JP2008267919A - Component concentration measuring apparatus - Google Patents

Component concentration measuring apparatus Download PDF

Info

Publication number
JP2008267919A
JP2008267919A JP2007109712A JP2007109712A JP2008267919A JP 2008267919 A JP2008267919 A JP 2008267919A JP 2007109712 A JP2007109712 A JP 2007109712A JP 2007109712 A JP2007109712 A JP 2007109712A JP 2008267919 A JP2008267919 A JP 2008267919A
Authority
JP
Japan
Prior art keywords
standard sample
component concentration
concentration measuring
measuring apparatus
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007109712A
Other languages
Japanese (ja)
Other versions
JP5358065B2 (en
Inventor
Yuichi Okabe
勇一 岡部
Takuro Tajima
卓郎 田島
Kazunori Naganuma
和則 長沼
Katsuyoshi Hayashi
勝義 林
Junichi Shimada
純一 嶋田
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007109712A priority Critical patent/JP5358065B2/en
Publication of JP2008267919A publication Critical patent/JP2008267919A/en
Application granted granted Critical
Publication of JP5358065B2 publication Critical patent/JP5358065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component concentration measuring apparatus capable of reducing measurement errors and enhancing measurement accuracy. <P>SOLUTION: The component concentration measuring apparatus 100 comprises a standard sample 98 used for calibration; a light-irradiating means 110 for irradiating a measured object 99 and the standard sample 98 with modulated laser beams, obtained by electrically modulating the intensity of laser beams by a modulation signal of specific frequency; a plurality of sound wave detecting means 120, 121 detecting ultrasonic waves from the measured object 99 and the standard sample 98 generated by the irradiated modulated laser beams and outputting them as electrical signals; and a differential amplifier 130 differentially amplifying the electrical signals from the plurality of sound wave detecting means 120, 121. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、人間、動物又は果実等の被測定物の非侵襲な成分濃度測定装置に関する。   The present invention relates to a non-invasive component concentration measurement apparatus for an object to be measured such as a human being, an animal, or a fruit.

高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な血液成分濃度測定装置が注目されている。現在までに開発された非侵襲な血液成分濃度測定装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する音響波を観測する、光音響法が注目されている。   With the aging of society, dealing with adult diseases is becoming a major issue. In blood glucose level testing, blood collection is necessary, which is a heavy burden on the patient. Therefore, a non-invasive blood component concentration measurement apparatus that does not collect blood has attracted attention. As a non-invasive blood component concentration measuring device developed so far, the skin is irradiated with electromagnetic waves, and the blood component to be measured, for example, in the case of blood glucose level, is absorbed by glucose molecules and heated locally. The photoacoustic method, which observes acoustic waves generated from the living body due to thermal expansion, has attracted attention.

しかし、光音響法による血液成分濃度測定装置は、グルコースと電磁波との相互作用は小さく、また生体に安全に照射しうる電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるに至ってない。   However, the photoacoustic blood component concentration measurement apparatus has a small interaction between glucose and electromagnetic waves, and there is a limit to the intensity of electromagnetic waves that can be safely irradiated to the living body. It has not been effective.

図5は、光音響法による従来の血液成分濃度測定装置の構成例である。図5に示す血液成分濃度測定装置80は、筺体85が、駆動回路81、音響波検出器82、パルス光源83及び波形観測器84を格納する(例えば、非特許文献1を参照。)。開口部86は、筺体85に形成され、被測定物99が挿入される。駆動回路81はパルス状の励起電流をパルス光源83に提供し、パルス光源83はサブマイクロ秒の持続時間を有する光パルスを発生させる。パルス光源83によって発生された光パルスは、被測定物99に照射される。光パルスは被測定物99の内部にパルス状の超音波と呼ばれる音響波を発生させる。発生した音響波は、音響波検出器82によって検出され、更に音圧に比例した電気信号に変換される。   FIG. 5 is a configuration example of a conventional blood component concentration measuring apparatus using a photoacoustic method. In the blood component concentration measuring apparatus 80 shown in FIG. 5, the housing 85 stores a drive circuit 81, an acoustic wave detector 82, a pulse light source 83, and a waveform observer 84 (see, for example, Non-Patent Document 1). The opening 86 is formed in the housing 85, and the measurement object 99 is inserted therein. The drive circuit 81 provides a pulsed excitation current to the pulsed light source 83, which generates an optical pulse having a sub-microsecond duration. The light pulse generated by the pulse light source 83 is applied to the object 99 to be measured. The light pulse generates an acoustic wave called a pulsed ultrasonic wave inside the object to be measured 99. The generated acoustic wave is detected by the acoustic wave detector 82 and further converted into an electric signal proportional to the sound pressure.

変換された電気信号の波形は波形観測器84により観測される。波形観測器84は上記励起電流に同期した信号によりトリガーされ、変換された電気信号は波形観測器84の管面上の一定位置に表示される。変換された電気信号は、積算及び平均して測定することができる。このようにして得られた電気信号の振幅を解析して、被測定物99の内部の血糖値、すなわちグルコースの量が測定される。図5に示す例の場合はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生し、1024個の光パルスを平均して、前記電気信号を測定している。   The waveform of the converted electric signal is observed by the waveform observer 84. The waveform observer 84 is triggered by a signal synchronized with the excitation current, and the converted electric signal is displayed at a fixed position on the tube surface of the waveform observer 84. The converted electrical signal can be measured by integration and averaging. By analyzing the amplitude of the electrical signal thus obtained, the blood sugar level inside the measurement object 99, that is, the amount of glucose is measured. In the case of the example shown in FIG. 5, an optical pulse having a sub-microsecond pulse width is repeatedly generated at a maximum of 1 kHz, and 1024 optical pulses are averaged to measure the electrical signal.

図6は、第2の従来例の成分濃度測定装置の構成例を示す図である(例えば、特許文献1を参照。)。本例も血糖を主な測定対象として、異なる波長の複数の光源を用いて、高精度化を試みている。図6において、励起光源92aは、駆動回路91aにより、発振器95に同期して強度変調されている。また、励起光源92bは、駆動回路91bにより、発振器95に同期して強度変調されている。ここで、駆動回路91bには、発振器95の出力が180°位相器94を経て、給電され、その結果、励起光源92bは、励起光源92aに対して逆相に変調されるように構成されている。2つの励起光源92a,92bの出力光は、合波器96により合波され、1の光束として被測定物99に照射される。   FIG. 6 is a diagram illustrating a configuration example of a component concentration measuring apparatus according to a second conventional example (see, for example, Patent Document 1). In this example as well, blood sugar is the main measurement target, and high accuracy is attempted using a plurality of light sources having different wavelengths. In FIG. 6, the excitation light source 92a is intensity-modulated in synchronization with the oscillator 95 by the drive circuit 91a. The excitation light source 92b is intensity-modulated in synchronization with the oscillator 95 by the drive circuit 91b. Here, the output of the oscillator 95 is fed to the drive circuit 91b via the 180 ° phase shifter 94, and as a result, the excitation light source 92b is configured to be modulated in the opposite phase to the excitation light source 92a. Yes. The output lights of the two excitation light sources 92a and 92b are combined by a combiner 96 and applied to the object 99 as a single light beam.

被測定物99で発生した超音波は、超音波検出器93により検出され、音圧に比例した電気信号に変換される。電気信号の振幅が、発振器95に同期した位相検波増幅器97によって計測され、超音波出力として得られる。本例においては、励起光源92a,92bの出力光の波長は、水の吸収波長とグルコースの吸収波長であり、かつ、水の吸収係数が等しい。2つの超音波の差分からグルコースの量を推定することで、被測定物99内での背景ノイズとなる水から生じる超音波を除去している。
特開2005−192611号公報 オウル大学(University of Oulu、Finland)学位論文「Pulse photoacoustic techniqus and glucose determination in human blood and tissue」(IBS 951−42−6690−0、http://herkules.oulu.fi/isbn9514266900/、2002年)
The ultrasonic wave generated by the measurement object 99 is detected by the ultrasonic detector 93 and converted into an electric signal proportional to the sound pressure. The amplitude of the electric signal is measured by the phase detection amplifier 97 synchronized with the oscillator 95 and obtained as an ultrasonic output. In this example, the wavelengths of the output light of the excitation light sources 92a and 92b are the absorption wavelength of water and the absorption wavelength of glucose, and the absorption coefficient of water is equal. By estimating the amount of glucose from the difference between the two ultrasonic waves, the ultrasonic waves generated from the water as background noise in the measurement object 99 are removed.
JP 2005-192611 A University of Oulu (University of Oulu, Finland) thesis “Pulse photoacoustic technique and glucodesis in human blood and tissue” (IBS 951-42-6690-0, ul./200.

測定装置は、温度、電磁ノイズ、その他の機器部品の不安定要因により測定値の信頼性が変化する可能性を持っている。このため、一般的な測定装置は装置自身の信頼性を確保するため、測定値の信頼性が変化しない何らかの指標を持っている。成分濃度測定装置は、連続測定、かつ、絶対値の測定を想定している。連続測定を行う上では、測定値の相対値の測定は可能である。また、絶対値の測定を行うためには、測定値が変化しないゼロ点を示す指標が必要であり、この指標により測定値の校正を行う必要がある。   The measurement device has a possibility that the reliability of the measurement value may change due to temperature, electromagnetic noise, and other instability factors of equipment parts. For this reason, a general measuring apparatus has some index that does not change the reliability of the measurement value in order to ensure the reliability of the apparatus itself. The component concentration measuring device assumes continuous measurement and absolute value measurement. In performing continuous measurement, it is possible to measure relative values of measured values. In order to measure the absolute value, an index indicating a zero point at which the measured value does not change is required, and the measured value needs to be calibrated using this index.

第2の従来例の成分濃度測定装置では、水を封入したガラス容器或いは被測定物内における散乱を模擬するラテックス粒子等の散乱体を分散させた水を封入したガラス容器を標準試料として用いている。測定を行う前に超音波検出器に標準試料を接触させ、そのときの測定値を標準値、例えば、グルコース濃度なら0mg/dlに対応させることで成分濃度測定装置の校正を行っている。   In the component concentration measuring apparatus of the second conventional example, a glass container enclosing water or a glass container enclosing water in which scatterers such as latex particles simulating scattering in the object to be measured are encapsulated is used as a standard sample. Yes. Before the measurement, the standard sample is brought into contact with the ultrasonic detector, and the measured value at that time is made to correspond to the standard value, for example, 0 mg / dl for the glucose concentration, thereby calibrating the component concentration measuring apparatus.

測定誤差の原因としては、被測定物や標準試料の温度変化等の測定環境、外部からの音響ノイズや電磁ノイズ等の背景ノイズが例示できる。   Examples of the cause of the measurement error include a measurement environment such as a temperature change of an object to be measured or a standard sample, and background noise such as external acoustic noise or electromagnetic noise.

図7に、励起光の波長と水の吸収度の関係について示した。温度変化により水の吸収スペクトルが変化すると、超音波の強度が変化する。前述の第2の従来例の成分濃度測定装置では、装置校正のために2波の超音波をバランスさせることが必要である。図8に、標準試料について、一定温度で2波の超音波がバランスしているときの信号強度の経時測定結果を示した。また、図9に、標準試料について、温度変化した際の信号強度の経時測定結果を示した。図8,9に示すように、温度変化に伴う超音波の強度変化は、2波の超音波のバランスを崩してしまう。このため、正確な測定を行う際、被測定物及び標準試料の正確な温度を測定し、それらの温度差を元に温度補正を行う必要があった。   FIG. 7 shows the relationship between the wavelength of excitation light and the absorbance of water. When the water absorption spectrum changes due to temperature change, the intensity of the ultrasonic wave changes. In the component concentration measuring apparatus of the second conventional example described above, it is necessary to balance two ultrasonic waves for apparatus calibration. FIG. 8 shows the measurement results of signal intensity over time for a standard sample when two waves of ultrasonic waves are balanced at a constant temperature. FIG. 9 shows the measurement results of signal intensity over time for the standard sample when the temperature changes. As shown in FIGS. 8 and 9, the intensity change of the ultrasonic wave accompanying the temperature change breaks the balance of the two ultrasonic waves. Therefore, when performing an accurate measurement, it is necessary to measure the accurate temperatures of the object to be measured and the standard sample, and to perform temperature correction based on the temperature difference between them.

また、第2の従来例の成分濃度測定装置では、標準試料について測定した後、被測定物を測定する。このとき、標準試料と被測定物の測定の時間差で測定環境が変化することが予想される。測定環境の変化は、高精度な温度測定において不安定要素となる。さらに、標準試料と被測定物の測定の時間差で背景ノイズが変化することが予想される。信号対雑音比(SN比)1000以上の高精度な測定を行う場合、背景ノイズを除去する必要がある。   In the component concentration measuring apparatus of the second conventional example, the measurement object is measured after measuring the standard sample. At this time, it is expected that the measurement environment changes due to the time difference between the measurement of the standard sample and the object to be measured. Changes in the measurement environment become unstable factors in highly accurate temperature measurement. Furthermore, the background noise is expected to change due to the time difference between the measurement of the standard sample and the object to be measured. When performing highly accurate measurement with a signal-to-noise ratio (SN ratio) of 1000 or more, it is necessary to remove background noise.

本発明は、測定誤差を少なくし、測定精度を高くできる成分濃度測定装置を提供することを目的とする。   It is an object of the present invention to provide a component concentration measuring apparatus that can reduce measurement errors and increase measurement accuracy.

上記の課題を解決するために、本発明に係る成分濃度測定装置は、差動増幅器を備えることを特徴とする。   In order to solve the above-described problems, a component concentration measuring apparatus according to the present invention includes a differential amplifier.

具体的には、本発明に係る成分濃度測定装置は、校正に用いる標準試料と、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被測定物及び前記標準試料に照射する光照射手段と、照射された前記変調レーザ光により発生する前記被測定物及び前記標準試料からの超音波を検出して電気信号として出力する複数の音波検出手段と、前記複数の音波検出手段からの前記電気信号を差動増幅する差動増幅器と、を備える。   Specifically, the component concentration measuring apparatus according to the present invention irradiates the measurement object and the standard sample with a standard sample used for calibration and a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency. Irradiating means, a plurality of sound wave detecting means for detecting ultrasonic waves from the object to be measured and the standard sample generated by the irradiated modulated laser light and outputting them as electric signals, and the plurality of sound wave detecting means And a differential amplifier for differentially amplifying the electrical signal from.

上記の成分濃度測定装置は、前記差動増幅器が前記電気信号を差動増幅することで背景ノイズの影響を低減でき、測定誤差を少なくし、測定精度を高くすることができる。   In the component concentration measuring apparatus, the differential amplifier can differentially amplify the electric signal to reduce the influence of background noise, reduce measurement errors, and increase measurement accuracy.

本発明に係る成分濃度測定装置では、前記標準試料は、前記被測定物が接触可能な位置に配置されていることが好ましい。   In the component concentration measuring apparatus according to the present invention, it is preferable that the standard sample is disposed at a position where the object to be measured can contact.

上記の成分濃度測定装置は、前記標準試料と前記被測定物の温度を近づけることができ、測定誤差をより低減することができる。   The component concentration measuring apparatus can bring the temperature of the standard sample and the object to be measured close to each other, and can further reduce measurement errors.

本発明に係る成分濃度測定装置では、前記被測定物を押圧する押圧手段と、前記標準試料に前記変調レーザ光を照射する際、前記被測定物に照射される前記変調レーザ光を遮蔽するシャッターと、をさらに備えることが好ましい。   In the component concentration measuring apparatus according to the present invention, a pressing unit that presses the object to be measured, and a shutter that shields the modulated laser light irradiated to the object to be measured when the modulated laser light is irradiated to the standard sample. It is preferable to further comprise.

上記の成分濃度測定装置は、前記押圧手段により前記標準試料と前記被測定物の境界面の音響インピーダンスを一定に保つことができ、測定誤差をより低減することができる。   In the component concentration measuring apparatus, the acoustic impedance of the boundary surface between the standard sample and the object to be measured can be kept constant by the pressing means, and the measurement error can be further reduced.

本発明に係る成分濃度測定装置では、少なくとも前記標準試料及び前記複数の音波検出手段に接触しているヒートシンクをさらに備えることが好ましい。   The component concentration measuring apparatus according to the present invention preferably further includes a heat sink in contact with at least the standard sample and the plurality of sound wave detecting means.

上記の成分濃度測定装置は、前記標準試料及び前記複数の音波検出手段の温度変化を低減でき、測定誤差をより低減することができる。   The component concentration measuring apparatus can reduce temperature changes of the standard sample and the plurality of sound wave detecting means, and can further reduce measurement errors.

本発明に係る成分濃度測定装置では、少なくとも前記標準試料及び前記複数の音波検出手段が、背景ノイズから遮蔽されていることが好ましい。   In the component concentration measuring apparatus according to the present invention, it is preferable that at least the standard sample and the plurality of sound wave detecting means are shielded from background noise.

上記の成分濃度測定装置は、背景ノイズの影響を低減でき、測定誤差をより低減することができる。   The above-described component concentration measuring apparatus can reduce the influence of background noise and can further reduce measurement errors.

本発明に係る成分濃度測定装置では、少なくとも前記標準試料及び前記複数の音波検出手段が、断熱されていることが好ましい。   In the component concentration measuring apparatus according to the present invention, it is preferable that at least the standard sample and the plurality of sound wave detecting means are insulated.

上記の成分濃度測定装置は、測定環境の変化の影響を低減でき、測定誤差をより低減することができる。   The component concentration measuring apparatus can reduce the influence of changes in the measurement environment and can further reduce measurement errors.

本発明は、測定誤差を少なくし、測定精度を高くできる成分濃度測定装置を提供することができる。   The present invention can provide a component concentration measuring apparatus that can reduce measurement errors and increase measurement accuracy.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。また、各実施形態に係る成分濃度測定装置の構成を示す図において、電源、あるいは全体の動作を制御する制御部などの通常の技術により実現できる部分は図示していない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. Further, in the diagram showing the configuration of the component concentration measuring apparatus according to each embodiment, a portion that can be realized by a normal technique such as a power source or a control unit that controls the entire operation is not shown.

図1に、本実施形態に係る成分濃度測定装置の概略図を示した。本実施形態に係る成分濃度測定装置100は、校正に用いる標準試料98と、レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被測定物99及び標準試料98に照射する光照射手段110と、照射された変調レーザ光により発生する被測定物99及び標準試料98からの超音波を検出して電気信号として出力する複数の音波検出手段120,121と、複数の音波検出手段120,121からの電気信号を差動増幅する差動増幅器130と、を備える。さらに、図1には、光照射手段110として駆動回路111、励起光源112及び光分岐器113、並びに、シャッター140を示した。   FIG. 1 shows a schematic diagram of a component concentration measuring apparatus according to this embodiment. The component concentration measuring apparatus 100 according to the present embodiment irradiates the measurement object 99 and the standard sample 98 with a standard sample 98 used for calibration and a modulated laser beam obtained by electrically modulating the intensity of the laser beam with a modulation signal having a constant frequency. A light irradiation means 110; a plurality of sound wave detection means 120, 121 for detecting ultrasonic waves from the measured object 99 and the standard sample 98 generated by the irradiated modulated laser light and outputting them as electric signals; and a plurality of sound wave detections And a differential amplifier 130 for differentially amplifying the electric signals from the means 120 and 121. Further, FIG. 1 shows a drive circuit 111, an excitation light source 112, an optical branching device 113, and a shutter 140 as the light irradiation means 110.

励起光源112としては、例えば、分布帰還型半導体レーザ(DFB−LD)等の半導体レーザがある。また、励起光源112は、ヒーター又はペルチェ素子で加熱又は冷却することにより出力するレーザ光の波長を変化できることが好ましい。   An example of the excitation light source 112 is a semiconductor laser such as a distributed feedback semiconductor laser (DFB-LD). Moreover, it is preferable that the excitation light source 112 can change the wavelength of the laser beam output by heating or cooling with a heater or a Peltier element.

駆動回路111は、例えば、励起光源112に接続され、励起光源112に電力を供給する。また、駆動回路111は、一定周波数、例えば、500kHzの周波数で励起光源112が出力するレーザ光を変調する。駆動回路111で変調された変調レーザ光は、光分岐器113で分岐され、被測定物99及び標準試料98に照射される。   For example, the drive circuit 111 is connected to the excitation light source 112 and supplies power to the excitation light source 112. The drive circuit 111 modulates the laser light output from the excitation light source 112 at a constant frequency, for example, a frequency of 500 kHz. The modulated laser light modulated by the drive circuit 111 is branched by the optical branching device 113 and irradiated to the object to be measured 99 and the standard sample 98.

光分岐器113としては、例えば、励起光源112からの変調レーザ光を等分するハーフミラー、光平面回路(PLC)、光カプラがある。光分岐器113が励起光源112からの変調レーザ光を被測定物99及び標準試料98に分岐することから、成分濃度測定装置100は、被測定物99及び標準試料98を移動させることなく、被測定物99及び標準試料98に変調レーザ光を照射することができる。   Examples of the optical branching device 113 include a half mirror, an optical planar circuit (PLC), and an optical coupler that equally divide the modulated laser light from the excitation light source 112. Since the optical splitter 113 branches the modulated laser light from the excitation light source 112 to the object 99 and the standard sample 98, the component concentration measuring apparatus 100 does not move the object 99 and the standard sample 98 without moving the object 99 and the standard sample 98. The measured object 99 and the standard sample 98 can be irradiated with modulated laser light.

ここで、成分濃度測定装置100は、光ファイバ(不図示)に変調レーザ光を伝搬させることが好ましく、光ファイバの先端に形成された出射口(不図示)を標準試料98の外壁面に密着させることがより好ましい。標準試料98の変調レーザ光被照射位置(不図示)が外部に触れることなく、従来必要とされていたクリーニングを不要とすることができる。   Here, the component concentration measuring apparatus 100 preferably transmits the modulated laser beam to an optical fiber (not shown), and an emission port (not shown) formed at the tip of the optical fiber is in close contact with the outer wall surface of the standard sample 98. More preferably. Since the irradiated position (not shown) of the standard sample 98 is not exposed to the outside, the conventionally required cleaning can be eliminated.

シャッター140としては、例えば、被測定物99に照射される変調レーザ光を遮蔽する微小板がある。   As the shutter 140, for example, there is a small plate that shields the modulated laser light irradiated on the object 99 to be measured.

被測定物99は、照射された変調レーザ光により変調周波数に応じた超音波が発生する。音波検出手段120は、被測定物99で発生する超音波を検出する。また、標準試料98は、照射された変調レーザ光により変調周波数に応じた超音波が発生する。音波検出手段121は、標準試料98で発生する超音波を検出する。成分濃度測定装置100は、標準試料98を2以上備えても良く、この場合、音波検出手段121を標準試料98と同数備えても良い。   The object to be measured 99 generates ultrasonic waves according to the modulation frequency by the irradiated modulated laser light. The sound wave detection means 120 detects the ultrasonic wave generated by the measurement object 99. Further, the standard sample 98 generates ultrasonic waves according to the modulation frequency by the irradiated modulated laser light. The sound wave detection unit 121 detects ultrasonic waves generated in the standard sample 98. The component concentration measuring apparatus 100 may include two or more standard samples 98. In this case, the same number of sound wave detection means 121 as the standard samples 98 may be provided.

標準試料98と被測定物99を離して配置すると、標準試料98と被測定物99が受ける背景ノイズの影響や測定環境が異なり、校正の精度が低下し、測定誤差の原因となる。このため、本実施形態に係る成分濃度測定装置100では、標準試料98は、被測定物99が接触可能な位置に配置されていることが好ましい。さらに、音波検出手段121と標準試料98は、被測定物99が接触可能な位置に配置されていることがより好ましい。これによって、成分濃度測定装置100は、標準試料98と被測定物99の温度を近づけることができ、また、標準試料98と被測定物99が受ける背景ノイズの影響が略等しくなり、測定誤差をより低減することができる。   If the standard sample 98 and the object 99 to be measured are arranged apart from each other, the influence of the background noise received by the standard sample 98 and the object 99 to be measured and the measurement environment are different, the calibration accuracy is lowered, and a measurement error is caused. For this reason, in the component concentration measuring apparatus 100 which concerns on this embodiment, it is preferable that the standard sample 98 is arrange | positioned in the position which the to-be-measured object 99 can contact. Furthermore, it is more preferable that the sound wave detection means 121 and the standard sample 98 are arranged at a position where the object to be measured 99 can contact. As a result, the component concentration measuring apparatus 100 can bring the temperature of the standard sample 98 and the object 99 to be measured close to each other, and the influence of the background noise received by the standard sample 98 and the object 99 to be measured becomes substantially equal. It can be further reduced.

ここで、標準試料98と音波検出手段121は、接着剤で固定しても良い。標準試料98と音波検出手段121の音響インピーダンスが整合し、校正精度がより高くなる。また、標準試料98と音波検出手段121を一体化しても良い(不図示)。   Here, the standard sample 98 and the sound wave detection means 121 may be fixed with an adhesive. The acoustic impedances of the standard sample 98 and the sound wave detecting means 121 are matched, and the calibration accuracy is higher. Further, the standard sample 98 and the sound wave detection means 121 may be integrated (not shown).

標準試料98と音波検出手段121の音響インピーダンスを整合させるため、上記の接着剤は、標準試料98と音波検出手段121の受音面の間の音響インピーダンスを有することが好ましい。上記の接着剤は、例えば、高分子母材を含むものである。高分子母材としては、例えば、ゴム、天然高分子化合物、合成高分子化合物がある。ここで、高分子とは、分子量が非常に大きい分子である。ゴムとしては、例えば、天然ゴム、合成ゴム等の弾性を有するゴムがある。天然高分子化合物としては、例えば、ゼラチン、ケラチン等のタンパク質、セルロース、デンプン等の多糖物質がある。また、合成高分子化合物としては、例えば、可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等の合成繊維、合成ゴムがある。ここで、可塑性樹脂は、ガラス転移温度又は融点まで加熱することによって軟化し、目的の形状に成形できることが好ましい。ここで、軟化とは、無定形物質が柔らかくなるものであり、例えば、加熱により粘性度が1〜10Ns/mになるものである。また、高分子母材は、加熱により融解することが好ましい。このような高分子母材としては、例えば、付加重合による鎖式構造のものを用いることができる。   In order to match the acoustic impedance of the standard sample 98 and the sound wave detection means 121, the adhesive preferably has an acoustic impedance between the standard sample 98 and the sound receiving surface of the sound wave detection means 121. The adhesive described above includes, for example, a polymer base material. Examples of the polymer base material include rubber, natural polymer compounds, and synthetic polymer compounds. Here, the polymer is a molecule having a very large molecular weight. Examples of rubber include elastic rubber such as natural rubber and synthetic rubber. Examples of natural polymer compounds include proteins such as gelatin and keratin, and polysaccharide substances such as cellulose and starch. Examples of the synthetic polymer compound include synthetic fibers such as plastic resins, thermosetting resins, and photocurable resins, and synthetic rubbers. Here, the plastic resin is preferably softened by heating to the glass transition temperature or the melting point, and can be molded into a desired shape. Here, softening means that the amorphous material becomes soft, for example, the viscosity becomes 1 to 10 Ns / m by heating. The polymer base material is preferably melted by heating. As such a polymer base material, for example, one having a chain structure by addition polymerization can be used.

上記の可塑性樹脂としては、例えば、アクリル樹脂(PMMA)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル、フッ素樹脂、テフロン(登録商標)R−ポリテトラフルオロエチレン(PEFE)、ABS樹脂、AS樹脂等の汎用プラスチックがある。また、上記の可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール(POM)、ポリカーボネイト(PC)、変性ポリフェニレンエーテル(m−PPE,変性PPE)、ポリブチレンテレフタレート(PBT)、グラスファイバー強化ポリエチレンテレフタレート(GF−PET)、環状ポリオレフィン(COP)等の汎用エンプラがある。さらに、上記の可塑性樹脂としては、例えば、スーパーエンプラ、ポリエチレンスルフィド(PPS)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、非晶ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリエーテルケトン(PEEK)、ポリイミド(PI)等の汎用エンプラもある。   Examples of the plastic resin include acrylic resin (PMMA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate, fluororesin, Teflon ( There are general-purpose plastics such as (registered trademark) R-polytetrafluoroethylene (PEFE), ABS resin and AS resin. Examples of the plastic resin include polyamide (PA), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE), polybutylene terephthalate (PBT), and glass fiber reinforced polyethylene terephthalate. There are general-purpose engineering plastics such as (GF-PET) and cyclic polyolefin (COP). Furthermore, examples of the plastic resin include super engineering plastics, polyethylene sulfide (PPS), polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polyester (LCP), polyetherketone ( There are also general-purpose engineering plastics such as PEEK and polyimide (PI).

上記の熱硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂(ポリウレタン)、ケイ素樹脂(シリコーン)、フェノール樹脂、不飽和ポリエステル、アルキド樹脂、尿素樹脂(ユリア樹脂)、メラミン樹脂、イオノマーがある。   Examples of the thermosetting resin include epoxy resin, urethane resin (polyurethane), silicon resin (silicone), phenol resin, unsaturated polyester, alkyd resin, urea resin (urea resin), melamine resin, and ionomer.

上記の光硬化性樹脂としては、例えば、光カチオン重合性化合物及び光カチオン重合開始剤を含有するものがある。光カチオン重合性化合物としては、例えば、分子内に少なくとも1個のエポキシ基、オキセタニル基、水酸基、ビニルエーテル基、エピスルフィド基、エチレンイミン基等の光カチオン重合性官能基を有する化合物がある。また、光カチオン重合度が高く、少ない光量で効率的に光硬化が進行することから、光硬化性樹脂として、分子内に少なくとも1個のエポキシ基を有する化合物を用いることが好ましい。これらの光カチオン重合性化合物の性状(分子量)は、特に制限されず、モノマー、オリゴマー、ポリマーのいずれであっても良い。また、これらの光カチオン重合性化合物は、単独で用いても良く、2種類以上を併用しても良い。さらに、高分子母材として、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂、タンパク質、ゴム又はこれらの複合材を用いても良い。   As said photocurable resin, there exists a thing containing a photocationic polymerizable compound and a photocationic polymerization initiator, for example. Examples of the photocationically polymerizable compound include compounds having at least one photocationically polymerizable functional group such as an epoxy group, oxetanyl group, hydroxyl group, vinyl ether group, episulfide group, and ethyleneimine group in the molecule. In addition, since the photocuring degree of polymerization is high and photocuring proceeds efficiently with a small amount of light, it is preferable to use a compound having at least one epoxy group in the molecule as the photocurable resin. The property (molecular weight) of these photocationically polymerizable compounds is not particularly limited, and may be any of a monomer, an oligomer, and a polymer. Moreover, these photocationic polymerizable compounds may be used independently and may use 2 or more types together. Further, as the polymer base material, for example, an epoxy resin, a urethane resin, a silicone resin, an acrylic resin, protein, rubber, or a composite material thereof may be used.

被測定物99としては、人体又は人体の一部、例えば、指や耳がある。被測定物99が指や耳であれば、成分濃度測定装置100は、血液中のグルコースやコルステロールの濃度を測定できる。また、被測定物99としては、例えば、実験用ラット、みかん等の果実、人体又は実験用ラットから採取した採取物もある。被測定物99が果実であれば、成分濃度測定装置100は、果実の糖度、すなわち、果実の甘さを測定できる。   The object to be measured 99 includes a human body or a part of the human body, for example, a finger or an ear. If the measured object 99 is a finger or an ear, the component concentration measuring apparatus 100 can measure the concentrations of glucose and corsterol in the blood. Moreover, as the to-be-measured object 99, there exist also the collection | collection extract | collected from fruit, such as a laboratory rat and a tangerine, a human body, or a laboratory rat, for example. If the measured object 99 is a fruit, the component concentration measuring apparatus 100 can measure the sugar content of the fruit, that is, the sweetness of the fruit.

標準試料98としては、例えば、被測定物99と等価な吸光度、電熱特性及び音響特性を示すように調合した生体等価物質を封入したものがある。測定対象の成分が血液中のグルコースであれば、標準試料98としては、例えば、水溶液又は水分を含んだ軟化ゲル状の試料を封入したガラスセル、血液成分量を検査済みの血液又は血清を封入したガラスセルがある成分濃度測定装置100では、被測定物99の測定対象とする成分に応じた標準試料とすることにより、成分濃度測定装置100の校正を行うことができる。   As the standard sample 98, for example, there is a sample in which a bio-equivalent material prepared so as to exhibit absorbance, electrothermal characteristics, and acoustic characteristics equivalent to the measurement object 99 is enclosed. If the component to be measured is glucose in the blood, the standard sample 98 includes, for example, a glass cell in which a soft gel sample containing an aqueous solution or water is sealed, or blood or serum whose blood component amount has been tested. In the component concentration measuring device 100 having the glass cell, the component concentration measuring device 100 can be calibrated by using a standard sample corresponding to the component to be measured of the object 99 to be measured.

差動増幅器130は、例えば、音波検出手段120,121からの電気信号を差動増幅し、差動増幅器130に接続された位相検波器(不図示)に電気信号を出力する。成分濃度測定装置100は、この電気信号の強度に基づいて測定対象となる成分濃度を算出し、ディスプレイやプリンタ等の出力手段に出力しても良い。ここで、音波検出手段120から差動増幅器130までの配線の距離と、音波検出手段121から差動増幅器130までの配線の距離が略等しくすることが好ましい(不図示)。   For example, the differential amplifier 130 differentially amplifies the electrical signals from the sound wave detection means 120 and 121 and outputs the electrical signals to a phase detector (not shown) connected to the differential amplifier 130. The component concentration measuring apparatus 100 may calculate the component concentration to be measured based on the intensity of the electric signal and output it to an output unit such as a display or a printer. Here, it is preferable that the distance of the wiring from the sound wave detection means 120 to the differential amplifier 130 is substantially equal to the distance of the wiring from the sound wave detection means 121 to the differential amplifier 130 (not shown).

成分濃度測定装置100を用いた成分濃度の測定の手順の一例を示す。まず、被測定物99の成分濃度の測定を行うにあたり、成分濃度測定装置100の校正を行う。標準試料98は、被測定物99に接触しており、標準試料98と被測定物99の温度が略等しくなっている。校正時、すなわち、標準試料98に変調レーザ光を照射する際、シャッター140は、被測定物99に照射される変調レーザ光を遮蔽する。ここで、シャッター140は、校正時、変調レーザ光の強度が予め設定された所定値以下で安定したときに開放しても良い。変調レーザ光は、被測定物99に対して等吸収を示す2波長の光を含んでおり、それぞれの光は、逆位相の変調を受けている。変調レーザ光は、光分岐器130を経て、標準試料98に照射される。標準試料98では、それぞれの変調レーザ光に含まれる2波長の光により、逆位相の2波の超音波が発生する。ここでは、成分濃度測定装置100は、この2波の超音波が重なり合って打ち消しあうように変調レーザ光を調整し、校正する。   An example of the procedure of measuring the component concentration using the component concentration measuring apparatus 100 will be shown. First, the component concentration measuring apparatus 100 is calibrated when measuring the component concentration of the measurement object 99. The standard sample 98 is in contact with the measurement object 99, and the temperature of the standard sample 98 and the measurement object 99 is substantially equal. At the time of calibration, that is, when irradiating the standard sample 98 with modulated laser light, the shutter 140 shields the modulated laser light irradiated on the object 99 to be measured. Here, the shutter 140 may be opened when the intensity of the modulated laser beam is stabilized at a predetermined value or less at the time of calibration. The modulated laser light includes two wavelengths of light that are equally absorbed by the object to be measured 99, and each light is subjected to antiphase modulation. The modulated laser beam is applied to the standard sample 98 through the optical branching unit 130. In the standard sample 98, two waves of antiphase are generated by two wavelengths of light included in each modulated laser beam. Here, the component concentration measuring apparatus 100 adjusts and calibrates the modulated laser light so that the two ultrasonic waves overlap and cancel each other.

次に、被測定物99の成分濃度の測定を行う。成分濃度の測定時、すなわち、被測定物99に変調レーザ光を照射する際、シャッター140は、被測定物99に照射される変調レーザ光を遮蔽しないように開放する。変調レーザ光は、光分岐器130を経て2分岐される。2分岐された変調レーザ光の一方は、開放されたシャッター140を経て、被測定物99に照射される。また、2分岐された変調レーザ光の他方は、標準試料98に照射される。   Next, the component concentration of the measurement object 99 is measured. When measuring the component concentration, that is, when irradiating the measured object 99 with modulated laser light, the shutter 140 is opened so as not to shield the modulated laser light irradiated to the measured object 99. The modulated laser beam is branched into two through an optical branching unit 130. One of the two-branched modulated laser light passes through the open shutter 140 and irradiates the measurement object 99. The other of the two branched modulated laser beams is irradiated to the standard sample 98.

標準試料98からの電気信号は、校正されているため、背景ノイズのみとなる。被測定物99からの電気信号は、被測定物99に含まれる測定対象の成分の電気信号と背景ノイズが含まれる。ここで、背景ノイズは、主に音響ノイズと電磁ノイズである。これら背景ノイズの波長は、2個の音波検出手段120,121同士の距離に比べて十分長いと考えられる。被測定物99及び標準試料98からの電気信号が差動増幅器130に入力される。被測定物99及び標準試料98からの電気信号に含まれる背景ノイズは同位相であるため、差動増幅器130が、被測定物99及び標準試料98からの電気信号を差動増幅することで、背景ノイズを除去することができる。以上のように、成分濃度測定装置100は、環境温度による不安定性及び背景ノイズの影響を低減でき、測定誤差を少なくし、測定精度を高くすることができる。   Since the electrical signal from the standard sample 98 has been calibrated, only the background noise is present. The electrical signal from the device under test 99 includes an electrical signal of a component to be measured included in the device under test 99 and background noise. Here, the background noise is mainly acoustic noise and electromagnetic noise. The wavelength of these background noises is considered to be sufficiently longer than the distance between the two sound wave detection means 120, 121. Electrical signals from the device under test 99 and the standard sample 98 are input to the differential amplifier 130. Since the background noise included in the electric signals from the DUT 99 and the standard sample 98 has the same phase, the differential amplifier 130 differentially amplifies the electric signals from the DUT 99 and the standard sample 98. Background noise can be removed. As described above, the component concentration measuring apparatus 100 can reduce the instability due to the environmental temperature and the influence of background noise, reduce measurement errors, and increase measurement accuracy.

図2に、本実施形態に係る成分濃度測定装置の第1形態の概略図を示した。本実施形態に係る成分濃度測定装置100では、少なくとも標準試料98及び音波検出手段120,121に接触しているヒートシンク160をさらに備えることが好ましい。さらに、被測定物99がヒートシンク160に接触可能な配置であることがより好ましい。ヒートシンク160としては、比熱が低く、熱伝導率の高い材料、例えば、金、銀、銅、パラジウム、白金、鉄、アルミニウム、チタン、錫、亜鉛、ニッケル、タングステン、イリジウム等の単体金属又はステンレス、黄銅、青銅、炭素鋼、ジェラルミン等の合金の筐体がある。また、ヒートシンク160は、一部のみ比熱が低く、かつ、熱伝導率の高い材料で形成し、他の部分をガラス、石英、アルミナ等のセラミックス、エポキシ、アクリル、ウレタン等の有機高分子材料、又は、天然ゴム、木材等の天然構造材で形成しても良い。図2では、ヒートシンク160が、標準試料98、音波検出手段120,121、コリメータ150を収容し、被測定物99を挿抜可能であっても良い。以上のように、成分濃度測定装置100は、標準試料98及び複数の音波検出手段120,121の温度変化を低減でき、測定誤差をより低減することができる。   FIG. 2 shows a schematic diagram of the first embodiment of the component concentration measuring apparatus according to the present embodiment. The component concentration measuring apparatus 100 according to this embodiment preferably further includes a heat sink 160 that is in contact with at least the standard sample 98 and the sound wave detection means 120 and 121. Furthermore, it is more preferable that the DUT 99 be disposed so as to be in contact with the heat sink 160. As the heat sink 160, a material having low specific heat and high thermal conductivity, for example, a single metal such as gold, silver, copper, palladium, platinum, iron, aluminum, titanium, tin, zinc, nickel, tungsten, iridium or stainless steel, There are housings made of alloys such as brass, bronze, carbon steel and geralumin. In addition, the heat sink 160 is only partially formed of a material having a low specific heat and high thermal conductivity, and the other part is made of ceramics such as glass, quartz, and alumina, an organic polymer material such as epoxy, acrylic and urethane, Or you may form with natural structural materials, such as natural rubber and wood. In FIG. 2, the heat sink 160 may accommodate the standard sample 98, the sound wave detection means 120 and 121, and the collimator 150, and the object to be measured 99 may be inserted and removed. As described above, the component concentration measuring apparatus 100 can reduce the temperature change of the standard sample 98 and the plurality of sound wave detection means 120 and 121, and can further reduce the measurement error.

また、ヒートシンク160が背景ノイズを遮蔽することで、本実施形態に係る成分濃度測定装置100では、標準試料98及び複数の音波検出手段120,121が、背景ノイズから遮蔽されていることが好ましく、被測定物99も背景ノイズが遮蔽されることがより好ましい。これによって、成分濃度測定装置100は、外部で発生した電磁波によって音波検出手段120,121が飽和する事態を防止できる。以上のように、成分濃度測定装置100は、背景ノイズの影響を低減でき、測定誤差をより低減することができる。   Further, since the heat sink 160 shields background noise, in the component concentration measurement apparatus 100 according to the present embodiment, the standard sample 98 and the plurality of sound wave detection means 120 and 121 are preferably shielded from background noise. It is more preferable that the measured object 99 is also shielded from background noise. Thereby, the component concentration measuring apparatus 100 can prevent the sound wave detecting means 120 and 121 from being saturated by the electromagnetic wave generated outside. As described above, the component concentration measurement apparatus 100 can reduce the influence of background noise and can further reduce measurement errors.

ヒートシンク160を断熱構造とすることで、本実施形態に係る成分濃度測定装置100では、少なくとも標準試料98及び複数の音波検出手段120,121が、断熱されていることが好ましく、被測定物99も断熱されることがより好ましい。例えば、ヒートシンク160の内壁面にウレタン、エポキシ等の断熱材を装着することで、ヒートシンク160を断熱構造とすることができる。   In the component concentration measuring apparatus 100 according to this embodiment, it is preferable that at least the standard sample 98 and the plurality of sound wave detection units 120 and 121 are insulated from each other by using the heat sink 160 as a heat insulating structure. More preferably, it is insulated. For example, by attaching a heat insulating material such as urethane or epoxy to the inner wall surface of the heat sink 160, the heat sink 160 can have a heat insulating structure.

以下、従来の従来の血液成分濃度測定装置と比較して、成分濃度測定装置100を断熱することによる利点を説明する。光音響波は水の光吸収度に依存しており、信号対雑音比(SN比)1000以上の高精度な測定では、温度変化の影響によって光音響波の強度が大きく変化する。従来の血液成分濃度測定装置では、被検体99と標準試料98の温度変動が同期していないため、例えば、血液中のグルコース濃度を測定する場合、グルコースが全く含まれない水の温度変化による温度相関を予め求めておく。そして、被検体99及び標準試料98の温度を正確に測定し、測定した温度と上記の温度相関に基づいて、グルコース量に無関係な温度の補正を行う。また、従来の血液成分濃度測定装置では、2波の変調レーザ光のバランスが取れた状態において、標準試料98からの超音波には背景ノイズが含まれ、被検体99からの超音波にはグルコースからの信号、背景ノイズ及び被検体99と標準試料98の温度差による温度誤差が含まれる。このため、標準試料98からの超音波のうち、被検体99と標準試料98の温度差による温度誤差を補正している。しかし、上記の温度相関、並びに、被検体99及び標準試料98の温度を正確に求めることが難しく、従来の血液成分濃度測定は、この補正を必ずしも正確に行えていなかった。   Hereinafter, advantages of insulating the component concentration measuring apparatus 100 as compared with the conventional blood component concentration measuring apparatus will be described. The photoacoustic wave depends on the light absorbance of water, and the intensity of the photoacoustic wave greatly changes due to the influence of temperature change in high-precision measurement with a signal-to-noise ratio (SN ratio) of 1000 or more. In the conventional blood component concentration measuring apparatus, since the temperature fluctuations of the subject 99 and the standard sample 98 are not synchronized, for example, when measuring the glucose concentration in blood, the temperature due to the temperature change of water that does not contain glucose at all The correlation is obtained in advance. Then, the temperatures of the subject 99 and the standard sample 98 are accurately measured, and a temperature that is unrelated to the amount of glucose is corrected based on the measured temperature and the above temperature correlation. Further, in the conventional blood component concentration measuring apparatus, in a state where the two modulated laser beams are balanced, the ultrasonic wave from the standard sample 98 includes background noise, and the ultrasonic wave from the subject 99 is glucose. Signal, background noise, and temperature error due to the temperature difference between the subject 99 and the standard sample 98. For this reason, of the ultrasonic waves from the standard sample 98, the temperature error due to the temperature difference between the subject 99 and the standard sample 98 is corrected. However, it is difficult to accurately determine the temperature correlation and the temperatures of the subject 99 and the standard sample 98, and the conventional blood component concentration measurement has not always been able to accurately perform this correction.

一方、成分濃度測定装置100は、ヒートシンク160によって標準試料98と被検体99の温度変動が略等しくなっており、被検体99からの超音波に被検体99と標準試料98の温度差による温度誤差が含まれない利点がある。このため、成分濃度測定装置100は、被検体99と標準試料98の温度差による温度誤差を補正する必要はない。また、成分濃度測定装置100は、略同時に被検体99と標準試料98の測定を行うことができ、被検体99と標準試料98の測定時間差による温度誤差を無視できる利点もある。さらに、成分濃度測定装置100は、ヒートシンク160により外部の急激な温度変化の影響を低減できる利点もある。以上のように、成分濃度測定装置100は、温度に依存する測定誤差をより低減することができる。   On the other hand, in the component concentration measuring apparatus 100, the temperature fluctuations of the standard sample 98 and the subject 99 are substantially equal due to the heat sink 160, and the temperature error due to the temperature difference between the subject 99 and the standard sample 98 due to ultrasonic waves from the subject 99 There is an advantage not included. For this reason, the component concentration measuring apparatus 100 does not need to correct the temperature error due to the temperature difference between the subject 99 and the standard sample 98. Further, the component concentration measuring apparatus 100 can measure the subject 99 and the standard sample 98 almost simultaneously, and has an advantage that a temperature error due to a measurement time difference between the subject 99 and the standard sample 98 can be ignored. Furthermore, the component concentration measuring apparatus 100 has an advantage that the influence of a sudden external temperature change can be reduced by the heat sink 160. As described above, the component concentration measuring apparatus 100 can further reduce the measurement error depending on the temperature.

図3は、本実施形態に係る成分濃度測定装置の第2形態の概略図であり、(a)が正面図であり、(b)が背面図である。図3(a)に示すように、標準試料98の上部と被測定物99の下部が接触する。また、図4は、図3(a)の断面図であり、(a)が図3(a)のA−A’であり、(b)が図3(a)のB−B’である。本実施形態に係る成分濃度測定装置100では、被測定物99を押圧する押圧手段170と、標準試料98に変調レーザ光を照射する際、被測定物99に照射される変調レーザ光を遮蔽するシャッター140と、をさらに備えることが好ましい。押圧手段170は、断面の形状がコの字状になるように折り曲げられて対向する押圧面が形成され、押圧面により被測定物99を押圧することができる。また、押圧手段170の材料を単体金属又は合金とすることで、押圧手段170をヒートシンクとして機能させることができる。押圧手段170は、正面側に2個のコリメータ150が埋め込まれ、背面側に音波検出手段120,121が埋め込まれる。押圧手段170は、音波検出手段121とコリメータ150で挟むように標準試料98を押圧する。これによって、成分濃度測定装置100は、押圧手段170により標準試料98と被測定物99の境界面の音響インピーダンスを一定に保つことができ、測定誤差をより低減することができる。   FIG. 3 is a schematic diagram of a second embodiment of the component concentration measuring apparatus according to the present embodiment, where (a) is a front view and (b) is a rear view. As shown in FIG. 3A, the upper part of the standard sample 98 and the lower part of the measurement object 99 are in contact with each other. 4 is a cross-sectional view of FIG. 3A, where FIG. 4A is AA ′ of FIG. 3A, and FIG. 4B is BB ′ of FIG. 3A. . In the component concentration measuring apparatus 100 according to the present embodiment, when the modulated laser beam is irradiated to the pressing unit 170 that presses the measured object 99 and the standard sample 98, the modulated laser beam irradiated to the measured object 99 is shielded. It is preferable to further include a shutter 140. The pressing means 170 is bent so that the cross-sectional shape becomes a U-shape, and an opposing pressing surface is formed, and the object 99 can be pressed by the pressing surface. Moreover, the press means 170 can be made to function as a heat sink by making the material of the press means 170 into a single metal or an alloy. In the pressing unit 170, two collimators 150 are embedded on the front side, and sound wave detection units 120 and 121 are embedded on the back side. The pressing unit 170 presses the standard sample 98 so as to be sandwiched between the sound wave detecting unit 121 and the collimator 150. Accordingly, the component concentration measuring apparatus 100 can keep the acoustic impedance of the boundary surface between the standard sample 98 and the measurement object 99 constant by the pressing unit 170, and can further reduce the measurement error.

本発明に係る成分濃度測定装置は、日常の健康管理や美容上のチェックに利用することができる。また、人間ばかりでなく、動物についても健康管理に利用することができる。また、本発明に係る成分濃度測定装置は、人間や動物だけではなく、液体中の成分濃度を測定する分野、例えば果実の糖度測定にも適用することができる。   The component concentration measuring apparatus according to the present invention can be used for daily health management and cosmetic check. Moreover, not only humans but also animals can be used for health management. Moreover, the component concentration measuring apparatus according to the present invention can be applied not only to humans and animals but also to the field of measuring component concentrations in liquids, for example, sugar content measurement of fruits.

本実施形態に係る成分濃度測定装置の概略図である。It is the schematic of the component concentration measuring apparatus which concerns on this embodiment. 本実施形態に係る成分濃度測定装置の第1形態の概略図である。It is the schematic of the 1st form of the component concentration measuring apparatus which concerns on this embodiment. 本実施形態に係る成分濃度測定装置の第2形態の概略図であり、(a)が正面図であり、(b)が背面図である。It is the schematic of the 2nd form of the component concentration measuring apparatus which concerns on this embodiment, (a) is a front view, (b) is a rear view. 図3(a)の断面図であり、(a)が図3(a)のA−A’であり、(b)が図3(a)のB−B’である。3A is a cross-sectional view of FIG. 3A, FIG. 3A is A-A ′ in FIG. 3A, and FIG. 3B is B-B ′ in FIG. 光音響法による従来の血液成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the conventional blood component density | concentration measuring apparatus by a photoacoustic method. 第2の従来例の成分濃度測定装置の構成例を示す図である。It is a figure which shows the structural example of the component concentration measuring apparatus of a 2nd prior art example. 励起光の波長と水の吸収度の関係について示す図である。It is a figure shown about the relationship between the wavelength of excitation light, and the absorbency of water. 標準試料について、一定温度で2波の超音波がバランスしているときの信号強度の経時測定結果を示す図である。It is a figure which shows the time-measurement result of signal strength when two waves of ultrasonic waves are balanced at a constant temperature for a standard sample. 標準試料について、温度変化した際の信号強度の経時測定結果を示す図である。It is a figure which shows the time-measurement result of the signal strength at the time of temperature change about a standard sample.

符号の説明Explanation of symbols

80 血液成分濃度測定装置
81 駆動回路
82 音響波検出器
83 パルス光源
84 波形観測器
85 筐体
86 開口部
90 成分濃度測定装置
91a,91b 駆動回路
92a,92b 励起光源
93 超音波検出器
94 180°位相器
95 発信器
96 合波器
97 位相検波増幅器
98 標準試料
99 被測定物
100 成分濃度測定装置
110 光照射手段
111 駆動回路
112 励起光源
113 光分岐器
120,121 音波検出手段
130 差動増幅器
140 シャッター
150 コリメータ
160 ヒートシンク
170 押圧手段
80 Blood component concentration measurement device 81 Drive circuit 82 Acoustic wave detector 83 Pulse light source 84 Waveform observation device 85 Housing 86 Opening 90 Component concentration measurement device 91a, 91b Drive circuit 92a, 92b Excitation light source 93 Ultrasonic detector 94 180 ° Phase shifter 95 Transmitter 96 Multiplexer 97 Phase detection amplifier 98 Standard sample 99 Device under test 100 Component concentration measuring device 110 Light irradiation means 111 Drive circuit 112 Excitation light source 113 Optical branching device 120, 121 Sound wave detection means 130 Differential amplifier 140 Shutter 150 Collimator 160 Heat sink 170 Pressing means

Claims (6)

校正に用いる標準試料と、
レーザ光を一定周波数の変調信号により電気的に強度変調した変調レーザ光を被測定物及び前記標準試料に照射する光照射手段と、
照射された前記変調レーザ光により発生する前記被測定物及び前記標準試料からの超音波を検出して電気信号として出力する複数の音波検出手段と、
前記複数の音波検出手段からの前記電気信号を差動増幅する差動増幅器と、
を備える成分濃度測定装置。
A standard sample used for calibration, and
A light irradiating means for irradiating the object to be measured and the standard sample with modulated laser light obtained by electrically modulating the intensity of the laser light with a modulation signal having a constant frequency;
A plurality of sound wave detection means for detecting ultrasonic waves from the object to be measured and the standard sample generated by the irradiated modulated laser light and outputting them as electric signals;
A differential amplifier for differentially amplifying the electrical signals from the plurality of sound wave detection means;
A component concentration measuring device.
前記標準試料は、前記被測定物が接触可能な位置に配置されていることを特徴とする請求項1に記載の成分濃度測定装置。   2. The component concentration measuring apparatus according to claim 1, wherein the standard sample is arranged at a position where the object to be measured can come into contact with. 前記被測定物を押圧する押圧手段と、
前記標準試料に前記変調レーザ光を照射する際、前記被測定物に照射される前記変調レーザ光を遮蔽するシャッターと、
をさらに備えることを特徴とする請求項1又は2に記載の成分濃度測定装置。
Pressing means for pressing the object to be measured;
A shutter that shields the modulated laser light applied to the object to be measured when the standard laser is irradiated with the modulated laser light;
The component concentration measuring apparatus according to claim 1, further comprising:
少なくとも前記標準試料及び前記複数の音波検出手段に接触しているヒートシンクをさらに備えることを特徴とする請求項1から3のいずれかに記載の成分濃度測定装置。   The component concentration measuring apparatus according to claim 1, further comprising a heat sink in contact with at least the standard sample and the plurality of sound wave detecting means. 少なくとも前記標準試料及び前記複数の音波検出手段が、背景ノイズから遮蔽されていることを特徴とする請求項1から4のいずれかに記載の成分濃度測定装置。   5. The component concentration measuring apparatus according to claim 1, wherein at least the standard sample and the plurality of sound wave detection means are shielded from background noise. 少なくとも前記標準試料及び前記複数の音波検出手段が、断熱されていることを特徴とする請求項1から5のいずれかに記載の成分濃度測定装置。   6. The component concentration measuring apparatus according to claim 1, wherein at least the standard sample and the plurality of sound wave detecting means are insulated.
JP2007109712A 2007-04-18 2007-04-18 Component concentration measuring device Active JP5358065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109712A JP5358065B2 (en) 2007-04-18 2007-04-18 Component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109712A JP5358065B2 (en) 2007-04-18 2007-04-18 Component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2008267919A true JP2008267919A (en) 2008-11-06
JP5358065B2 JP5358065B2 (en) 2013-12-04

Family

ID=40047628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109712A Active JP5358065B2 (en) 2007-04-18 2007-04-18 Component concentration measuring device

Country Status (1)

Country Link
JP (1) JP5358065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120795A (en) * 2009-12-11 2011-06-23 Canon Inc Photoacoustic apparatus and method for controlling the same
JP2011120796A (en) * 2009-12-11 2011-06-23 Canon Inc Photoacoustic apparatus and method for controlling the same
CN102854202A (en) * 2011-06-30 2013-01-02 物思科技发展(北京)有限公司 Test system of energy of static state substance
JP2014206475A (en) * 2013-04-15 2014-10-30 株式会社アドバンテスト Photoacoustic wave measuring instrument, photoacoustic wave measuring device, method, program and recording medium
JP2017192841A (en) * 2017-08-03 2017-10-26 キヤノン株式会社 Biological examination apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595939A (en) * 1982-07-03 1984-01-12 Horiba Ltd Continuous measuring apparatus for particulate
JPS59145957A (en) * 1983-01-08 1984-08-21 Horiba Ltd Opto-acoustic type concentration measuring device
JPS59184539A (en) * 1983-04-02 1984-10-19 Nippon Hoso Kyokai <Nhk> Method for measuring dislocation density of semiconductor crystal
JPH01191040A (en) * 1988-01-27 1989-08-01 Shiseido Co Ltd Optoacoustic measuring instrument
JPH02118453A (en) * 1988-10-28 1990-05-02 Hitachi Ltd Method and apparatus for optoacoustic immunoassay
JPH05172738A (en) * 1991-12-24 1993-07-09 Jasco Corp Acoustic cell
JP2000146755A (en) * 1998-11-06 2000-05-26 Nikon Corp Method and apparatus for measuring light absorption
JP2002186464A (en) * 2000-12-20 2002-07-02 Japan Science & Technology Corp Nondestructive inspection method for dried laver and apparatus therefor
JP2005192611A (en) * 2003-12-26 2005-07-21 Olympus Corp Glucose concentration measuring apparatus
JP2006326223A (en) * 2005-05-30 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Constituent concentration measuring device
JP2007051879A (en) * 2005-08-15 2007-03-01 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring instrument, and control method for same
JP2007089662A (en) * 2005-09-27 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595939A (en) * 1982-07-03 1984-01-12 Horiba Ltd Continuous measuring apparatus for particulate
JPS59145957A (en) * 1983-01-08 1984-08-21 Horiba Ltd Opto-acoustic type concentration measuring device
JPS59184539A (en) * 1983-04-02 1984-10-19 Nippon Hoso Kyokai <Nhk> Method for measuring dislocation density of semiconductor crystal
JPH01191040A (en) * 1988-01-27 1989-08-01 Shiseido Co Ltd Optoacoustic measuring instrument
JPH02118453A (en) * 1988-10-28 1990-05-02 Hitachi Ltd Method and apparatus for optoacoustic immunoassay
JPH05172738A (en) * 1991-12-24 1993-07-09 Jasco Corp Acoustic cell
JP2000146755A (en) * 1998-11-06 2000-05-26 Nikon Corp Method and apparatus for measuring light absorption
JP2002186464A (en) * 2000-12-20 2002-07-02 Japan Science & Technology Corp Nondestructive inspection method for dried laver and apparatus therefor
JP2005192611A (en) * 2003-12-26 2005-07-21 Olympus Corp Glucose concentration measuring apparatus
JP2006326223A (en) * 2005-05-30 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Constituent concentration measuring device
JP2007051879A (en) * 2005-08-15 2007-03-01 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring instrument, and control method for same
JP2007089662A (en) * 2005-09-27 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120795A (en) * 2009-12-11 2011-06-23 Canon Inc Photoacoustic apparatus and method for controlling the same
JP2011120796A (en) * 2009-12-11 2011-06-23 Canon Inc Photoacoustic apparatus and method for controlling the same
CN102854202A (en) * 2011-06-30 2013-01-02 物思科技发展(北京)有限公司 Test system of energy of static state substance
JP2014206475A (en) * 2013-04-15 2014-10-30 株式会社アドバンテスト Photoacoustic wave measuring instrument, photoacoustic wave measuring device, method, program and recording medium
US9442062B2 (en) 2013-04-15 2016-09-13 Advantest Corporation Photoacoustic wave measurement instrument, photoacoustic wave measurement device, method, and recording medium
JP2017192841A (en) * 2017-08-03 2017-10-26 キヤノン株式会社 Biological examination apparatus

Also Published As

Publication number Publication date
JP5358065B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
EP2207474B1 (en) Optical sensor for determining the concentration of an analyte
RU2453266C2 (en) Measurement of glucose concentration in pulsing blood
JP3594534B2 (en) Equipment for detecting substances
AU2004233870B2 (en) Noninvasive blood analysis by optical probing of the veins under the tongue
CN102920464B (en) Instrument for measuring haemoglobin concentration and blood oxygen saturation and measuring method
JP5358065B2 (en) Component concentration measuring device
EP3133980A1 (en) Device and method for frequency-domain thermoacoustic sensing
JP4751271B2 (en) Photoacoustic analysis method and photoacoustic analysis apparatus for measuring the concentration of an analyte in a specimen tissue
JP4901432B2 (en) Component concentration measuring device
JP4444227B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP4531632B2 (en) Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
JP4790578B2 (en) Component concentration measuring device
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
WO2019181375A1 (en) Component-concentration measuring apparatus and method
WO2019211993A1 (en) Component concentration measuring device
JP2008125543A (en) Constituent concentration measuring apparatus
JP5345439B2 (en) Component concentration analyzer and component concentration analysis method
Tanaka et al. Resonant photoacoustic spectroscopy for a non-invasive blood glucose monitoring: human interface and temperature correction technology
JP4773390B2 (en) Component concentration measuring device
Tajima et al. Advances in noninvasive glucose sensing enabled by photonics, acoustics, and microwaves
Yao et al. Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry
Kinnunen Comparison of optical coherence tomography, the pulsed photoacoustic technique, and the time-of-flight technique in glucose measurements in vitro
Villanueva Quantitative photoacoustic integrating sphere (QPAIS) platform: for Grüneisen parameter, optical absorption & fluorescence quantum yield measurements of biomedical fluids
JP2007127516A (en) Component concentration measuring device, and component concentration measuring device control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350