JP2008267213A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008267213A
JP2008267213A JP2007109245A JP2007109245A JP2008267213A JP 2008267213 A JP2008267213 A JP 2008267213A JP 2007109245 A JP2007109245 A JP 2007109245A JP 2007109245 A JP2007109245 A JP 2007109245A JP 2008267213 A JP2008267213 A JP 2008267213A
Authority
JP
Japan
Prior art keywords
sulfur
concentration
storage reduction
reducing agent
sulfur poisoning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109245A
Other languages
Japanese (ja)
Inventor
Atsushi Hayashi
篤史 林
Nobumoto Ohashi
伸基 大橋
Shingo Iida
真豪 飯田
Kotaro Hayashi
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007109245A priority Critical patent/JP2008267213A/en
Publication of JP2008267213A publication Critical patent/JP2008267213A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for more correctly calculating a quantity of sulfur component occluded in an NO<SB>x</SB>storage reduction type catalyst even during recovery from sulfur poisoning, in an exhaust emission control device of an internal combustion engine. <P>SOLUTION: The exhaust emission control device is provided with: an NO<SB>x</SB>storage reduction type catalyst; a reducing agent supply means for supplying a reducing agent to upstream of the NO<SB>x</SB>storage reduction type catalyst; a sulfur poisoning recovery means for recovering the NO<SB>x</SB>storage reduction type catalyst from sulfur poisoning by supplying the reducing agent; a sulfur concentration detection means for detecting concentration of the sulfur component in the reducing agent supplied by the reducing agent supply means; and a sulfur poisoning quantity estimation means for estimating the quantity of the sulfur component occluded in the NO<SB>x</SB>storage type catalyst. The sulfur poisoning quantity estimation means estimates a reducing speed of the sulfur component occluded in the NO<SB>x</SB>storage reduction type catalyst while recovering the NO<SB>x</SB>storage reduction type catalyst from the sulfur poisoning according to the concentration of the sulfur component in the reducing agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気通路に吸蔵還元型NOx触媒(以下、単にNOx触媒という。)を配置する技術が知られている。このNOx触媒は、流入する排気の酸素濃度が高いときに排気中
のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときに吸蔵し
ていたNOxを還元する。
A technique is known in which an NOx storage reduction catalyst (hereinafter simply referred to as a NOx catalyst) is disposed in an exhaust passage of an internal combustion engine. This NOx catalyst occludes NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reduces the NOx occluded when the oxygen concentration of the inflowing exhaust gas decreases and a reducing agent is present.

また、NOx触媒には燃料に含まれる硫黄成分もNOxと同様に吸蔵される。このように吸蔵された硫黄成分はNOxよりも放出されにくく、NOx触媒内に蓄積される。これを硫黄被毒という。この硫黄被毒によりNOx触媒でのNOx浄化率が低下するため、適宜の時期に硫黄被毒回復を行なう必要がある。   Further, the sulfur component contained in the fuel is also stored in the NOx catalyst in the same manner as NOx. The sulfur component occluded in this way is less likely to be released than NOx and accumulates in the NOx catalyst. This is called sulfur poisoning. This sulfur poisoning reduces the NOx purification rate of the NOx catalyst, so it is necessary to recover sulfur poisoning at an appropriate time.

この硫黄被毒回復は、NOx触媒を高温にし、且つ理論空燃比またはリッチ空燃比の排
気をNOx触媒に流通させて行われる。例えばNOx触媒に燃料を添加することにより、該燃料がNOx触媒で反応して該NOx触媒が高温となる。この状態でさらに燃料を添加して排気の空燃比をリッチ空燃比とすることにより、硫黄被毒を回復させることができる。
This sulfur poisoning recovery is performed by setting the NOx catalyst to a high temperature and circulating exhaust gas having a stoichiometric air-fuel ratio or rich air-fuel ratio to the NOx catalyst. For example, by adding fuel to the NOx catalyst, the fuel reacts with the NOx catalyst, and the NOx catalyst becomes high temperature. In this state, sulfur poisoning can be recovered by adding fuel to make the air-fuel ratio of the exhaust gas rich.

そして、総燃料噴射量と、燃料中の硫黄濃度および触媒容量と、に基づいて、吸蔵還元型NOx触媒における硫黄成分の吸蔵量を算出し、その硫黄成分の吸蔵量の積算値が閾値
を超えた場合に硫黄被毒回復を行なう技術が知られている(例えば、特許文献1参照。)。
特開2003−65041号公報 特開平8−93456号公報 特開2005−90277号公報
Then, the storage amount of the sulfur component in the NOx storage reduction catalyst is calculated based on the total fuel injection amount, the sulfur concentration in the fuel and the catalyst capacity, and the integrated value of the storage amount of the sulfur component exceeds the threshold value. In this case, a technique for recovering sulfur poisoning is known (for example, see Patent Document 1).
JP 2003-65041 A JP-A-8-93456 JP 2005-90277 A

ところで、吸蔵還元型NOx触媒の硫黄被毒回復を行なうときに、還元剤中の硫黄成分
の濃度が変わると、硫黄被毒の回復度合いが変わる。そのため、硫黄被毒回復が完了するまでの時間が変わる。ここで、硫黄成分の放出が十分になされる前に硫黄被毒回復が終了してしまうと、NOxの浄化率の回復が不十分となる虞がある。
By the way, when the sulfur poisoning recovery of the NOx storage reduction catalyst is performed, if the concentration of the sulfur component in the reducing agent is changed, the recovery degree of the sulfur poisoning is changed. Therefore, the time until the sulfur poisoning recovery is completed changes. Here, if the sulfur poisoning recovery is completed before the sulfur component is sufficiently released, the recovery of the NOx purification rate may be insufficient.

本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化装置において、吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を硫黄被毒回復中であ
ってもより正確に求めることができる技術を提供することを目的とする。
The present invention has been made in view of the above-described problems. In the exhaust gas purification apparatus for an internal combustion engine, the amount of sulfur component stored in the NOx storage reduction catalyst is being recovered from sulfur poisoning. It aims at providing the technique which can be calculated | required more correctly.

上記課題を達成するために本発明による内燃機関の排気浄化装置は、以下の手段を採用した。すなわち、本発明による内燃機関の排気浄化装置は、
排気中のNOxを吸蔵し、還元剤の存在下でNOxを還元する吸蔵還元型NOx触媒と、
前記吸蔵還元型NOx触媒よりも上流の排気通路へ還元剤を供給する還元剤供給手段と

前記還元剤供給手段から還元剤を供給させることにより前記吸蔵還元型NOx触媒の硫
黄被毒を回復させる硫黄被毒回復手段と、
前記還元剤供給手段により供給される還元剤中の硫黄成分の濃度を検出する硫黄濃度検
出手段と、
前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を推定する手段であって、前
記吸蔵還元型NOx触媒の硫黄被毒を回復しているときの前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の減少速度を、前記還元剤中の硫黄成分の濃度に応じて推定する硫黄被毒量推定手段と、
を備えることを特徴とする。
In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention employs the following means. That is, the exhaust gas purification apparatus for an internal combustion engine according to the present invention is
A NOx storage reduction catalyst that stores NOx in the exhaust and reduces NOx in the presence of a reducing agent;
Reducing agent supply means for supplying a reducing agent to the exhaust passage upstream of the NOx storage reduction catalyst;
Sulfur poisoning recovery means for recovering sulfur poisoning of the NOx storage reduction catalyst by supplying a reducing agent from the reducing agent supply means;
A sulfur concentration detection means for detecting the concentration of the sulfur component in the reducing agent supplied by the reducing agent supply means;
A means for estimating the amount of sulfur component stored in the NOx storage reduction catalyst, and is stored in the NOx storage reduction catalyst when the poisoning of the NOx storage reduction catalyst is restored. A sulfur poisoning amount estimation means for estimating a reduction rate of the sulfur component in accordance with the concentration of the sulfur component in the reducing agent;
It is characterized by providing.

本発明の最大の特徴は、還元剤中の硫黄成分の濃度により吸蔵還元型NOx触媒からの
硫黄成分の脱離のしやすさが変わることに基づいて、硫黄被毒回復時の硫黄成分の吸蔵量を推定することにある。
The greatest feature of the present invention is that the sulfur component occlusion is recovered at the time of sulfur poisoning recovery, based on the fact that the ease of desorption of the sulfur component from the NOx storage reduction catalyst varies depending on the concentration of the sulfur component in the reducing agent. The amount is to estimate.

吸蔵還元型NOx触媒は、NOxを吸蔵し、この吸蔵されているNOxは還元剤供給手段
から還元剤が供給されることにより還元される。また、吸蔵還元型NOx触媒に還元剤を
供給することにより該吸蔵還元型NOx触媒の硫黄被毒も回復される。
The NOx storage reduction catalyst stores NOx, and the stored NOx is reduced by supplying a reducing agent from the reducing agent supply means. Further, by supplying a reducing agent to the NOx storage reduction catalyst, the sulfur poisoning of the NOx storage reduction catalyst is also recovered.

硫黄濃度検出手段は、還元剤中の硫黄成分の濃度をセンサ等により得てもよく、また運転者等により入力された値に基づいて得てもよい。さらに、還元剤中の硫黄成分の濃度が予め分かっている場合には、その値を用いてもよい。   The sulfur concentration detecting means may obtain the concentration of the sulfur component in the reducing agent by a sensor or the like, or may be obtained based on a value input by a driver or the like. Furthermore, when the concentration of the sulfur component in the reducing agent is known in advance, the value may be used.

硫黄被毒量推定手段は、吸蔵還元型NOx触媒に吸蔵される硫黄成分量を加算し、放出
される硫黄成分量を減算することにより、硫黄成分の量を推定する。このときに減算する値は、還元剤中の硫黄成分の濃度に応じて変わる。そのため、硫黄被毒回復速度算出手段は、吸蔵還元型NOx触媒に吸蔵されている硫黄成分の減少速度を、還元剤中の硫黄成分
の濃度に応じて算出する。そして、このようにして得られる硫黄成分の減少速度から、硫黄成分の減少量を求めることにより、硫黄成分の吸蔵量を得ることができる。なお、硫黄成分の減少速度とは、単位時間当たりに減少する硫黄成分の量としてもよい。
The sulfur poisoning amount estimation means estimates the amount of sulfur component by adding the amount of sulfur component stored in the NOx storage reduction catalyst and subtracting the amount of released sulfur component. The value to be subtracted at this time varies depending on the concentration of the sulfur component in the reducing agent. Therefore, the sulfur poisoning recovery rate calculation means calculates the decrease rate of the sulfur component stored in the NOx storage reduction catalyst according to the concentration of the sulfur component in the reducing agent. And the occlusion amount of a sulfur component can be obtained by calculating | requiring the decreasing amount of a sulfur component from the decreasing rate of the sulfur component obtained in this way. The reduction rate of the sulfur component may be the amount of the sulfur component that decreases per unit time.

なお、硫黄被毒量推定手段は、硫黄成分の減少速度に代えて、硫黄成分の減少量を推定してもよい。また、硫黄被毒量推定手段は、硫黄成分の減少後に吸蔵還元型NOx触媒に
残留している硫黄成分の量を推定してもよい。さらに、硫黄被毒量推定手段は、硫黄成分の減少速度に代えて、硫黄成分の放出量を推定してもよい。
The sulfur poisoning amount estimation means may estimate the reduction amount of the sulfur component instead of the reduction rate of the sulfur component. The sulfur poisoning amount estimation means may estimate the amount of the sulfur component remaining in the NOx storage reduction catalyst after the sulfur component is reduced. Furthermore, the sulfur poisoning amount estimation means may estimate the release amount of the sulfur component instead of the decrease rate of the sulfur component.

そして、本発明においては、前記硫黄被毒量推定手段は、前記硫黄濃度検出手段により検出される硫黄成分の濃度が高いほど、前記吸蔵還元型NOx触媒に吸蔵されている硫黄
成分の減少速度を遅くすることができる。
In the present invention, the sulfur poisoning amount estimation means increases the decrease rate of the sulfur component stored in the NOx storage reduction catalyst as the concentration of the sulfur component detected by the sulfur concentration detection means increases. Can be late.

ここで、硫黄被毒回復時には、高温雰囲気にて還元剤が例えばPtに作用することにより吸蔵還元型NOx触媒からSOが放出され、このSOが還元剤によりSOに還元
されると推定される。そして、還元剤中の硫黄成分の濃度が高くなると、Pt周辺では硫黄成分の濃度が局所的に高くなり、SOの放出が阻害されると推定される。そのため、還元剤中の硫黄成分の濃度が高いほど、吸蔵還元型NOx触媒に吸蔵されている硫黄成分
の減少速度が遅くなると考えられる。この関係に基づいて吸蔵還元型NOx触媒に吸蔵さ
れている硫黄成分の量を推定することにより、硫黄成分の減少速度をより正確に推定することができる。
Here, when sulfur poisoning is recovered, it is estimated that SO 3 is released from the NOx storage reduction catalyst when the reducing agent acts on, for example, Pt in a high-temperature atmosphere, and this SO 3 is reduced to SO 2 by the reducing agent. Is done. When the concentration of the sulfur component in the reducing agent increases, the concentration of the sulfur component locally increases around Pt, and it is estimated that SO 3 release is inhibited. Therefore, it is considered that as the concentration of the sulfur component in the reducing agent is higher, the decreasing rate of the sulfur component stored in the NOx storage reduction catalyst becomes slower. By estimating the amount of the sulfur component stored in the NOx storage reduction catalyst based on this relationship, it is possible to estimate the reduction rate of the sulfur component more accurately.

本発明においては、前記硫黄被毒量推定手段は、硫黄被毒の回復が終了したときに前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を、前記硫黄濃度検出手段により検
出される硫黄成分の濃度が高いほど、多いと推定することができる。
In the present invention, the sulfur poisoning amount estimation means detects the amount of the sulfur component stored in the NOx storage reduction catalyst when the sulfur poisoning recovery is completed by the sulfur concentration detection means. It can be estimated that the higher the concentration of the sulfur component, the greater.

つまり還元剤中の硫黄成分の濃度が高くなると、吸蔵還元型NOx触媒から放出される
硫黄成分の量が少なくなるため、硫黄被毒回復が終了しても該NOx触媒に吸蔵されてい
る硫黄成分の量が多くなる。この関係に基づけば、還元剤中の硫黄成分の濃度に基づいて、硫黄被毒回復終了時に吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を推定する
ことができる。
In other words, when the concentration of the sulfur component in the reducing agent increases, the amount of sulfur component released from the NOx storage reduction catalyst decreases, so that the sulfur component stored in the NOx catalyst even after the recovery from sulfur poisoning is completed. The amount of increases. Based on this relationship, based on the concentration of the sulfur component in the reducing agent, the amount of the sulfur component stored in the NOx storage reduction catalyst at the end of the sulfur poisoning recovery can be estimated.

本発明においては、前記硫黄被毒回復手段は、前記吸蔵還元型NOx触媒に吸蔵されて
いる硫黄成分の量が閾値以下となるまで硫黄被毒を回復させ、
前記硫黄濃度検出手段により検出される硫黄成分の濃度が高いほど、前記閾値を大きくする閾値決定手段をさらに備えることができる。
In the present invention, the sulfur poisoning recovery means recovers sulfur poisoning until the amount of the sulfur component stored in the NOx storage reduction catalyst becomes a threshold value or less,
A threshold value determining means for increasing the threshold value as the concentration of the sulfur component detected by the sulfur concentration detecting means is higher can be further provided.

ここで硫黄被毒回復により、吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を0
まで減少させることは困難である。そのため、硫黄成分の吸蔵量が閾値以下まで減少した場合には、硫黄成分の放出が完了したとして硫黄被毒回復を終了させる。しかし、還元剤中の硫黄成分の濃度が高いと、吸蔵還元型NOx触媒に吸蔵されている硫黄成分の減少速
度が遅くなるため、閾値以下に減少するまでに時間がかかる。また、吸蔵還元型NOx触
媒に吸蔵されている硫黄成分の量が閾値以下に減少しないことも起こり得る。
Here, the amount of sulfur component stored in the NOx storage reduction catalyst is reduced to 0 by recovering sulfur poisoning.
It is difficult to reduce to Therefore, when the storage amount of the sulfur component is reduced to a threshold value or less, the recovery from sulfur poisoning is terminated by assuming that the release of the sulfur component is completed. However, if the concentration of the sulfur component in the reducing agent is high, the rate of reduction of the sulfur component stored in the NOx storage reduction catalyst becomes slow, so it takes time until the sulfur component decreases below the threshold value. It is also possible that the amount of the sulfur component stored in the NOx storage reduction catalyst does not decrease below the threshold value.

これに対し還元剤中の硫黄成分の濃度が高いほど、閾値を大きくすることにより、硫黄被毒回復が長期間行なわれることが抑制される。   On the other hand, as the concentration of the sulfur component in the reducing agent is higher, the sulfur poisoning recovery is suppressed for a long time by increasing the threshold value.

ここで、閾値を大きくすることにより、硫黄被毒回復終了後のNOx浄化率が低くなる
とも考えられる。しかし、還元剤として内燃機関の燃料を用いている場合には、燃料中の硫黄濃度も高くなることにより内燃機関から硫黄成分が多く排出されるため、硫黄被毒の進行が速い。つまり、硫黄被毒回復を長期間行なって硫黄成分の吸蔵量をより減少させたとしても、硫黄被毒の進行が早いので、硫黄被毒回復を短期間しか行なわないときの硫黄成分の吸蔵量に直ぐに達する。そのため、閾値を大きくしたとしてもNOxの浄化率に与
える影響は小さい。
Here, it can be considered that by increasing the threshold value, the NOx purification rate after completion of the sulfur poisoning recovery is lowered. However, when the fuel of the internal combustion engine is used as the reducing agent, the sulfur concentration in the fuel increases, so that a large amount of sulfur components are discharged from the internal combustion engine, so that the progress of sulfur poisoning is rapid. In other words, even if the sulfur poisoning recovery is carried out for a long time and the amount of occlusion of the sulfur component is further reduced, the sulfur poisoning progresses quickly. Reach quickly. Therefore, even if the threshold value is increased, the influence on the NOx purification rate is small.

また、閾値を大きくすると硫黄被毒回復が終了したときに吸蔵還元型NOx触媒に吸蔵
されている硫黄成分の量が多くなるが、硫黄被毒回復を行なう頻度を高くすることにより、NOxの浄化率の低下を抑制できる。
Further, when the threshold value is increased, the amount of sulfur component stored in the NOx storage reduction catalyst is increased when the recovery from sulfur poisoning is completed. However, by increasing the frequency of the sulfur poisoning recovery, NOx purification can be achieved. Reduction in rate can be suppressed.

ところで、硫黄被毒回復時に吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量が少
なくなるほど、硫黄成分の減少速度が遅くなる。そのため、硫黄成分の量が閾値近傍の場合には、硫黄被毒回復開始直後と比較して、同じ量の硫黄成分を放出させるために多くの還元剤が必要となる。しかし、前記したようにNOx浄化率はあまり高くならない。これ
に対し還元剤中の硫黄成分の濃度が高いほど、閾値を大きくすることにより、還元剤の消費量を減少させることができる。
By the way, as the amount of the sulfur component stored in the NOx storage reduction catalyst at the time of sulfur poisoning recovery decreases, the decrease rate of the sulfur component decreases. Therefore, when the amount of the sulfur component is close to the threshold value, a large amount of reducing agent is required to release the same amount of the sulfur component as compared to immediately after the start of the recovery from sulfur poisoning. However, as described above, the NOx purification rate is not so high. On the other hand, as the concentration of the sulfur component in the reducing agent is higher, the consumption of the reducing agent can be reduced by increasing the threshold value.

本発明においては、前記閾値決定手段は、前記吸蔵還元型NOx触媒におけるNOx浄化率が所定値以上となるように閾値の上限値を設けることができる。   In the present invention, the threshold value determining means can provide an upper limit value of the threshold value so that the NOx purification rate in the NOx storage reduction catalyst becomes a predetermined value or more.

ここで、閾値を大きくするほどNOx浄化率が低下する。つまり、閾値を大きくしすぎ
ると、NOx浄化率が例えば許容値よりも低くなる虞がある。これに対し、NOx浄化率が例えば許容値以上となるように閾値を決定する。つまり、閾値の上限値は、NOx浄化率
が許容範囲に収まる値とすることができる。
Here, the NOx purification rate decreases as the threshold value is increased. That is, if the threshold value is too large, the NOx purification rate may be lower than, for example, an allowable value. On the other hand, the threshold value is determined so that the NOx purification rate becomes, for example, an allowable value or more. That is, the upper limit value of the threshold value can be a value that allows the NOx purification rate to fall within an allowable range.

本発明においては、前記硫黄被毒回復手段は、前記吸蔵還元型NOx触媒に吸蔵されて
いる硫黄成分の量が硫黄被毒回復中に前記閾値以下にならない場合には、硫黄成分の減少速度を速くする処置を行なうことができる。
In the present invention, the sulfur poisoning recovery means, when the amount of the sulfur component stored in the NOx storage reduction catalyst does not fall below the threshold during the sulfur poisoning recovery, You can take action to speed up.

硫黄成分の減少速度を速くする処置とは、硫黄被毒回復時により多くの硫黄成分が放出される処置のことをいい、例えば吸蔵還元型NOx触媒の温度をより高くしたり、還元剤
の濃度をより高くしたりすることをいう。そして、硫黄成分の減少速度を速くする処置を行なうことにより、NOx浄化率が許容値よりも低くなることを抑制できる。
The treatment for increasing the reduction rate of the sulfur component refers to a treatment for releasing more sulfur component during recovery from sulfur poisoning. For example, the temperature of the NOx storage reduction catalyst is increased or the concentration of the reducing agent is increased. Or higher. And it can suppress that a NOx purification rate becomes lower than an allowable value by performing the treatment which makes the decrease rate of a sulfur component faster.

本発明によれば、吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を硫黄被毒回復
中であってもより正確に求めることができる。
According to the present invention, the amount of the sulfur component stored in the NOx storage reduction catalyst can be determined more accurately even during recovery from sulfur poisoning.

以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る内燃機関の排気浄化装置を適用する内燃機関1とその排気系の概略構成を示す図である。図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which an exhaust gas purification apparatus for an internal combustion engine according to this embodiment is applied and an exhaust system thereof. The internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine.

内燃機関1には、吸気通路2および排気通路3が接続されている。この吸気通路2の途中には、スロットル4が設けられている。このスロットル4は、電動アクチュエータにより開閉される。スロットル4よりも上流の吸気通路2には、該吸気通路2内を流通する吸気の流量に応じた信号を出力するエアフローメータ5が設けられている。このエアフローメータ5により、内燃機関1の吸入新気量が測定される。   An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1. A throttle 4 is provided in the middle of the intake passage 2. The throttle 4 is opened and closed by an electric actuator. An air flow meter 5 that outputs a signal corresponding to the flow rate of the intake air flowing through the intake passage 2 is provided in the intake passage 2 upstream of the throttle 4. The air flow meter 5 measures the amount of fresh intake air in the internal combustion engine 1.

一方、排気通路3の途中には、吸蔵還元型NOx触媒6(以下、NOx触媒6という。)が備えられている。NOx触媒6は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する機能を有する。   On the other hand, an NOx storage reduction catalyst 6 (hereinafter referred to as NOx catalyst 6) is provided in the middle of the exhaust passage 3. The NOx catalyst 6 has a function of storing NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reducing the stored NOx when the oxygen concentration of the inflowing exhaust gas is reduced and a reducing agent is present. Have.

さらに、本実施例では、NOx触媒6よりも上流の排気通路3を流通する排気中に還元
剤たる燃料(軽油)を添加する燃料添加弁7を備えている。ここで、燃料添加弁7は、後述するECU10からの信号により開弁して燃料を噴射する。そして、燃料添加弁7から排気通路3内へ噴射された燃料は、排気通路3の上流から流れてきた排気の空燃比をリッチにすると共に、該NOx触媒6に吸蔵されていたNOxを還元する。このNOx還元時に
は、NOx触媒6に流入する排気の空燃比を比較的に短い周期でスパイク的(短時間)に
リッチとする、所謂リッチスパイク制御を実行する。なお、本実施例では燃料添加弁7が、本発明における還元剤供給手段に相当する。
Further, in this embodiment, a fuel addition valve 7 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 3 upstream from the NOx catalyst 6 is provided. Here, the fuel addition valve 7 is opened by a signal from the ECU 10 described later to inject fuel. The fuel injected from the fuel addition valve 7 into the exhaust passage 3 enriches the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 3 and reduces the NOx stored in the NOx catalyst 6. . During this NOx reduction, so-called rich spike control is performed in which the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 6 is made rich in a spike-like (short-time) manner with a relatively short cycle. In this embodiment, the fuel addition valve 7 corresponds to the reducing agent supply means in the present invention.

また、NOx触媒6には燃料に含まれる硫黄成分もNOxと同様に吸蔵される。このように吸蔵された硫黄成分はNOxよりも放出され難く、NOx触媒6内に蓄積される。これを硫黄被毒という。この硫黄被毒によりNOx触媒6でのNOx浄化率が低下するため、適宜の時期に硫黄被毒から回復させる硫黄被毒回復を行なう必要がある。この硫黄被毒回復は、NOx触媒6を高温にし、且つ理論空燃比またはリッチ空燃比の排気をNOx触媒6に流通させて行われる。このときにも前記リッチスパイク制御が行われる。なお、本実施例では硫黄被毒回復を行なうECU10が、本発明における硫黄被毒回復手段に相当する。   Further, the NOx catalyst 6 also stores sulfur components contained in the fuel in the same manner as NOx. The sulfur component occluded in this way is less likely to be released than NOx and is accumulated in the NOx catalyst 6. This is called sulfur poisoning. Since the NOx purification rate in the NOx catalyst 6 decreases due to this sulfur poisoning, it is necessary to perform sulfur poisoning recovery to recover from sulfur poisoning at an appropriate time. This sulfur poisoning recovery is performed by raising the temperature of the NOx catalyst 6 and flowing exhaust gas having a stoichiometric air-fuel ratio or rich air-fuel ratio to the NOx catalyst 6. Also at this time, the rich spike control is performed. In this embodiment, the ECU 10 that recovers sulfur poisoning corresponds to the sulfur poisoning recovery means of the present invention.

そして、内燃機関1には、排気通路3内を流通する排気の一部を吸気通路2へ再循環させるEGR装置8が備えられている。このEGR装置8は、EGR通路81及びEGR弁82を備えて構成されている。   The internal combustion engine 1 is provided with an EGR device 8 that recirculates part of the exhaust gas flowing through the exhaust passage 3 to the intake passage 2. The EGR device 8 includes an EGR passage 81 and an EGR valve 82.

EGR通路81は、NOx触媒6よりも上流側の排気通路3と、スロットル4よりも下
流の吸気通路2と、を接続している。このEGR通路81を通って、排気が再循環される。また、EGR弁82は、EGR通路81の通路断面積を調整することにより、該EGR通路81を流れるEGRガスの量を調整する。
The EGR passage 81 connects the exhaust passage 3 upstream of the NOx catalyst 6 and the intake passage 2 downstream of the throttle 4. Exhaust gas is recirculated through the EGR passage 81. The EGR valve 82 adjusts the amount of EGR gas flowing through the EGR passage 81 by adjusting the passage sectional area of the EGR passage 81.

また、燃料が流通する燃料通路71には、燃料添加弁7から添加される燃料中の硫黄成分の濃度(硫黄成分の濃度を以下「硫黄濃度」という。)を検出する硫黄濃度検出装置72が備えられている。この硫黄濃度検出装置72は、例えばセンサにより硫黄濃度を測定する。また、燃料中の硫黄濃度を直接検出せずに、例えば給油される燃料中の硫黄濃度を予め求めておき、この値に基づいて硫黄濃度を算出してもよい。なお、本実施例では硫黄濃度検出装置72が、本発明における硫黄濃度検出手段に相当する。   Further, a sulfur concentration detection device 72 that detects the concentration of sulfur component in the fuel added from the fuel addition valve 7 (the concentration of sulfur component is hereinafter referred to as “sulfur concentration”) is provided in the fuel passage 71 through which the fuel flows. It is provided. The sulfur concentration detection device 72 measures the sulfur concentration with a sensor, for example. Further, instead of directly detecting the sulfur concentration in the fuel, for example, the sulfur concentration in the fuel to be supplied may be obtained in advance, and the sulfur concentration may be calculated based on this value. In this embodiment, the sulfur concentration detection device 72 corresponds to the sulfur concentration detection means in the present invention.

さらに、NOx触媒6よりも下流側の排気通路3には、該排気通路3を流通する排気の
温度を検出する排気温度センサ9が取り付けられている。この排気温度センサ9の出力信号に基づいてNOx触媒6の温度が検出される。
Further, an exhaust temperature sensor 9 for detecting the temperature of the exhaust gas flowing through the exhaust passage 3 is attached to the exhaust passage 3 downstream of the NOx catalyst 6. Based on the output signal of the exhaust temperature sensor 9, the temperature of the NOx catalyst 6 is detected.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 10 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU10には、エアフローメータ5及び排気温度センサ9、さらには硫黄濃度検出装置72が電気配線を介して接続され、該排気温度センサ9の出力信号が入力されるようになっている。一方、ECU10には、スロットル4、燃料添加弁7及びEGR弁82が電気配線を介して接続され、これらはECU10により制御される。   The ECU 10 is connected to the air flow meter 5 and the exhaust gas temperature sensor 9, and further to the sulfur concentration detection device 72 through an electrical wiring, and an output signal of the exhaust gas temperature sensor 9 is input thereto. On the other hand, the throttle 10, the fuel addition valve 7, and the EGR valve 82 are connected to the ECU 10 through electrical wiring, and these are controlled by the ECU 10.

そして本実施例では、NOx触媒6に吸蔵されている硫黄成分の量(以下、硫黄被毒量
ともいう。)が規定量以上となったときに前記硫黄被毒回復が行なわれる。なお、NOx
触媒6に吸蔵されている硫黄成分の量を以下「硫黄被毒量」ともいう。また、硫黄成分の量を単に「硫黄量」ともいう。ここで、硫黄被毒量を求めるために先ず、硫黄濃度検出装置72から得られる燃料中の硫黄濃度と、燃料消費量と、に基づいて、内燃機関1から排出される硫黄量を算出する。そして、この硫黄がNOx触媒6に吸蔵される割合を予め実
験等により求めておくことで、NOx触媒6に吸蔵される硫黄量を求めることができる。
この値を積算することで、硫黄被毒量を得ることができる。
In this embodiment, the sulfur poisoning recovery is performed when the amount of the sulfur component occluded in the NOx catalyst 6 (hereinafter also referred to as sulfur poisoning amount) exceeds a specified amount. NOx
Hereinafter, the amount of the sulfur component stored in the catalyst 6 is also referred to as “sulfur poisoning amount”. The amount of sulfur component is also simply referred to as “sulfur amount”. Here, in order to obtain the sulfur poisoning amount, first, the sulfur amount discharged from the internal combustion engine 1 is calculated based on the sulfur concentration in the fuel obtained from the sulfur concentration detecting device 72 and the fuel consumption amount. Then, the amount of sulfur stored in the NOx catalyst 6 can be determined by obtaining the ratio of this sulfur stored in the NOx catalyst 6 in advance through experiments or the like.
By integrating this value, the sulfur poisoning amount can be obtained.

硫黄被毒回復を行なうときの硫黄被毒量の閾値となる規定量は、NOx浄化率を考慮し
て予め設定しておく。
The prescribed amount that is the threshold for the sulfur poisoning amount when performing sulfur poisoning recovery is set in advance in consideration of the NOx purification rate.

また、硫黄被毒回復中にも硫黄被毒量が算出される。つまり、硫黄被毒回復により放出された硫黄量分だけ硫黄被毒量が減じられる。硫黄成分の放出速度は従来、NOx触媒6
の硫黄被毒量、NOx触媒6または排気の温度、排気の流量、空燃比がリッチとされてい
る時間、空燃比がリッチとされているときのリッチの度合い等に基づいて算出されていた。本実施例では、さらに燃料添加弁7から添加される燃料中の硫黄濃度に基づいて硫黄成分の放出速度を求める。なお、「硫黄成分の放出速度」は、「硫黄被毒量の減少速度」に置き換えてもよい。
Further, the sulfur poisoning amount is calculated even during the sulfur poisoning recovery. That is, the sulfur poisoning amount is reduced by the amount of sulfur released by the sulfur poisoning recovery. Conventionally, the release rate of sulfur component is NOx catalyst 6
This is calculated based on the sulfur poisoning amount of NO, the temperature of the NOx catalyst 6 or the exhaust, the flow rate of the exhaust, the time when the air-fuel ratio is rich, the degree of rich when the air-fuel ratio is rich, and the like. In this embodiment, the release rate of the sulfur component is further determined based on the concentration of sulfur in the fuel added from the fuel addition valve 7. The “sulfur component release rate” may be replaced with “a reduction rate of the sulfur poisoning amount”.

図2は、硫黄被毒量と硫黄成分の放出速度と燃料中の硫黄濃度との関係を示した図である。実線は破線と比較して燃料中の硫黄濃度が高い。硫黄成分の放出速度とは、単位時間当たりに放出される硫黄量のことを指している。硫黄被毒量が多いほど硫黄成分の放出速度が速くなる。そして、燃料中の硫黄濃度が高くなるほど、硫黄成分の放出速度が遅くな
る。
FIG. 2 is a graph showing the relationship between the sulfur poisoning amount, the release rate of the sulfur component, and the sulfur concentration in the fuel. The solid line has a higher sulfur concentration in the fuel than the broken line. The release rate of the sulfur component refers to the amount of sulfur released per unit time. The greater the sulfur poisoning amount, the faster the release rate of the sulfur component. The higher the sulfur concentration in the fuel, the slower the release rate of the sulfur component.

そして、図3は、硫黄被毒回復を開始してからの経過時間と硫黄被毒量と燃料中の硫黄濃度との関係を示した図である。実線は破線と比較して燃料中の硫黄濃度が高い。つまり、硫黄被毒回復が開始されてからの硫黄被毒量の減少量は、燃料中の硫黄濃度が高いほど、小さくなる。そのため、燃料中の硫黄濃度が低いほど、より早く硫黄被毒回復が完了する。   FIG. 3 is a diagram showing the relationship between the elapsed time from the start of recovery from sulfur poisoning, the amount of sulfur poisoning, and the sulfur concentration in the fuel. The solid line has a higher sulfur concentration in the fuel than the broken line. That is, the amount of decrease in the sulfur poisoning amount after the start of recovery from sulfur poisoning becomes smaller as the sulfur concentration in the fuel is higher. Therefore, the lower the sulfur concentration in the fuel, the faster the sulfur poisoning recovery is completed.

図3の関係を燃料中の硫黄濃度毎に実験等により求めておけば、硫黄濃度検出装置72により得られる硫黄濃度と、硫黄被毒回復が開始されてからの経過時間と、に基づいて、現時点での硫黄被毒量を得ることができる。なお、図3では実線と破線との2通りしか記載していないが、この数は増やすことができる。また、2通りの値を実験等により求め、これらの値から他の硫黄濃度のときの値を推定してもよい。なお、本実施例ではこのように硫黄被毒量を求めるECU10が、本発明における硫黄被毒量推定手段に相当する。   If the relationship of FIG. 3 is obtained by experiment or the like for each sulfur concentration in the fuel, based on the sulfur concentration obtained by the sulfur concentration detector 72 and the elapsed time since the start of sulfur poisoning recovery, The amount of sulfur poisoning at the present time can be obtained. In FIG. 3, only two types of solid lines and broken lines are shown, but this number can be increased. Further, two values may be obtained by experiments or the like, and values at other sulfur concentrations may be estimated from these values. In this embodiment, the ECU 10 for determining the sulfur poisoning amount corresponds to the sulfur poisoning amount estimating means in the present invention.

また、本実施例では、硫黄被毒回復が終了したときのNOx触媒6の硫黄被毒量を、燃
料添加弁7から添加される燃料中の硫黄濃度に応じて求める。つまり、図3を参照すれば分かるように、燃料中の硫黄濃度が高いほど、硫黄被毒量が減少し難くなる。そして、NOx触媒6に吸蔵されている硫黄成分を全て放出させるのは困難であるため、NOx触媒6にある程度の硫黄成分が残留している状態で硫黄被毒回復が終了される。
Further, in this embodiment, the sulfur poisoning amount of the NOx catalyst 6 when the sulfur poisoning recovery is completed is obtained according to the sulfur concentration in the fuel added from the fuel addition valve 7. That is, as can be seen with reference to FIG. 3, the higher the sulfur concentration in the fuel, the more difficult it is to reduce the sulfur poisoning amount. Since it is difficult to release all the sulfur components stored in the NOx catalyst 6, the sulfur poisoning recovery is completed with some sulfur components remaining in the NOx catalyst 6.

そのため、本実施例では、燃料添加弁7から添加される燃料中の硫黄濃度が高いほど、硫黄被毒回復終了時にNOx触媒6に残留している硫黄成分の量が多いと推定する。硫黄
濃度と、残留している硫黄成分の量と、の関係は予め実験等により求めることができる。
Therefore, in the present embodiment, it is estimated that the higher the sulfur concentration in the fuel added from the fuel addition valve 7, the more sulfur component remains in the NOx catalyst 6 at the end of the sulfur poisoning recovery. The relationship between the sulfur concentration and the amount of remaining sulfur component can be obtained in advance by experiments or the like.

以上説明したように本実施例によれば、硫黄被毒回復中の硫黄被毒量の減少速度を燃料中の硫黄濃度に基づいて求めるため、硫黄被毒回復中および硫黄被毒回復終了時の硫黄被毒量をより正確に推定することができる。   As described above, according to the present embodiment, the reduction rate of the sulfur poisoning amount during the recovery of sulfur poisoning is obtained based on the sulfur concentration in the fuel. Therefore, during the sulfur poisoning recovery and at the end of the sulfur poisoning recovery, The amount of sulfur poisoning can be estimated more accurately.

また、硫黄被毒回復終了時にNOx触媒6に残留している硫黄成分の量を燃料中の硫黄
濃度に基づいて求めるため、その後の硫黄被毒量の算出精度をより高かめることができる。
Further, since the amount of the sulfur component remaining in the NOx catalyst 6 at the end of the recovery from the sulfur poisoning is obtained based on the sulfur concentration in the fuel, the subsequent calculation accuracy of the sulfur poisoning amount can be further increased.

本実施例では、硫黄被毒回復終了の判断に用いられる硫黄被毒量の閾値を、燃料中の硫黄濃度に基づいて変更する。その他の装置等については実施例1と同じため説明を省略する。なお、「硫黄被毒回復終了の判断に用いられる硫黄被毒量の閾値」を以下「終了閾値」という。   In the present embodiment, the threshold of the sulfur poisoning amount used for determining the end of sulfur poisoning recovery is changed based on the sulfur concentration in the fuel. Since other devices are the same as those in the first embodiment, the description thereof is omitted. Note that the “threshold for sulfur poisoning used to determine the end of recovery from sulfur poisoning” is hereinafter referred to as “end threshold”.

図4は、硫黄被毒回復を開始してからの経過時間と硫黄被毒量と燃料中の硫黄濃度との関係を示した図である。実線は破線と比較して燃料中の硫黄濃度が高い。   FIG. 4 is a diagram showing the relationship between the elapsed time since the start of recovery from sulfur poisoning, the amount of sulfur poisoning, and the sulfur concentration in the fuel. The solid line has a higher sulfur concentration in the fuel than the broken line.

硫黄被毒量がAで示される値になるまでにかかる時間は、燃料中の硫黄濃度が低いときにはXで示され、燃料中の硫黄濃度が高いときにはYで示される。つまり、硫黄濃度が高いときには、低いときと比較して、YとXとの差の時間だけ長く硫黄被毒回復が行なわれることになる。この差の分だけ燃費が悪化し、またNOx触媒6の熱劣化が進行すること
になる。
The time taken for the sulfur poisoning amount to reach the value indicated by A is indicated by X when the sulfur concentration in the fuel is low, and indicated by Y when the sulfur concentration in the fuel is high. That is, when the sulfur concentration is high, sulfur poisoning recovery is performed longer than the time when the sulfur concentration is low by the time of the difference between Y and X. The fuel consumption deteriorates by this difference, and the thermal deterioration of the NOx catalyst 6 proceeds.

ここで、燃料中の硫黄濃度が高くなると、硫黄成分の放出速度が遅くなるため、終了閾値が小さすぎると硫黄被毒回復が完了するまでに時間がかかったり、または硫黄被毒回復
が完了しなかったりする。
Here, if the sulfur concentration in the fuel increases, the release rate of the sulfur component decreases, so if the end threshold is too small, it takes time to complete the sulfur poisoning recovery or the sulfur poisoning recovery is completed. There is not.

一方、図4を参照すれば分かるように、硫黄被毒回復を開始してからある程度の時間が経過すると、硫黄被毒量の減少量が少なくなるため、硫黄被毒回復を長時間行なってもNOx浄化率はあまり高くならない。   On the other hand, as can be seen with reference to FIG. 4, when a certain amount of time has elapsed since the start of the recovery from sulfur poisoning, the amount of decrease in the sulfur poisoning amount decreases. The NOx purification rate is not so high.

そこで、本実施例では、燃料添加弁7から添加される燃料中の硫黄濃度が高いほど、終了閾値を大きくする。つまり、図4において、燃料中の硫黄濃度が高いときには終了閾値をBで示される値とすることで、硫黄被毒量がBで示される値となったときに硫黄被毒回復を終了させる。これにより、Zで示される時間で硫黄被毒が終了する。つまり、硫黄被毒回復が長期間行なわれることが抑制される。なお、本実施例では燃料中の硫黄濃度が高いほど終了閾値を大きくするECU10が、本発明における閾値決定手段に相当する。   Therefore, in this embodiment, the higher the concentration of sulfur in the fuel added from the fuel addition valve 7, the larger the end threshold value. That is, in FIG. 4, when the sulfur concentration in the fuel is high, the end threshold value is set to a value indicated by B, so that the sulfur poisoning recovery is ended when the sulfur poisoning amount reaches the value indicated by B. Thereby, sulfur poisoning is completed at the time indicated by Z. That is, it is suppressed that sulfur poisoning recovery is performed for a long time. In this embodiment, the ECU 10 that increases the end threshold value as the sulfur concentration in the fuel is higher corresponds to the threshold value determining means in the present invention.

ところで、終了閾値を大きくすることにより、硫黄被毒回復終了直後のNOx浄化率が
より低くなる。しかし、硫黄被毒回復を長期間行なったとしても、燃料中の硫黄濃度が高いときには、内燃機関1から硫黄成分が多く排出されるため、直ぐに硫黄被毒が進行する。そのため、終了閾値を大きくしても、NOx浄化率の低下による影響は小さくなる。
By the way, by increasing the end threshold value, the NOx purification rate immediately after the end of the recovery from sulfur poisoning becomes lower. However, even if the sulfur poisoning recovery is performed for a long period of time, when the sulfur concentration in the fuel is high, a large amount of sulfur components are discharged from the internal combustion engine 1, so that sulfur poisoning proceeds immediately. Therefore, even if the end threshold value is increased, the influence due to the decrease in the NOx purification rate is reduced.

ここで、終了閾値を大きくしすぎると、NOx浄化率が許容範囲外となる虞があるため
、該終了閾値に上限を設ける。この上限は、NOx浄化率が許容範囲内となるように設定
される。
Here, if the end threshold value is too large, the NOx purification rate may fall outside the allowable range, so an upper limit is set for the end threshold value. This upper limit is set so that the NOx purification rate falls within the allowable range.

以上説明したように本実施例によれば、硫黄被毒回復が行なわれる時間を短縮することができるため、燃費の悪化を抑制したり、NOx触媒6の熱劣化の進行を抑制したりする
ことができる。
As described above, according to the present embodiment, the time during which sulfur poisoning recovery is performed can be shortened, so that deterioration of fuel consumption can be suppressed or the progress of thermal deterioration of the NOx catalyst 6 can be suppressed. Can do.

また、硫黄被毒回復終了の判断に用いられる硫黄被毒量の閾値に上限を設けることにより、NOx浄化率が許容範囲よりも低下することを抑制できる。   In addition, by setting an upper limit for the threshold of the sulfur poisoning amount used for determining the end of sulfur poisoning recovery, it is possible to suppress the NOx purification rate from falling below the allowable range.

本実施例では、実施例2で説明した硫黄被毒回復を行なったときであって、硫黄被毒量が閾値まで減少しない場合に硫黄被毒回復をより促進させるための処置を行なう。その他の装置等については実施例1と同じため説明を省略する。   In this embodiment, when the sulfur poisoning recovery described in the second embodiment is performed, when the sulfur poisoning amount does not decrease to the threshold value, a treatment for further promoting the sulfur poisoning recovery is performed. Since other devices are the same as those in the first embodiment, the description thereof is omitted.

ここで、燃料添加弁7から添加される燃料中の硫黄濃度が高くなりすぎると、終了閾値まで硫黄被毒量を減少させることができなくなる。   Here, if the sulfur concentration in the fuel added from the fuel addition valve 7 becomes too high, the sulfur poisoning amount cannot be reduced to the end threshold value.

このような場合には、例えば硫黄被毒回復中にNOx触媒6の目標温度をより高くした
り、単位時間あたりの燃料添加量を多くすることにより空燃比をより低くしたりする。このようにすることで、硫黄被毒量の減少速度を速くすることができるため、硫黄被毒量がより速やかに閾値に達する。そのため、必要となるNOx浄化率を確保することができる
In such a case, for example, during recovery from sulfur poisoning, the target temperature of the NOx catalyst 6 is increased, or the air-fuel ratio is decreased by increasing the amount of fuel added per unit time. By doing in this way, since the reduction rate of sulfur poisoning amount can be made faster, sulfur poisoning amount reaches a threshold more rapidly. Therefore, the required NOx purification rate can be ensured.

図5は、硫黄被毒量の推移を示したタイムチャートである。実線は本実施例による処置を行なう場合を示し、破線は本実施例よる処置を行なわない場合を示している。このときに添加されている燃料中の硫黄濃度は比較的高い。   FIG. 5 is a time chart showing the transition of the sulfur poisoning amount. A solid line indicates a case where the treatment according to the present embodiment is performed, and a broken line indicates a case where the treatment according to the present embodiment is not performed. The sulfur concentration in the fuel added at this time is relatively high.

そして、Sで示した時間において、硫黄被毒量が終了閾値以下にならないと判断され、且つ硫黄被毒回復をより促進させるための処理が開始されている。   Then, in the time indicated by S, it is determined that the sulfur poisoning amount does not become the end threshold value or less, and a process for further promoting the sulfur poisoning recovery is started.

以上説明したように本実施例によれば、燃料中の硫黄濃度が非常に高い場合であっても、硫黄被毒回復終了後のNOx浄化率を許容範囲内に収めることができる。   As described above, according to this embodiment, even when the sulfur concentration in the fuel is very high, the NOx purification rate after completion of the sulfur poisoning recovery can be kept within the allowable range.

実施例に係る内燃機関の排気浄化装置を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine which applies the exhaust gas purification apparatus of the internal combustion engine which concerns on an Example, and its exhaust system. 硫黄被毒量と硫黄成分の放出速度と燃料中の硫黄濃度との関係を示した図である。It is the figure which showed the relationship between the sulfur poisoning amount, the discharge | release rate of a sulfur component, and the sulfur concentration in a fuel. 硫黄被毒回復を開始してからの経過時間と硫黄被毒量と燃料中の硫黄濃度との関係を示した図である。It is the figure which showed the relationship between the elapsed time after starting sulfur poisoning recovery | restoration, the amount of sulfur poisoning, and the sulfur concentration in a fuel. 硫黄被毒回復を開始してからの経過時間と硫黄被毒量と燃料中の硫黄濃度との関係を示した図である。It is the figure which showed the relationship between the elapsed time after starting sulfur poisoning recovery | restoration, the amount of sulfur poisoning, and the sulfur concentration in a fuel. 硫黄被毒量の推移を示したタイムチャートである。It is a time chart which showed transition of sulfur poisoning amount.

符号の説明Explanation of symbols

1 内燃機関
2 吸気通路
3 排気通路
4 スロットル
5 エアフローメータ
6 吸蔵還元型NOx触媒
7 燃料添加弁
8 EGR装置
9 排気温度センサ
10 ECU
71 燃料通路
72 硫黄濃度検出装置
81 EGR通路
82 EGR弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake passage 3 Exhaust passage 4 Throttle 5 Air flow meter 6 Occlusion reduction type NOx catalyst 7 Fuel addition valve 8 EGR device 9 Exhaust temperature sensor 10 ECU
71 Fuel passage 72 Sulfur concentration detection device 81 EGR passage 82 EGR valve

Claims (6)

排気中のNOxを吸蔵し、還元剤の存在下でNOxを還元する吸蔵還元型NOx触媒と、
前記吸蔵還元型NOx触媒よりも上流の排気通路へ還元剤を供給する還元剤供給手段と

前記還元剤供給手段から還元剤を供給させることにより前記吸蔵還元型NOx触媒の硫
黄被毒を回復させる硫黄被毒回復手段と、
前記還元剤供給手段により供給される還元剤中の硫黄成分の濃度を検出する硫黄濃度検出手段と、
前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量を推定する手段であって、前
記吸蔵還元型NOx触媒の硫黄被毒を回復しているときの前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の減少速度を、前記還元剤中の硫黄成分の濃度に応じて推定する硫黄被毒量推定手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
A NOx storage reduction catalyst that stores NOx in the exhaust and reduces NOx in the presence of a reducing agent;
Reducing agent supply means for supplying a reducing agent to the exhaust passage upstream of the NOx storage reduction catalyst;
Sulfur poisoning recovery means for recovering sulfur poisoning of the NOx storage reduction catalyst by supplying a reducing agent from the reducing agent supply means;
A sulfur concentration detection means for detecting the concentration of the sulfur component in the reducing agent supplied by the reducing agent supply means;
A means for estimating the amount of sulfur component stored in the NOx storage reduction catalyst, and is stored in the NOx storage reduction catalyst when the poisoning of the NOx storage reduction catalyst is restored. A sulfur poisoning amount estimation means for estimating a reduction rate of the sulfur component in accordance with the concentration of the sulfur component in the reducing agent;
An exhaust emission control device for an internal combustion engine, comprising:
前記硫黄被毒量推定手段は、前記硫黄濃度検出手段により検出される硫黄成分の濃度が高いほど、前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の減少速度を遅くするこ
とを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The sulfur poisoning amount estimation means slows down the reduction rate of the sulfur component stored in the NOx storage reduction catalyst as the concentration of the sulfur component detected by the sulfur concentration detection means is higher. The exhaust emission control device for an internal combustion engine according to claim 1.
前記硫黄被毒量推定手段は、硫黄被毒の回復が終了したときに前記吸蔵還元型NOx触
媒に吸蔵されている硫黄成分の量を、前記硫黄濃度検出手段により検出される硫黄成分の濃度が高いほど、多いと推定することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The sulfur poisoning amount estimation means determines the amount of sulfur component stored in the NOx storage reduction catalyst when the recovery of sulfur poisoning is completed, and the concentration of the sulfur component detected by the sulfur concentration detection means. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the higher the value, the higher the number.
前記硫黄被毒回復手段は、前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量が
閾値以下となるまで硫黄被毒を回復させ、
前記硫黄濃度検出手段により検出される硫黄成分の濃度が高いほど、前記閾値を大きくする閾値決定手段をさらに備えることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The sulfur poisoning recovery means recovers sulfur poisoning until the amount of the sulfur component stored in the NOx storage reduction catalyst falls below a threshold value,
The exhaust gas purification apparatus for an internal combustion engine according to claim 1, further comprising a threshold value determination unit that increases the threshold value as the concentration of the sulfur component detected by the sulfur concentration detection unit is higher.
前記閾値決定手段は、前記吸蔵還元型NOx触媒におけるNOx浄化率が所定値以上となるように閾値の上限値を設けることを特徴とする請求項4に記載の内燃機関の排気浄化装置。   The exhaust gas purifying apparatus for an internal combustion engine according to claim 4, wherein the threshold value determining means provides an upper limit value of the threshold value so that the NOx purification rate in the NOx storage reduction catalyst is equal to or greater than a predetermined value. 前記硫黄被毒回復手段は、前記吸蔵還元型NOx触媒に吸蔵されている硫黄成分の量が
硫黄被毒回復中に前記閾値以下にならない場合には、硫黄成分の減少速度を速くする処置を行なうことを特徴とする請求項4または5に記載の内燃機関の排気浄化装置。
The sulfur poisoning recovery means performs a process of increasing the reduction rate of the sulfur component when the amount of the sulfur component stored in the NOx storage reduction catalyst does not fall below the threshold during the sulfur poisoning recovery. 6. An exhaust emission control device for an internal combustion engine according to claim 4, wherein the exhaust gas purification device is an internal combustion engine.
JP2007109245A 2007-04-18 2007-04-18 Exhaust emission control device of internal combustion engine Pending JP2008267213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109245A JP2008267213A (en) 2007-04-18 2007-04-18 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109245A JP2008267213A (en) 2007-04-18 2007-04-18 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008267213A true JP2008267213A (en) 2008-11-06

Family

ID=40047042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109245A Pending JP2008267213A (en) 2007-04-18 2007-04-18 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008267213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116535A1 (en) * 2009-04-06 2010-10-14 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2011125257A1 (en) * 2010-04-07 2011-10-13 Udトラックス株式会社 Exhaust purification device for engine
JP2012117509A (en) * 2010-12-02 2012-06-21 Hyundai Motor Co Ltd METHOD FOR PREDICTING SOx STORED IN NITROGEN OXIDE REDUCING CATALYST, AND EXHAUST SYSTEM USING THE SAME
US9133746B2 (en) 2010-12-02 2015-09-15 Hyundai Motor Company Method for predicting NOx loading at DeNOx catalyst and exhaust system using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254052A (en) * 2002-03-01 2003-09-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254052A (en) * 2002-03-01 2003-09-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116535A1 (en) * 2009-04-06 2010-10-14 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP5163809B2 (en) * 2009-04-06 2013-03-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2011125257A1 (en) * 2010-04-07 2011-10-13 Udトラックス株式会社 Exhaust purification device for engine
JP2011220158A (en) * 2010-04-07 2011-11-04 Ud Trucks Corp Exhaust emission control device for engine
US20130025262A1 (en) * 2010-04-07 2013-01-31 Masakazu Yano Exhaust purification apparatus for engine
US8850799B2 (en) 2010-04-07 2014-10-07 Ud Trucks Corporation Exhaust purification apparatus for engine
JP2012117509A (en) * 2010-12-02 2012-06-21 Hyundai Motor Co Ltd METHOD FOR PREDICTING SOx STORED IN NITROGEN OXIDE REDUCING CATALYST, AND EXHAUST SYSTEM USING THE SAME
US9133746B2 (en) 2010-12-02 2015-09-15 Hyundai Motor Company Method for predicting NOx loading at DeNOx catalyst and exhaust system using the same

Similar Documents

Publication Publication Date Title
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
JP2008267213A (en) Exhaust emission control device of internal combustion engine
JP2009013842A (en) Exhaust emission control device for engine
JP2008095603A (en) Exhaust emission control device for internal combustion engine
JP3649130B2 (en) Exhaust gas purification device for internal combustion engine
JP2006233943A (en) Air fuel ratio control device for internal combustion engine
JP4259361B2 (en) Exhaust gas purification device for internal combustion engine
JP2009209781A (en) Deterioration determination device of exhaust emission control catalyst for vehicle
JP4506279B2 (en) Exhaust gas purification device for internal combustion engine
JP2008025467A (en) Exhaust emission control system for internal combustion engine
JP2008069728A (en) Exhaust emission control device of internal combustion engine
JP4529967B2 (en) Exhaust gas purification system for internal combustion engine
JP2008064063A (en) Exhaust emission control device of internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP4775201B2 (en) Exhaust gas purification system for internal combustion engine
JP5673797B2 (en) Catalyst deterioration judgment system
JP2008095545A (en) Exhaust emission control device for internal combustion engine
JP4765992B2 (en) Exhaust gas purification device for internal combustion engine
JP2008121571A (en) Exhaust emission control system of internal combustion engine
JP5724839B2 (en) Catalyst deterioration judgment system
JP2007224750A (en) Sulfur poisoning recovery control device
JP2012233419A (en) Determination system of catalyst degradation
JP5601285B2 (en) Catalyst deterioration judgment system
JP2007285156A (en) Exhaust emission control device of internal combustion engine
JP2005226490A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004