JP2008265108A - Fiber-reinforced plastic - Google Patents

Fiber-reinforced plastic Download PDF

Info

Publication number
JP2008265108A
JP2008265108A JP2007109754A JP2007109754A JP2008265108A JP 2008265108 A JP2008265108 A JP 2008265108A JP 2007109754 A JP2007109754 A JP 2007109754A JP 2007109754 A JP2007109754 A JP 2007109754A JP 2008265108 A JP2008265108 A JP 2008265108A
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
reinforcing
reinforcing fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007109754A
Other languages
Japanese (ja)
Other versions
JP5023785B2 (en
Inventor
Yasushi Kageyama
裕史 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007109754A priority Critical patent/JP5023785B2/en
Publication of JP2008265108A publication Critical patent/JP2008265108A/en
Application granted granted Critical
Publication of JP5023785B2 publication Critical patent/JP5023785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic which shows a smooth surface without undermining the advantages such as productivity and lightening of the fiber-reinforced plastic. <P>SOLUTION: This fiber-reinforced plastic 10 comprises a reinforcing fiber fabric 20 formed of a bundle 21 of piled reinforcing fibers and an impregnation resin 30 therein. The surface layer part 11 of the fiber-reinforced plastic 10 is made up of reinforcing fibers 40 flexed to the spring-like resilient shape and the impregnation resin 30 therein. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、強化繊維束に樹脂を含浸した繊維強化プラスチックに係り、該繊維強化プラスチックの表面がより平滑化された繊維強化プラスチックに関する。   The present invention relates to a fiber reinforced plastic in which a reinforcing fiber bundle is impregnated with a resin, and relates to a fiber reinforced plastic in which the surface of the fiber reinforced plastic is further smoothed.

従来から、強化繊維とマトリクス樹脂(樹脂)からなる繊維強化プラスチック(FRP)は、金属材に比べて軽量であり、かつ、強化繊維を含まないプラスチックに比べて機械的強度及び弾性率が高い。このような特性を有することから、繊維強化プラスチックは、航空機、自動車、鉄道車両、船舶などの多くの分野で利用されている。   Conventionally, fiber reinforced plastics (FRP) made of reinforced fibers and matrix resin (resin) are lighter than metal materials and have higher mechanical strength and elastic modulus than plastics that do not contain reinforced fibers. Because of such properties, fiber reinforced plastics are used in many fields such as aircraft, automobiles, railway vehicles, and ships.

このような繊維強化プラスチックは、例えば、RTM(レジントランスファーモールディング)法により製造されている。該製造方法では、平滑な成形面を有した成形型のキャビティ内に、例えば強化繊維束からなる強化繊維織物を配置し、キャビティ内に加熱した樹脂を注入し強化繊維織物に含浸させ、含浸後の加熱した樹脂を冷却し、その後脱型することにより、繊維強化プラスチックを製造している。   Such a fiber reinforced plastic is manufactured by, for example, an RTM (resin transfer molding) method. In the manufacturing method, a reinforcing fiber fabric made of, for example, a reinforcing fiber bundle is placed in a cavity of a mold having a smooth molding surface, a heated resin is injected into the cavity, and the reinforcing fiber fabric is impregnated. The heated resin is cooled and then demolded to produce a fiber reinforced plastic.

しかし、強化繊維の熱膨張係数は樹脂よりも小さいため、冷却時の熱収縮は、繊維強化プラスチックのうち樹脂含有率の高い部分に大きい。特に、図4に示すように、強化繊維束71が強化繊維織物である場合には、織目の格子領域などの強化繊維束71間の空間73は、強化繊維の割合が低く、樹脂60の含有率が高いため熱収縮が他の部分に比べて大きい。この結果として、繊維強化プラスチック70の表面75には、樹脂のひけにより、強化繊維束71の織目又は配列の周期に合わせて規則的な凹み75aが生じることになる。このようなことから、成形型80の繊維強化プラスチック70の表面75aを成形する成形面80aがたとえ平滑であっても、繊維強化プラスチック70の表面75は平滑な表面とはならず、繊維強化プラスチック70の美観を損なうことがあった。このような場合、繊維強化プラスチック70の表面75に塗装を施したとしても、繊維強化プラスチック70の表面の凹凸を平滑にすることは難しい。よって、意匠性を有した繊維強化プラスチック70を得るためには、その凹凸のある表面75を研磨する必要があり、繊維強化プラスチック70の生産性を低下させる要因となっていた。   However, since the thermal expansion coefficient of the reinforcing fiber is smaller than that of the resin, the thermal shrinkage at the time of cooling is large in the portion of the fiber reinforced plastic having a high resin content. In particular, as shown in FIG. 4, when the reinforcing fiber bundle 71 is a reinforcing fiber fabric, the space 73 between the reinforcing fiber bundles 71 such as a lattice region of the weave has a low ratio of reinforcing fibers, and the resin 60 Since the content is high, the heat shrinkage is large compared to other parts. As a result, regular depressions 75a are generated on the surface 75 of the fiber reinforced plastic 70 in accordance with the texture or arrangement period of the reinforcing fiber bundle 71 due to resin sink marks. For this reason, even if the molding surface 80a for molding the surface 75a of the fiber reinforced plastic 70 of the mold 80 is smooth, the surface 75 of the fiber reinforced plastic 70 is not a smooth surface. 70 aesthetics could be spoiled. In such a case, even if the surface 75 of the fiber reinforced plastic 70 is coated, it is difficult to smooth the unevenness of the surface of the fiber reinforced plastic 70. Therefore, in order to obtain the fiber reinforced plastic 70 having design properties, it is necessary to polish the uneven surface 75, which is a factor of reducing the productivity of the fiber reinforced plastic 70.

このような問題を鑑みて、例えば、ゲルコートを用いて繊維強化プラスチックを製造する方法が提案されている(たとえば、特許文献1参照)。具体的には、該方法では、液状の樹脂組成物(ゲルコート)を、成形型の平滑面に所定の厚さになるよう塗布し硬化させ、樹脂層を形成後、RTM法により繊維強化プラスチックの製造を行う。このようにして、繊維強化プラスチックの表面にゲルコートによる樹脂層を形成することにより、強化繊維束の間において局所的な凹みが抑制され、繊維強化プラスチックの表面は平滑になる。   In view of such a problem, for example, a method of manufacturing a fiber reinforced plastic using a gel coat has been proposed (for example, see Patent Document 1). Specifically, in this method, a liquid resin composition (gel coat) is applied to a smooth surface of a mold so as to have a predetermined thickness and cured to form a resin layer. Manufacture. Thus, by forming the resin layer by the gel coat on the surface of the fiber reinforced plastic, local dents between the reinforced fiber bundles are suppressed, and the surface of the fiber reinforced plastic becomes smooth.

また、別の方法として、例えば、成形型に強化繊維束からなる強化繊維織物を配置する際に、繊維強化プラスチックの表層に相当する強化繊維織物の表面に、炭酸カルシウム粒子、アルミナ粒子など粉体(いわゆる低収縮化剤)を配置する方法が提案されている(たとえば、特許文献2参照)。該方法によれば、強化繊維束間に形成される空間にも前記粉末を配置することができるので、樹脂の樹脂含有率を低減することにより樹脂の収縮を抑え、格子領域の局所的な凹みを抑制することができる。   Further, as another method, for example, when a reinforcing fiber fabric made of reinforcing fiber bundles is arranged in a mold, powder such as calcium carbonate particles or alumina particles is formed on the surface of the reinforcing fiber fabric corresponding to the surface layer of the fiber reinforced plastic. A method of arranging (a so-called low shrinkage agent) has been proposed (see, for example, Patent Document 2). According to the method, since the powder can be arranged also in the space formed between the reinforcing fiber bundles, the resin content of the resin is reduced, thereby suppressing the shrinkage of the resin, and the local depressions in the lattice region. Can be suppressed.

さらに、別の方法としては、繊維強化プラスチックの表層部に相当する部位に、ガラス繊維、炭素繊維、または有機繊維などの不織布を配置する方法も提案されている。該方法によれば、強化繊維束間に形成される空間にも不織布の一部の繊維が配置されるので、該空間における樹脂の収縮を低減し、繊維強化プラスチックの表面の局所的な凹みを低減することができる。   Furthermore, as another method, a method of arranging a nonwoven fabric such as glass fiber, carbon fiber, or organic fiber in a portion corresponding to the surface layer portion of the fiber reinforced plastic has been proposed. According to this method, since some fibers of the nonwoven fabric are also arranged in the space formed between the reinforcing fiber bundles, the shrinkage of the resin in the space is reduced, and the local dent on the surface of the fiber reinforced plastic is reduced. Can be reduced.

特開2003−048263号公報JP 2003-048263 A 特開2005−336218号公報JP 2005-336218 A

しかし、特許文献1に記載のように、ゲルコートにより、繊維強化プラスチックを製造する場合には、ゲルコートの塗布、硬化に通常数十分から数時間を要する。この結果、繊維強化プラスチックの表面を研磨し、表面凹凸を小さくする方法と比較して、成形時間短縮の効果はほとんどないものであり、繊維強化プラスチックの製造コストを含む生産性を改善することはできない。   However, as described in Patent Document 1, when a fiber-reinforced plastic is produced by gel coating, it usually takes several tens of minutes to several hours to apply and cure the gel coating. As a result, compared to the method of polishing the surface of the fiber reinforced plastic and reducing the surface irregularities, there is almost no effect of shortening the molding time, and improving the productivity including the manufacturing cost of the fiber reinforced plastic Can not.

また、特許文献2に記載のように、粉体を用いて繊維強化プラスチックを製造する方法では、粉体の比重は無機質であるため粉体の比重は3.0以上である。このような粉体は、比重が1.5程度の繊維強化プラスチックよりも大きいため、繊維強化プラスチックの重量が増加してしまい、繊維強化プラスチックが軽量であるという本質的な利点を損なうことになる。   Further, as described in Patent Document 2, in the method for producing fiber-reinforced plastic using powder, the specific gravity of the powder is 3.0 or more because the specific gravity of the powder is inorganic. Since such powder is larger than the fiber reinforced plastic having a specific gravity of about 1.5, the weight of the fiber reinforced plastic is increased, which impairs the essential advantage that the fiber reinforced plastic is lightweight. .

また、前記不織布を用いて繊維強化プラスチックを配置する方法では、強化繊維束間に不織布の強化繊維が入り難く、強化繊維束の並びが複雑(具体的には強化繊維織物の形状が複雑)である場合には、不織布はその形状には沿わない。さらに、有機繊維からなる不織布を用いた場合には、炭素繊維、ガラス繊維に比べて線膨張率が大きく、軟らかいので、樹脂の収縮を充分に抑ええることができない。   Further, in the method of arranging fiber reinforced plastic using the nonwoven fabric, the reinforcing fibers of the nonwoven fabric are difficult to enter between the reinforcing fiber bundles, and the arrangement of the reinforcing fiber bundles is complicated (specifically, the shape of the reinforcing fiber fabric is complicated). In some cases, the nonwoven does not conform to its shape. Furthermore, when a nonwoven fabric made of organic fibers is used, the linear expansion coefficient is larger and softer than carbon fibers and glass fibers, so that resin shrinkage cannot be sufficiently suppressed.

本発明は、上記する問題に鑑みてなされたものであり、その目的とするところは、繊維強化プラスチックの生産性及び軽量化の利点を損なうことなく、平滑な表面となる繊維強化プラスチックおよびその製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to provide a fiber-reinforced plastic having a smooth surface without impairing the productivity and weight saving advantages of the fiber-reinforced plastic and the production thereof. It is to provide a method.

前記課題に鑑みて、発明者は、鋭意検討を重ねた結果、表面近傍の強化繊維束間に形成された空間の樹脂の熱収縮を抑制するには、繊維強化プラスチックの厚さ方向(該空間において積層した強化繊維束の面に対して垂直方向)に、強化繊維を配置することが有効であると考えた。そこで、発明者は、成形型の型締め時に、(1)配置した強化繊維が、成形型の表面及び積層された強化繊維束(例えば強化繊維織物)の表面に沿って変形すること(2)強化繊維束間に形成された空間に強化繊維が配置され、この空間内において樹脂の熱収縮に対して変形し難いことの2つの要件を満たすことが重要であり、バネ性を有する形状に屈曲した強化繊維を用いことにより、前記2つの要件を満たすことができるとの新たな知見を得た。   In view of the above problems, the inventor has conducted intensive studies and as a result, in order to suppress the heat shrinkage of the resin in the space formed between the reinforcing fiber bundles in the vicinity of the surface, the thickness direction of the fiber reinforced plastic (the space It was considered effective to arrange the reinforcing fibers in the direction perpendicular to the surface of the reinforcing fiber bundles laminated in FIG. Therefore, the inventor, (1) when the mold is clamped, (1) the arranged reinforcing fibers are deformed along the surface of the mold and the surface of the laminated reinforcing fiber bundle (for example, reinforcing fiber fabric). It is important to satisfy the two requirements that reinforcing fibers are arranged in the space formed between the reinforcing fiber bundles and that they are not easily deformed by the heat shrinkage of the resin in this space. We obtained new knowledge that the above two requirements can be satisfied by using the reinforced fiber.

本発明は、前記新たな知見に基づくものであり、本発明に係る繊維強化プラスチックは、積層した強化繊維束に、樹脂を含浸した繊維強化プラスチックであって、前記繊維強化プラスチックの少なくとも表層部は、バネ性を有する形状に屈曲した強化繊維に樹脂が含浸されていることを特徴とする。   The present invention is based on the above-mentioned new knowledge, and the fiber-reinforced plastic according to the present invention is a fiber-reinforced plastic obtained by impregnating a laminated reinforcing fiber bundle with a resin, and at least the surface layer portion of the fiber-reinforced plastic is Further, the resin is impregnated with a reinforcing fiber bent into a shape having a spring property.

本発明によれば、繊維強化プラスチックの表層部が、バネ性を有する形状に屈曲した強化繊維に樹脂が含浸されていることにより、繊維強化プラスチックの表面近傍の強化繊維束間に形成された空間にも、前記強化繊維が配置されることになるので、この空間内の樹脂の熱収縮が低減され、繊維強化プラスチックの表面は平滑となる。   According to the present invention, the surface layer portion of the fiber reinforced plastic is impregnated with the resin in the reinforcing fiber bent into a shape having a spring property, so that the space formed between the reinforcing fiber bundles near the surface of the fiber reinforced plastic. In addition, since the reinforcing fibers are arranged, the heat shrinkage of the resin in the space is reduced, and the surface of the fiber-reinforced plastic becomes smooth.

本発明に係る繊維強化プラスチックは、特に、真空バッグ成形法、加圧バッグ成形法、RTM(レジントランスファーモールディング)法、などにより、製造された場合には、強化繊維束間に形成された空間の樹脂が熱収縮し難いので、特に好適である。   When the fiber reinforced plastic according to the present invention is manufactured by a vacuum bag molding method, a pressure bag molding method, an RTM (resin transfer molding) method, etc. The resin is particularly suitable because it does not easily shrink.

すなわち、強化繊維束間に形成された空間に配置された強化繊維は、バネ性を有する形状に屈曲しているので、強化繊維を型内に配置する際(型締め時)に、圧縮変形すると共に、復元力が作用するように前記強化繊維が付勢されることになり、強化繊維は、さらに圧縮変形し難くなる。一方、成形型に接触する強化繊維束近傍に配置された強化繊維は、前記型締め時に、成形型の表面(キャビティを形成する表面)に沿って圧縮変形する。このような変形状態の強化繊維に樹脂が含浸された場合には、繊維強化プラスチックの表層部では、強化繊維束間に形成された空間における樹脂の熱収縮は抑制され、成形型に接触する強化繊維束近傍に配置された強化繊維は、成形型の表面に沿って圧縮変形しているので、平滑な表面を有した繊維強化プラスチックとなりうる。   That is, since the reinforcing fibers arranged in the space formed between the reinforcing fiber bundles are bent into a shape having a spring property, they are compressed and deformed when the reinforcing fibers are arranged in the mold (when the mold is clamped). At the same time, the reinforcing fiber is urged so that a restoring force acts, and the reinforcing fiber is further difficult to compress and deform. On the other hand, the reinforcing fibers arranged in the vicinity of the reinforcing fiber bundle in contact with the mold are compressed and deformed along the surface of the mold (surface forming the cavity) when the mold is clamped. When such a deformed reinforcing fiber is impregnated with a resin, in the surface layer portion of the fiber reinforced plastic, the thermal contraction of the resin in the space formed between the reinforcing fiber bundles is suppressed, and the reinforcing contact with the mold Since the reinforcing fibers arranged in the vicinity of the fiber bundle are compressed and deformed along the surface of the mold, it can be a fiber-reinforced plastic having a smooth surface.

また、本発明に係る「積層した強化繊維束」とは、繊維を束ねた強化繊維束が積層された強化繊維束をいい、例えば、強化繊維束をランダムに積層したもの、繊維を束ねた強化繊維束を織物状にした強化繊維織物、及び強化繊維織物を積層したものなどを挙げることができ、繊維強化プラスチック内に強化繊維束が均一に分散して配置されていれば特に限定されるものではない。   The “laminated reinforcing fiber bundle” according to the present invention refers to a reinforcing fiber bundle in which reinforcing fiber bundles in which fibers are bundled are laminated. For example, a reinforcing fiber bundle in which reinforcing fiber bundles are randomly laminated, or reinforcing in bundles of fibers. Examples include reinforced fiber woven fabrics in which fiber bundles are woven, and laminates of reinforced fiber fabrics, and are particularly limited as long as the reinforced fiber bundles are uniformly dispersed in fiber reinforced plastics. is not.

本発明に係る「バネ性を有する形状に屈曲した強化繊維」とは、荷重が強化繊維に作用した際に変形し、該荷重が除荷された際に、もとの形状に復元するように付勢可能な形状に屈曲した繊維をいい、波状に屈曲した強化繊維、カール状に屈曲した強化繊維、ループ状に屈曲した強化繊維、コイル状に屈曲した強化繊維などが挙げられ、前記強化繊維は、前記形状に屈曲しているのであれば布状の繊維(不織布繊維)であってもよい。   The “reinforcing fiber bent into a spring-like shape” according to the present invention is deformed when a load acts on the reinforcing fiber, and is restored to its original shape when the load is unloaded. A fiber bent into an energizable shape, including a reinforcing fiber bent into a wave shape, a reinforcing fiber bent into a curl shape, a reinforcing fiber bent into a loop shape, a reinforcing fiber bent into a coil shape, and the like. May be a cloth-like fiber (non-woven fiber) as long as it is bent into the above-mentioned shape.

より好ましくは、本発明に係る繊維強化プラスチックは、前記バネ性を有する形状に屈曲した強化繊維が、コイル状に屈曲した強化繊維であることがより好ましい。本発明によれば、コイル状に屈曲した強化繊維は、三次元空間の少なくとも異なる三方向において同時に変形可能であるため、強化繊維束間に形成された空間に、前記コイル状に屈曲した強化繊維が配置された場合には、該強化繊維は、強化繊維束が並ぶ面(強化繊維束が強化繊維織物である場合にはその織物が成す面)に対して垂直方向に変形可能となる。この結果、繊維強化プラスチックの表層の厚さ方向にも、強化繊維を配置すること可能となる。このようにして、前記空間における樹脂の熱収縮は低減され、繊維強化プラスチックの表面はより平滑化される。   More preferably, in the fiber reinforced plastic according to the present invention, it is more preferable that the reinforcing fiber bent into a shape having spring property is a reinforcing fiber bent into a coil shape. According to the present invention, the reinforcing fiber bent in a coil shape can be deformed simultaneously in at least three different directions of the three-dimensional space, so that the reinforcing fiber bent in the coil shape is formed in the space formed between the reinforcing fiber bundles. When the reinforcing fiber bundle is arranged, the reinforcing fiber can be deformed in a direction perpendicular to a surface on which the reinforcing fiber bundle is arranged (a surface formed by the woven fabric when the reinforcing fiber bundle is a reinforcing fiber woven fabric). As a result, it is possible to arrange reinforcing fibers also in the thickness direction of the surface layer of the fiber reinforced plastic. In this way, the thermal shrinkage of the resin in the space is reduced and the surface of the fiber reinforced plastic is smoothed.

また、本発明に係る繊維強化プラスチックは、前記強化繊維束が強化繊維織物であり、前記屈曲した強化繊維の曲率半径が、少なくとも15μm以上であることがより好ましい。本発明によれば、一般的な強化繊維織物の強化繊維束間の表面近傍の空間(溝又は格子内の凹み空間)は、強化繊維織物の表面から20〜30μm程度の深さであるので、前記屈曲した強化繊維の曲率半径を、少なくとも15μm以上にすることにより、前記強化繊維を繊維強化プラスチックの表面まで確保することができる。すなわち、前記前記屈曲した強化繊維の曲率半径が、15μmよりも小さい場合には、前記空間に配置された強化繊維を繊維強化プラスチックの表面まで確保し難くなる。また、前記屈曲した強化繊維の曲率半径は、1mm以下であることがより好ましい。すなわち、一般的な強化繊維織物の場合、強化繊維束は2mm間隔に配置されることが一般的であるので、曲率半径が、1mmよりも大きい場合には、前記繊維強化プラスチックの表面近傍の空間内に、強化繊維が配置され難くなる。   In the fiber-reinforced plastic according to the present invention, it is more preferable that the reinforcing fiber bundle is a reinforcing fiber fabric, and the curvature radius of the bent reinforcing fiber is at least 15 μm or more. According to the present invention, the space in the vicinity of the surface between the reinforcing fiber bundles of a general reinforcing fiber fabric (the groove or the recessed space in the lattice) is about 20 to 30 μm deep from the surface of the reinforcing fiber fabric. By setting the curvature radius of the bent reinforcing fiber to at least 15 μm or more, the reinforcing fiber can be secured up to the surface of the fiber reinforced plastic. That is, when the curvature radius of the bent reinforcing fiber is smaller than 15 μm, it is difficult to secure the reinforcing fiber arranged in the space up to the surface of the fiber reinforced plastic. The curvature radius of the bent reinforcing fiber is more preferably 1 mm or less. That is, in the case of a general reinforcing fiber fabric, the reinforcing fiber bundles are generally arranged at intervals of 2 mm. Therefore, when the radius of curvature is larger than 1 mm, the space near the surface of the fiber reinforced plastic is used. It becomes difficult to arrange the reinforcing fiber inside.

なお、前記繊維強化プラスチックを構成する強化繊維束が強化繊維織物である場合には、その織り方としては、平織、綾織、朱子織などの織組織であってもよく、強化繊維を一方向に引き揃えた複数層を隣接する層の繊維軸が30°〜90°程度ずれるように交差積層させた、いわゆる多軸の繊維構造であってもよい。   When the reinforcing fiber bundle constituting the fiber reinforced plastic is a reinforcing fiber woven fabric, the weaving method may be a woven structure such as plain weave, twill weave, satin weaving, and the reinforcing fibers are unidirectional. It may be a so-called multiaxial fiber structure in which a plurality of aligned layers are cross-laminated so that the fiber axes of adjacent layers are shifted by about 30 ° to 90 °.

さらに、本発明に係る繊維強化プラスチックに係る強化繊維としては、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、スチール繊維、PBO繊維、又は高強度ポリエチレン繊維などの繊維を挙げることができ、強化繊維織物などの強化繊維束を構成する強化繊維及びバネ性を有する形状に屈曲した強化繊維は、同じ種類の繊維でなくてもよい。   Furthermore, examples of the reinforcing fiber related to the fiber-reinforced plastic according to the present invention include glass fiber, carbon fiber, aramid fiber, alumina fiber, boron fiber, steel fiber, PBO fiber, or high-strength polyethylene fiber. The reinforcing fiber constituting the reinforcing fiber bundle such as a reinforcing fiber fabric and the reinforcing fiber bent into a shape having spring property may not be the same type of fiber.

より好ましくは、本発明に係る繊維強化プラスチックは、前記バネ性を有する形状に屈曲した強化繊維が、炭素繊維である。本発明によれば、炭素繊維は、他の繊維に比べて弾力性が高い(コイル状にした際にはバネ定数が高く)、型締め時のわずかな変形により復元力が大きくなるので、樹脂の熱収縮により変形し難い。   More preferably, in the fiber reinforced plastic according to the present invention, the reinforcing fiber bent into a shape having a spring property is a carbon fiber. According to the present invention, the carbon fiber has higher elasticity than other fibers (the spring constant is high when coiled), and the restoring force is increased by slight deformation at the time of clamping. It is difficult to deform due to heat shrinkage.

また、前記炭素繊維としては、石油、石炭ピッチを原料としたピッチ系炭素繊維、ポリアクリルニトリル(PAN)を原料とした有機繊維を焼成し黒鉛化されたPAN系の炭素繊維を挙げることができる。より好ましくは、本発明に係る炭素繊維は、ピッチ系炭素繊維である。本発明によれば、石炭、石油などのピッチを原料としているため、PAN系の炭素繊維に比べて、紡糸した繊維中の炭素含有量が95%程度と高く、また収率も85%と高く、より高い弾性率を得ることができる。この結果、樹脂の熱収縮に対しても、繊維形状を保持することができる。   Examples of the carbon fibers include pitch-based carbon fibers made from petroleum and coal pitch, and PAN-based carbon fibers obtained by baking and graphitizing organic fibers made from polyacrylonitrile (PAN). . More preferably, the carbon fiber according to the present invention is a pitch-based carbon fiber. According to the present invention, since pitches such as coal and petroleum are used as raw materials, the carbon content in the spun fiber is as high as about 95% and the yield is as high as 85% compared to PAN-based carbon fibers. A higher elastic modulus can be obtained. As a result, the fiber shape can be maintained even against heat shrinkage of the resin.

また、本発明に係る繊維強化プラスチック係る樹脂としては、熱硬化性樹脂又は熱可塑性樹脂いずれの樹脂であってもよく、熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、シアネート樹脂、又はポリイミド樹脂等の樹脂を挙げられることができる。また、熱可塑性樹脂としては、ナイロン系のポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂等の樹脂を挙げることができる。   Further, the fiber reinforced plastic resin according to the present invention may be either a thermosetting resin or a thermoplastic resin. Examples of the thermosetting resin include an epoxy resin, a phenol resin, a melamine resin, and a urea resin. And resins such as silicone resin, maleimide resin, vinyl ester resin, unsaturated polyester resin, cyanate resin, or polyimide resin. Examples of the thermoplastic resin include nylon polyamide resins, polyester resins, polycarbonate resins, polyamideimide resins, and polyolefin resins.

より好ましくは、本発明に係る繊維強化プラスチックは、前記強化繊維束及び屈曲した強化繊維が炭素繊維である場合には、前記樹脂は、エポキシ樹脂が好ましい。本発明によれば、エポキシ系樹脂と炭素繊維からなる炭素繊維強化プラスチック(CFRP)は、他の樹脂と繊維の組み合わせよりも軽量化を図ることができる。さらに、炭素繊維は、他の繊維にくらべて、比強度、比剛性に優れており、エポキシ樹脂とも相性がよいので、高性能な繊維強化プラスチックを得ることができる。   More preferably, in the fiber reinforced plastic according to the present invention, when the reinforcing fiber bundle and the bent reinforcing fiber are carbon fibers, the resin is preferably an epoxy resin. According to the present invention, carbon fiber reinforced plastic (CFRP) made of epoxy resin and carbon fiber can be lighter than other resin and fiber combinations. Furthermore, carbon fibers are superior in specific strength and specific rigidity compared to other fibers, and are compatible with epoxy resins, so that high-performance fiber-reinforced plastics can be obtained.

本発明として、前記繊維強化プラスチックの製造方法をも開示する。本発明に係る繊維強化プラスチックの製造方法は、積層した強化繊維束に、樹脂を含浸させた強化繊維プラスチックを製造する方法であって、該製造方法は、成形型内に強化繊維束を配置すると共に、該強化繊維束のうち繊維強化プラスチックの少なくとも表層部を構成する強化繊維束の表面に、バネ性を有する形状に屈曲した強化繊維を配置する工程と、前記成形型内に加熱した樹脂を流入させることにより、前記強化繊維束及び前記バネ性を有する形状に屈曲した強化繊維に加熱樹脂を含浸させる工程と、含浸した加熱樹脂を冷却する工程と、を少なくとも含むことを特徴とする。   As the present invention, a method for producing the fiber reinforced plastic is also disclosed. A method for producing a fiber reinforced plastic according to the present invention is a method for producing a reinforced fiber plastic in which a laminated reinforced fiber bundle is impregnated with a resin, wherein the reinforced fiber bundle is disposed in a mold. And a step of arranging reinforcing fibers bent into a spring-like shape on the surface of the reinforcing fiber bundle constituting at least the surface layer portion of the fiber reinforced plastic of the reinforcing fiber bundle, and a resin heated in the mold It is characterized by including at least a step of impregnating the reinforcing fiber bundle and the reinforcing fiber bent into a shape having a spring property with a heating resin, and a step of cooling the impregnated heating resin.

本発明によれば、前記配置工程において、該強化繊維束のうち、樹脂含浸後に繊維強化プラスチックの表層部を構成する強化繊維束の表面に、バネ性を有する形状に屈曲した強化繊維を配置することにより、成形型に接触する強化繊維束近傍では、型締め時に前記強化繊維は成形型の表面(キャビティを形成する面)に沿って変形する。また、繊維強化プラスチックの表層部に相当する強化繊維織物の繊維束間の空間では、前記強化繊維は圧縮変形すると共に、復元力が作用するように前記強化繊維が付勢されているので、前記空間内の樹脂の熱収縮に対して変形し難い(強化繊維の形状が保持され易い)。この結果、加熱した樹脂を前記強化繊維に含浸させ冷却した場合であっても、強化繊維束間に形成された前記空間における樹脂の熱収縮は抑制され、成形型に接触する強化繊維束近傍に配置された強化繊維は、成形型の表面に沿って圧縮変形するので、平滑な表面を有した繊維強化プラスチックを製造することができる。   According to the present invention, in the arranging step, the reinforcing fibers bent into a shape having a spring property are arranged on the surface of the reinforcing fiber bundle constituting the surface layer portion of the fiber reinforced plastic after the resin impregnation in the arranging fiber bundle. Thus, in the vicinity of the reinforcing fiber bundle in contact with the mold, the reinforcing fibers are deformed along the surface of the mold (surface forming the cavity) when the mold is clamped. Further, in the space between the fiber bundles of the reinforcing fiber fabric corresponding to the surface layer portion of the fiber reinforced plastic, the reinforcing fiber is compressed and deformed, and the reinforcing fiber is urged so that a restoring force acts. Difficult to deform due to heat shrinkage of resin in the space (the shape of the reinforcing fiber is easily maintained). As a result, even when the heated resin is impregnated into the reinforcing fiber and cooled, the resin in the space formed between the reinforcing fiber bundles is suppressed from thermal shrinkage, and in the vicinity of the reinforcing fiber bundle contacting the mold. Since the arranged reinforcing fibers are compressed and deformed along the surface of the mold, a fiber-reinforced plastic having a smooth surface can be produced.

また、本発明に係る繊維強化プラスチックの製造方法において、バネ性を有する形状に屈曲した強化繊維として、コイル状に屈曲した強化繊維を用いることがより好ましく、前記強化繊維束が強化繊維織物であり、前記屈曲した強化繊維の曲率半径が、少なくとも15μm以上の強化繊維を用いることがより好ましい。   Further, in the method for producing a fiber reinforced plastic according to the present invention, it is more preferable to use a reinforcing fiber bent in a coil shape as the reinforcing fiber bent into a shape having a spring property, and the reinforcing fiber bundle is a reinforcing fiber fabric. More preferably, a reinforcing fiber having a curvature radius of the bent reinforcing fiber of at least 15 μm or more is used.

さらに、前記バネ性を有する形状に屈曲した強化繊維として、炭素繊維を用いることが好ましく、該炭素繊維がピッチ系炭素繊維であることがより好ましい。さらに、強化繊維に炭素繊維を用いた場合には、前記樹脂として、エポキシ樹脂を用いることがより好ましい。なお、本発明に係る繊維強化プラスチックの製造方法において、エポキシ樹脂などの熱硬化性樹脂を用いた場合には、前記加熱樹脂は未硬化の熱硬化性樹脂であり、前記加熱樹脂を含浸後、冷却工程前に、樹脂の熱硬化が開始する温度以上までさらに前記加熱樹脂を加熱して硬化させることがより好ましい。   Furthermore, it is preferable to use a carbon fiber as the reinforcing fiber bent into the shape having the spring property, and it is more preferable that the carbon fiber is a pitch-based carbon fiber. Furthermore, when carbon fiber is used as the reinforcing fiber, it is more preferable to use an epoxy resin as the resin. In the method for producing fiber-reinforced plastic according to the present invention, when a thermosetting resin such as an epoxy resin is used, the heating resin is an uncured thermosetting resin, and after impregnating the heating resin, More preferably, the heating resin is further heated and cured to a temperature equal to or higher than the temperature at which the resin is thermally cured before the cooling step.

本発明によれば、繊繊維強化プラスチックの生産性及び軽量化の利点を損なうことなく、平滑な表面を有し、意匠性に優れた繊維強化プラスチックを得ることができる。   According to the present invention, a fiber reinforced plastic having a smooth surface and excellent design can be obtained without impairing the productivity and weight saving advantages of the fiber reinforced plastic.

以下、本発明に係る繊維強化プラスチックの一実施形態を図面に基づき詳細に説明する。図1は、本実施形態に係る繊維強化プラスチックの模式的な断面図であり、図2は、繊維強化プラスチックの表層部に配置されたバネ性を有する形状に屈曲した強化繊維の概略図である。   Hereinafter, an embodiment of a fiber reinforced plastic according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a fiber reinforced plastic according to the present embodiment, and FIG. 2 is a schematic view of a reinforced fiber bent into a spring-like shape disposed on the surface layer portion of the fiber reinforced plastic. .

図1に示すように、本実施形態に係る繊維強化プラスチック10は、炭素繊維からなる強化繊維束21により構成された強化繊維織物20に、樹脂30としてエポキシ樹脂を含浸した繊維強化プラスチックである。強化繊維束21を構成する炭素繊維は、ポリアクリルニトリル(PAN)を焼成したPAN系炭素繊維であり、直径は1〜10μmの範囲にある。強化繊維束21は、前記炭素繊維を3000〜240000本程度の束状にしたものであり、該強化繊維束21を用いて強化繊維織物20は、織り込まれている。図1に示す強化繊維織物20は、強化繊維束を一方向に引き揃えた複数層を隣接する層の繊維軸が90°程度ずれるように交差積層させた、いわゆる多軸の繊維構造の織物であるが、平織、綾織、朱子織などの織組織であってもよい。   As shown in FIG. 1, the fiber reinforced plastic 10 according to the present embodiment is a fiber reinforced plastic obtained by impregnating an epoxy resin as a resin 30 into a reinforced fiber fabric 20 composed of a reinforced fiber bundle 21 made of carbon fibers. The carbon fibers constituting the reinforcing fiber bundle 21 are PAN-based carbon fibers obtained by firing polyacrylonitrile (PAN), and have a diameter in the range of 1 to 10 μm. The reinforcing fiber bundle 21 is a bundle of about 3000 to 24,000 carbon fibers, and the reinforcing fiber fabric 20 is woven using the reinforcing fiber bundle 21. The reinforcing fiber fabric 20 shown in FIG. 1 is a so-called multiaxial fiber structure fabric in which a plurality of layers in which reinforcing fiber bundles are aligned in one direction are cross-laminated so that the fiber axes of adjacent layers are shifted by about 90 °. However, it may be a woven structure such as plain weave, twill weave or satin weave.

さらに、繊維強化プラスチック10の表層部11は、コイル状に屈曲した強化繊維40(バネ性を有する形状に屈曲した強化繊維)に樹脂30が含浸されている。図2に示すように、コイル状に屈曲した強化繊維40は、強化繊維をらせん状に屈曲させた強化繊維であり、強化繊維に荷重が作用した際に変形し、該荷重が除荷された際に、もとの形状に復元するものである。また強化繊維40は、石油、石炭ピッチを原料としたピッチ系炭素繊維からなる。該ピッチ系炭素繊維は、繊維強化プラスチックの強化繊維として一般的に用いられるPAN系炭素繊維に比べて、弾性率がより高い(変形時の復元力がより大きい)ので、後述する樹脂30の熱収縮に対しても変形し難い。さらに、コイル状に屈曲した強化繊維40の曲率半径は、少なくとも15μm以上である。   Further, the surface layer portion 11 of the fiber reinforced plastic 10 is impregnated with a resin 30 in a reinforcing fiber 40 bent in a coil shape (a reinforcing fiber bent in a shape having a spring property). As shown in FIG. 2, the reinforcing fiber 40 bent in a coil shape is a reinforcing fiber in which the reinforcing fiber is bent in a spiral shape, and is deformed when a load acts on the reinforcing fiber, and the load is unloaded. At that time, the original shape is restored. The reinforcing fiber 40 is made of pitch-based carbon fiber made from petroleum or coal pitch. The pitch-based carbon fiber has a higher elastic modulus (greater restoring force at the time of deformation) than a PAN-based carbon fiber generally used as a reinforcing fiber for fiber-reinforced plastics. Difficult to deform against shrinkage. Further, the radius of curvature of the reinforcing fiber 40 bent in a coil shape is at least 15 μm or more.

前記繊維強化プラスチック10の製造方法を、図3を参照しながら以下に説明する。なお、図3は、図1に示す繊維強化プラスチック10の製造方法を説明するための図であり、(a)は、成形型80内に、強化繊維織物20とバネ性を有する形状に屈曲した強化繊維40を配置する工程を説明するための図であり、(b)は、(a)の成形型80内に配置した強化繊維20,40に加熱した樹脂30を含浸させる工程を説明するための図であり、(c)は、含浸した加熱樹脂30を冷却する工程後、成形型から繊維強化プラスチック10を脱型した図である。   A method for manufacturing the fiber reinforced plastic 10 will be described below with reference to FIG. FIG. 3 is a diagram for explaining a method of manufacturing the fiber reinforced plastic 10 shown in FIG. 1, and (a) is bent into a shape having a reinforcing fiber fabric 20 and a spring property in the mold 80. It is a figure for demonstrating the process of arrange | positioning the reinforced fiber 40, (b) is for demonstrating the process of impregnating the heated resin 30 to the reinforced fiber 20 and 40 arrange | positioned in the shaping | molding die 80 of (a). (C) is the figure which removed the fiber reinforced plastic 10 from the shaping | molding die after the process which cools the impregnated heating resin 30. FIG.

まず、図3(a)に示すように、繊維強化プラスチックを成形するため、上型81及び下型82からなる成形型80を準備する。そして、成形型80の下型82に炭素繊維により構成された強化繊維束21からなる強化繊維織物20と、該強化繊維織物20の表面に(繊維強化プラスチック20の表層部を構成する強化繊維束21の表面に)、コイル状に屈曲した強化繊維40とを配置し、上型81を下型82に押圧して型締めする。   First, as shown in FIG. 3A, a molding die 80 including an upper die 81 and a lower die 82 is prepared for molding fiber reinforced plastic. And the reinforcing fiber fabric 20 which consists of the reinforcing fiber bundle 21 comprised by carbon fiber in the lower mold | type 82 of the shaping | molding die 80, and the reinforcing fiber bundle which comprises the surface layer part of the fiber reinforced plastic 20 on the surface of this reinforcing fiber fabric 20 21) and the reinforcing fibers 40 bent in a coil shape are arranged, and the upper die 81 is pressed against the lower die 82 and clamped.

このとき、図3(b)に示すように、表面近傍の強化繊維織物20の強化繊維束21間に形成された空間13に配置された強化繊維40は、バネ性を有する形状に屈曲しているので、型締め時に圧縮変形すると共に、復元力が作用するように付勢され、強化繊維40は後述する樹脂30の熱収縮により、さらに圧縮変形し難くなる。また、コイル状に屈曲した強化繊維40は、三次元空間の少なくとも異なる三方向において同時に変形可能である。このため、強化繊維40は、強化繊維織物20が成す平面に対して垂直方向においても変形可能となり、後述する樹脂の熱収縮に対して繊維強化プラスチックに表層部の厚さ方向においても強化繊維40は変形し難くなる。さらに、強化繊維織物20の強化繊維束間21により形成される凹みの深さ(谷部の深さ)が20〜30μmであるのに対して、コイル状に屈曲した強化繊維40の曲率半径は少なくとも15μm以上であるので、強化繊維40は、強化繊維束21の隙間(谷間)に入り込み、前述した強化繊維束21同士の表面近傍の空間13においても、強化繊維40が確保される。   At this time, as shown in FIG. 3 (b), the reinforcing fibers 40 arranged in the space 13 formed between the reinforcing fiber bundles 21 of the reinforcing fiber fabric 20 near the surface are bent into a shape having a spring property. Therefore, it is compressed and deformed when the mold is clamped, and is urged so that a restoring force acts, and the reinforcing fiber 40 becomes more difficult to compress and deform due to thermal contraction of the resin 30 described later. The reinforcing fiber 40 bent in a coil shape can be deformed simultaneously in at least three different directions of the three-dimensional space. For this reason, the reinforcing fiber 40 can be deformed also in the direction perpendicular to the plane formed by the reinforcing fiber fabric 20, and the reinforcing fiber 40 is also formed in the thickness direction of the surface layer portion of the fiber reinforced plastic against the thermal contraction of the resin described later. Becomes difficult to deform. Furthermore, while the depth of the recess formed by the reinforcing fiber bundles 21 of the reinforcing fiber fabric 20 is 20-30 μm, the radius of curvature of the reinforcing fiber 40 bent in a coil shape is as follows. Since the reinforcing fibers 40 are at least 15 μm or more, the reinforcing fibers 40 enter the gaps (valleys) between the reinforcing fiber bundles 21, and the reinforcing fibers 40 are secured also in the space 13 near the surface of the reinforcing fiber bundles 21 described above.

また、一方、成形型80に接触する強化繊維束21近傍に配置された強化繊維40も、型締め時に、成形型80の表面(キャビティを形成する表面)に沿って空間13内の強化繊維40よりも大きく圧縮変形する。   On the other hand, the reinforcing fibers 40 arranged in the vicinity of the reinforcing fiber bundle 21 in contact with the molding die 80 are also reinforced fibers 40 in the space 13 along the surface of the molding die 80 (surface forming the cavity) during clamping. It compresses and deforms to a greater extent.

そして、このような変形状態の強化繊維40及び強化繊維織物20に対して、図3(b)に示すように、上型81の樹脂導入口81aから、加熱した未硬化のエポキシ樹脂(加熱樹脂)を加圧することにより型内に流入させ、強化繊維40及び強化繊維織物20に樹脂30を含浸させる。さらに、樹脂30が含浸された繊維強化プラスチック10を樹脂30の熱硬化温度以上まで加熱し、樹脂30を硬化させる。   And with respect to the reinforced fiber 40 and the reinforced fiber fabric 20 of such a deformation | transformation state, as shown in FIG.3 (b), from the resin inlet 81a of the upper mold | type 81, the heated uncured epoxy resin (heating resin) ) Is pressed into the mold, and the reinforcing fiber 40 and the reinforcing fiber fabric 20 are impregnated with the resin 30. Further, the fiber reinforced plastic 10 impregnated with the resin 30 is heated to a temperature equal to or higher than the thermosetting temperature of the resin 30 to cure the resin 30.

その後、図3(c)に示すように、繊維強化プラスチック10に含浸した(硬化した)加熱樹脂を冷却すると共に、繊維強化プラスチック10を成形型80から取り外す。   Thereafter, as shown in FIG. 3C, the heated resin impregnated (cured) in the fiber reinforced plastic 10 is cooled, and the fiber reinforced plastic 10 is removed from the mold 80.

このように、前記配置工程において、前述したように、強化繊維織物20の表面にコイル状に屈曲した強化繊維40を配置することにより、成形型80に接触する強化繊維束近傍では、強化繊維40は成形型80の表面に沿って変形し、強化繊維織物20の繊維束間の空間では、強化繊維40は変形し難くなるので、加熱した樹脂30を強化繊維40に含浸させ冷却した場合であっても、強化繊維織物20の強化繊維束21間に形成された空間13における樹脂30の熱収縮は抑制される。この結果、平滑な表面15を有した繊維強化プラスチック10を得ることができる。   In this way, in the arrangement step, as described above, the reinforcing fibers 40 in the vicinity of the reinforcing fiber bundle contacting the mold 80 are arranged by arranging the reinforcing fibers 40 bent in a coil shape on the surface of the reinforcing fiber fabric 20. Is deformed along the surface of the mold 80, and the reinforcing fibers 40 are hardly deformed in the space between the fiber bundles of the reinforcing fiber fabric 20. Therefore, the heated fibers 30 are impregnated into the reinforcing fibers 40 and cooled. However, the thermal contraction of the resin 30 in the space 13 formed between the reinforcing fiber bundles 21 of the reinforcing fiber fabric 20 is suppressed. As a result, the fiber reinforced plastic 10 having the smooth surface 15 can be obtained.

以下に、本実施形態に係る実施例を説明する。
(実施例)
<強化繊維織物>
直径7μmの直線状の炭素繊維を12000本束ねた、外径2mmの強化繊維束を90°程度ずれるように交差積層させた、1000mm×1000mm×厚さ2.5mmの多軸の繊維構造の強化繊維織物を準備し、その後所定の大きさにカットした。
<コイル状に屈曲した強化繊維>
コイル状に屈曲した強化繊維として、曲率半径40〜70μm、コイル長が0.2〜0.5mm炭素繊維の強化繊維を準備した。
<樹脂>
強化繊維に含浸させる樹脂として、エポキシ樹脂(主材:EPICLON 840(大日本インキ化学工業製)、硬化剤:EPICLON B−570(大日本インキ化学工業製)、促進剤:2E4MZ(四国化学工業製))を準備した。
<成形>
360mm×300mm×厚さ2mmの成形空間が形成された成形型内に、強化繊維織物と、該強化繊維織物の表面に、コイル状に屈曲した強化繊維とを配置した。次に、60℃に加熱した未硬化のエポキシ樹脂を加圧力0.2MPaで成形型内に流入させ、強化繊維織物及びバネ性を有する形状に屈曲した強化繊維に加熱樹脂を含浸させた。さらに、未硬化のエポキシ樹脂を150℃まで加熱して硬化させ、その後冷却し、成形型内から繊維強化プラスチックを取り出した。そして、繊維強化プラスチックの表面を、観察し、JIS B0601に基づいて、ろ波うねり平均値(μm)を測定した。この結果を表1に示す。
Hereinafter, examples according to the present embodiment will be described.
(Example)
<Reinforced fiber fabric>
Reinforcement of multiaxial fiber structure of 1000mm x 1000mm x thickness 2.5mm, in which 12,000 straight carbon fibers with a diameter of 7µm are bundled and reinforced fiber bundles with an outer diameter of 2mm are cross-laminated so as to be shifted by about 90 ° A fiber fabric was prepared and then cut into a predetermined size.
<Reinforcing fiber bent into a coil shape>
As reinforcing fibers bent in a coil shape, carbon fiber reinforcing fibers having a curvature radius of 40 to 70 μm and a coil length of 0.2 to 0.5 mm were prepared.
<Resin>
Epoxy resin (main material: EPICLON 840 (manufactured by Dainippon Ink and Chemicals)), curing agent: EPICLON B-570 (manufactured by Dainippon Ink and Chemicals), accelerator: 2E4MZ (manufactured by Shikoku Chemicals) )) Prepared.
<Molding>
A reinforcing fiber fabric and reinforcing fibers bent in a coil shape were disposed on the surface of the reinforcing fiber fabric in a mold in which a molding space of 360 mm × 300 mm × thickness 2 mm was formed. Next, an uncured epoxy resin heated to 60 ° C. was caused to flow into the mold at a pressure of 0.2 MPa, and the reinforcing fiber woven and the reinforcing fiber bent into a shape having a spring property were impregnated with the heating resin. Further, the uncured epoxy resin was heated to 150 ° C. to be cured, then cooled, and the fiber reinforced plastic was taken out from the mold. And the surface of the fiber reinforced plastic was observed, and based on JIS B0601, the filter waviness average value (micrometer) was measured. The results are shown in Table 1.

Figure 2008265108
Figure 2008265108

(比較例)
実施例と同じようにして、繊維強化プラスチックを製造した。実施例と相違する点は、強化繊維織物の表面に、コイル状に屈曲した強化繊維を配置しなかった点である。そして、実施例1と同じように繊維強化プラスチックの表面を観察し、ろ波うねり平均値(μm)を測定した。
(Comparative example)
A fiber reinforced plastic was produced in the same manner as in the Examples. The difference from the example is that the reinforcing fiber bent in a coil shape was not arranged on the surface of the reinforcing fiber fabric. Then, the surface of the fiber reinforced plastic was observed in the same manner as in Example 1, and the average value of the waved waviness (μm) was measured.

(結果)
実施例の繊維強化プラスチックの表面は、成形型の面と同じ平滑な面が形成されていたのに対して、比較例の繊維強化プラスチックの表面は、強化繊維織物の強化繊維束のピッチに近い規則的な凹凸面が形成されていた。
(result)
The surface of the fiber reinforced plastic of the example had the same smooth surface as the surface of the mold, whereas the surface of the fiber reinforced plastic of the comparative example was close to the pitch of the reinforced fiber bundle of the reinforced fiber fabric. Regular irregular surfaces were formed.

(評価)
比較例では、表面近傍の強化繊維織物の強化繊維束間の空間は、強化繊維の割合が低く、樹脂の含有率が高いため熱収縮が他の部分に比べて大きく、この結果、樹脂の熱収縮により繊維強化プラスチックの表面に凹凸面が形成されたと考えられる。一方、実施例では、成形型に接触する強化繊維束近傍では、型締め時にコイル状に屈曲した強化繊維は成形型の表面に沿って変形し、強化繊維織物の繊維束間の空間では、コイル状に屈曲した強化繊維は圧縮変形すると共に復元力が作用するので、繊維強化プラスチックの表面に平滑な面が形成されたものと考えられる。
(Evaluation)
In the comparative example, the space between the reinforcing fiber bundles of the reinforcing fiber fabric in the vicinity of the surface has a low thermal fiber ratio and a high resin content, so that the heat shrinkage is larger than the other parts. It is considered that an uneven surface was formed on the surface of the fiber reinforced plastic due to the shrinkage. On the other hand, in the embodiment, in the vicinity of the reinforcing fiber bundle in contact with the forming die, the reinforcing fiber bent in a coil shape at the time of clamping is deformed along the surface of the forming die, and in the space between the fiber bundles of the reinforcing fiber fabric, the coil Since the reinforcing fiber bent in a shape is compressed and deformed and a restoring force acts, it is considered that a smooth surface is formed on the surface of the fiber reinforced plastic.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention described in the claims. Design changes can be made.

たとえば、本実施形態では、成形型内に熱硬化性樹脂を注入して繊維強化プラスチックを製造するRTM(レジントランスファーモールディング)法による製造方法を説明したが、繊維強化プラスチックの表層部にバネ性を有する形状に屈曲した強化繊維を配置することができるのであれば、ハンドレイアップ法、真空バッグ成形法、加圧バッグ成形法、プリプレグを用いたオートクレーブ法、及び、RFI(レジンフィルムインフュージョン)法などの製造方法により製造してもよい。   For example, in the present embodiment, a manufacturing method by the RTM (resin transfer molding) method in which a thermosetting resin is injected into a mold to manufacture a fiber reinforced plastic has been described. However, the surface layer portion of the fiber reinforced plastic has a spring property. If reinforcing fibers bent into a shape can be arranged, hand lay-up method, vacuum bag molding method, pressure bag molding method, autoclave method using prepreg, and RFI (resin film infusion) method It may be manufactured by a manufacturing method such as

また、本実施形態では、繊維強化プラスチックの両面の表層部にコイル状に屈曲した強化樹脂を配置したが、一方の面だけに平滑性が要求される部位に合わせて、コイル状に屈曲した強化樹脂を配置してもよい。   Further, in this embodiment, the reinforcing resin bent in a coil shape is disposed on the surface layer portions of both sides of the fiber reinforced plastic, but the reinforcement strengthened in a coil shape according to a portion where smoothness is required on only one surface. A resin may be arranged.

本発明に係る繊維強化プラスチックは、機械的強度を確保しつつ、意匠性が要求される構造用部材に特に好適である。具体的には、オートバイフレーム、カウル等の二輪車用途や、ドア、ボンネット、テールゲート、サイドフェンダー、側面パネル、フェンダー等の自動車部品などの用途が挙げられる。   The fiber-reinforced plastic according to the present invention is particularly suitable for structural members that require design properties while ensuring mechanical strength. Specific examples include motorcycles such as motorcycle frames and cowls, and automotive parts such as doors, bonnets, tailgates, side fenders, side panels, and fenders.

本実施形態に係る繊維強化プラスチックの模式的な断面図。The typical sectional view of the fiber reinforced plastic concerning this embodiment. 繊維強化プラスチックの表層部に配置されたバネ性を有する形状に屈曲した強化繊維の概略図。Schematic of the reinforced fiber bent in the shape which has the spring property arrange | positioned at the surface layer part of fiber reinforced plastics. 図1に示す繊維強化プラスチックの製造方法を説明するための図であり、(a)は、成形型内に、強化繊維織物とバネ性を有する形状に屈曲した強化繊維を配置する工程を説明するための図であり、(b)は、(a)の成形型内配置した強化繊維に加熱した樹脂を含浸させる工程を説明するための図であり、(c)は、含浸した加熱樹脂を冷却する工程後、成形型から繊維強化プラスチックを脱型した図。It is a figure for demonstrating the manufacturing method of the fiber reinforced plastic shown in FIG. 1, (a) demonstrates the process of arrange | positioning the reinforced fiber fabric and the reinforcement fiber bent in the shape which has a spring property in a shaping | molding die. (B) is a figure for demonstrating the process of impregnating the heated resin to the reinforced fiber arrange | positioned in the shaping | molding die of (a), (c) is a figure for cooling the impregnated heating resin The figure which removed the fiber reinforced plastic from the shaping | molding die after the process to do. 本実施形態に係る繊維強化プラスチックの断面図。Sectional drawing of the fiber reinforced plastic which concerns on this embodiment.

符号の説明Explanation of symbols

10:繊維強化プラスチック,11:表層部,15:繊維強化プラスチックの表面,20:強化繊維織物,21:強化繊維束,40:コイル状に屈曲した強化繊維(バネ性を有する形状に屈曲した強化繊維),30:樹脂(エポキシ樹脂)   10: Fiber reinforced plastic, 11: Surface layer part, 15: Surface of fiber reinforced plastic, 20: Reinforced fiber fabric, 21: Reinforced fiber bundle, 40: Reinforced fiber bent into a coil shape (reinforced bent into a spring-like shape) Fiber), 30: Resin (epoxy resin)

Claims (6)

積層した強化繊維束に、樹脂を含浸した繊維強化プラスチックであって、
前記繊維強化プラスチックの少なくとも表層部は、バネ性を有する形状に屈曲した強化繊維に樹脂が含浸されていることを特徴とする繊維強化プラスチック。
It is a fiber reinforced plastic impregnated with resin in a bundle of laminated reinforcing fibers,
At least a surface layer portion of the fiber reinforced plastic is impregnated with resin in a reinforced fiber bent into a shape having a spring property.
前記バネ性を有する形状に屈曲した強化繊維は、コイル状に屈曲した強化繊維であることを特徴とする請求項1に記載の繊維強化プラスチック。   2. The fiber-reinforced plastic according to claim 1, wherein the reinforcing fiber bent into a shape having a spring property is a reinforcing fiber bent into a coil shape. 前記強化繊維束は強化繊維織物であり、前記バネ性を有する形状に屈曲した強化繊維の曲率半径が、少なくとも15μm以上であることを特徴とする請求項1又は2に記載の繊維強化プラスチック。   The fiber-reinforced plastic according to claim 1 or 2, wherein the reinforcing fiber bundle is a reinforcing fiber fabric, and a radius of curvature of the reinforcing fiber bent into a shape having a spring property is at least 15 µm or more. 前記バネ性を有する形状に屈曲した強化繊維は、炭素繊維であることを特徴とする請求項1〜3のいずれかに記載の繊維強化プラスチック。   The fiber-reinforced plastic according to any one of claims 1 to 3, wherein the reinforcing fiber bent into a shape having a spring property is a carbon fiber. 前記炭素繊維は、ピッチ系炭素繊維であることを特徴とする請求項4に記載の繊維強化プラスチック。   The fiber reinforced plastic according to claim 4, wherein the carbon fiber is a pitch-based carbon fiber. 積層した強化繊維束に、樹脂を含浸させた強化繊維プラスチックを製造する方法であって、
該製造方法は、成形型内に強化繊維束を配置すると共に、該強化繊維束のうち繊維強化プラスチックの少なくとも表層部を構成する強化繊維束の表面に、バネ性を有する形状に屈曲した強化繊維を配置する工程と、
前記成形型内に加熱した樹脂を流入させることにより、前記強化繊維束及び前記バネ性を有する形状に屈曲した強化繊維に前記加熱樹脂を含浸させる工程と、
含浸した前記加熱樹脂を冷却する工程と、を少なくとも含むことを特徴とする強化繊維プラスチックの製造方法。
A method for producing a reinforcing fiber plastic in which a laminated reinforcing fiber bundle is impregnated with a resin,
The manufacturing method includes arranging reinforcing fiber bundles in a mold and reinforcing fibers bent into a shape having a spring property on the surface of reinforcing fiber bundles constituting at least a surface layer portion of the fiber reinforced plastic in the reinforcing fiber bundles. A step of arranging
Impregnating the reinforcing fibers bent into a shape having the reinforcing fiber bundle and the spring property by allowing the heated resin to flow into the molding die, and
And a step of cooling the impregnated heating resin.
JP2007109754A 2007-04-18 2007-04-18 Fiber reinforced plastic Expired - Fee Related JP5023785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109754A JP5023785B2 (en) 2007-04-18 2007-04-18 Fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109754A JP5023785B2 (en) 2007-04-18 2007-04-18 Fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2008265108A true JP2008265108A (en) 2008-11-06
JP5023785B2 JP5023785B2 (en) 2012-09-12

Family

ID=40045316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109754A Expired - Fee Related JP5023785B2 (en) 2007-04-18 2007-04-18 Fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP5023785B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023000A1 (en) * 2013-08-13 2015-02-19 帝人株式会社 Method for manufacturing decorative molding and decorative molding
JP2017210575A (en) * 2016-05-27 2017-11-30 日産自動車株式会社 Fiber-reinforced resin molded article, and method of manufacturing the same
JP2017209941A (en) * 2016-05-27 2017-11-30 日産自動車株式会社 Fiber-reinforced resin molded product and method for producing the same
JP2020529344A (en) * 2017-08-02 2020-10-08 エシコン エルエルシーEthicon LLC Systems and methods for laminated modeling of medical equipment
WO2023204095A1 (en) * 2022-04-22 2023-10-26 双葉電子工業株式会社 Carbon fiber-reinforced plastic plate and method for manufacturing carbon fiber-reinforced plastic plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673688A (en) * 1992-08-10 1994-03-15 Yamauchi Corp Cushioning material for molding press
WO2002058915A1 (en) * 2001-01-26 2002-08-01 Kaneka Corporation Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same
JP2002227066A (en) * 2001-01-29 2002-08-14 Toray Ind Inc Reinforcing multiaxial stitched fabric and method for molding frp
JP2005336218A (en) * 2004-05-24 2005-12-08 Toray Ind Inc Fiber-reinforced plastic and method for producing the same
JP2006015663A (en) * 2004-07-02 2006-01-19 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced resin structure, fiber-reinforced resin structure and composite base material
JP2007331369A (en) * 2006-05-18 2007-12-27 Toyota Motor Corp Fiber-reinforced plastic molded object and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673688A (en) * 1992-08-10 1994-03-15 Yamauchi Corp Cushioning material for molding press
WO2002058915A1 (en) * 2001-01-26 2002-08-01 Kaneka Corporation Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same
JP2002227066A (en) * 2001-01-29 2002-08-14 Toray Ind Inc Reinforcing multiaxial stitched fabric and method for molding frp
JP2005336218A (en) * 2004-05-24 2005-12-08 Toray Ind Inc Fiber-reinforced plastic and method for producing the same
JP2006015663A (en) * 2004-07-02 2006-01-19 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced resin structure, fiber-reinforced resin structure and composite base material
JP2007331369A (en) * 2006-05-18 2007-12-27 Toyota Motor Corp Fiber-reinforced plastic molded object and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023000A1 (en) * 2013-08-13 2015-02-19 帝人株式会社 Method for manufacturing decorative molding and decorative molding
US9481117B2 (en) 2013-08-13 2016-11-01 Teijin Limited Manufacturing method of decorative molded article and decorative molded article
JP2017210575A (en) * 2016-05-27 2017-11-30 日産自動車株式会社 Fiber-reinforced resin molded article, and method of manufacturing the same
JP2017209941A (en) * 2016-05-27 2017-11-30 日産自動車株式会社 Fiber-reinforced resin molded product and method for producing the same
JP2020529344A (en) * 2017-08-02 2020-10-08 エシコン エルエルシーEthicon LLC Systems and methods for laminated modeling of medical equipment
JP7119068B2 (en) 2017-08-02 2022-08-16 エシコン エルエルシー Systems and methods for additive manufacturing of medical devices
WO2023204095A1 (en) * 2022-04-22 2023-10-26 双葉電子工業株式会社 Carbon fiber-reinforced plastic plate and method for manufacturing carbon fiber-reinforced plastic plate
JP7511601B2 (en) 2022-04-22 2024-07-05 双葉電子工業株式会社 Carbon fiber reinforced plastic plate and method for producing the same

Also Published As

Publication number Publication date
JP5023785B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US20200254654A1 (en) Coated fiber-reinforced resin molded article and manufacturing method of the same
CA2870731C (en) Composite article and methods therefor
JP5597134B2 (en) Molding method of molding material
JP5934802B2 (en) Load bearing structure and process for aircraft engines
US8043543B2 (en) Method for molding of polymer composites comprising three-dimensional carbon reinforcement using a durable tool
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
US9810820B1 (en) Optical and microwave reflectors comprising tendrillar mat structure
JP6100285B2 (en) Method for producing carbon fiber article and article produced by this method
JP5023785B2 (en) Fiber reinforced plastic
JP6273804B2 (en) Manufacturing method of fiber reinforced plastic molding
JP2006213059A (en) Method for manufacturing frp composite
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JPS58118402A (en) Spoke plate made of carbon fiber reinforced plastic
US6841021B1 (en) Method of making a polyimide resin and carbon fiber molded tube clamp
JP4734983B2 (en) Preform substrate and method for producing the same
JP5332225B2 (en) Manufacturing method of fiber reinforced composite material
JP6655328B2 (en) Nanoparticles to improve dimensional stability of resin
TW201919839A (en) Fiber reinforced plastic and fiber reinforced plastic manufacturing method
JP5786352B2 (en) Manufacturing method of fiber reinforced resin sheet
JP5958569B2 (en) Manufacturing method of fiber reinforced resin sheet
WO2009134503A2 (en) Forming a honeycomb structure
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2010253714A (en) Method of molding fiber-reinforced plastics
JP2007090811A (en) Member of fiber-reinforced plastic and manufacturing method of the same
US20110297308A1 (en) Method of making automotive body parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5023785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees