けられている。調整台13は垂直軸線に対して水平回転可能とし、更に水平面に対して多自由度方向に固体撮像素子1の接合面1aの角度を調整可能とされている。ここで、多自由度方向とは例えば接合面1aと調整台13の回転軸線との交点を支点としたときに該支点を中心として360度の範囲で接合面1aが傾斜する方向、即ち固体撮像素子1の表面である接合面1aの水平面に対する上下方向傾斜角度(俯仰角)の方向をいい、上下方向傾斜角度(俯仰角)とはあおり角である。
なお、組み立てライン上を搬送される固体撮像素子1は図示しない自動搬送機構または作業員によって調整台13に載置されることになる。
調整台13に隣接して、ベース部12上には第一撮像部14が設けられている。第一撮像部14では後述する光学部品2の接合面2aを撮像するための第一撮像手段として第一撮像カメラ15が設けられ、第一撮像カメラ15の上方側にはその撮像光路の外側に配設されていて撮像光路の周囲を囲う例えばリング状の照明手段16が配設されている。この照明手段16によって、図のハッチングで示す切頭円錐状方向に照明光が出射される。
In the foreign matter inspection apparatus 10 shown in FIG. 1, a base portion 12 is provided on a frame body 11, and an adjustment base on which the solid-state imaging device 1 is placed and supported in a suction fixed state by suction means or the like on the base portion 12. 13 is provided. The adjustment table 13 can be rotated horizontally with respect to the vertical axis, and the angle of the joint surface 1a of the solid-state imaging device 1 can be adjusted in the direction of multiple degrees of freedom with respect to the horizontal plane. Here, the multi-degree-of-freedom direction is, for example, a direction in which the joint surface 1a is inclined within a range of 360 degrees around the fulcrum when the intersection of the joint surface 1a and the rotation axis of the adjustment base 13 is a fulcrum, ie, solid-state imaging The direction of the vertical inclination angle (elevation angle) with respect to the horizontal plane of the joint surface 1a, which is the surface of the element 1, refers to the vertical inclination angle (elevation angle) is the tilt angle.
The solid-state imaging device 1 transported on the assembly line is placed on the adjustment table 13 by an automatic transport mechanism (not shown) or a worker.
A first imaging unit 14 is provided on the base unit 12 adjacent to the adjustment table 13. In the first imaging unit 14, a first imaging camera 15 is provided as a first imaging unit for imaging a joint surface 2 a of the optical component 2 described later, and above the first imaging camera 15, outside the imaging optical path. For example, ring-shaped illuminating means 16 is disposed to surround the imaging optical path. The illumination means 16 emits illumination light in a truncated conical direction indicated by hatching in the figure.

ベース部12の両端側にはそれぞれ支柱18a、18bが起立状態に固定され、各支柱18a,18bの上端部を連結して搬送ステージ19が設けられている。搬送ステージ19には支持ユニット20が摺動可能に保持されている。支持ユニット20は搬送ステージ19によって3次元方向に移動可能とされている。ここで、3次元方向とは本実施形態ではX軸(水平方向)、Y軸(紙面に直交するY方向)、Z軸(上下方向)方向の3次元方向をいう。
また、支持ユニット20には、固体撮像素子1の接合面1aを上方側から撮像するための第二撮像部22と、個体撮像素子1と組み立てられる適宜種類の光学レンズ(ここでは平板レンズとする)等を含む光学部品2を保持するための光学部品保持部23と、固体撮像素子1と光学部品2を接合する接着剤を供給するための接着剤供給手段24と、分離可能な接合状態にある固体撮像素子1及び光学部品2の接合面を撮像する異物検査部25とが設けられ、これらはそれぞれ直動のリニアガイド26a、26b、26c、26dおよび固定プレート27,31,34、36によって上下方向(Z軸方向)に進退可能に支持されている。
Supports 18a and 18b are fixed in an upright state at both ends of the base part 12, and a transfer stage 19 is provided by connecting upper ends of the supports 18a and 18b. A support unit 20 is slidably held on the transfer stage 19. The support unit 20 can be moved in a three-dimensional direction by the transfer stage 19. Here, the three-dimensional direction means a three-dimensional direction of the X axis (horizontal direction), the Y axis (Y direction perpendicular to the paper surface), and the Z axis (vertical direction) in this embodiment.
Further, the support unit 20 includes a second imaging unit 22 for imaging the joint surface 1a of the solid-state imaging device 1 from above, and an appropriate type of optical lens (here, a flat lens) assembled with the individual imaging device 1. ) And the like, an optical component holding unit 23 for holding the optical component 2 including the adhesive, an adhesive supply means 24 for supplying an adhesive for bonding the solid-state imaging device 1 and the optical component 2, and a separable bonded state. The solid-state imaging device 1 and a foreign substance inspection unit 25 that images the joint surface of the optical component 2 are provided, which are respectively provided by linear motion linear guides 26a, 26b, 26c, 26d and fixed plates 27, 31, 34, 36. It is supported so as to be able to advance and retract in the vertical direction (Z-axis direction).

第二撮像部22ではリニアガイド26aによって上下動可能に支持された固定プレート27に第二撮像手段として第二撮像カメラ28が設けられ、第二撮像カメラ28はその下方に位置する固体撮像素子1をその位置確認と異物検査のために撮影する。第2撮像カメラ28の下側には調整台13に支持された固体撮像素子1の接合面1aを照明するための例えばリング状の照明手段29が設けられている。この照明手段29によって、図にハッチングで示す切頭円錐状方向に照明光が出射される。
光学部品保持部23ではリニアガイド26bによって上下動可能に支持された固定プレート31に把持機構部32が取り付けられ、把持機構部32の先端(下端)には光学部品2を吸着保持する吸着部32aが設けられている。なお、組み立てライン上を搬送される光学部品2は図示しない自動搬送機構または作業員によって供給されて吸着部32aに吸着されることになる。
また、接着剤供給手段24ではリニアガイド26cによって上下動可能に支持された固定プレート34に接着剤塗布手段として接着剤塗布用シリンジ35が設けられている。接着剤塗布シリンダ35から固体撮像素子1の接合面1a上に塗布する接着剤sとして例えばUV樹脂等の紫外線硬化性樹脂が用いられる。接着剤sは紫外線の照射時間(照射量)によって、接合面1aと接合面2aとが分離可能に硬化した仮硬化状態と分離できないように硬化した状態とに設定できる。
異物検査部25ではリニアガイド26dによって上下動可能に固定プレート36が支持されている。この固定プレート36の上方側には透過型の照明手段として例えば面照明手段37が取り付けられ、面照明手段37の下方側には例えば透明または半透明の拡散板(またはガラスチャート)38が取り付けられている。この面照明手段37によって、図にハッチングで示す切頭円錐状方向に照明光が出射される。
In the second imaging unit 22, a second imaging camera 28 is provided as a second imaging means on a fixed plate 27 supported by a linear guide 26a so as to move up and down, and the second imaging camera 28 is located below the solid-state imaging device 1. Is taken to check the position and to inspect the foreign matter. For example, a ring-shaped illumination unit 29 for illuminating the joint surface 1 a of the solid-state imaging device 1 supported by the adjustment table 13 is provided below the second imaging camera 28. Illumination light is emitted by the illumination means 29 in a truncated conical direction indicated by hatching in the figure.
In the optical component holding unit 23, a gripping mechanism unit 32 is attached to a fixed plate 31 supported by a linear guide 26b so as to be movable up and down, and a suction unit 32a that sucks and holds the optical component 2 at the tip (lower end) of the gripping mechanism unit 32. Is provided. The optical component 2 conveyed on the assembly line is supplied by an automatic conveyance mechanism (not shown) or a worker and is adsorbed by the adsorption unit 32a.
In the adhesive supply means 24, an adhesive application syringe 35 is provided as an adhesive application means on a fixed plate 34 supported by a linear guide 26c so as to be movable up and down. As the adhesive s applied from the adhesive application cylinder 35 onto the joint surface 1a of the solid-state imaging device 1, for example, an ultraviolet curable resin such as a UV resin is used. The adhesive s can be set to a temporarily cured state where the bonding surface 1a and the bonding surface 2a are separably cured and a cured state so as not to be separated depending on the irradiation time (irradiation amount) of ultraviolet rays.
In the foreign matter inspection unit 25, a fixed plate 36 is supported by a linear guide 26d so as to be movable up and down. On the upper side of the fixed plate 36, for example, a surface illumination unit 37 is attached as a transmission type illumination unit, and on the lower side of the surface illumination unit 37, for example, a transparent or translucent diffusion plate (or glass chart) 38 is attached. ing. The surface illumination means 37 emits illumination light in a truncated conical direction indicated by hatching in the figure.

なお、支持ユニット20において、各リニアガイド26a、26b、26c、26dによってそれぞれ上下動可能に支持された固定プレート27,31,34、36は図示しないエアシリンダ等の駆動機構によっておのおの独立して上下方向に移動可能とされている。
また、本実施形態による異物検査装置10において、第一撮像カメラ15と第二撮像カメラ28とで光学部品2の接合面2aと固体撮像素子1の接合面1aとをそれぞれ接合前に撮像するだけでなく、接着剤Sによる接合状態における固体撮像素子1と光学部品2の仮硬化状態の接合面1a、2aを当該固体撮像素子1によって撮像するように構成されている。そのため、調整台13上に支持された固体撮像素子1に対して給電するための給電機構40が配設されている。
そして、第一撮像カメラ15,第二撮像カメラ28、固体撮像素子1のそれぞれで撮像された各撮像画像はそれぞれ被処理画像として制御コントローラ42内のキャプチャーボード等の記憶手段43に入力されて一旦記憶される。
制御コントローラ42内には画像処理部44が配設され、画像処理部44によって第二撮像カメラ28と第一撮像カメラ15でそれぞれ撮像された接合前の固体撮像素子1の接合面1aと光学部品2の接合面2aの各撮像画像を、第一被処理画像、第二被処理画像としてそれぞれ画像処理する。また、画像処理部44では、固体撮像素子1で撮像された当該個体撮像素子1と光学部品2との接合面1a,2aの撮像画像を第三被処理画像として画像処理する。
また、制御コントローラ42には表示モニタ45が接続されており、記憶手段43に保存された画像情報や画像処理を施された被処理画像の表示を行い、また制御指示や動作モニタ用に用いられる。
In the support unit 20, the fixed plates 27, 31, 34, and 36 supported by the linear guides 26a, 26b, 26c, and 26d so as to be movable up and down are independently moved up and down by a drive mechanism such as an air cylinder (not shown). It is possible to move in the direction.
Moreover, in the foreign material inspection apparatus 10 according to the present embodiment, the first imaging camera 15 and the second imaging camera 28 only image the bonding surface 2a of the optical component 2 and the bonding surface 1a of the solid-state imaging device 1 before bonding. Instead, the solid-state imaging device 1 is configured to image the joint surfaces 1a and 2a in the temporarily cured state of the solid-state imaging device 1 and the optical component 2 in the joined state by the adhesive S. For this reason, a power supply mechanism 40 for supplying power to the solid-state imaging device 1 supported on the adjustment table 13 is provided.
Then, each captured image captured by each of the first imaging camera 15, the second imaging camera 28, and the solid-state imaging device 1 is input to the storage means 43 such as a capture board in the control controller 42 as an image to be processed, and once. Remembered.
An image processing unit 44 is disposed in the control controller 42, and the joint surface 1 a of the solid-state image sensor 1 before joining and the optical components captured by the image processing unit 44 with the second imaging camera 28 and the first imaging camera 15, respectively. Each captured image of the two joint surfaces 2a is subjected to image processing as a first processed image and a second processed image. In addition, the image processing unit 44 performs image processing on the captured images of the joint surfaces 1a and 2a between the individual imaging device 1 and the optical component 2 captured by the solid-state imaging device 1 as a third processed image.
In addition, a display monitor 45 is connected to the controller 42, displays image information stored in the storage means 43 and a processed image subjected to image processing, and is used for a control instruction and an operation monitor. .

ここで、画像処理部44では、記憶手段43に記憶された第一被処理画像、第二被処理画像を適宜読み出して、固体撮像素子1の接合面1aと光学部品2の接合面2aの外形エッジ位置または撮像エリアのエッジ位置または各接合面1a、2aに各々設けられた位置決め用マーク位置の検出等によりパターンマッチングを行い、位置認識画像アルゴリズムを通して精密な位置認識を行ない、位置情報を得る。
また、第一被処理画像、第二被処理画像及び第三被処理画像の各被処理画像ファイルまたは各被処理画像データを記憶手段43より読み出して、各画素毎の濃淡画像を順に読み出し、ゴミや塵や埃等の異物により生じた影の濃淡とその分布状況を階調情報と分布情報として検出し、これら各画素毎の濃淡の階調情報と分布情報に基づいて異物の位置や大きさを検出することができる。
制御コントローラ42では、画像処理部44で検出した各接合面の外形エッジ位置または位置決め用マーク位置から得られた位置情報に基づいて、調整台13で支持された固体撮像素子1に対して把持機構部32で吸着保持された光学部品2の位置決めと接着剤塗布シリンジ35による接着剤供給動作を制御する。
ここで、異物検査装置10は異物検査機構と撮像ユニット3の組み立て機構とを有するが、特に第一撮像部14,第二撮像部22、異物検査部25、記憶手段43、画像処理部44等は主として異物検査機構を構成し、光学部品保持部23、接着剤供給手段24等は主として組み立て機構を構成する。
Here, in the image processing unit 44, the first processed image and the second processed image stored in the storage unit 43 are read as appropriate, and the outer shape of the bonding surface 1a of the solid-state imaging device 1 and the bonding surface 2a of the optical component 2 is read. Pattern matching is performed by detecting the edge position or the edge position of the imaging area or the positioning mark positions provided on the joint surfaces 1a and 2a, and the position recognition is performed through the position recognition image algorithm to obtain position information.
Also, each processed image file or each processed image data of the first processed image, the second processed image, and the third processed image is read from the storage means 43, and the grayscale image for each pixel is read in order, The gradation and distribution of shadows caused by foreign matter such as dust, dust, etc. are detected as gradation information and distribution information, and the position and size of the foreign matter based on the gradation information and distribution information for each pixel. Can be detected.
In the control controller 42, the gripping mechanism for the solid-state imaging device 1 supported by the adjustment table 13 is based on the position information obtained from the outer edge position or the positioning mark position of each joint surface detected by the image processing unit 44. The positioning of the optical component 2 sucked and held by the unit 32 and the adhesive supply operation by the adhesive application syringe 35 are controlled.
Here, the foreign matter inspection apparatus 10 includes a foreign matter inspection mechanism and an assembly mechanism for the imaging unit 3, and in particular, the first imaging unit 14, the second imaging unit 22, the foreign matter inspection unit 25, the storage unit 43, the image processing unit 44, and the like. Mainly constitutes a foreign matter inspection mechanism, and the optical component holder 23, the adhesive supply means 24, etc. mainly constitute an assembly mechanism.

本実施の形態による異物検査装置10は上述の構成を備えており、次に異物検査装置10を用いた異物検査方法について説明する。
まず、図1に示す異物検査装置10において、組み立て部品である固体撮像素子1をフレーム本体11内の調整台13上に自動搬送機構または人手によって載置し、支持させる。次に、制御コントローラ42の指令に基づいて、搬送ステージ19に沿って支持ユニット20をX−Y軸方向に移動させて第二撮像部22の第二撮像カメラ28を固体撮像素子1の真上に移動させ、更に図示しない上下駆動機構によってZ軸方向下方に支持ユニット20を移動させる。
これと同時に支持ユニット20に設けられた第二撮像部22において、図示しないエアシリンダ等の駆動機構によって固定プレート27をリニアガイド26aに沿って降下させて第二撮像カメラ28を降下させ、図2に示すように第二撮像カメラ28のワーキングディスタンス高さに固体撮像素子1の接合面1aが位置するように、第二撮像カメラ28の高さ位置を設定する。
この状態で、第二撮像部22の照明手段29が点灯制御され、固体撮像素子1の接合面1aを照射する(図でハッチングで示す切頭円錐状方向を照射する。)。
The foreign matter inspection apparatus 10 according to the present embodiment has the above-described configuration. Next, a foreign matter inspection method using the foreign matter inspection apparatus 10 will be described.
First, in the foreign matter inspection apparatus 10 shown in FIG. 1, the solid-state imaging device 1 that is an assembly part is placed on and supported by an automatic conveyance mechanism or manually on an adjustment table 13 in the frame body 11. Next, based on a command from the controller 42, the support unit 20 is moved in the XY direction along the transport stage 19, and the second imaging camera 28 of the second imaging unit 22 is directly above the solid-state imaging device 1. Further, the support unit 20 is moved downward in the Z-axis direction by a vertical drive mechanism (not shown).
At the same time, in the second imaging unit 22 provided in the support unit 20, the fixing plate 27 is lowered along the linear guide 26 a by a driving mechanism such as an air cylinder (not shown) to lower the second imaging camera 28. The height position of the second imaging camera 28 is set so that the joint surface 1a of the solid-state imaging device 1 is positioned at the working distance height of the second imaging camera 28 as shown in FIG.
In this state, the lighting means 29 of the second image pickup unit 22 is controlled to illuminate, and irradiates the joint surface 1a of the solid-state image sensor 1 (irradiates a truncated conical direction indicated by hatching in the drawing).

そして、調整台13上の固体撮像素子1の接合面1aを第二撮像カメラ28で撮像する(第二撮像カメラ28による第一撮像工程)。撮像された画像は第一被処理画像として制御コントローラ42内の記憶手段43に送信され、第一被処理画像ファイルまたは画素単位での二次元濃淡配列データとしてメモリ保存させられる。
次に、第一検査工程として、記憶手段43に保存された第一被処理画像を第一被処理画像ファイルまたは画素単位の二次元濃淡配列データとして読み出し、画像処理部44で固体撮像素子1の接合面1aの外形または撮像エリアのエッジを検出し、或いは接合面1aに設けられた位置決め用マーク位置をパターンマッチングなどの位置認識画像アルゴリズムを通して精密な検出して固体撮像素子1の位置認識を行ない、位置情報として検出する(固体撮像素子1の第一検査工程)。
その後、記憶手段43に保存した第一被処理画像に対応した第一被処理画像ファイルまたは画素単位での二次元濃淡配列データを再度読み出し、画像処理部44で各画素毎の濃淡情報から固体撮像素子1上の接合面1aにゴミ・塵・埃などの異物eがあるかどうか、異物e(図3参照)がある場合は異物eの大きさや位置を検出する。万一、異物eが検出された場合は組み立て動作を一旦終了し、表示モニター45に異物eが検出された旨の表示を行い、異物eの除去を作業者に委ねる。異物eを除去した後で組み立て作業を再開させる。
And the joint surface 1a of the solid-state image sensor 1 on the adjustment stand 13 is imaged with the 2nd imaging camera 28 (1st imaging process by the 2nd imaging camera 28). The captured image is transmitted as a first processed image to the storage means 43 in the controller 42 and stored in the memory as a first processed image file or two-dimensional grayscale array data in units of pixels.
Next, as a first inspection step, the first processed image stored in the storage unit 43 is read out as a first processed image file or two-dimensional grayscale array data in units of pixels, and the image processing unit 44 reads the solid-state image sensor 1. The external shape of the joint surface 1a or the edge of the imaging area is detected, or the position of the positioning mark provided on the joint surface 1a is accurately detected through a position recognition image algorithm such as pattern matching to recognize the position of the solid-state imaging device 1. And detected as position information (first inspection step of the solid-state imaging device 1).
Thereafter, the first processed image file corresponding to the first processed image stored in the storage means 43 or the two-dimensional grayscale array data in pixel units is read again, and the image processing unit 44 performs solid-state imaging from the grayscale information for each pixel. Whether or not there is a foreign matter e such as dust, dust, or dust on the joint surface 1a on the element 1, and if there is a foreign matter e (see FIG. 3), the size and position of the foreign matter e are detected. If foreign matter e is detected, the assembling operation is temporarily terminated, a message indicating that foreign matter e has been detected is displayed on display monitor 45, and the removal of foreign matter e is left to the operator. After removing the foreign matter e, the assembly work is resumed.

次に、画像処理部44で行われる上述した固体撮像素子1の接合面1aでの異物検出のためのアルゴリズムについて説明する。
図3は固体撮像素子1を示すものであり、同図(a)、(b)において接合面1a(表面)には例えば四角形枠状のフレーム部1bが設けられ、フレーム部1b内に有効画素部1cが設けられている。ここで、図3(b)に示す固体撮像素子1の有効画素部1cに(i列×j行)のマトリクス状に配列された画素において、異物eが座標位置(m、n)(ただし、m≦i;n≦j)の画素に付着しているものとする。
図4、図5は、このような固体撮像素子1の第一被処理画像における輝度分布を示すものであり、図4はm列目の濃淡画素データを横軸として、縦軸を濃淡情報(輝度データ)とした輝度分布の図である。図4では異物eの位置中心であるn行目を中心として、輝度分布が異物eのない有効画素部1cの通常輝度値から谷状に落ち込んだ状態になる。落ち込み部分の幅eaは縦方向の異物径と一致する。
また、図5ではn行目の濃淡画素データを横軸として、縦軸を濃淡情報(輝度データ)とした輝度分布の図である。図5では異物eの位置中心であるm列目を中心として輝度分布が通常輝度値から谷状に落ち込んだ状態になる。この場合、落ち込み部分の幅ebは横方向の異物eの径と一致する。
ただし、異物検出を行なうエリアとしては、取り込んだ接合面1aの画像全体ではなく、固体撮像素子1の接合面1aの外形位置を認識した上でその内部である有効画素部1cのみの領域の検出を行うようなマスキング処理を施しておくものとする。
Next, an algorithm for detecting foreign matter on the joint surface 1a of the solid-state imaging device 1 described above performed in the image processing unit 44 will be described.
FIG. 3 shows the solid-state imaging device 1, and in FIGS. 3A and 3B, a frame portion 1b having, for example, a rectangular frame shape is provided on the joint surface 1a (front surface), and effective pixels are provided in the frame portion 1b. Part 1c is provided. Here, in the pixels arranged in a matrix of (i columns × j rows) in the effective pixel portion 1c of the solid-state imaging device 1 shown in FIG. 3B, the foreign object e has a coordinate position (m, n) (where It is assumed that the pixel adheres to a pixel of m ≦ i; n ≦ j).
4 and 5 show the luminance distribution in the first processed image of the solid-state imaging device 1 as described above. FIG. 4 shows the m-th column grayscale pixel data on the horizontal axis and the vertical axis on the grayscale information ( It is a figure of the luminance distribution made into (luminance data). In FIG. 4, the luminance distribution falls into a valley shape from the normal luminance value of the effective pixel portion 1c without the foreign matter e, with the nth row being the position center of the foreign matter e as the center. The width ea of the depressed portion coincides with the foreign substance diameter in the vertical direction.
Further, FIG. 5 is a diagram showing a luminance distribution in which the n-th row of gray pixel data is the horizontal axis and the vertical axis is the gray information (luminance data). In FIG. 5, the luminance distribution falls in a valley shape from the normal luminance value with the m-th column as the center of the position of the foreign substance e. In this case, the width eb of the depressed portion coincides with the diameter of the foreign material e in the lateral direction.
However, the area where the foreign matter is detected is not the entire image of the captured joint surface 1a, but the detection of the region of only the effective pixel portion 1c inside the joint surface 1a after recognizing the outer position of the joint surface 1a of the solid-state imaging device 1. It is assumed that a masking process for performing is performed.

そして、画像処理部44では、記憶手段43から読み出した第一被処理画像に対応した輝度データの濃淡分布を列方向や行方向にスキャンし、図4,図5に示すように、要求される検出精度に基づいて予め設定した基準となる規定輝度値pi,pjより輝度値が小さい箇所を異物eの箇所と判断する。そして、規定輝度値pi,pj以下の部分の画素幅ea,ebをそれぞれ縦,横方向の異物eの径として検出し、異物eと判定した画素位置の列方向および行方向の画素幅ea,ebの中点を検出して異物eの中心座標と認識する。
ここで、異物eの座標(m,n)については、画像処理部44で粒子解析を行い、検出された粒子の重心位置を座標とするか、第一被処理画像に対応した輝度データの濃淡分布を列方向や行方向にスキャンし、規定の輝度値以下で異物eの箇所と判断された領域のうち、輝度値が最低となる位置を座標とする。
異物検査終了後、制御コントローラ42の指令により照明手段29を消灯する。
なお、上述の説明では、固体撮像素子1の接合面1aについての第一被処理画像における画像処理部44による異物検出の手法について説明したが、同一の手法によって後述する光学部品2の接合面2aの第二被処理画像における異物検出や、接合した固体撮像素子1及び光学部品2の接合面1a、2aの第三被処理画像における異物検出にも適用するものとする。
Then, the image processing unit 44 scans the brightness distribution of the luminance data corresponding to the first processed image read from the storage unit 43 in the column direction and the row direction, and is requested as shown in FIGS. A location where the brightness value is smaller than the prescribed brightness values pi and pj that are preset based on the detection accuracy is determined as the location of the foreign object e. Then, the pixel widths ea and eb of the portions below the specified luminance values pi and pj are detected as the diameters of the foreign matter e in the vertical and horizontal directions, respectively, and the pixel width ea and the pixel width ea in the column direction and the row direction of the pixel position determined as the foreign matter e. The middle point of eb is detected and recognized as the center coordinate of the foreign object e.
Here, with respect to the coordinates (m, n) of the foreign object e, the particle analysis is performed by the image processing unit 44, and the center of gravity position of the detected particles is used as the coordinates, or the brightness data corresponding to the first processed image is shaded. The distribution is scanned in the column direction and the row direction, and the position where the luminance value is the lowest among the regions determined to be the location of the foreign object e below the specified luminance value is defined as the coordinate.
After completion of the foreign matter inspection, the illumination unit 29 is turned off by a command from the controller 42.
In the above description, the foreign object detection method by the image processing unit 44 in the first processed image on the joint surface 1a of the solid-state imaging device 1 has been described. However, the joint surface 2a of the optical component 2 described later by the same method. It is assumed that the present invention is also applied to foreign object detection in the second processed image and foreign object detection in the third processed image of the bonded surfaces 1a and 2a of the joined solid-state imaging device 1 and optical component 2.

そして、制御コントローラ42の指令に基づき、組立て対象の光学部品2を把持機構部32により吸着把持して、搬送ステージ19に対して光学部品2が第一撮像カメラ15の真上に来る位置まで支持ユニット20を移動させる。次に、図6に示すように、図示しない上下駆動機構によって支持ユニット20を降下させ、更に、支持ユニット20に対して固定プレート31を図示しないエアシリンダ等の駆動機構によりリニアガイド26bに沿って下降させて、最終的に第一撮像カメラ15のワーキングディスタンス高さに光学部品2の接合面2a(下面)が来るような高さ位置に、把持機構部32を降下させる。
この状態で、照明手段16を点灯して光学部品2の接合面2aを照明する。そして、把持機構部32に吸着把持された光学部品2を第一撮像カメラ15で撮像(第一撮像カメラ15による第一撮像工程)し、撮像された画像は第二被処理画像として、固体撮像素子1の第一被処理画像と同様に、制御コントローラ42内の記憶手段43に送信され、第二被処理画像ファイルまたは画素単位での二次元濃淡配列データとしてメモり保存する。
Then, based on a command from the controller 42, the optical component 2 to be assembled is sucked and gripped by the gripping mechanism 32, and supported to the position where the optical component 2 is directly above the first imaging camera 15 with respect to the transport stage 19. The unit 20 is moved. Next, as shown in FIG. 6, the support unit 20 is lowered by a vertical drive mechanism (not shown), and a fixing plate 31 is moved along the linear guide 26 b with respect to the support unit 20 by a drive mechanism such as an air cylinder (not shown). Then, the gripping mechanism 32 is lowered to such a height that the joint surface 2a (lower surface) of the optical component 2 finally comes to the working distance height of the first imaging camera 15.
In this state, the illumination means 16 is turned on to illuminate the joint surface 2a of the optical component 2. Then, the optical component 2 sucked and held by the holding mechanism unit 32 is picked up by the first image pickup camera 15 (first image pickup step by the first image pickup camera 15), and the picked up image is solid-state picked up as a second processed image. Similar to the first processed image of the element 1, it is transmitted to the storage means 43 in the controller 42, and is stored as a second processed image file or two-dimensional grayscale array data in units of pixels.

そして、第二被処理画像に対応した第二被処理画像ファイルまたは画素単位での二次元濃淡配列データ(第二被処理画像データ)を記憶手段43から読み出し、画像処理部44で、上述した固体撮像素子1の撮像画像の画像処理部44による画像処理と同様に、光学部品2の接合面2aの外形のエッジ検出やパターンマッチングなどの位置認識画像アルゴリムを通して光学部品の精密な位置認識を行ない、位置情報として検出する。また、位置認識後に、第二被処理画像ファイルまたは画素単位での二次元濃淡配列データを再度、記憶手段43から読み出し、画素毎の濃淡情報に基づいて光学部品2上の接合面2aにゴミなどの異物eがないかどうかを検出し、異物eがある場合には異物eの大きさや位置を濃淡情報から検出する(光学部品2の第一検査工程)。
ここでの異物検出のアルゴリズムについては、上述した固体撮像素子1の接合面1aでの異物検査と同じである。この場合でも、異物検査を行なうエリアは取り込んだ画像全体ではなく、光学部品2の接合面2aの外形位置を認識した上で固体撮像素子1の接合面1aと接着する領域だけ検出を行うようにマスキングの処理を施しておくものとする。
この場合も、異物eが検出された場合には、その段階で組み立て動作を一旦終了し、表示装置45に異物eが検出された旨の表示を行うと共に、異物eの除去を作業者に委ねる。その後で、組み立てを再開させる。
光学部品2の異物検査終了後に照明手段16を消灯する。
Then, the second processed image file corresponding to the second processed image or the two-dimensional grayscale array data (second processed image data) in pixel units is read from the storage means 43, and the image processing unit 44 performs the above-described solid processing. Similar to the image processing by the image processing unit 44 of the captured image of the image sensor 1, precise position recognition of the optical component is performed through the position recognition image algorithm such as edge detection and pattern matching of the outer shape of the joint surface 2a of the optical component 2, Detect as location information. Further, after the position recognition, the second processed image file or the two-dimensional grayscale array data in units of pixels is read again from the storage means 43, and dust or the like is deposited on the joint surface 2a on the optical component 2 based on the grayscale information for each pixel. If there is a foreign material e, the size and position of the foreign material e are detected from the density information (first inspection step of the optical component 2).
The foreign matter detection algorithm here is the same as the foreign matter inspection on the joint surface 1a of the solid-state imaging device 1 described above. Even in this case, the foreign object inspection area is not the entire captured image, but only the region that adheres to the bonding surface 1a of the solid-state imaging device 1 is detected after the outer position of the bonding surface 2a of the optical component 2 is recognized. It is assumed that a masking process is performed.
Also in this case, when the foreign object e is detected, the assembling operation is temporarily terminated at that stage, the display device 45 displays that the foreign object e has been detected, and the removal of the foreign object e is left to the operator. . After that, the assembly is resumed.
The illumination means 16 is turned off after the foreign object inspection of the optical component 2 is completed.

次に、接着剤塗布工程として、制御コントローラ42の指令に基づき、搬送ステージ19に対して支持ユニット20を移動させて接着剤供給手段24の接着剤塗布用シリンジ35を固体撮像素子1の接合面1aの真上に位置させる。そして、支持ユニット20を図示しない上下駆動機構により下方に移動すると同時に、支持ユニット20上で固定プレート34をリニアガイド26cに沿って図示しないエアシリンダ等の駆動機構により下降させる。
最終的に接着剤塗布用シリンジ35のニードル先端を固体撮像素子1の接合面1a上でUV樹脂等の接着剤sの塗布量に応じて微小のクリアランスを保った位置に来るような高さ位置に移動させる。そして、図7に示すように、一定量の接着剤sが接合面1a上に塗布される。
次に、制御コントローラ42の指令により、搬送ステージ19に対して支持ユニット20を移動させて、光学部品保持部23の把持機構部32を光学部品2を吸着保持させた状態で固体撮像素子1の接合面1aの真上に位置させる。そして、支持ユニット20を図示しない上下駆動機構により下方に移動すると同時に、支持ユニット20上で固定プレート31をリニアガイド26bに沿って図示しないエアシリンダ等の駆動機構により下降させる。
そして、図8に示すように、把持機構部32で吸着保持された光学部品2は接合面2aで固体撮像素子1の接合面1aと接着剤sによって接着される。このようにして固体撮像素子1と光学部品2との組み立て作業を行う(組み立て工程)。
Next, as an adhesive application step, the support unit 20 is moved with respect to the transport stage 19 based on an instruction from the controller 42, and the adhesive application syringe 35 of the adhesive supply unit 24 is attached to the bonding surface of the solid-state imaging device 1. Located just above 1a. Then, the support unit 20 is moved downward by a vertical drive mechanism (not shown), and at the same time, the fixed plate 34 is lowered on the support unit 20 along a linear guide 26c by a drive mechanism such as an air cylinder (not shown).
Ultimately, the height of the needle tip of the adhesive application syringe 35 is such that it comes to a position on the joint surface 1a of the solid-state imaging device 1 with a small clearance according to the application amount of the adhesive s such as UV resin. Move to. Then, as shown in FIG. 7, a certain amount of adhesive s is applied onto the bonding surface 1a.
Next, in accordance with a command from the controller 42, the support unit 20 is moved with respect to the transport stage 19, and the solid-state image pickup device 1 is moved in a state where the gripping mechanism unit 32 of the optical component holding unit 23 holds the optical component 2 by suction. It is located right above the joint surface 1a. Then, the support unit 20 is moved downward by a vertical drive mechanism (not shown), and at the same time, the fixing plate 31 is lowered on the support unit 20 along a linear guide 26b by a drive mechanism such as an air cylinder (not shown).
As shown in FIG. 8, the optical component 2 sucked and held by the gripping mechanism portion 32 is bonded to the bonding surface 1a of the solid-state imaging device 1 by the adhesive s at the bonding surface 2a. In this way, the assembly operation of the solid-state imaging device 1 and the optical component 2 is performed (assembly process).

固体撮像素子1と光学部品2との組み立て作業において、制御コントローラ42は、把持機構部32の降下による光学部品2と固体撮像素子1との接合位置の設定だけでなく、調整台13によって固体撮像素子1のあおり角を調整することで固体撮像素子1と光学部品2との各接合面1a、2aの平行度を調整する。
これによって、 固体撮像素子1と光学部品2の両接合面1a,2aに接着剤sがほぼ均一に塗布された状態となる。そして接着剤sに対する紫外線照射の照射量を少なくする等によって、接着剤sを塗布された固体撮像素子1と光学部品2を再び分離可能な仮硬化状態にする。
その後、把持機構部32による光学部品2への吸着を解除して光学部品2の保持を開放にした上で、把持機構部32を配置した固定プレート31をリニアガイド26bに沿って上昇させる。更に支持ユニット20を上昇させることで、固体撮像素子1と光学部品2との組み立て動作が一応完了する。
In the assembly work of the solid-state imaging device 1 and the optical component 2, the control controller 42 not only sets the joining position of the optical component 2 and the solid-state imaging device 1 by the lowering of the gripping mechanism 32, but also performs solid-state imaging by the adjustment stand 13. By adjusting the tilt angle of the element 1, the parallelism of the joint surfaces 1a and 2a between the solid-state imaging device 1 and the optical component 2 is adjusted.
As a result, the adhesive s is almost uniformly applied to both the joint surfaces 1 a and 2 a of the solid-state imaging device 1 and the optical component 2. Then, the solid imaging device 1 and the optical component 2 coated with the adhesive s are brought into a temporarily cured state that can be separated again, for example, by reducing the amount of ultraviolet irradiation to the adhesive s.
Thereafter, the suction to the optical component 2 by the gripping mechanism portion 32 is released to release the holding of the optical component 2, and then the fixed plate 31 on which the gripping mechanism portion 32 is disposed is raised along the linear guide 26b. Further, by raising the support unit 20, the assembly operation of the solid-state imaging device 1 and the optical component 2 is temporarily completed.

そして、制御コントローラ42の指令に基づき、搬送ステージ19に対して支持ユニット20を移動させて異物検査部25を、組み立て作業後の仮硬化状態の固体撮像素子1及び光学部品2の真上に位置させる。支持ユニット20を図示しない上下駆動機構により下方に移動すると同時に、支持ユニット20上でリニアガイド26dに沿って固定プレート36を図示しないエアシリンダ等の駆動機構により所定高さ位置に下降させる。
次に、図9に示すように、面照明手段37の照明光を、仮硬化状態の固体撮像素子1と光学部品2の接合面1a、2aに集光しないよう拡散板38を透過して拡散させることで接着状態の接合面1a、2aに均一に照明する。
Then, based on a command from the controller 42, the support unit 20 is moved with respect to the transport stage 19, and the foreign matter inspection unit 25 is positioned directly above the solid-state imaging device 1 and the optical component 2 in the temporarily cured state after the assembly work. Let At the same time as the support unit 20 is moved downward by a vertical drive mechanism (not shown), the fixed plate 36 is lowered to a predetermined height position along the linear guide 26d on the support unit 20 by a drive mechanism such as an air cylinder (not shown).
Next, as shown in FIG. 9, the illumination light of the surface illumination means 37 is transmitted through the diffusion plate 38 and diffused so as not to be condensed on the joint surfaces 1a and 2a of the solid-state imaging device 1 and the optical component 2 in the temporarily cured state. By doing so, the bonded surfaces 1a and 2a in the bonded state are uniformly illuminated.

次に、第二撮像工程として、仮硬化状態の撮像ユニット3の固体撮像素子1に給電機構40により電源供給を行なうことで固体撮像素子1によってこの固体撮像素子1と光学部品2との接合面1a、2aを撮像する(固体撮像素子1による撮像工程)。その際、光学部品2の接合面2aとは反対側の面に異物が付着している可能性があり、この面の異物を撮像しないように撮像ユニット3の焦点深度を反対側の面に到達しない程度に浅く設定する。
撮像ユニット3の固体撮像素子1で撮像された撮像画像は第三被処理画像として制御コントローラ42内の記憶手段43に第三被処理画像ファイルまたは画素単位での二次元濃淡配列データとして記憶手段43に保存される。
次に、第二検査工程として、記憶手段43から第三被処理画像ファイルまたは画素単位での二次元濃淡配列データを読み出し、各画素毎の濃淡情報から撮像ユニット3の接合面1a,2aにゴミなどの異物eがないかどうかを検出し、異物eがある場合には異物eの大きさや位置を検出する。
Next, as a second imaging step, a power supply mechanism 40 supplies power to the solid-state imaging device 1 of the temporarily cured imaging unit 3 so that the solid-state imaging device 1 joins the solid-state imaging device 1 and the optical component 2. 1a and 2a are imaged (imaging process by the solid-state image sensor 1). At that time, there is a possibility that foreign matter is attached to the surface opposite to the joint surface 2a of the optical component 2, and the depth of focus of the imaging unit 3 reaches the surface on the opposite side so as not to image the foreign matter on this surface. Set as shallow as possible.
The captured image captured by the solid-state imaging device 1 of the imaging unit 3 is stored as a third processed image in the storage unit 43 in the controller 42 as a third processed image file or as a two-dimensional grayscale array data in units of pixels. Saved in.
Next, as a second inspection step, the third processed image file or two-dimensional grayscale data in units of pixels is read from the storage means 43, and dust is collected on the joint surfaces 1a and 2a of the imaging unit 3 from the grayscale information for each pixel. If there is a foreign object e, the size and position of the foreign object e are detected.

この異物検出のアルゴリズムは、上述した固体撮像素子1の接合面1aの撮像画像から異物を検出するアルゴリズムと同様のアルゴリズムを適用する。
万一、ここで異物eが検出された場合には、表示モニタ45に異物eが検出された旨の表示と異物eの位置の表示を行う。そして、組み立て作業を中断して、作業者によって仮硬化状態の固体撮像素子1と光学部品2を分解して異物eを除去し、再度組み立て直す。ここでの分解は、接合部1a,2aの接着剤sが仮硬化状態であるから容易に分離できる。異物eを除去した後、固体撮像素子1と光学部品2を再度接合して紫外線を照射することで接着剤eを完全に硬化させる。
なお、光学部品保持部23の把持機構部32によって光学部品2を吸着して固体撮像素子1から分離するようにしてもよい。
撮像ユニット3の接合面1a、2aから異物eが検出されない場合には、接着剤sに紫外線を再度照射して照射量を多くし完全に硬化させて固体撮像素子1と光学部品2の組み立てを終了する。
As this foreign matter detection algorithm, an algorithm similar to the algorithm for detecting foreign matter from the captured image of the joint surface 1a of the solid-state imaging device 1 described above is applied.
If foreign matter e is detected here, the display monitor 45 displays that the foreign matter e has been detected and displays the position of the foreign matter e. Then, the assembling operation is interrupted, and the solid-state imaging device 1 and the optical component 2 in the temporarily cured state are disassembled by the operator to remove the foreign matter e, and the assembly is performed again. The disassembly here can be easily separated because the adhesive s of the joints 1a and 2a is in a temporarily cured state. After removing the foreign matter e, the solid-state imaging device 1 and the optical component 2 are joined again and irradiated with ultraviolet rays to completely cure the adhesive e.
Note that the optical component 2 may be adsorbed and separated from the solid-state imaging device 1 by the gripping mechanism unit 32 of the optical component holding unit 23.
When the foreign substance e is not detected from the joint surfaces 1a and 2a of the image pickup unit 3, the solid-state image pickup device 1 and the optical component 2 are assembled by irradiating the adhesive s with ultraviolet rays again to increase the irradiation amount and completely cure. finish.

上述のように本実施形態による異物検査装置10及び異物検査方法によれば、固体撮像素子1と光学部品2の各接合面1a、2aについて接合前と、固体撮像素子1と光学部品2を仮硬化した接着剤sで分離可能に接合させた状態とでそれぞれ異物eの検査を行うことができ、接合前の固体撮像素子1と光学部品2の各接合面1a,2aに異物eが検出された場合には異物eを取り除き、接合状態で接合面1a,2a間に異物eが検出された場合には仮硬化状態から固体撮像素子1と光学部品2を分離して異物を取り除いて再度接合できる。そのため、異物eの混入した撮像ユニット3を後工程に搬送しないようにすることができる。
これによって、従来技術のように固体撮像素子1と光学部品2が接合・固化された後に分解して異物を排除して組み立て直すという手間や、その際の固体撮像素子1や光学部品2の損傷等を確実に防止でき、異物を含んだ不良品の発生を防止できる。更に、組み立てラインまたは組み立て装置上で、組み立て前と組み立て中に異物検査ができて効率的な異物検査と撮像ユニット3の組み立てを行える。そのため、撮像ユニット3の組み立てが効率的である上に製造コストを抑制できて歩留まりを向上できる。
As described above, according to the foreign matter inspection apparatus 10 and the foreign matter inspection method according to the present embodiment, the joining surfaces 1a and 2a of the solid-state imaging device 1 and the optical component 2 are pre-joined and the solid-state imaging device 1 and the optical component 2 are temporarily attached. The foreign matter e can be inspected in a state where the cured adhesive s is detachably joined, and the foreign matter e is detected on the joining surfaces 1a and 2a of the solid-state imaging device 1 and the optical component 2 before joining. If the foreign matter e is removed between the joining surfaces 1a and 2a in the joined state, the solid-state imaging device 1 and the optical component 2 are separated from the temporarily cured state, the foreign matter is removed, and the joining is performed again. it can. Therefore, it is possible to prevent the imaging unit 3 in which the foreign substance e is mixed from being conveyed to a subsequent process.
As a result, as in the prior art, after the solid-state imaging device 1 and the optical component 2 are joined and solidified, they are disassembled to remove foreign substances and reassembled, and the solid-state imaging device 1 and the optical component 2 are damaged at that time. Etc. can be reliably prevented, and the generation of defective products containing foreign substances can be prevented. Further, the foreign matter can be inspected before and during the assembly on the assembly line or the assembly apparatus, so that the foreign matter inspection and the imaging unit 3 can be efficiently assembled. Therefore, the assembly of the imaging unit 3 is efficient, and the manufacturing cost can be suppressed and the yield can be improved.

本発明は上述の第一実施形態に限定されることなく本発明の趣旨を逸脱しない範囲で適宜変更可能である。
次に本発明の第二実施形態による異物検査方法について説明する。本実施形態による異物検査装置の構成は第一実施形態による異物検査装置10と同一である。
本第二実施形態では、異物検査装置10による異物検出のアルゴリズムのみ異なるので、この部分の構成及び作用について述べる。
第一実施形態において第二撮像カメラ28と第一撮像カメラ15によって撮像した第一、第二被処理画像と固体撮像素子1によって撮像した第三被処理画像とを制御コントローラ42内の記憶手段43に保存し、記憶手段43から第一乃至第三被処理画像を被処理画像ファイルもしくは画素単位での二次元濃淡配列データとして読み出すことまでは第一実施形態と同じである。
本第二実施形態では、画像処理部44において、画素毎の濃淡情報を検出するのではなく、対象となる有効画素部1Cの1画面全体もしくは1画面をいくつかの領域に分割した各画像エリアを設定する。そして、これら画像エリア内の輝度累積値を求めて、同一画像エリアで予め規格設定された所定の基準輝度累積値と対比して、求めた輝度累積値が基準輝度累積値を下回る場合に当該指定された画像エリア内に異物eが存在すると判定するようにした。
図10では、一例として例えば固体撮像素子1の接合面1aの有効画素部1cまたは光学部品2の接合面2aの接着する領域だけについて、各1画面内を例えば8つの画像エリア47に分割している。そして、各画像エリア47内の輝度累積値を求めて各輝度累積値が同一画像エリアで予め規格設定された所定の値を下回る時は、その画像エリア47内に異物eが有ると判定する。
The present invention is not limited to the first embodiment described above, and can be changed as appropriate without departing from the spirit of the present invention.
Next, a foreign matter inspection method according to the second embodiment of the present invention will be described. The configuration of the foreign matter inspection apparatus according to this embodiment is the same as that of the foreign matter inspection apparatus 10 according to the first embodiment.
In the second embodiment, only the foreign object detection algorithm by the foreign object inspection apparatus 10 is different, so the configuration and operation of this part will be described.
In the first embodiment, the first and second processed images captured by the second imaging camera 28 and the first imaging camera 15 and the third processed image captured by the solid-state imaging device 1 are stored in the storage means 43 in the control controller 42. The first to third processed images are stored in the storage unit 43 and read out from the storage unit 43 as a processed image file or two-dimensional grayscale array data in units of pixels.
In the second embodiment, the image processing unit 44 does not detect the grayscale information for each pixel, but each image area obtained by dividing one entire screen or one screen of the target effective pixel unit 1C into several regions. Set. Then, the accumulated luminance value in these image areas is obtained and compared with a predetermined reference luminance accumulated value set in advance in the same image area. When the obtained accumulated luminance value falls below the reference luminance accumulated value, the designation is made. It is determined that a foreign object e exists in the image area.
In FIG. 10, as an example, for example, only one area of the effective pixel portion 1c of the joint surface 1a of the solid-state imaging device 1 or the joint surface 2a of the optical component 2 is divided into eight image areas 47, for example. Yes. Then, the accumulated luminance value in each image area 47 is obtained, and when each accumulated luminance value falls below a predetermined value preset in the same image area, it is determined that there is a foreign object e in the image area 47.

この異物検査方法では、異物eの検出は出来るが、異物eが画像エリア47内のどの位置に存在するかまでは特定できない欠点がある。そのため、異物eの検出位置を特定するために分割する画像エリア47の数をできるだけ細かく設定することが好ましい。
しかし、本第二実施形態による異物検査装置10及び異物検査方法では、画素毎に異物検査処理を行うものに比べて、1または複数の画像エリア47に分割して異物判定をするため処理ループの回数が減ることになり、異物の検出に要する判定時間を短縮できるという効果がある。
なお、本発明においては、画像処理による異物を検出する手法は上述の実施形態に示すものに限定されることなく適宜の手法を採用できる。
This foreign matter inspection method can detect the foreign matter e, but has a drawback that it cannot be specified where the foreign matter e exists in the image area 47. Therefore, it is preferable to set the number of image areas 47 to be divided in order to specify the detection position of the foreign object e as finely as possible.
However, in the foreign substance inspection apparatus 10 and the foreign substance inspection method according to the second embodiment, the processing loop of the processing loop is performed because the foreign substance determination is performed by dividing the image area 47 into one or a plurality of image areas 47 as compared with the case of performing the foreign substance inspection process for each pixel. The number of times is reduced, and the determination time required for detecting a foreign object can be shortened.
In the present invention, a method for detecting a foreign object by image processing is not limited to the method shown in the above-described embodiment, and an appropriate method can be adopted.

本発明の第一実施形態による異物検査装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of the foreign material inspection apparatus by 1st embodiment of this invention. 図1に示す異物検査装置の第二撮像部で固体撮像素子を撮像する第一撮像工程および第一検査工程の図である。It is a figure of the 1st imaging process and 1st inspection process which image a solid-state image sensor with the 2nd imaging part of the foreign material inspection apparatus shown in FIG. (a)は固体撮像素子の斜視図、(b)は固体撮像素子の有効画素部に付着した異物を示す図である。(A) is a perspective view of a solid-state image sensor, (b) is a figure which shows the foreign material adhering to the effective pixel part of a solid-state image sensor. m列画素上の異物を含む場合の輝度分布を示す図である。It is a figure which shows the luminance distribution in case the foreign material on m column pixel is included. n行画素上の異物を含む場合の輝度分布を示す図である。It is a figure which shows the luminance distribution in case the foreign material on n row pixel is included. 異物検査装置の第一撮像部で光学部品を撮像する状態を示す図である。It is a figure which shows the state which images an optical component with the 1st imaging part of a foreign material inspection apparatus. 固体撮像素子に接着剤を塗布する接着剤塗布工程を示す図である。It is a figure which shows the adhesive agent application process which apply | coats an adhesive agent to a solid-state image sensor. 固体撮像素子と光学部品を分離可能に接合した状態を示す組み立て工程の図である。It is a figure of the assembly process which shows the state which joined the solid-state image sensor and the optical component so that isolation | separation was possible. 撮像ユニットの接合面を固体撮像素子で撮像する状態を示す第二撮像工程および第二検査工程の図である。It is a figure of the 2nd imaging process and the 2nd inspection process which show the state which images the joint surface of an imaging unit with a solid-state image sensor. 本発明の第二実施形態による異物検査方法における固体撮像素子の有効画素部を画像処理部で分割した状態を示す図である。It is a figure which shows the state which divided | segmented the effective pixel part of the solid-state image sensor in the foreign material inspection method by 2nd embodiment of this invention by the image process part. 固体撮像素子と光学部品について(a)は分離状態、(b)は接合状態を示す斜視図である。(A) is a perspective view showing a separated state, and (b) is a perspective view showing a joined state about a solid-state image sensor and an optical component. 従来の異物検装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the conventional foreign material inspection apparatus.

符号の説明Explanation of symbols

1 固体撮像素子
2 光学部品
3 撮像ユニット
13 調整台
14 第一撮像部
15 第一撮像カメラ(撮像手段)
10 異物検査装置
19 搬送ステージ
20 支持ユニット
22 第二撮像部
23 光学部品保持部
24 接着剤供給手段
25 異物検査部
28 第二撮像カメラ(撮像手段)
32 把持機構部
35 接着剤塗布用シリンジ
38 拡散板
40 給電機構
42 制御コントローラ
44 画像処理部
47 画像エリア
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Optical component 3 Imaging unit 13 Adjustment stand 14 1st imaging part 15 1st imaging camera (imaging means)
DESCRIPTION OF SYMBOLS 10 Foreign substance inspection apparatus 19 Conveyance stage 20 Support unit 22 Second imaging part 23 Optical component holding part 24 Adhesive supply means 25 Foreign substance inspection part 28 Second imaging camera (imaging means)
32 Grasping mechanism section 35 Adhesive application syringe 38 Diffusion plate 40 Power feeding mechanism 42 Controller 44 Image processing section 47 Image area

Claims (10)

固体撮像素子と光学部品の接合面における異物の有無を検査する異物検査装置であって、
接合前の前記固体撮像素子と光学部品の各接合面をそれぞれ第一被処理画像、第二被処理画像として撮像する撮像手段と、
分離可能に接合された前記固体撮像素子と光学部品との前記接合面を第三被処理画像として撮像する前記固体撮像素子と、
前記第一被処理画像、第二被処理画像及び第三被処理画像を記憶する記憶手段と、
該記憶手段から読み出した前記第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて画像処理によって異物を検出する画像処理部と
を備えていることを特徴とする異物検査装置。
A foreign matter inspection apparatus for inspecting the presence or absence of foreign matter on a joint surface between a solid-state imaging device and an optical component,
Image pickup means for picking up the respective bonded surfaces of the solid-state imaging element and the optical component before bonding as a first processed image and a second processed image, respectively.
The solid-state imaging device that images the joint surface between the solid-state imaging device and the optical component that are separably separable as a third processed image;
Storage means for storing the first processed image, the second processed image, and the third processed image;
A foreign matter inspection apparatus comprising: an image processing unit that detects foreign matter by image processing for each of the first processed image, the second processed image, and the third processed image read from the storage unit .
前記画像処理部は、前記第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて各画素毎に異物による濃淡及び分布状況を階調情報及び分布情報として検出して異物の有無を検出するようにした請求項1に記載の異物検査装置。   The image processing unit detects the density and distribution status of the foreign matter for each pixel for each of the first processed image, the second processed image, and the third processed image as gradation information and distribution information to detect the foreign matter. The foreign matter inspection apparatus according to claim 1, wherein presence or absence is detected. 前記画像処理部は、前記第一被処理画像、第二被処理画像及び第三被処理画像のそれぞれについて画像全体または複数に分割された画像エリアの輝度累積値情報に基づいて異物の検出を行なうようにした請求項1に記載の異物検査装置。   The image processing unit detects a foreign object based on the accumulated luminance value information of the entire image area or a plurality of divided image areas for each of the first processed image, the second processed image, and the third processed image. The foreign matter inspection device according to claim 1 which was made. 前記画像処理部は、前記第一被処理画像及び第二被処理画像のそれぞれについて各画素の濃淡画像に基づいて前記固体撮像素子と光学部品の位置情報を検出し、
該位置情報に基づいて前記固体撮像素子と光学部品を接合面で接合する組立て機構を備えている請求項1から3のいずれかに記載の異物検査装置。
The image processing unit detects position information of the solid-state imaging device and the optical component based on a grayscale image of each pixel for each of the first processed image and the second processed image;
The foreign matter inspection apparatus according to claim 1, further comprising an assembly mechanism that joins the solid-state imaging device and the optical component at a joint surface based on the position information.
固体撮像素子と光学部品の接合面における異物の有無を検査する異物検査方法であって、
接合前の前記固体撮像素子と光学部品の各接合面をそれぞれ第一被処理画像、第二被処理画像として撮像する第一撮像工程と、
前記第一被処理画像、第二被処理画像に基づいて画像処理によって異物を検出する第一検査工程と、
前記固体撮像素子と光学部品を前記各接合面で分離可能に接合する組み立て工程と、
接合された前記固体撮像素子と光学部品との前記接合面を当該固体撮像素子によって第三被処理画像として撮像する第二撮像工程と、
前記第三被処理画像に基づいて画像処理によって異物を検出する第二検査工程と
を備えていることを特徴とする異物検査方法。
A foreign matter inspection method for inspecting the presence or absence of foreign matter on a joint surface between a solid-state imaging device and an optical component,
A first imaging step of imaging each joining surface of the solid-state imaging device and the optical component before joining as a first processed image and a second processed image, respectively;
A first inspection step of detecting foreign matter by image processing based on the first processed image and the second processed image;
An assembly step of joining the solid-state imaging device and the optical component so as to be separable at each joint surface;
A second imaging step of imaging the bonded surface of the bonded solid-state imaging device and the optical component as a third processed image by the solid-state imaging device;
A foreign matter inspection method comprising: a second inspection step of detecting foreign matter by image processing based on the third processed image.
前記第一及び第二検査工程において、画像処理に際して、前記第一被処理画像、第二被処理画像及び第三被処理画像について各画素毎に異物による濃淡の階調情報と分布情報を検出して異物の有無を検出するようにした請求項5に記載の異物検査方法。   In the first and second inspection steps, grayscale information and distribution information due to foreign matter are detected for each pixel of the first processed image, the second processed image, and the third processed image during image processing. The foreign matter inspection method according to claim 5, wherein the presence or absence of foreign matter is detected. 前記第一及び第二検査工程において、画像処理に際して、前記第一被処理画像、第二被処理画像及び第三被処理画像について画像全体または複数に分割された画像エリアの輝度累積値情報に基づいて異物の検出を行なうようにした請求項5に記載の異物検査方法。   In the first and second inspection steps, during image processing, the first processed image, the second processed image, and the third processed image are based on the accumulated luminance value information of the entire image area or a plurality of divided image areas. The foreign matter inspection method according to claim 5, wherein foreign matter is detected. 前記第一検査工程において、前記第一被処理画像、第二被処理画像から前記固体撮像素子と光学部品の各接合面における位置情報を検出し、該位置情報に基づいて前記固体撮像素子と光学部品を接合面で分離可能に接合するようにした請求項5から7のいずれかに記載の異物検査方法。   In the first inspection step, position information on each joint surface between the solid-state imaging element and the optical component is detected from the first processed image and the second processed image, and the solid-state imaging element and the optical are detected based on the position information The foreign matter inspection method according to claim 5, wherein the parts are joined to be separable at the joining surface. 前記組み立て工程において前記固体撮像素子と光学部品を分離可能に接合した状態に保持して、前記第二撮像工程と第二検査工程を処理し、
その後に前記固体撮像素子と光学部品を分離しないように固定するようにした請求項5から8のいずれかに記載の異物検査方法。
Holding the solid-state imaging device and the optical component in a separable state in the assembly step, processing the second imaging step and the second inspection step,
The foreign matter inspection method according to claim 5, wherein the solid-state imaging device and the optical component are fixed so as not to be separated thereafter.
前記第二撮像工程において、透光性の前記光学部品を通して前記固体撮像素子との接合面を照明手段で照射し、この状態で前記固体撮像素子によって焦点深度を前記光学部品の接合面に対向する面を含まない深さに設定して撮像するようにした請求項5から9のいずれかに記載の異物検査方法。   In the second imaging step, the joint surface with the solid-state image sensor is irradiated with illumination means through the light-transmitting optical component, and in this state, the depth of focus is opposed to the joint surface of the optical component by the solid-state image sensor. The foreign matter inspection method according to claim 5, wherein imaging is performed by setting a depth not including a surface.
JP2007112777A 2007-04-23 2007-04-23 Foreign material inspecting device, and foreign material inspection method Pending JP2008268055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112777A JP2008268055A (en) 2007-04-23 2007-04-23 Foreign material inspecting device, and foreign material inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112777A JP2008268055A (en) 2007-04-23 2007-04-23 Foreign material inspecting device, and foreign material inspection method

Publications (1)

Publication Number Publication Date
JP2008268055A true JP2008268055A (en) 2008-11-06

Family

ID=40047750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112777A Pending JP2008268055A (en) 2007-04-23 2007-04-23 Foreign material inspecting device, and foreign material inspection method

Country Status (1)

Country Link
JP (1) JP2008268055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384921B1 (en) 2012-12-27 2014-04-17 한국기술교육대학교 산학협력단 Apparatus and method for inspecting panel
JP2017044677A (en) * 2015-08-27 2017-03-02 シマダヤ株式会社 Automatic removal method of freezing mold fallen plastic piece-containing frozen noodles
WO2019183902A1 (en) * 2018-03-29 2019-10-03 深圳达闼科技控股有限公司 Lens detection method and apparatus, electronic device, and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381547U (en) * 1989-12-08 1991-08-20
JPH04286346A (en) * 1991-03-15 1992-10-12 Matsushita Electron Corp Automatic glass assembly device for solid-state image sensing device
JPH07280738A (en) * 1994-04-06 1995-10-27 Sony Corp Photoelectric conversion face inspecting method and inspecting device
JP2006292500A (en) * 2005-04-08 2006-10-26 Seiko Epson Corp Surface inspection method and surface inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381547U (en) * 1989-12-08 1991-08-20
JPH04286346A (en) * 1991-03-15 1992-10-12 Matsushita Electron Corp Automatic glass assembly device for solid-state image sensing device
JPH07280738A (en) * 1994-04-06 1995-10-27 Sony Corp Photoelectric conversion face inspecting method and inspecting device
JP2006292500A (en) * 2005-04-08 2006-10-26 Seiko Epson Corp Surface inspection method and surface inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384921B1 (en) 2012-12-27 2014-04-17 한국기술교육대학교 산학협력단 Apparatus and method for inspecting panel
JP2017044677A (en) * 2015-08-27 2017-03-02 シマダヤ株式会社 Automatic removal method of freezing mold fallen plastic piece-containing frozen noodles
WO2019183902A1 (en) * 2018-03-29 2019-10-03 深圳达闼科技控股有限公司 Lens detection method and apparatus, electronic device, and computer readable storage medium

Similar Documents

Publication Publication Date Title
CN1260800C (en) Semiconductor wafer inspection apparatus
JP4102842B1 (en) Defect detection device, defect detection method, information processing device, information processing method, and program thereof
KR100924985B1 (en) Defect detecting apparatus, defect detecting method, information processing apparatus, information processing method, and program therefor
JP6685126B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
CN105424717B (en) Optical detection device for detecting multiple defects
KR102100889B1 (en) Die bonding device and method of manufacturing semiconductor device
CN1338046A (en) Defect inspection data processing system
KR101013573B1 (en) Appearance inspecting method of semiconductor chip and its device
CN101055256A (en) Defect inspection apparatus
JP2008235892A (en) Apparatus and method for evaluation of defect in edge region of wafer
JP2007256106A (en) Display panel inspection device and display panel inspection method using the same
JP7029900B2 (en) Manufacturing method of die bonding equipment and semiconductor equipment
JP2006329714A (en) Lens inspection apparatus
JP2021193744A (en) Semiconductor manufacturing equipment and method for manufacturing semiconductor device
KR101442792B1 (en) Method for Inspecting Sapphire Wafer
JP2019054203A (en) Manufacturing apparatus for semiconductor and manufacturing method for semiconductor
JP2009288121A (en) Apparatus and method for inspecting lens
JP2008268055A (en) Foreign material inspecting device, and foreign material inspection method
WO2021033396A1 (en) Wafer appearance inspection device and method
JPH09252035A (en) Visual inspection method and device of semiconductor wafer
JP5004530B2 (en) Board inspection equipment
KR20190079199A (en) Apparatus for supporting mask and method of aligning mask using the same
JP2024000151A (en) Suction nozzle inspection device and suction nozzle management device
WO2021039019A1 (en) Wafer appearance inspection device and method
JP7285194B2 (en) Mounting machine, component recognition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02