JP2008264791A - Mold powder for continuously casting steel and continuous casting method - Google Patents

Mold powder for continuously casting steel and continuous casting method Download PDF

Info

Publication number
JP2008264791A
JP2008264791A JP2007107058A JP2007107058A JP2008264791A JP 2008264791 A JP2008264791 A JP 2008264791A JP 2007107058 A JP2007107058 A JP 2007107058A JP 2007107058 A JP2007107058 A JP 2007107058A JP 2008264791 A JP2008264791 A JP 2008264791A
Authority
JP
Japan
Prior art keywords
powder
steel
mass
continuous casting
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007107058A
Other languages
Japanese (ja)
Other versions
JP4903622B2 (en
Inventor
Hideaki Yamamura
英明 山村
Toshiyuki Kajitani
敏之 梶谷
Koji Harada
浩次 原田
Wataru Ohashi
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007107058A priority Critical patent/JP4903622B2/en
Publication of JP2008264791A publication Critical patent/JP2008264791A/en
Application granted granted Critical
Publication of JP4903622B2 publication Critical patent/JP4903622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mold powder for continuously casting a steel with which while securing difficulty to enclosure into the steel as high-viscosity powder having ≥0.8 Pa s viscosity at 1300°C, the mold powder has excellent lubrication and a high-grade product having no powder defect can be obtained without obstructing the productivity. <P>SOLUTION: The mold powder for continuously casting the steel is the one, containing at least one of Al and Ti; 0.9-1.2 CaO/SiO<SB>2</SB>mass ratio; ≤38 mass% CaO; 10-35 mass% SiO<SB>2</SB>; 7-25 mass% Al<SB>2</SB>O<SB>3</SB>; 3-10 mass% Na<SB>2</SB>O and substantially containing no MgO; and ≥0.8 Pa s viscosity at 1300°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼の連続鋳造において鋳型内に添加して使用される鋼の連続鋳造用モールドパウダーに関する。   The present invention relates to a mold powder for continuous casting of steel used by being added to a mold in continuous casting of steel.

溶鋼の連続鋳造に使用される連続鋳造モールドパウダー(以下、「パウダー」と記載する場合がある。)には、以下のような特性が要求される。
1)溶鋼面をパウダーが溶融して形成された溶融パウダーとその上の未溶融層とで被覆することにより、空気による溶鋼酸化を防止し、保温効果を持つ。
2)溶融パウダーは鋳型と鋳片との間に入って潤滑剤になるため、常に適当量供給される必要がある。このため、消費速度に合いかつ適正溶融パウダープール厚となる溶融速度を有する。
3)溶融パウダー層が鋼中より浮上した非金属介在物を吸収し、その物性(粘性、溶融温度)の変化が小さいこと。
4)溶融パウダーは鋳型と凝固シェル間に流れ込み均一なパウダーフィルムを形成し、その間で潤滑作用があること。
5)溶融パウダーが適度の粘度、界面張力を持ち、溶鋼へ巻き込まれないこと。
The following properties are required for continuous casting mold powder (hereinafter sometimes referred to as “powder”) used for continuous casting of molten steel.
1) By covering the molten steel surface with molten powder formed by melting powder and an unmelted layer thereon, oxidation of molten steel by air is prevented, and a heat retaining effect is obtained.
2) Since the molten powder enters between the mold and the slab and becomes a lubricant, it must always be supplied in an appropriate amount. For this reason, it has a melting rate that matches the consumption rate and has an appropriate molten powder pool thickness.
3) The molten powder layer absorbs non-metallic inclusions that have floated from the steel, and changes in their physical properties (viscosity, melting temperature) are small.
4) The molten powder flows between the mold and the solidified shell to form a uniform powder film, and has a lubricating action between them.
5) The molten powder has an appropriate viscosity and interfacial tension and should not be caught in molten steel.

これらの中で、特に鋼へのパウダーの巻き込みは、高速鋳造時や、中、低速鋳造でもブリキ材、自動車用鋼板等の品質要求が厳格な鋼に対し問題となることが多い。   Among these, in particular, the entrainment of powder in steel is often a problem for steels with strict quality requirements such as tinplate materials and steel plates for automobiles even during high-speed casting, medium and low-speed casting.

このため、特許文献1に示されている高粘性や高表面張力タイプの難巻き込みパウダーや、特許文献2に示されている高界面張力タイプの難巻き込みパウダーが開発されてきた。   For this reason, the highly viscous and high surface tension type hard-to-roll powder shown in Patent Document 1 and the high interfacial tension-type hard-to-roll powder shown in Patent Document 2 have been developed.

鋼中にAlやTiを含有すると、パウダー中のSiO2が溶鋼中のAlやTiと反応して、パウダーの物性値が変化するため、パウダーの潤滑性や、鋼へのパウダーの巻き込み性が悪化する。そこで、AlやTiを含有する溶鋼を用いて連続鋳造を行う場合でも、特許文献3に示されているようにパウダーの反応性を低下させてパウダーとの反応を抑制することで、溶鋼とパウダーの界面張力の大幅な低下を防止することによってパウダーの溶鋼への巻き込みを減少できるパウダーや、特許文献4に示されているようにSiO2、Na23、Li2Oを減少させて、溶鋼との反応を抑制するとともに、パウダー粘度を制御することでパウダーの溶鋼への巻き込みを減少できるパウダーが開発されてきた。 When Al or Ti is contained in the steel, SiO 2 in the powder reacts with Al or Ti in the molten steel, and the physical properties of the powder change. Therefore, the lubricity of the powder and the entrainment of the powder in the steel are improved. Getting worse. Therefore, even when continuous casting is performed using molten steel containing Al or Ti, molten steel and powder are suppressed by reducing the reactivity of the powder and suppressing the reaction with the powder as shown in Patent Document 3. By reducing the entrainment of the interfacial tension of the powder by reducing the entrainment of the powder into the molten steel, as shown in Patent Document 4, SiO 2 , Na 2 O 3 , Li 2 O can be reduced, Powders have been developed that can reduce the entrainment of the powder in the molten steel by suppressing the reaction with the molten steel and controlling the powder viscosity.

また、Al含有鋼においては高融点結晶のゲーレナイトの析出による潤滑不良が発生する場合がある。そこで特許文献5には、溶鋼とパウダーとの反応による溶鋼汚染を防止するとともに、Li2OやFの添加によって高融点結晶のゲーレナイトの析出を防止するパウダーが提案されている。 In addition, in Al-containing steel, lubrication failure may occur due to precipitation of high melting point crystal gehlenite. Therefore, Patent Document 5 proposes a powder that prevents molten steel contamination due to the reaction between molten steel and powder, and prevents precipitation of high melting point gehlenite by the addition of Li 2 O or F.

特公平4−40103号公報Japanese Patent Publication No. 4-40103 特開2000−71051号公報JP 2000-71051 A 特開2006−175472号公報JP 2006-175472 A 特開2006−192440号公報JP 2006-192440 A 特開2006−110578号公報JP 2006-110578 A

しかし、近年さらなる高速鋳造化やさらなる品質の向上が要求されており、特許文献1の技術の様に、巻き込みを防止するためにパウダーの組成を変更して高粘性とするだけでは、適正なパウダーの流入量が確保できず、鋳型と凝固シェル間の十分な潤滑性が維持できなくなってしまい、最悪の場合ブレークアウトを招いて鋳造停止となる。   However, in recent years, there has been a demand for further high-speed casting and further improvement in quality. As in the technique of Patent Document 1, an appropriate powder can be obtained simply by changing the composition of the powder to make it highly viscous to prevent entrainment. As a result, it becomes impossible to maintain a sufficient lubricity between the mold and the solidified shell, and in the worst case, a breakout is caused and the casting is stopped.

また、特許文献2の技術ではCaO/SiO2が7以上と非常に高いために、凝固温度が高くなり、適正なパウダーの流入量が確保できず、鋳型と凝固シェル間の十分な潤滑性が維持できなくなってしまい、最悪の場合ブレークアウトを招いて鋳造停止となる。 Further, in the technique of Patent Document 2, since CaO / SiO 2 is very high as 7 or more, the solidification temperature becomes high, an appropriate amount of powder inflow cannot be secured, and sufficient lubricity between the mold and the solidified shell is obtained. It becomes impossible to maintain, and in the worst case, breakout is caused and casting is stopped.

特許文献3の技術においても、近年の高品質化の要求に対応するために高粘度化が必要となってきた。0.8Pa・s以上の高粘度になると、やはり鋳型と凝固シェル間の十分な潤滑性が維持できなくなってしまい、鋳型の抜熱が変動して、ブレークアウト検知のために鋳型に埋め込んだ熱電対の温度が変動して、誤検知を引き起こし、生産性を阻害する。   In the technique of Patent Document 3, it is necessary to increase the viscosity in order to meet the recent demand for higher quality. When the viscosity becomes 0.8 Pa · s or higher, sufficient lubricity between the mold and the solidified shell cannot be maintained, and the heat removal from the mold fluctuates, and the thermoelectric embedded in the mold for breakout detection. The temperature of the pair fluctuates, causing false positives and hindering productivity.

特許文献4の技術においても、鋳型と鋳片間に流入したパウダー中に高融点の結晶相が生成することによって流入性や潤滑性が損なわれ、ブレークアウト検知のために鋳型に埋め込んだ熱電対の温度が変動して、誤検知を引き起こし、生産性を阻害する。   Also in the technique of Patent Document 4, the inflow property and lubricity are impaired by the generation of a high-melting crystalline phase in the powder flowing between the mold and the slab, and the thermocouple embedded in the mold for breakout detection. Fluctuates in temperature, causing false detections and hindering productivity.

特許文献5の技術においては、粘度が最高で0.5Pa・s程度であり、近年の高生産性化の要求によって鋳造速度が速くなると巻き込みが発生する場合が生じる。   In the technique of Patent Document 5, the viscosity is about 0.5 Pa · s at the maximum, and entrainment may occur when the casting speed increases due to the recent demand for higher productivity.

本発明はかかる事情に鑑みてなされたものであって、1300℃における粘度が0.8Pa・s以上の高粘度パウダーとして鋼中への難巻き込み性を確保しながら、かつ潤滑性も優れており、パウダー性欠陥の無い高品位の製品を得ることができ、生産性を阻害することのない鋼の連続鋳造用パウダーを提供することを目的とする。   The present invention has been made in view of such circumstances, and as a high-viscosity powder having a viscosity at 1300 ° C. of 0.8 Pa · s or more, it is difficult to entrain in steel and has excellent lubricity. An object of the present invention is to provide a powder for continuous casting of steel, which can obtain a high-quality product free from powder defects and does not hinder productivity.

上記課題を解決するための本発明の要旨は、以下のとおりである。
(1)AlまたはTiの少なくとも一方を含有する鋼を連続鋳造するために用いられる連続鋳造用モールドパウダーであって、CaO/SiO2が質量比で0.9〜1.2、CaOが38質量%以下、SiO2が10質量%以上35質量%以下、Al23が7質量%以上で25質量%以下、Na2Oが3質量%以上で10質量%以下で、かつ、MgOを実質的に含まず、1300℃における粘度が0.8Pa・s以上であることを特徴とする鋼の連続鋳造用モールドパウダー。
ここで、CaOはパウダー中に含まれるCaをすべてCaOに換算した値である。
(2)F分が2質量%以上、10質量%以下含有されていることを特徴とする(1)に記載の鋼の連続鋳造用モールドパウダー。
(3)ZrO2が10質量%以下、SrOが10質量%以下の1種以上が含有されていることを特徴とする(1)または(2)に記載の鋼の連続鋳造用モールドパウダー。
(4)前記モールドパウダー中のCa/Siが質量比で0.8〜2.5であることを特徴とする(1)〜(3)のいずれかに記載の鋼の連続鋳造用モールドパウダー。
(5)前記モールドパウダー中のCaO*/SiO2が質量比で0.6〜1.2、CaO*が30質量%以下であることを特徴とする(2)〜(4)のいずれかに記載の鋼の連続鋳造用モールドパウダー。
ここで、CaO*はパウダー中に含まれるCaおよびFを分析し、FをCaF2で添加したとして、その分のCaを差し引いたCa分をCaOに換算した値である。
(6)AlまたはTiの少なくとも一方を含有する溶鋼との界面張力が1550℃において0.9N/m以上であることを特徴とする(1)〜(5)のいずれかに記載の鋼の連続鋳造用モールドパウダー。
(7)1550℃におけるSiO2の活量が0.4以下であることを特徴とする(1)〜(6)のいずれかに記載の鋼の連続鋳造用モールドパウダー。
(8)凝固温度が1000〜1200℃であることを特徴とする(1)〜(7)のいずれかに記載の鋼の連続鋳造用モールドパウダー。
(9)溶融温度が1000〜1250℃であることを特徴とする(1)〜(8)のいずれかに記載の鋼の連続鋳造用モールドパウダー。
(10)AlまたはTiの少なくとも一方を含有する鋼を連続鋳造する際に、(1)〜(9)のいずれかに記載の連続鋳造用モールドパウダーを用いることを特徴とする鋼の連続鋳造方法。
The gist of the present invention for solving the above problems is as follows.
(1) A mold powder for continuous casting used for continuously casting steel containing at least one of Al or Ti, wherein CaO / SiO 2 is 0.9 to 1.2 in terms of mass ratio, and CaO is 38 mass. %, SiO 2 is 10 mass% to 35 mass%, Al 2 O 3 is 7 mass% to 25 mass%, Na 2 O is 3 mass% to 10 mass%, and MgO is substantially contained. A mold powder for continuous casting of steel, characterized in that the viscosity at 1300 ° C. is 0.8 Pa · s or higher.
Here, CaO is a value obtained by converting all Ca contained in the powder into CaO.
(2) The mold powder for continuous casting of steel according to (1), wherein the F content is 2% by mass or more and 10% by mass or less.
(3) The mold powder for continuous casting of steel according to (1) or (2), wherein one or more of ZrO 2 and SrO of 10% by mass or less are contained.
(4) The mold powder for continuous casting of steel according to any one of (1) to (3), wherein Ca / Si in the mold powder is 0.8 to 2.5 in terms of mass ratio.
(5) In any one of (2) to (4), CaO * / SiO 2 in the mold powder is 0.6 to 1.2 by mass ratio, and CaO * is 30% by mass or less. Mold powder for continuous casting of steel as described.
Here, CaO * is a value obtained by analyzing Ca and F contained in the powder and converting Ca content obtained by subtracting the amount of Ca into CaO when F is added by CaF 2 .
(6) The continuous steel according to any one of (1) to (5), wherein the interfacial tension with molten steel containing at least one of Al and Ti is 0.9 N / m or more at 1550 ° C. Mold powder for casting.
(7) The mold powder for continuous casting of steel according to any one of (1) to (6), wherein the activity of SiO 2 at 1550 ° C. is 0.4 or less.
(8) The mold powder for continuous casting of steel according to any one of (1) to (7), wherein the solidification temperature is 1000 to 1200 ° C.
(9) The mold powder for continuous casting of steel according to any one of (1) to (8), wherein the melting temperature is 1000 to 1250 ° C.
(10) When continuously casting a steel containing at least one of Al and Ti, the continuous casting mold powder according to any one of (1) to (9) is used. .

本発明によれば、AlやTiを含有する溶鋼を用いて連続鋳造を行う場合でも、1300℃における粘度が0.8Pa・s以上の高粘度のパウダーとして溶鋼への難巻き込み性を確保しながら、かつ潤滑性に優れており、さらに鋼とパウダーの間の界面張力の低下を防止できるとともに、抜熱の安定化が可能であり、パウダー性欠陥の無い高品位の製品を得ることができる、鋼の連続鋳造用パウダーを提供することができる。   According to the present invention, even when continuous casting is performed using molten steel containing Al or Ti, while ensuring the difficulty of entrainment in molten steel as a high-viscosity powder having a viscosity at 1300 ° C. of 0.8 Pa · s or higher. And, it is excellent in lubricity, and furthermore, it can prevent a decrease in interfacial tension between steel and powder, and can stabilize heat removal, and can obtain a high-quality product free from powder defects. A powder for continuous casting of steel can be provided.

近年の高生産性化の要求によって鋳造速度が速くなることに伴い、より高粘度のパウダーを使用することが望まれているが、上記の通り、高粘度のパウダーを指向すると、鋳型と凝固シェル間の十分な潤滑性が維持できなくなってしまうという問題があった。特に、AlやTiを含有する溶鋼を用いて連続鋳造を行う場合には、潤滑性の悪化が顕著である。   As the casting speed increases due to the demand for higher productivity in recent years, it is desired to use powder with higher viscosity. However, as mentioned above, when the powder with higher viscosity is oriented, the mold and the solidified shell are used. There was a problem that sufficient lubricity could not be maintained. In particular, when continuous casting is performed using molten steel containing Al or Ti, the deterioration of lubricity is remarkable.

そこで、本発明者らは、鋭意、研究を重ねた結果、パウダー成分を適切な範囲に調整することで、AlやTiを含有する溶鋼を用いて連続鋳造を行う際に、高粘度のパウダーでありながら、鋳型と凝固シェル間の十分な潤滑性を両立できることを新たに見出した。以下に詳細に説明する。   Therefore, as a result of earnest and research, the present inventors have adjusted the powder component to an appropriate range, so that when performing continuous casting using molten steel containing Al or Ti, However, it was newly found that sufficient lubricity between the mold and the solidified shell can be achieved. This will be described in detail below.

本発明において、CaOはパウダー中に含まれるCaをすべてCaOに換算した値を意味する。また、CaO*はパウダー中に含まれるCaおよびFを分析し、FをCaF2で添加したとして、その分のCaを差し引いたCa分をCaOに換算した値を意味する。 In this invention, CaO means the value which converted all Ca contained in powder into CaO. In addition, CaO * means a value obtained by analyzing Ca and F contained in the powder, and assuming that F is added by CaF 2 , the Ca content obtained by subtracting the amount of Ca is converted to CaO.

本発明者らは、AlやTiを0.1質量%(以降、単に%と記載する。)以下含む溶鋼を用いて、1300℃における粘度が0.8Pa・s以上のパウダーであって、CaO,SiO2,Al23等の成分を変化させた種々のパウダーについて、パウダーの溶鋼への巻き込み性、連続鋳造におけるパウダーの流入性および潤滑性を検討した。ここで、1300℃における粘度が0.8Pa・s以上のパウダーとしたのは、パウダーの溶鋼での使用温度は1500℃程度であり、パウダーの融点は1000〜1250℃であるので、溶融しているパウダーの平均的な温度であり、粘度が0.8Pa・s以上であれば、パウダーの溶鋼への難巻き込み性が確保できることを実験的に知見しているためである。 The inventors of the present invention are powders having a viscosity at 1300 ° C. of 0.8 Pa · s or higher using molten steel containing 0.1% by mass or less of Al or Ti (hereinafter simply referred to as “%”), and CaO , SiO 2 , Al 2 O 3, etc., various powders were examined for the entrainment of the powder into molten steel, the inflow of the powder in continuous casting, and the lubricity. Here, the powder having a viscosity at 1300 ° C. of 0.8 Pa · s or more was used because the powder was used at a temperature of about 1500 ° C., and the melting point of the powder was 1000 to 1250 ° C. This is because it has been experimentally found that if the viscosity is 0.8 Pa · s or higher, the powder can be easily caught in molten steel.

また、パウダーの粘度は高い方が望ましいため、上限は特に規定するものではないが、粘度が高くなりすぎると潤滑性が悪くなるので、鋳造速度等によって適宜選択できる。粘度測定にあたっては、回転円筒法を用いることができる。   Moreover, since it is desirable that the powder has a higher viscosity, the upper limit is not particularly specified. However, if the viscosity is too high, the lubricity is deteriorated, so that it can be appropriately selected depending on the casting speed and the like. In measuring the viscosity, a rotating cylinder method can be used.

縦型管状炉(エレマ炉)を用いて鉄るつぼ中で溶解した溶融パウダーの中に、E型粘度計のローターを浸漬し、1300℃で30分間安定させた後、ローターを回転させ粘性抵抗によるトルクを測定し、粘度を求めることができる。なおE型粘度計は事前に標準粘度液にて校正しておくことが重要である。   The rotor of the E-type viscometer is immersed in molten powder dissolved in an iron crucible using a vertical tubular furnace (Elema furnace) and stabilized at 1300 ° C. for 30 minutes. Torque can be measured to determine viscosity. It is important to calibrate the E-type viscometer with a standard viscosity solution in advance.

1300℃における粘度が0.8Pa・s以上の高粘度のパウダーとするためには、コスト等を考慮するとAl23によって粘度を高めることが一般的であるが、そのためにAl23を含む高融点の結晶が生成して、パウダーの流入を阻害して、潤滑性を損なってしまう。このAl23を含む高融点の結晶としては、主にゲーレナイト(2CaO・Al23・SiO2)がある。ゲーレナイトは融点が1593℃であり、高温で生成して、パウダーの流入性や潤滑性を阻害する。凝固後のパウダー中のゲーレナイトはX線回折によって測定することができる。 For viscosity at 1300 ° C. is to powder 0.8 Pa · s or more high viscosity, but to increase the viscosity of the Al 2 O 3 considering the cost and the like are common, the Al 2 O 3 for the A high melting point crystal is generated, which inhibits the inflow of the powder and impairs lubricity. As the high melting point crystal containing Al 2 O 3 , there is mainly gehlenite (2CaO · Al 2 O 3 · SiO 2 ). Gaelenite has a melting point of 1593 ° C. and is produced at a high temperature, which impairs the inflowability and lubricity of the powder. The gehlenite in the powder after solidification can be measured by X-ray diffraction.

そこで、パウダー中のCaO/SiO2の質量比(「塩基度」と記載する場合がある。)に着目し、塩基度を種々に変更させて検討したところ、塩基度が0.9〜1.2の範囲であれば、パウダー巻き込み防止の効果が得られ、かつ潤滑性が確保できることを新たに見出した。 Then, paying attention to the mass ratio of CaO / SiO 2 in the powder (sometimes referred to as “basicity”), the basicity was 0.9 to 1. In the range of 2, it was newly found out that an effect of preventing powder entrainment can be obtained and lubricity can be secured.

パウダー中の塩基度が0.9未満では、パウダー巻き込み防止の効果が得られない。また、後述に示すSiO2の活量についても、この値が高くなり、巻き込み防止の効果が得られ難い。一方、塩基度が1.2超では流入性や潤滑性が損なわれる。これは、塩基度が0.9以上になるとパウダーの融点が急に上昇することで、パウダー巻き込み防止の効果が得られる。しかし、塩基度が1.2を超えると、パウダーの融点が高くなり過ぎて、パウダーの凝固相がパウダー中に生成し、この凝固相中にゲーレナイトの高融点結晶が生成することにより、溶融パウダーの流動性が著しく悪化し、流入性や潤滑性の確保が困難になるものと考えられる。 If the basicity in the powder is less than 0.9, the effect of preventing the entrainment of the powder cannot be obtained. As for the activity of SiO 2 shown later, this value increases, it is difficult to obtain the effect of entanglement preventing. On the other hand, if the basicity exceeds 1.2, the inflow property and lubricity are impaired. This is because the melting point of the powder suddenly rises when the basicity is 0.9 or more, and the effect of preventing the entrainment of the powder is obtained. However, when the basicity exceeds 1.2, the melting point of the powder becomes too high, and a solidified phase of the powder is generated in the powder, and a high melting point crystal of gehlenite is generated in the solidified phase. It is considered that the fluidity of the oil deteriorates remarkably and it becomes difficult to secure the inflow property and lubricity.

従って、塩基度の上限は小さい方が凝固相がパウダー中に生成しにくくなるため、1.15が好ましく、1.10がより好ましく、1.05がさらにより好ましい。また、より確実に凝固相がパウダー中に生成させないためには、塩基度の上限は1.10が好ましく、0.96が最も好ましい。   Therefore, the lower the upper limit of the basicity, the less likely the solidified phase is formed in the powder, so 1.15 is preferable, 1.10 is more preferable, and 1.05 is even more preferable. Further, in order to prevent the solidified phase from being generated in the powder more reliably, the upper limit of the basicity is preferably 1.10, and most preferably 0.96.

次に、パウダーの成分について、説明する。   Next, the components of the powder will be described.

パウダーの主成分としては、CaO、SiO2がある。パウダー中の塩基度(CaO/SiO2の質量比)を0.9〜1.2に維持することが重要であることは上述の通りである。 As the main component of the powder, there are CaO and SiO 2 . As described above, it is important to maintain the basicity (CaO / SiO 2 mass ratio) in the powder at 0.9 to 1.2.

但し、CaO含有量が38質量%超では凝固温度が高くなり、流入性や潤滑性が損なわれ易いため、38質量%以下とする。   However, if the CaO content exceeds 38% by mass, the solidification temperature becomes high, and the inflow property and lubricity are liable to be impaired.

また、SiO2含有量が10質量%未満では、溶融温度や粘度等の物性の調整が困難であり、35質量%超ではパウダーと溶鋼との反応の抑制効果が得られにくいため、10〜35質量%とする。 Further, if the SiO 2 content is less than 10% by mass, it is difficult to adjust physical properties such as melting temperature and viscosity, and if it exceeds 35% by mass, it is difficult to obtain the effect of suppressing the reaction between powder and molten steel. Mass%.

Al23は凝固温度や粘度を調整するために添加するが、パウダー中のAl23含有量が7質量%未満では調整効果が小さく、また25質量%超では粘度が上昇しすぎて、流入性や潤滑性が損なわれて抜熱挙動が不安定となるため、7〜25質量%とする。 Al 2 O 3 is added to adjust the solidification temperature and viscosity, but if the Al 2 O 3 content in the powder is less than 7% by mass, the adjustment effect is small, and if it exceeds 25% by mass, the viscosity increases too much. Inflow and lubricity are impaired, and the heat removal behavior becomes unstable.

Na2Oは融点の調整や、ガラス性を高めてAl23を含む高融点結晶の生成を抑制するために添加する。パウダー中のNa2O含有量が3質量%未満では効果が得られない。また、Na2Oは後述のSiO2の活量について、この値を低下させるという効果もある。ただし、Na2Oは溶鋼と反応しやすいので、Na2O含有量が10質量%超では反応抑制による巻き込み防止効果が得られない。 Na 2 O is added in order to adjust the melting point and suppress the formation of a high melting point crystal containing Al 2 O 3 by improving the glass property. If the Na 2 O content in the powder is less than 3% by mass, the effect cannot be obtained. Na 2 O also has an effect of lowering this value with respect to the activity of SiO 2 described later. However, since Na 2 O easily reacts with molten steel, if the Na 2 O content exceeds 10% by mass, the effect of preventing entrainment due to reaction suppression cannot be obtained.

MgOを含有すると、Al23を含む高融点結晶が生成しやすくなるために、MgOは添加しないで、実質的にMgOを含ませないこととする。但し、不可避的に混入する場合があるため、その様な場合、1質量%未満であれば許容できる。但し、1質量%以上ではAl23を含む高融点結晶の生成を抑制することが困難となる。 When MgO is contained, a high melting point crystal containing Al 2 O 3 is likely to be formed. Therefore, MgO is not added and MgO is not substantially contained. However, since it may be inevitably mixed, in such a case, it is acceptable if it is less than 1% by mass. However, if it is 1% by mass or more, it is difficult to suppress the formation of a high melting point crystal containing Al 2 O 3 .

また、パウダーには、以下の成分を選択的に含有しても良い。   Moreover, you may selectively contain the following components in powder.

F分は凝固温度や粘度を低下させる目的で添加するが、パウダー中のF濃度が2質量%未満では効果が小さく、10質量%超では粘度が低下しすぎると共に、CaF2等の結晶が析出して抜熱挙動が不安定となったり、パウダーの流入が過多となり鋳片品質が悪化しやすい。従って、2〜10質量%とすることが好ましい。F分の供給は、CaF2を添加してF分含有量を調整することが例示できる。 The F component is added for the purpose of lowering the solidification temperature and viscosity, but if the F concentration in the powder is less than 2% by mass, the effect is small, and if it exceeds 10% by mass, the viscosity will decrease too much and crystals such as CaF 2 will precipitate. As a result, the heat removal behavior becomes unstable and the powder inflow becomes excessive, and the slab quality tends to deteriorate. Therefore, it is preferable to set it as 2-10 mass%. The supply of F can be exemplified by adjusting Ca content by adding CaF 2 .

ZrO2は粘度を確保するために添加する。しかし、パウダー中のZrO2濃度が10質量%超では粘度が上昇しすぎるので、10質量%以下が望ましい。 ZrO 2 is added to ensure the viscosity. However, if the ZrO 2 concentration in the powder exceeds 10% by mass, the viscosity will increase too much, so 10% by mass or less is desirable.

SrOは溶融パウダーの物性を調整する目的で添加する。SrOを添加すると、パウダー組成の変化に対する凝固温度や粘度等の物性値の変化を抑制することができる。ただし、パウダー中のSrO濃度が10質量%超ではコストが高くなるので、10質量%以下が望ましい。   SrO is added for the purpose of adjusting the physical properties of the molten powder. When SrO is added, changes in physical property values such as solidification temperature and viscosity with respect to changes in the powder composition can be suppressed. However, if the SrO concentration in the powder exceeds 10% by mass, the cost becomes high, so 10% by mass or less is desirable.

ZrO2とSrOについては、それぞれ単独で含有させても良く、また併用しても良い。 ZrO 2 and SrO may be contained alone or in combination.

さらに、本パウダーにはカーボンブラックやコークス粉、グラファイト等の炭素質や繊維や樹脂等の有機質を適宜含有させることができる。これらの炭素質や有機質は溶融速度調整用や溶鋼表面保温効果、成形のためのバインダー等の目的で添加する。   Furthermore, the present powder can appropriately contain carbonaceous matter such as carbon black, coke powder, and graphite, and organic matter such as fiber and resin. These carbon and organic substances are added for the purpose of adjusting the melting rate, keeping the surface of the molten steel warm, forming a binder, and the like.

上記のパウダーのそれぞれの成分は、蛍光X線や化学分析で分析された値を用いることができる。   As each component of the powder, a value analyzed by fluorescent X-ray or chemical analysis can be used.

さらに、パウダーと溶鋼との反応を抑制することで、パウダーの溶鋼への巻き込みを減少できることで流入性や潤滑性を確保できることを明らかにした。また、パウダーとの反応を抑制することで、パウダー中へのAl23やTiO2の濃化も低減し、粘度の変化も防止できることが判明した。 Furthermore, by suppressing the reaction between powder and molten steel, it was clarified that inflow and lubricity can be secured by reducing the entrainment of powder into molten steel. It was also found that by suppressing the reaction with the powder, the concentration of Al 2 O 3 and TiO 2 in the powder can be reduced and the change in viscosity can be prevented.

具体的には、パウダーの界面張力が1550℃において0.9N/m以上になると、パウダーの鋼への巻き込みが良好に抑制されることが判明した。パウダーの界面張力が0.9N/m未満の場合、パウダーの鋼への巻き込みが増加する。   Specifically, it has been found that when the interfacial tension of the powder becomes 0.9 N / m or more at 1550 ° C., the entrainment of the powder into the steel is satisfactorily suppressed. When the interfacial tension of the powder is less than 0.9 N / m, the entrainment of the powder into the steel increases.

ここで、パウダーの界面張力の上限値は高い方が好ましいため、特に規定するものではないが、実際に調整可能な値としては1.7N/m程度が目安となる。   Here, since the upper limit of the interfacial tension of the powder is preferably higher, it is not particularly specified, but a value that can be actually adjusted is about 1.7 N / m.

また、パウダーの界面張力を1550℃における値としたのは、実際の連続鋳造に供する溶鋼の温度に近い温度であることによる。   Further, the reason why the interfacial tension of the powder is set to a value at 1550 ° C. is that the temperature is close to the temperature of the molten steel used for actual continuous casting.

AlやTiを含有する溶鋼を用いる場合、溶鋼とパウダーとの界面張力は、パウダー中の成分の、溶鋼中のAlやTiとの反応性が影響している。パウダーの界面張力を0.9N/m以上となる様に、溶鋼中のAlやTiとの反応性が低いパウダーの成分に調整することで、鋼中へのパウダー巻き込みを減少できる。   When using molten steel containing Al or Ti, the interfacial tension between the molten steel and the powder is affected by the reactivity of the components in the powder with Al and Ti in the molten steel. By adjusting the powder to have a low reactivity with Al and Ti in the molten steel so that the interfacial tension of the powder becomes 0.9 N / m or more, the entrainment of the powder in the steel can be reduced.

溶鋼中のAlやTiとの反応性が低いパウダーの成分の調整方法としては、AlやTiよりも酸化されにくい元素(Si、Na、Fe、Mn)の酸化物である、SiO2、Na2O,FeO,MnO等の含有量を少なくすることが例示できる。 As a method for adjusting a powder component having low reactivity with Al and Ti in molten steel, SiO 2 and Na 2 , which are oxides of elements (Si, Na, Fe, and Mn) that are less oxidized than Al and Ti, are used. An example is to reduce the content of O, FeO, MnO and the like.

尚、AlやTiを0.1質量%超含む溶鋼については、パウダーとの反応性がより高いため、本発明の効果がより発揮される。   In addition, about the molten steel containing more than 0.1 mass% of Al and Ti, since the reactivity with powder is higher, the effect of this invention is exhibited more.

ここで、界面張力の測定は、「大井 浩、野崎 努、吉井 裕:鉄と鋼、58(1972)、890」と同様の方法で行うことができる。   Here, the interfacial tension can be measured by a method similar to “Hiroshi Ooi, Tsutomu Nozaki, Hiroshi Yoshii: Iron and Steel, 58 (1972), 890”.

すなわち、るつぼ内で溶融した1550℃の溶融パウダー中に、鋼試料を静かに添加して鋼を溶融させ、溶融パウダー中の溶鋼の形状を横からX線透過撮影し、このX線透過写真から鋼の形状を測定して界面張力を求めることができる。   That is, the steel sample was gently added to the molten powder at 1550 ° C. melted in the crucible to melt the steel, and the shape of the molten steel in the molten powder was photographed from the side by X-ray transmission, from this X-ray transmission photograph. Interfacial tension can be determined by measuring the shape of the steel.

この様に、AlやTiを含有する溶鋼を用いる場合に、パウダーとの反応を抑制するためには、パウダー中のSiO2の活量(以下「aSiO2」と記載する場合がある。)を低下させることで、パウダーと溶鋼との反応が抑制されて、溶鋼中へのパウダーの巻き込みを減少できる。 Thus, when using molten steel containing Al or Ti, the activity of SiO 2 in the powder (hereinafter sometimes referred to as “aSiO 2 ”) may be used to suppress the reaction with the powder. By lowering, the reaction between the powder and the molten steel is suppressed, and the entrainment of the powder in the molten steel can be reduced.

ここで、活量とは化学反応性を示す指標であり、例えば「大谷正康:鉄冶金熱力学,日刊工業新聞社,東京,(1971),p.78」に開示されているように、濃度に活量係数を乗じることにより求めることができる。   Here, the activity is an index indicating chemical reactivity, and as disclosed in, for example, “Masayasu Otani: Iron Metallurgical Thermodynamics, Nikkan Kogyo Shimbun, Tokyo, (1971), p. 78”. Can be obtained by multiplying by the activity coefficient.

以下、本発明のパウダーのaSiO2の好ましい範囲について説明する。 Hereinafter, the preferable range of aSiO 2 of the powder of the present invention will be described.

パウダーの溶鋼への巻き込みを評価するために溶融パウダーを浮かべた溶鋼中に石英製のJ字管を浸漬し、湯面近傍の溶鋼を吸引した後、J字管中に吸い込まれた鋼に含有されるパウダーの量を測定した。尚、パウダー量の測定は、凝固後の鋼の断面を顕微鏡観察することで求めた。   In order to evaluate the entrainment of the powder in the molten steel, the quartz J-shaped tube is immersed in the molten steel floating the molten powder, and the molten steel near the surface of the molten metal is sucked into the steel sucked into the J-shaped tube. The amount of powder to be measured was measured. In addition, the measurement of the amount of powder was calculated | required by observing the cross section of the steel after solidification under a microscope.

次に、CaO,SiO2,Al23を含有し、aSiO2を各種変化させたパウダーを用いて、上記方法により測定されたパウダーの量から、パウダー巻き込み指数を求めた。その結果、aSiO2が0.4超では巻き込み防止効果が小さいが、aSiO2を0.4以下とすることで、溶鋼とパウダーとの反応を抑制できることが判明した。 Next, using a powder containing CaO, SiO 2 and Al 2 O 3 and variously changing aSiO 2 , a powder entrainment index was determined from the amount of powder measured by the above method. As a result, a SiO 2 is less effect of preventing entrainment in greater than 0.4, by the a SiO 2 and 0.4 or less, was found to be able to suppress the reaction between the molten steel and the powder.

そのため、溶鋼とパウダーとの界面張力の低下を抑制し、溶鋼中へのパウダーの巻き込みを防止できることから、aSiO2を0.4以下とすることが好ましい。ここで、aSiO2の下限値は0を含む。 For this reason, it is preferable to set aSiO 2 to 0.4 or less, since a decrease in the interfacial tension between the molten steel and the powder can be suppressed and the entrainment of the powder in the molten steel can be prevented. Here, the lower limit of aSiO 2 includes 0.

また、パウダーのaSiO2を1550℃における値としたのは、実際の連続鋳造に供する溶鋼の温度に近い温度であることによる。 Moreover, the reason why the aSiO 2 of the powder was set to a value at 1550 ° C. is that the temperature is close to the temperature of the molten steel used for actual continuous casting.

ここで、aSiO2は実験で求めることができ、また、熱力学モデルを用いて計算によって求めることもできる。 Here, aSiO 2 can be obtained by experiment, and can also be obtained by calculation using a thermodynamic model.

パウダー中のaSiO2を実験で求めるのは、通常、スラグ中の成分の活量を求める際に行われる方法として、「藤澤敏治、坂尾 弘:鉄と鋼、63(1977)、p.1504」と同様の方法を用いることができる。 The determination of aSiO 2 in the powder by experiment is usually performed as a method performed when determining the activity of the component in the slag as “Toshiharu Fujisawa, Hiroshi Sakao: Iron and Steel, 63 (1977), p. 1504”. The same method can be used.

すなわち、溶鋼上でパウダーを溶解し、平衡に達するまで保持した後の溶鋼中のSi濃度とパウダー中のSiO2濃度を分析して、純SiO2すなわちaSiO2が1の場合の平衡濃度と比較して求められる。 That is, by dissolving the powder on the molten steel and holding it until equilibrium is reached, the Si concentration in the molten steel and the SiO 2 concentration in the powder are analyzed and compared with the equilibrium concentration when pure SiO 2, that is, aSiO 2 is 1. Is required.

一方、熱力学モデルを用いて活量を計算する計算ツールとして、SOLGASMIX(「G.Erikson:Chemical Scripta,8(1975),p.100」を参照)や、Thermo−Calc(「B.Sundman,B.Jansson,J.O.Andersson:CALPHAD、9(1985)、p.153」を参照)等があり、これらを用いてパウダー組成から計算してもよい。   On the other hand, SOLGASMIX (see “G. Erikson: Chemical Scripta, 8 (1975), p. 100”) and Thermo-Calc (“B. Sundman,” as calculation tools for calculating activity using a thermodynamic model. B. Jansson, JO Andersson: CALHAD, 9 (1985), p. 153 "), etc., and these may be used to calculate from the powder composition.

以上の通り、AlやTiを含有する溶鋼において、パウダー中のaSiO2を低下させると、パウダー中のSiO2と溶鋼中のAlやTiとの反応を抑制して、界面張力の低下を抑制してパウダーの巻き込みを減少させることができる。 As described above, in a molten steel containing Al or Ti, when aSiO 2 in the powder is reduced, the reaction between SiO 2 in the powder and Al or Ti in the molten steel is suppressed, and the decrease in interfacial tension is suppressed. The powder entrainment can be reduced.

さらに、Mn濃度の高い溶鋼の場合には、パウダー中のSiO2と溶鋼中のMnが反応してパウダー中のMnOの含有量が増加して、その結果、パウダーの粘度が低下する場合がある。aSiO2を低くさせた場合には、MnOの増加を抑制して粘度の低下を防止できる。 Furthermore, in the case of molten steel with a high Mn concentration, SiO 2 in the powder and Mn in the molten steel react to increase the content of MnO in the powder, and as a result, the viscosity of the powder may decrease. . When aSiO 2 is lowered, the increase in MnO can be suppressed to prevent the viscosity from decreasing.

次に、パウダー中のCa/Siが0.8〜2.5が好ましい理由を述べる。ここで、CaはCaOやCaF2等で添加されたCaの総量である。 Next, the reason why Ca / Si in the powder is preferably 0.8 to 2.5 will be described. Here, Ca is the total amount of Ca added with CaO, CaF 2 or the like.

蛍光X線分析装置等で組成を分析する場合にはCaOそのものを分析することは困難であるので、分析によって得られたCaやSiの値を用いて成分を調整することが実用上望ましい。   When analyzing the composition with a fluorescent X-ray analyzer or the like, it is difficult to analyze CaO itself, so it is practically desirable to adjust the components using the values of Ca and Si obtained by the analysis.

パウダー中のCa/Siが0.8未満ではSiO2の活量が高くなり、巻き込み防止の効果が得られ難く、また2.5超では凝固温度が高くなり、流入性や潤滑性が損なわれ易い。 If the Ca / Si content in the powder is less than 0.8, the activity of SiO 2 is high, and it is difficult to obtain the effect of preventing entrainment. If it exceeds 2.5, the solidification temperature becomes high, and the inflow property and lubricity are impaired. easy.

さらに、パウダー中のCaO*/SiO2が0.6〜1.2が好ましい理由を述べる。ここで、CaO*はパウダー中に含まれるCaおよびFを分析し、FをCaF2で添加したとして、その分のCaを差し引いたCa量をCaOに換算した値である。 Furthermore, the reason why CaO * / SiO 2 in the powder is preferably 0.6 to 1.2 will be described. Here, CaO * is a value obtained by analyzing Ca and F contained in the powder and converting the amount of Ca obtained by subtracting the amount of Ca into CaO, assuming that F is added by CaF 2 .

パウダー中のCaO*/SiO2が0.6未満ではSiO2の活量が高くなり、巻き込み防止の効果が得られ難く、また1.2超では凝固温度が高くなり、流入性や潤滑性が損なわれ易い。 When the CaO * / SiO 2 in the powder is less than 0.6, the SiO 2 activity is high, and it is difficult to obtain the effect of preventing entrainment. It is easily damaged.

さらに、CaO*が30%超では凝固温度が高くなり、流入性や潤滑性が損なわれ易い。   Further, if CaO * exceeds 30%, the solidification temperature becomes high, and the inflow property and lubricity are liable to be impaired.

また、パウダーの凝固温度は1000℃以上、1200℃以下が望ましい。パウダーの凝固温度が1000℃未満では抜熱挙動が不安定となり、1200℃を超えると潤滑特性が不良となる。   The solidification temperature of the powder is preferably 1000 ° C. or higher and 1200 ° C. or lower. When the solidification temperature of the powder is less than 1000 ° C., the heat removal behavior is unstable, and when it exceeds 1200 ° C., the lubrication characteristics are poor.

凝固温度測定にあたっては、ローター回転法により1300℃で粘度測定を実施し、その後20℃ずつ温度を降下させて、各温度で保持後に粘度測定を行ってlogηと1/T(ηは粘度poise、Tは絶対温度゜Kを示す)の関係グラフを作成する。   In measuring the solidification temperature, the viscosity is measured at 1300 ° C. by the rotor rotation method, and then the temperature is decreased by 20 ° C., and the viscosity is measured after being held at each temperature to obtain log η and 1 / T (η is viscosity poise, (T represents absolute temperature ° K).

この測定時、温度降下により、試料中に結晶が晶出し、ニュートン流体でなくなり、測定不能になった温度から10℃高い温度を凝固温度と定義した。   At the time of this measurement, a crystal was crystallized in the sample due to the temperature drop, and it was no longer a Newtonian fluid.

さらに、パウダーの溶融温度は1000℃以上、1250℃以下が望ましい。パウダーの溶融温度が1000℃未満では抜熱挙動が不安定となり、1250℃を超えると潤滑が不良となる。溶融温度測定にあたっては、粉砕したパウダーをバインダーを用いずに底面と高さの比が1:1の円柱に成形した後、白金板の上で加熱していき、試料の高さが1/2になった温度を溶融温度として求めることができる。   Furthermore, the melting temperature of the powder is desirably 1000 ° C. or higher and 1250 ° C. or lower. When the melting temperature of the powder is less than 1000 ° C., the heat removal behavior becomes unstable, and when it exceeds 1250 ° C., the lubrication becomes poor. In measuring the melting temperature, the pulverized powder was formed into a cylinder having a bottom to height ratio of 1: 1 without using a binder, and then heated on a platinum plate. The temperature at which the value becomes can be obtained as the melting temperature.

本発明のパウダーは、主にAl23によって粘度を調整するとともに、これに加えてCaO、SiO2成分によって塩基度を調整しながら、MgOを添加することなくNa2Oを添加することによってアルミナを含む高融点結晶の生成を抑制可能なパウダーを製造することができる。 The powder of the present invention is adjusted by adding Na 2 O without adding MgO while adjusting the viscosity mainly by Al 2 O 3 and adjusting basicity by CaO and SiO 2 components in addition to this. The powder which can suppress the production | generation of the high melting point crystal | crystallization containing an alumina can be manufactured.

溶融温度や凝固温度、粘度を調整するために、例えばCaF2、ZrO2、SrO等を、適宜、添加しても良い。 In order to adjust the melting temperature, the solidification temperature, and the viscosity, for example, CaF 2 , ZrO 2 , SrO or the like may be added as appropriate.

また、本発明のパウダーは、Al、Tiの少なくとも一方を含む溶鋼の連続鋳造方法に好適に使用できる。   Moreover, the powder of this invention can be used conveniently for the continuous casting method of the molten steel containing at least one of Al and Ti.

本発明に係る上記パウダーが効果的に用いられる対象鋼種は、炭素を含有する鋼が好ましい。炭素を含有する鋼を対象とするのは、炭素を含有しない溶鋼では溶鋼の粘度やパウダーとの界面張力が高くなり本パウダーの効果を発揮しにくいということによる。   The target steel type in which the powder according to the present invention is effectively used is preferably carbon-containing steel. The reason why carbon containing steel is used is that molten steel that does not contain carbon increases the viscosity of the molten steel and the interfacial tension with the powder, making it difficult to exhibit the effect of this powder.

また、鋼中の炭素濃度は特に限定するものではないが、特に炭素濃度が0.0005質量%〜0.05質量%と炭素濃度の低い鋼で製造した鋼板はパウダー巻き込みによる欠陥が発生しやすく、本発明の効果が大きい。   Moreover, the carbon concentration in the steel is not particularly limited, but in particular, a steel plate manufactured with a steel having a low carbon concentration of 0.0005 mass% to 0.05 mass% is likely to cause defects due to powder entrainment. The effect of the present invention is great.

さらに、本発明では溶鋼中のAl、Tiの含有量を限定するものではないが、Al、Tiの少なくとも一方の含有量が0.1質量%以下の比較的含有量が低い溶鋼に用いた場合でも、本発明の効果が十分に得られる。   Further, in the present invention, the content of Al and Ti in the molten steel is not limited, but when used for molten steel with a relatively low content of at least one of Al and Ti of 0.1% by mass or less However, the effects of the present invention can be sufficiently obtained.

転炉にて溶製した溶鋼300tonを、真空精錬炉(RH)にて所定の成分濃度に調整した極低炭素鋼の溶鋼を、タンディッシュ、浸漬ノズルを介して垂直曲げ型の連続鋳造機で、厚み250mm、幅1200mmの鋳片に鋳造した。鋳造速度は1.8m/minとした。   300ton of molten steel melted in a converter is adjusted to a predetermined component concentration in a vacuum refining furnace (RH), and the molten steel of ultra low carbon steel is tapped with a vertical bending type continuous casting machine via an immersion nozzle. And cast into a slab having a thickness of 250 mm and a width of 1200 mm. The casting speed was 1.8 m / min.

パウダーの組成および物性値および鋳造した溶鋼中のAl,Ti濃度を表1に示す。パウダー1〜13は本発明例を示している。また、A、B、Cは従来パウダーを用いた比較例を示している。ここで、界面張力およびaSiO2は1550℃での値であり、粘度は1300℃での値である。 Table 1 shows the composition and physical properties of the powder and the Al and Ti concentrations in the cast molten steel. Powders 1 to 13 show examples of the present invention. A, B, and C show comparative examples using conventional powders. Here, the interfacial tension and aSiO 2 are values at 1550 ° C., and the viscosity is a value at 1300 ° C.

鋳造して得られた鋳片を常法にて熱延・酸洗・冷延・焼鈍して自動車用の薄鋼板とし、表面を観察して表面疵を調査するとともに、プレス加工を行い割れの発生を検査した。   The slab obtained by casting is hot rolled, pickled, cold rolled, and annealed by a conventional method to form a thin steel sheet for automobiles. The occurrence was examined.

Figure 2008264791
Figure 2008264791

表1に示すように、本発明を用いた連続鋳造では流入不安定によるブレークアウト警報やブレークアウト等の操業異常の発生が従来パウダーを用いた比較例に比べて減少している。さらに、本発明例の鋳片を用いた板では製品板の表面疵(線状)の発生率やプレス加工時の割れの発生率が従来パウダーを用いた比較例に比べ激減している。   As shown in Table 1, in continuous casting using the present invention, the occurrence of operational abnormalities such as breakout warning and breakout due to inflow instability is reduced compared to the comparative example using conventional powder. Further, in the plate using the slab of the example of the present invention, the occurrence rate of surface defects (linear) of the product plate and the occurrence rate of cracks during press working are drastically reduced as compared with the comparative example using the conventional powder.

今回は、垂直曲げ型連続鋳造設備を使用したが、湾曲型及び垂直型連続鋳造設備においても同様の効果が確認されている。   This time, vertical bending type continuous casting equipment was used, but the same effect was confirmed in curved type and vertical type continuous casting equipment.

また、本実施例では自動車用の薄鋼板用の鋳片製造にあたっての例で述べたが、本技術の本質とするところは、パウダーの巻き込みによって生じる欠陥を防止することであり、缶用鋼板、鋼管など他の鋼種の鋳片を製造する場合にも効果が確認されている。   Further, in this example, the example of manufacturing a slab for a thin steel sheet for automobiles was described, but the essence of the present technology is to prevent defects caused by entrainment of powder, The effect has also been confirmed when producing slabs of other steel types such as steel pipes.

本発明により、AlやTiを含む溶鋼を連続鋳造する際にパウダーの巻き込みを抑制して、介在物やパウダーの巻き込みに起因する介在物によって発生する加工時の割れや線状疵の発生が少ない表面性状や加工性の優れた薄鋼板を製造することが可能である。本鋼材を用いて冷延鋼板を製造できるのは勿論のこと、焼鈍後に電気亜鉛めっきや合金化電気亜鉛めっき鋼板として、またさらに、有機被覆鋼板の原板を製造することもできる。また、連続焼鈍条件が満たされる限り連続焼鈍溶融亜鉛めっき、合金化溶融亜鉛めっき用鋼板用鋼材としても使用可能である。従って、家庭電気製品や自動車、缶等の広い用途に適用できるため、産業上に与える効果は極めて大きい。   According to the present invention, it is possible to suppress the entrainment of powder when continuously casting molten steel containing Al and Ti, and to reduce the occurrence of cracks and linear flaws caused by inclusions and inclusions resulting from the entrainment of powder. It is possible to produce a thin steel sheet having excellent surface properties and workability. Of course, a cold-rolled steel sheet can be manufactured using this steel material, and after annealing, as an electrogalvanized steel sheet or an alloyed electrogalvanized steel sheet, an organic coated steel sheet can also be manufactured. Moreover, as long as the continuous annealing conditions are satisfied, it can also be used as a steel material for steel plates for continuous annealing hot dip galvanizing and alloying hot dip galvanizing. Therefore, since it can be applied to a wide range of uses such as household electric appliances, automobiles, and cans, the effect on the industry is extremely large.

Claims (10)

AlまたはTiの少なくとも一方を含有する鋼を連続鋳造するために用いられる連続鋳造用モールドパウダーであって、CaO/SiO2が質量比で0.9〜1.2、CaOが38質量%以下、SiO2が10質量%以上35質量%以下、Al23が7質量%以上で25質量%以下、Na2Oが3質量%以上で10質量%以下で、かつ、MgOを実質的に含まず、1300℃における粘度が0.8Pa・s以上であることを特徴とする鋼の連続鋳造用モールドパウダー。
ここで、CaOはパウダー中に含まれるCaをすべてCaOに換算した値である。
A mold powder for continuous casting used for continuous casting of steel containing at least one of Al or Ti, wherein CaO / SiO 2 is 0.9 to 1.2 by mass ratio, CaO is 38 mass% or less, SiO 2 is 10 mass% to 35 mass%, Al 2 O 3 is 7 mass% to 25 mass%, Na 2 O is 3 mass% to 10 mass%, and substantially contains MgO. A mold powder for continuous casting of steel, characterized in that the viscosity at 1300 ° C. is 0.8 Pa · s or more.
Here, CaO is a value obtained by converting all Ca contained in the powder into CaO.
F分が2質量%以上、10質量%以下含有されていることを特徴とする請求項1に記載の鋼の連続鋳造用モールドパウダー。   The mold powder for continuous casting of steel according to claim 1, wherein the F content is 2 mass% or more and 10 mass% or less. ZrO2が10質量%以下、SrOが10質量%以下の1種以上が含有されていることを特徴とする請求項1または2に記載の鋼の連続鋳造用モールドパウダー。 The mold powder for continuous casting of steel according to claim 1 or 2, wherein one or more of ZrO 2 and SrO of 10 mass% or less are contained. 前記モールドパウダー中のCa/Siが質量比で0.8〜2.5であることを特徴とする請求項1〜3のいずれかに記載の鋼の連続鋳造用モールドパウダー。   The mold powder for continuous casting of steel according to any one of claims 1 to 3, wherein Ca / Si in the mold powder is in a mass ratio of 0.8 to 2.5. 前記モールドパウダー中のCaO*/SiO2が質量比で0.6〜1.2、CaO*が30質量%以下であることを特徴とする請求項2〜4のいずれかに記載の鋼の連続鋳造用モールドパウダー。
ここで、CaO*はパウダー中に含まれるCaおよびFを分析し、FをCaF2で添加したとして、その分のCaを差し引いたCa分をCaOに換算した値である。
5. The continuous steel according to claim 2, wherein CaO * / SiO 2 in the mold powder is 0.6 to 1.2 by mass ratio and CaO * is 30% by mass or less. Mold powder for casting.
Here, CaO * is a value obtained by analyzing Ca and F contained in the powder and converting Ca content obtained by subtracting the amount of Ca into CaO when F is added by CaF 2 .
AlまたはTiの少なくとも一方を含有する溶鋼との界面張力が1550℃において0.9N/m以上であることを特徴とする請求項1〜5のいずれかに記載の鋼の連続鋳造用モールドパウダー。   The mold powder for continuous casting of steel according to any one of claims 1 to 5, wherein an interfacial tension with molten steel containing at least one of Al and Ti is 0.9 N / m or more at 1550 ° C. 1550℃におけるSiO2の活量が0.4以下であることを特徴とする請求項1〜6のいずれかに記載の鋼の連続鋳造用モールドパウダー。 The mold powder for continuous casting of steel according to any one of claims 1 to 6, wherein the activity of SiO 2 at 1550 ° C is 0.4 or less. 凝固温度が1000〜1200℃であることを特徴とする請求項1〜7のいずれかに記載の鋼の連続鋳造用モールドパウダー。   Solidification temperature is 1000-1200 degreeC, The mold powder for continuous casting of steel in any one of Claims 1-7 characterized by the above-mentioned. 溶融温度が1000〜1250℃であることを特徴とする請求項1〜8のいずれかに記載の鋼の連続鋳造用モールドパウダー。   Melting temperature is 1000-1250 degreeC, The mold powder for continuous casting of steel in any one of Claims 1-8 characterized by the above-mentioned. AlまたはTiの少なくとも一方および炭素を含有する鋼を連続鋳造する際に、請求項1〜9のいずれかに記載の連続鋳造用モールドパウダーを用いることを特徴とする鋼の連続鋳造方法。   A continuous casting method for steel, wherein the continuous casting mold powder according to any one of claims 1 to 9 is used when continuously casting a steel containing at least one of Al or Ti and carbon.
JP2007107058A 2007-04-16 2007-04-16 Mold powder for continuous casting of steel and continuous casting method Active JP4903622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107058A JP4903622B2 (en) 2007-04-16 2007-04-16 Mold powder for continuous casting of steel and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107058A JP4903622B2 (en) 2007-04-16 2007-04-16 Mold powder for continuous casting of steel and continuous casting method

Publications (2)

Publication Number Publication Date
JP2008264791A true JP2008264791A (en) 2008-11-06
JP4903622B2 JP4903622B2 (en) 2012-03-28

Family

ID=40045040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107058A Active JP4903622B2 (en) 2007-04-16 2007-04-16 Mold powder for continuous casting of steel and continuous casting method

Country Status (1)

Country Link
JP (1) JP4903622B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131241A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method
WO2011090218A1 (en) * 2010-01-21 2011-07-28 新日本製鐵株式会社 Mould powder for continuous casting of steel
CN102211155A (en) * 2011-06-01 2011-10-12 武汉钢铁(集团)公司 Calcium treatment method of low-carbon low silicon aluminium killed steels under CSP (Cast Steel Plate) condition
CN102443684A (en) * 2010-09-30 2012-05-09 见得行股份有限公司 Cinder modifier composition for casting and use method thereof
JP2014000611A (en) * 2013-10-10 2014-01-09 Nippon Steel & Sumitomo Metal Continuous casting method
KR101394441B1 (en) * 2012-12-27 2014-05-13 주식회사 포스코 Continuous casting apparatus
JP2014193475A (en) * 2013-03-29 2014-10-09 Jfe Steel Corp Continuous casting method of round billet
KR101586931B1 (en) * 2014-07-29 2016-01-19 현대제철 주식회사 Ladle
JP2019123007A (en) * 2018-01-19 2019-07-25 日鉄建材株式会社 Mold flux for continuous casting and continuous casting method
JP2020062665A (en) * 2018-10-18 2020-04-23 日本製鉄株式会社 Mold powder for continuous casting of ultra-low carbon steel and method of continuous casting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291005A (en) * 1998-04-16 1999-10-26 Kawasaki Steel Corp Mold flux for continuously casting steel
JP2004351482A (en) * 2003-05-29 2004-12-16 Jfe Steel Kk Mold powder for continuous casting of steel
JP2006175472A (en) * 2004-12-22 2006-07-06 Nippon Steel Corp Mold powder for continuous casting of steel, and continuous casting method of steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291005A (en) * 1998-04-16 1999-10-26 Kawasaki Steel Corp Mold flux for continuously casting steel
JP2004351482A (en) * 2003-05-29 2004-12-16 Jfe Steel Kk Mold powder for continuous casting of steel
JP2006175472A (en) * 2004-12-22 2006-07-06 Nippon Steel Corp Mold powder for continuous casting of steel, and continuous casting method of steel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131241A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method
WO2011090218A1 (en) * 2010-01-21 2011-07-28 新日本製鐵株式会社 Mould powder for continuous casting of steel
JP4837804B2 (en) * 2010-01-21 2011-12-14 新日本製鐵株式会社 Mold powder for continuous casting of steel
CN102443684A (en) * 2010-09-30 2012-05-09 见得行股份有限公司 Cinder modifier composition for casting and use method thereof
CN102211155A (en) * 2011-06-01 2011-10-12 武汉钢铁(集团)公司 Calcium treatment method of low-carbon low silicon aluminium killed steels under CSP (Cast Steel Plate) condition
KR101394441B1 (en) * 2012-12-27 2014-05-13 주식회사 포스코 Continuous casting apparatus
JP2014193475A (en) * 2013-03-29 2014-10-09 Jfe Steel Corp Continuous casting method of round billet
JP2014000611A (en) * 2013-10-10 2014-01-09 Nippon Steel & Sumitomo Metal Continuous casting method
KR101586931B1 (en) * 2014-07-29 2016-01-19 현대제철 주식회사 Ladle
JP2019123007A (en) * 2018-01-19 2019-07-25 日鉄建材株式会社 Mold flux for continuous casting and continuous casting method
JP7009228B2 (en) 2018-01-19 2022-01-25 日鉄建材株式会社 Mold flux for continuous casting and continuous casting method
JP2020062665A (en) * 2018-10-18 2020-04-23 日本製鉄株式会社 Mold powder for continuous casting of ultra-low carbon steel and method of continuous casting
JP7200594B2 (en) 2018-10-18 2023-01-10 日本製鉄株式会社 Mold powder for continuous casting of ultra-low carbon steel and continuous casting method

Also Published As

Publication number Publication date
JP4903622B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4903622B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP4837804B2 (en) Mold powder for continuous casting of steel
JP5370929B2 (en) Mold flux for continuous casting of steel
WO2018066182A1 (en) Fe-Cr-Ni ALLOY AND METHOD FOR PRODUCING SAME
JP4932635B2 (en) Continuous casting powder and steel continuous casting method
JP4813225B2 (en) Continuous casting powder for Al-containing Ni-base alloy and continuous casting method
JP4486878B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP5136994B2 (en) Continuous casting method of steel using mold flux
JP2016007610A (en) Steel continuous casting method
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP5246068B2 (en) Powder for continuous casting
JP4010929B2 (en) Mold additive for continuous casting of steel
JP5226423B2 (en) Powder for continuous casting of steel
JP4611327B2 (en) Continuous casting powder for Ni-Cu alloy and continuous casting method
JP2004358485A (en) Mold flux for continuous casting of steel
JP4345457B2 (en) High Al steel high speed casting method
JP2000158105A (en) Mold powder for continuous steel casting and continuous casting method
KR20140058145A (en) Method for manufacturing mold powder and method for the continuous casting of ferritic stainless steel using the method
JPH11170007A (en) Method for evaluating continuous casting mold powder of steel for sheet, its mold powder, and continuous casting method of aluminum-killed steel for sheet using it
JP2018144046A (en) Mold powder for continuous casting, and continuous casting method for steel
JP7284397B2 (en) Mold powder for continuous casting
JP7288130B1 (en) Ni-Cu alloy with excellent surface properties and method for producing the same
JP5454131B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP3806364B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP5590167B2 (en) Powder for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R151 Written notification of patent or utility model registration

Ref document number: 4903622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350