JP2008263784A - Method for producing branched fatty acid-containing diacylglycerol-containing oil and fat - Google Patents

Method for producing branched fatty acid-containing diacylglycerol-containing oil and fat Download PDF

Info

Publication number
JP2008263784A
JP2008263784A JP2007106693A JP2007106693A JP2008263784A JP 2008263784 A JP2008263784 A JP 2008263784A JP 2007106693 A JP2007106693 A JP 2007106693A JP 2007106693 A JP2007106693 A JP 2007106693A JP 2008263784 A JP2008263784 A JP 2008263784A
Authority
JP
Japan
Prior art keywords
fatty acid
diacylglycerol
reaction
oil
branched fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106693A
Other languages
Japanese (ja)
Other versions
JP4971018B2 (en
Inventor
Yoshinori Arai
賢紀 新居
Keiji Shibata
啓二 柴田
Toshiteru Komatsu
利照 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007106693A priority Critical patent/JP4971018B2/en
Publication of JP2008263784A publication Critical patent/JP2008263784A/en
Application granted granted Critical
Publication of JP4971018B2 publication Critical patent/JP4971018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce oils and fats containing a diacylglycerol, having a branched fatty acid as a constituent fatty acid at a high concentration. <P>SOLUTION: The method for producing branched fatty acid-containing diacylglycerol-containing oils and fats includes the step making a monoacylglycerol containing a branched fatty acid as a constituent fatty acid react with a straight-chain fatty acid or its lower alcohol ester, in the presence of lipase under reduced pressure of 0.01-10 kPa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構成脂肪酸として分岐脂肪酸を有するジアシルグリセロールを高濃度で含有する油脂の製造方法に関する。   The present invention relates to a method for producing fats and oils containing diacylglycerol having a branched fatty acid as a constituent fatty acid at a high concentration.

ジアシルグリセロールは、トリアシルグリセロールに比べて親水性が高い等の性質を示し、産業上有用な油脂である。ジアシルグリセロールは、モノアシルグリセロールと脂肪酸、若しくはグリセリンと脂肪酸を原料とし、エステル化反応を行うか、又はトリアシルグリセロール(通常の油脂)とグリセリンを原料とし、グリセロリシスを行うことにより製造される。これらの反応は、用いる触媒により化学法又は酵素法に分けられる(特許文献1〜3参照)。また、エステル化反応は水を生ずるため、エステル化反応を進行させるためには反応系内を減圧にする等により脱水するという手段が採られている(特許文献4、5参照)。   Diacylglycerol exhibits properties such as high hydrophilicity compared to triacylglycerol, and is an industrially useful oil and fat. Diacylglycerol is produced by performing an esterification reaction using monoacylglycerol and fatty acid or glycerin and fatty acid as raw materials, or by performing glycerolysis using triacylglycerol (ordinary fats and oils) and glycerin as raw materials. These reactions are classified into chemical methods or enzymatic methods depending on the catalyst used (see Patent Documents 1 to 3). In addition, since the esterification reaction generates water, means for dehydrating the reaction system by reducing the pressure in the reaction system has been adopted to advance the esterification reaction (see Patent Documents 4 and 5).

構成脂肪酸として分岐脂肪酸を含有する油脂は融点が低い。例えば、炭素数が18であるステアリン酸で比較した場合、直鎖型の脂肪酸の場合の融点は70℃(油脂化学便覧)であるのに対し、分岐型の脂肪酸の場合の融点は−20℃である。また、構成脂肪酸として分岐脂肪酸を含有するジアシルグリセロールは、伸展性、結晶性に著しい特徴を発現することが知られている(特許文献6)。更に、構成脂肪酸として分岐脂肪酸を含有するジアシルグリセロールは、持続性のある高い保湿効果を有することが知られている(特許文献7)。文献7の方法では、13kPa(100mmHg)という真空条件でエステル化反応が行われているが、通常このような低真空下では脱水され難く反応に時間がかかるため、酵素濃度を高くするという手段を採用している。   Oils and fats containing branched fatty acids as constituent fatty acids have a low melting point. For example, when compared with stearic acid having 18 carbon atoms, the melting point for linear fatty acids is 70 ° C. (Oil and Chemicals Handbook), whereas the melting point for branched fatty acids is −20 ° C. It is. Moreover, it is known that diacylglycerol containing a branched fatty acid as a constituent fatty acid expresses remarkable characteristics in extensibility and crystallinity (Patent Document 6). Furthermore, it is known that diacylglycerol containing a branched fatty acid as a constituent fatty acid has a long lasting moisturizing effect (Patent Document 7). In the method of Reference 7, the esterification reaction is carried out under a vacuum condition of 13 kPa (100 mmHg). Usually, such dehydration is difficult under such a low vacuum, and the reaction takes time. Adopted.

直鎖脂肪酸を構成脂肪酸とするモノアシルグリセロールと、直鎖脂肪酸を原料として、低真空下でエステル化反応を行うと、ジアシルグリセロールがトリアシルグリセロールに転移し、高純度のジアシルグリセロールは得られない。この場合の対処法としては、高真空下でエステル化反応を行い、速やかに反応させ、ある程度の反応率のところで反応を停止し、ジアシルグリセロール純度の低下を抑制している。
特開平1−71495号公報 国際公開第03/29392号パンフレット 特開昭63−133992号公報 特開平10−234391号公報 特開2001−169795号公報 特開平1−101890号公報 特開平2−270811号公報
When a monoacylglycerol having a straight chain fatty acid as a constituent fatty acid and an esterification reaction using the straight chain fatty acid as a raw material under a low vacuum, the diacylglycerol is transferred to the triacylglycerol and a high-purity diacylglycerol cannot be obtained. . As a countermeasure in this case, an esterification reaction is performed under a high vacuum, the reaction is promptly performed, the reaction is stopped at a certain reaction rate, and a decrease in diacylglycerol purity is suppressed.
JP-A-1-71495 International Publication No. 03/29392 Pamphlet JP-A-63-133992 JP-A-10-234391 JP 2001-169795 A Japanese Patent Laid-Open No. 1-1101890 JP-A-2-270811

前記の高真空条件によるエステル化反応では、高真空設備を必要とするため設備負荷が大きくなり、高いエネルギーを必要とする。また、反応率がある程度高い80質量%以上で、急激にジアシルグリセロール純度が低下するため、高反応率、且つ高純度のジアシルグリセロールを得るのは難しい。   In the esterification reaction under the above-mentioned high vacuum conditions, a high vacuum equipment is required, so that the equipment load becomes large and high energy is required. In addition, since the purity of diacylglycerol is drastically reduced at a certain high reaction rate of 80% by mass or more, it is difficult to obtain a high reaction rate and high purity diacylglycerol.

そこで、本発明は、構成脂肪酸として分岐脂肪酸を有するジアシルグリセロールを高濃度で含有する油脂を提供することを目的とする。   Then, an object of this invention is to provide the fats and oils which contain the diacylglycerol which has a branched fatty acid as a constituent fatty acid at high concentration.

本発明者は、上記課題について検討した結果、次の事実を見出した。モノアシルグリセロールと脂肪酸とのエステル化反応によりジアシルグリセロールを製造する際に、1,2−ジアシルグリセロールとなったもの、及び、1,3−ジアシルグリセロールの1位又は3位に結合した脂肪酸が2位に転移したものは、更に脂肪酸が結合してトリアシルグリセロールが生成してしまうという現象が生じ、ジアシルグリセロール純度が低下する。一方、炭素数が同じである直鎖型と分岐型の脂肪酸を比較した場合、両者の分子量は同じであるにも拘わらず、分岐脂肪酸の方が立体的に嵩高くなり、分子の運動性が悪くなるという特異性があることを見出した。そこで、脂肪酸と反応させる対象を、分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールとすることにより、1,2−ジアシルグリセロールからトリアシルグリセロールになり難いこと、及び1,3−ジアシルグリセロールにおける2位への脂肪酸の転移反応が起こり難くなることを発見した。更に、特定の真空条件下で反応させることにより、設備負荷をかけず、反応率を高く、構成脂肪酸として分岐脂肪酸を有するジアシルグリセロール含有油脂を、従来の製造方法よりも効率良く製造できることを見出し、本発明を完成した。   As a result of examining the above problems, the present inventor has found the following facts. When diacylglycerol is produced by esterification reaction of monoacylglycerol and a fatty acid, 1,2-diacylglycerol is converted into 1,2-diacylglycerol and 2 fatty acids bonded to the 1-position or 3-position of 1,3-diacylglycerol. Those transferred to the position cause a phenomenon that triacylglycerol is further generated by binding of fatty acid, and the purity of diacylglycerol is lowered. On the other hand, when comparing linear and branched fatty acids with the same number of carbon atoms, the branched fatty acids are sterically bulky despite the fact that both have the same molecular weight, and the mobility of the molecules is increased. I found that there is a specificity of getting worse. Therefore, by making the target to be reacted with a fatty acid monoacylglycerol having a branched fatty acid as a constituent fatty acid, it is difficult to change 1,2-diacylglycerol to triacylglycerol, and to the second position in 1,3-diacylglycerol. It has been found that the transfer reaction of fatty acids is difficult to occur. Furthermore, by reacting under specific vacuum conditions, it has been found that diacylglycerol-containing fats and oils having a branched fatty acid as a constituent fatty acid can be produced more efficiently than conventional production methods without applying equipment load, The present invention has been completed.

すなわち、本発明は、分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールと、直鎖脂肪酸又はその低級アルコールエステルとを、リパーゼの存在下、0.01〜10kPaの減圧下で反応させる分岐脂肪酸を有するジアシルグリセロール含有油脂の製造方法を提供するものである。   That is, the present invention relates to a diacyl having a branched fatty acid in which a monoacylglycerol having a branched fatty acid as a constituent fatty acid and a linear fatty acid or a lower alcohol ester thereof are reacted under reduced pressure of 0.01 to 10 kPa in the presence of lipase. A method for producing a glycerol-containing fat is provided.

本発明の方法によれば、構成脂肪酸として分岐脂肪酸を有するジアシルグリセロールを高濃度で含有する油脂を効率的に製造することができる。   According to the method of the present invention, fats and oils containing diacylglycerol having a branched fatty acid as a constituent fatty acid at a high concentration can be efficiently produced.

本発明においては、基質の一つとして、グリセリン骨格の1位又は2位に分岐脂肪酸が結合したモノアシルグリセロールを使用するのが好ましい。分岐脂肪酸は、更にグリセリン骨格の1位に結合していることが好ましい。分岐脂肪酸の炭素数は4〜24が好ましく、更に16〜22が好ましい(以下、グリセリン骨格に結合した脂肪酸を「構成脂肪酸」と表記する)。構成脂肪酸である分岐脂肪酸は、イソデカン酸、イソトリデカン酸、イソミリスチン酸、イソパルミチン酸、イソステアリン酸等があげられるが、イソパルミチン酸、イソステアリン酸が好ましい。特に、イソステアリン酸モノアシルグリセロールを基質として使用するのが、高純度ジアシルグリセロールを高収率で得る点から好ましく、また反応装置を設備負荷の小さい、コンパクトなものとする点からも好ましい。
また、もう一方の基質である直鎖脂肪酸又はその低級アルコールエステルは、炭素鎖8〜24の直鎖脂肪酸が好ましい。特に、炭素鎖が10〜14の直鎖脂肪酸であることが、高純度ジアシルグリセロールを高収率で得る点から好ましい。低級アルコールエステルの場合には、アルコールは炭素数が1〜3であることが好ましい。
In the present invention, it is preferable to use monoacylglycerol having a branched fatty acid bonded to the 1- or 2-position of the glycerin skeleton as one of the substrates. The branched fatty acid is preferably further bonded to the 1-position of the glycerin skeleton. 4-24 are preferable and, as for carbon number of branched fatty acid, 16-22 are more preferable (Hereinafter, the fatty acid couple | bonded with the glycerol skeleton is described as a "constituent fatty acid"). Examples of the branched fatty acid that is a constituent fatty acid include isodecanoic acid, isotridecanoic acid, isomyristic acid, isopalmitic acid, and isostearic acid. Isopalmitic acid and isostearic acid are preferable. In particular, it is preferable to use monoacylglycerol isostearate as a substrate from the viewpoint of obtaining high-purity diacylglycerol in a high yield, and it is also preferable from the viewpoint of making the reaction apparatus small in equipment load and compact.
The straight chain fatty acid or lower alcohol ester thereof as the other substrate is preferably a straight chain fatty acid having 8 to 24 carbon chains. In particular, a straight chain fatty acid having 10 to 14 carbon chains is preferable from the viewpoint of obtaining high-purity diacylglycerol in a high yield. In the case of a lower alcohol ester, the alcohol preferably has 1 to 3 carbon atoms.

本発明に使用される直鎖脂肪酸の起源としては、植物性、動物性油脂のいずれでもよい。具体的な原料としては、カツオ油、イワシ油、マグロ油等の魚油、アマニ油、シソ油、大豆油、ナタネ油、ひまわり油等の植物油等を挙げることができる。またこれらの油脂を分別、混合したもの、水素添加や、エステル交換反応などにより脂肪酸組成を調整したものも原料として利用できる。   The origin of the linear fatty acid used in the present invention may be vegetable or animal fats. Specific examples of the raw material include fish oil such as bonito oil, sardine oil and tuna oil, vegetable oil such as linseed oil, perilla oil, soybean oil, rapeseed oil and sunflower oil. In addition, those obtained by separating and mixing these oils and fats, and those obtained by adjusting the fatty acid composition by hydrogenation or transesterification can be used as raw materials.

本発明に使用される直鎖脂肪酸又はその低級アルコールエステルのモノアシルグリセロールに対するモル倍率は、好ましくは0.1〜10mol倍、更に0.5〜5mol倍、特に1〜1.5mol倍とするのが、経済的に高純度のジアシルグリセロールを得る点から好ましい。   The molar ratio of the linear fatty acid or its lower alcohol ester used in the present invention to the monoacylglycerol is preferably 0.1 to 10 mol times, more preferably 0.5 to 5 mol times, particularly 1 to 1.5 mol times. Is preferable from the viewpoint of economically obtaining highly pure diacylglycerol.

本発明においては、分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールと、直鎖脂肪酸又はその低級アルコールエステルとを反応させる際にリパーゼを用いる。リパーゼは、特にRhizopus属、Aspergillus属、Mucor属、Geotrichum属、Pseudomonas属、Penicillium属、Chromobacterium属、Candida属、Achromobacter属、又はAlcaligenes属の微生物由来のものを挙げることができる。これらのリパーゼの中でもモノアシルグリセロールの1位又は3位に選択的に作用するものであることが、特に有用なジアシルグリセロールを合成することができる点から好ましい。分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールは、1−(又は3−)モノアシルグリセロールが安定であり、この場合、3位(又は1位)にのみ作用するリパーゼを使用することによって、分岐脂肪酸と直鎖脂肪酸を含むジアシルグリセロールを高純度で非常に容易に得ることができる。   In the present invention, lipase is used when a monoacylglycerol having a branched fatty acid as a constituent fatty acid is reacted with a linear fatty acid or a lower alcohol ester thereof. Examples of lipases include those derived from microorganisms of the genus Rhizopus, Aspergillus, Mucor, Geotrichum, Pseudomonas, Penicillium, Chromobacterium, Candida, Achromobacter, or Alcaligenes. Among these lipases, those that selectively act at the 1-position or 3-position of monoacylglycerol are preferred from the viewpoint that particularly useful diacylglycerol can be synthesized. As monoacylglycerol having a branched fatty acid as a constituent fatty acid, 1- (or 3-) monoacylglycerol is stable. In this case, by using a lipase that acts only at the 3-position (or 1-position), the branched fatty acid is used. And diacylglycerol containing linear fatty acid can be obtained very easily with high purity.

本発明において用いるリパーゼは、前記の菌体から単離精製された粗酵素をそのまま使用しても良いが、反応後に回収、再利用できるという経済性の点から、各種担体に保持させて固定化したリパーゼを使用することが好ましい。   As the lipase used in the present invention, the crude enzyme isolated and purified from the above cells may be used as it is, but from the economical point of view that it can be recovered and reused after the reaction, it is retained on various carriers and immobilized. It is preferable to use the lipase prepared.

リパーゼを固定化する担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、特に保水力の点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより酵素のより大きな吸着量を得ることができるという点から、多孔質であることが好ましい。   As a carrier for immobilizing lipase, inorganic carriers such as celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin And organic polymers such as hydrophobic adsorption resins, chelate resins, and synthetic adsorption resins. Among them, ion exchange resins are particularly preferable from the viewpoint of water retention. Of the ion exchange resins, a porous surface is preferable because it has a large surface area, and thus a larger amount of adsorption of the enzyme can be obtained.

固定化担体として用いる樹脂の粒子径は100〜1000μmが好ましく、特に250〜750μmが好ましい。細孔径は10〜150nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社製Duolite A-568)が好ましい。   The particle diameter of the resin used as the immobilization carrier is preferably 100 to 1000 μm, particularly preferably 250 to 750 μm. The pore diameter is preferably 10 to 150 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable.

本発明において、リパーゼを前記担体に固定化する場合には、固定化を行う温度は、酵素の特性によって決定することができるが、酵素の失活が起きない0〜60℃、特に5〜40℃が好ましい。また固定化時に使用する酵素溶液のpHは、酵素の変性が起きない範囲であればよく、温度同様酵素の特性によって決定することができるが、pH3〜9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。上記酵素溶液中の酵素濃度は、固定化効率の点から酵素の飽和溶解度以下で、かつ十分な濃度であることが好ましい。また酵素溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また用いる酵素質量はその酵素活性によっても異なるが、担体100質量部(以下、単に「部」と記載する)に対して5〜1000部、特に10〜500部が好ましい。   In the present invention, when the lipase is immobilized on the carrier, the temperature at which the lipase is immobilized can be determined according to the characteristics of the enzyme, but 0 to 60 ° C., particularly 5 to 40 at which the enzyme is not deactivated. ° C is preferred. Moreover, the pH of the enzyme solution used at the time of immobilization may be in a range where no denaturation of the enzyme occurs, and can be determined by the characteristics of the enzyme as well as the temperature, but is preferably pH 3-9. In order to maintain this pH, a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution. The enzyme concentration in the enzyme solution is preferably not more than the saturation solubility of the enzyme and sufficient from the viewpoint of immobilization efficiency. Moreover, the enzyme solution can also use what was refine | purified by the supernatant obtained by removing the insoluble part by centrifugation, ultrafiltration, etc. as needed. Moreover, although the enzyme mass to be used varies depending on the enzyme activity, it is preferably 5 to 1000 parts, more preferably 10 to 500 parts, relative to 100 parts by mass of the carrier (hereinafter simply referred to as “part”).

酵素を固定化する場合、担体と酵素を直接吸着してもよいが、高活性を発現するような吸着状態にするため、酵素吸着前に予め担体を脂溶性脂肪酸又はその誘導体で処理することが好ましい。脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用質量は、担体100部に対して1〜500部、特に10〜200部が好ましい。接触温度は0〜100℃、特に20〜60℃が好ましく、接触時間は5分〜5時間程度が好ましい。この処理を終えた担体は、ろ過して回収するが、乾燥してもよい。乾燥温度は室温〜100℃が好ましく、減圧乾燥を行ってもよい。   When the enzyme is immobilized, the carrier and the enzyme may be directly adsorbed. However, in order to obtain an adsorption state that expresses high activity, the carrier may be treated with a fat-soluble fatty acid or a derivative thereof in advance before the enzyme adsorption. preferable. As a method for contacting the fat-soluble fatty acid or derivative thereof with the carrier, these may be added directly to water or an organic solvent, but in order to improve dispersibility, the fat-soluble fatty acid or derivative thereof is once dispersed and dissolved in the organic solvent. And then added to a carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, ethanol, and the like. The used mass of the fat-soluble fatty acid or derivative thereof is preferably 1 to 500 parts, particularly 10 to 200 parts, relative to 100 parts of the carrier. The contact temperature is preferably 0 to 100 ° C, particularly preferably 20 to 60 ° C, and the contact time is preferably about 5 minutes to 5 hours. The carrier after this treatment is collected by filtration, but may be dried. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.

予め担体を処理する脂溶性脂肪酸又はその誘導体のうち、脂溶性脂肪酸としては、炭素数4〜24、好ましくは炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基を有していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。また前記脂溶性脂肪酸の誘導体としては、これらの脂溶性脂肪酸と一価若しくは多価アルコール又は糖類とのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加したもの等が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これら脂溶性脂肪酸及びその誘導体はいずれも常温で液状であることが酵素を担体に固定化する工程上好ましい。これら脂溶性脂肪酸又はその誘導体としては、上記2種以上を併用してもよく、菜種脂肪酸、大豆脂肪酸等の天然由来の脂肪酸を用いることもできる。
固定化リパーゼの量は、反応に供する分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールと直鎖脂肪酸又はその低級アルコールエステルとの合計量100部に対して、0.5〜50部、好ましくは1〜20部、より好ましくは2〜10部、更に3〜6部であることが反応時間と酵素コストの点から好ましい。
Among the fat-soluble fatty acids or derivatives thereof for treating the carrier in advance, the fat-soluble fatty acid has a saturated or unsaturated, linear or branched, hydroxy group having 4 to 24 carbon atoms, preferably 8 to 18 carbon atoms. Fatty acids that may be used are listed. Specific examples include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid, isostearic acid and the like. Examples of the fat-soluble fatty acid derivatives include esters of these fat-soluble fatty acids with mono- or polyhydric alcohols or saccharides, phospholipids, and those obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. These fat-soluble fatty acids and derivatives thereof are preferably liquid at room temperature in terms of immobilizing the enzyme on the carrier. As these fat-soluble fatty acids or derivatives thereof, two or more of the above may be used in combination, and naturally derived fatty acids such as rapeseed fatty acids and soybean fatty acids may be used.
The amount of the immobilized lipase is 0.5 to 50 parts, preferably 1 to 100 parts of the total amount of monoacylglycerol and linear fatty acid or lower alcohol ester thereof having a branched fatty acid to be subjected to the reaction as a constituent fatty acid. 20 parts, more preferably 2 to 10 parts, and further 3 to 6 parts are preferred from the viewpoint of reaction time and enzyme cost.

反応の形態としては、攪拌槽で酵素または固定化酵素を基質中に懸濁させる方法、固定化酵素を充填した固定床と脱水槽の間で基質を循環させる方法等が挙げられる。攪拌槽を用いる方法は、ジアシルグリセロールの純度を向上する点から好ましい。固定化酵素を充填した固定床と脱水槽を用いる方法は、反応後のジアシルグリセロールを固定化酵素と分離する工程が不要でハンドリング性が向上できる点から好ましい。 Examples of the reaction include a method in which an enzyme or an immobilized enzyme is suspended in a substrate in a stirring tank, a method in which the substrate is circulated between a fixed bed filled with the immobilized enzyme and a dehydration tank. A method using a stirring tank is preferable from the viewpoint of improving the purity of diacylglycerol. The method using a fixed bed filled with an immobilized enzyme and a dehydration tank is preferable because a process for separating the diacylglycerol after the reaction from the immobilized enzyme is unnecessary and handling properties can be improved.

本発明の方法における反応の圧力は0.1〜10kPaであるが、好ましくは0.2〜9kPa、更に0.5〜8kPa、特に1.5〜7kPa、殊更5〜7kPaであることが、反応率、ジアシルグリセロールの高純度化、工業化の点から好ましい。ここで圧力は、絶対圧力をいう。圧力は、真空設備の設備コスト及び運転コストの点からは大きい方が好ましく、ジアシルグリセロールの高純度化の点及び反応時間を短縮できる点からは小さい方が好ましく、これらを総合的に考慮すると、0.2〜9kPa、更に0.5〜8kPa、特に1.5〜7kPa、殊更5〜7kPaであることが、好ましい。
反応温度は、反応速度を向上する点、酵素の失活を抑制する点から0〜100℃、更に20〜80℃、特に30〜60℃とすることが好ましい。
The pressure of the reaction in the method of the present invention is 0.1 to 10 kPa, preferably 0.2 to 9 kPa, more preferably 0.5 to 8 kPa, particularly 1.5 to 7 kPa, especially 5 to 7 kPa. From the viewpoint of efficiency, high purity of diacylglycerol, and industrialization. Here, the pressure refers to absolute pressure. The pressure is preferably larger from the viewpoint of the equipment cost and operating cost of the vacuum equipment, and preferably smaller from the viewpoint of increasing the purity of the diacylglycerol and shortening the reaction time. It is preferably 0.2 to 9 kPa, more preferably 0.5 to 8 kPa, especially 1.5 to 7 kPa, especially 5 to 7 kPa.
The reaction temperature is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., particularly preferably 30 to 60 ° C. from the viewpoint of improving the reaction rate and suppressing the deactivation of the enzyme.

反応率は、50質量%(以下、単に「%」と記載する)以上とするのが好ましく、更に60%以上、特に70〜100%、殊更80〜95%とするのが工業的生産性、収率の点から好ましい。ジアシルグリセロール純度は、70〜100%であることが好ましく、更に75〜97%、特に80〜96%、殊更85〜95%であるのが、工業的生産性、ジアシルグリセロール含有油脂の保湿性、加工特性の点で好ましい。
ここで、本発明においては、反応液(エステル反応油)中のジアシルグリセロールとトリアシルグリセロールの合計の含量を「反応率(%)」と称する。また、ジアシルグリセロールとトリアシルグリセロールの合計中のジアシルグリセロール含量を「ジアシルグリセロール純度(%)」と称する。
The reaction rate is preferably 50% by mass (hereinafter simply referred to as “%”) or more, more preferably 60% or more, particularly 70 to 100%, and particularly 80 to 95% for industrial productivity, It is preferable in terms of yield. The purity of diacylglycerol is preferably 70 to 100%, more preferably 75 to 97%, particularly 80 to 96%, and particularly 85 to 95%, for industrial productivity, moisturizing property of fats and oils containing diacylglycerol, It is preferable in terms of processing characteristics.
Here, in the present invention, the total content of diacylglycerol and triacylglycerol in the reaction solution (ester reaction oil) is referred to as “reaction rate (%)”. The diacylglycerol content in the total of diacylglycerol and triacylglycerol is referred to as “diacylglycerol purity (%)”.

エステル化反応により得られたエステル反応油は、後処理を行うことによりジアシルグリセロール含有油脂の製品とすることができる。後処理は、脱酸、酸処理、水洗、脱色、脱臭等の工程を行うことが好ましい。   The ester reaction oil obtained by the esterification reaction can be made into a product of diacylglycerol-containing fat by performing post-treatment. The post-treatment is preferably performed by steps such as deoxidation, acid treatment, water washing, decolorization, and deodorization.

脱酸は、減圧蒸留により、未反応や副生物の脂肪酸やモノグリセライドを除去する工程である。酸処理は、クエン酸などのキレート剤を添加して混合し減圧脱水し、さらに水洗を行って微量の金属等の成分を除去する工程である。水洗は、水を添加して混合し、油水分離を行う工程である。脱色工程は、吸着剤との接触を行って色相、風味を改善する工程である。脱臭は、加熱下で減圧水蒸気蒸留を行い有臭物質や低沸成分を除去すると同時に熱で分解する色素成分を熱分解し、風味、色相を改善する工程である。
これらの後処理は、原料の精製度合いやエステル反応油の組成、製品の要求品質に応じて、各工程の実施と不実施の選択や順序、各工程の条件を適時選択して行うことができる。
Deoxidation is a step of removing unreacted and by-product fatty acids and monoglycerides by distillation under reduced pressure. The acid treatment is a step of adding a chelating agent such as citric acid, mixing and dehydrating under reduced pressure, and further washing with water to remove a trace amount of components such as metals. Washing with water is a process of adding and mixing water to separate oil and water. A decoloring process is a process of improving a hue and flavor by contacting with an adsorbent. Deodorization is a process of improving flavor and hue by thermally decomposing pigment components that are decomposed by heat at the same time as removing odorous substances and low-boiling components by steam distillation under reduced pressure.
These post-treatments can be carried out by selecting the execution and non-execution of each step and the order and conditions of each step according to the degree of purification of the raw material, the composition of the ester reaction oil, and the required quality of the product. .

後処理後のジアシルグリセロール含有油脂のジアシルグリセロール含量は、エステル反応油のジアシルグリセロール純度から推定できるので、エステル反応油のジアシルグリセロール純度を調整することで、ジアシルグリセロール含有油脂のジアシルグリセロール含量を所望の範囲に調整することができる。 Since the diacylglycerol content of the diacylglycerol-containing fat after the post-treatment can be estimated from the diacylglycerol purity of the ester reaction oil, the diacylglycerol content of the diacylglycerol-containing fat and oil can be obtained by adjusting the diacylglycerol purity of the ester reaction oil. Can be adjusted to the range.

〔モノアシルグリセロールの調製〕
反応の基質の一つである、分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールを次に示す方法により調製した。
イソステアリン酸(日産化学工業(株))36gと、グリセリン10gを200mL容の四つ口フラスコに仕込んだ。次に、反応触媒として水酸化カルシウムを0.1g添加し、攪拌速度を400rpmとした。フラスコ内の液部の温度を、温調機で100℃まで昇温し、反応を2時間行った。75%濃度のリン酸水溶液を5g添加して、水酸化カルシウムの不触媒化を行った。反応後のフラスコ内の液部を冷却した後、濾紙(No.2)で濾過を行った。得られた濾液を300mL容の四つ口フラスコに仕込んだ。濾液100部に対して水を100部添加して、70℃下で400rpmで攪拌した。その後、70℃下で静置分離し、油と水を分けて、水相側にグリセリンを移行させて、油中からグリセリンを除去した。グリセリン除去後の油脂を、薄膜式蒸留装置(55φ×200H、有効伝熱面積0.035m)を用いて、温度180℃、圧力0.4kPaにて、油脂を150mL/Hの流量で供給し、冷却管を温調機で40℃に調整し、モノアシルグリセロールを蒸留、回収した。回収された油脂は、イソステアリン酸を構成脂肪酸とするモノアシルグリセロールの含量が92%であり、酸価は9.8(mg-KOH/g)であった。なお、酸価は、基準油脂分析試験法(2.3.1-1996)に基づき測定した。
(Preparation of monoacylglycerol)
A monoacylglycerol having a branched fatty acid as a constituent fatty acid, which is one of the substrates for the reaction, was prepared by the following method.
36 g of isostearic acid (Nissan Chemical Co., Ltd.) and 10 g of glycerin were charged into a 200 mL four-necked flask. Next, 0.1 g of calcium hydroxide was added as a reaction catalyst, and the stirring speed was 400 rpm. The temperature of the liquid part in the flask was raised to 100 ° C. with a temperature controller, and the reaction was carried out for 2 hours. 5 g of 75% strength phosphoric acid aqueous solution was added to make the calcium hydroxide uncatalyzed. After cooling the liquid part in the flask after reaction, it filtered with the filter paper (No. 2). The obtained filtrate was charged into a 300 mL four-necked flask. 100 parts of water was added to 100 parts of the filtrate, followed by stirring at 70 ° C. and 400 rpm. Then, it left still and separated at 70 degreeC, oil and water were divided, glycerol was moved to the water phase side, and glycerol was removed from oil. The oil after removal of glycerin was supplied at a temperature of 180 ° C. and a pressure of 0.4 kPa at a flow rate of 150 mL / H using a thin-film distillation apparatus (55φ × 200H, effective heat transfer area 0.035 m 2 ). The condenser was adjusted to 40 ° C. with a temperature controller, and monoacylglycerol was distilled and collected. The recovered oil and fat had a content of monoacylglycerol containing isostearic acid as a constituent fatty acid of 92% and an acid value of 9.8 (mg-KOH / g). The acid value was measured based on the standard oil analysis test method (2.3.1-1996).

〔固定化酵素の調製〕
Duolite A−568(Rohm and Hass社)54gをN/10のNaOH溶液5L中で1時間攪拌した。濾過後、1Lの蒸留水で洗浄し、500mMの酢酸緩衝液(pH5)5LでpHを平衡化した。その後50mMの酢酸緩衝液(pH5)5Lで2時間ずつ2回、pH平衡化を行った。濾過して担体を回収した後、2.5Lのエタノールでエタノール置換を30分間行った。濾過後、リシノール酸を100g含むエタノール溶液5Lと担体を30分間接触させた。濾過後、50mMの酢酸緩衝液(pH5)5Lで0.5時間ずつ4回緩衝液置換を行った。濾過後、10%濃度のリ・リパーゼ(長瀬産業(株))溶液1Lと室温で4時間接触させ、酵素の吸着を行った。吸着後、濾過を行い、50mMのリン酸緩衝液(pH5)5Lで0.5時間洗浄した。洗浄後濾過し、固定化酵素を回収した。この時の固定化酵素の残存水分量は1.5%であった。
[Preparation of immobilized enzyme]
54 g of Duolite A-568 (Rohm and Hass) was stirred in 5 L of N / 10 NaOH solution for 1 hour. After filtration, it was washed with 1 L of distilled water, and the pH was equilibrated with 5 L of 500 mM acetate buffer (pH 5). Thereafter, pH equilibration was performed twice with 5 L of 50 mM acetate buffer (pH 5) every 2 hours. After collecting the carrier by filtration, ethanol substitution with 2.5 L of ethanol was performed for 30 minutes. After filtration, 5 L of an ethanol solution containing 100 g of ricinoleic acid was brought into contact with the carrier for 30 minutes. After filtration, the buffer solution was replaced with 5 L of 50 mM acetate buffer (pH 5) four times for 0.5 hour. After filtration, the enzyme was adsorbed by contacting with 1 L of a 10% strength lipase (Nagase Sangyo Co., Ltd.) solution at room temperature for 4 hours. After adsorption, it was filtered and washed with 5 L of 50 mM phosphate buffer (pH 5) for 0.5 hour. After washing, filtration was performed to recover the immobilized enzyme. The residual water content of the immobilized enzyme at this time was 1.5%.

〔グリセリド組成の分析〕
グリセリド組成は、日本油化学会「基準油脂分析試験法」(2.4.2.2.−1996)に従って分析した。
[Analysis of glyceride composition]
The glyceride composition was analyzed in accordance with the Japan Oil Chemists' Society "Standard Oil Analysis Test Method" (2.4.2.2.-1996).

実施例1
前記調製した固定化酵素5.2gを200mL容の四つ口フラスコに仕込んだ。次に、前記調製したモノアシルグリセロール80gを添加し、温度コントローラーにて、反応液の温度を52℃に調整し、200rpmで攪拌しながら、さらにミリスチン酸49.3gを添加した。次に、攪拌回転数を500rpmに調整し、フラスコ内の圧力を0.2〜0.4kPaに調整し、反応水を系外に除去しながら、反応を行った。反応中、経時的に反応液をサンプリングし、反応液中の反応油の酸価が25mg-KOH/g-反応油以下まで低下したところで反応を停止した。反応油のグリセリド組成を表1に示す。
Example 1
The prepared immobilized enzyme (5.2 g) was charged into a 200 mL four-necked flask. Next, 80 g of the prepared monoacylglycerol was added, the temperature of the reaction solution was adjusted to 52 ° C. with a temperature controller, and 49.3 g of myristic acid was further added while stirring at 200 rpm. Next, the reaction was carried out while adjusting the stirring speed to 500 rpm, adjusting the pressure in the flask to 0.2 to 0.4 kPa, and removing reaction water from the system. During the reaction, the reaction solution was sampled over time, and the reaction was stopped when the acid value of the reaction oil in the reaction solution decreased to 25 mg-KOH / g-reaction oil or less. Table 1 shows the glyceride composition of the reaction oil.

実施例2〜4
実施例1における反応時の圧力を0.7〜1.2kPa、2〜3kPa、又は6〜7kPaとした以外は、実施例1と同様の操作により反応を行った。結果を表1に示す。
Examples 2-4
The reaction was performed in the same manner as in Example 1 except that the pressure during the reaction in Example 1 was changed to 0.7 to 1.2 kPa, 2 to 3 kPa, or 6 to 7 kPa. The results are shown in Table 1.

比較例1
実施例1における反応時の圧力を12〜14kPaとした以外は、実施例1と同様の操作により反応を行った。結果を表1に示す。
Comparative Example 1
The reaction was carried out in the same manner as in Example 1 except that the pressure during the reaction in Example 1 was changed to 12 to 14 kPa. The results are shown in Table 1.

比較例2
前記調製した固定化酵素5.1gを200mL容の四つ口フラスコに仕込んだ。次に、オレイン酸モノアシルグリセロール(直鎖脂肪酸を構成脂肪酸とするモノアシルグリセロール)を主成分とするO−95R(花王(株))72.8gを添加し、温度コントローラーにて、液温度は52℃に調整し、200rpmで攪拌しながら、さらにミリスチン酸49.3gを添加した。次に、攪拌回転数を500rpmに調整し、フラスコ内の圧力を0.2〜0.4kPaに減圧し、反応水を系外に除去しながら、反応を行った。反応中、経時的に反応液をサンプリングし、反応液中の反応油の酸価が25mg-KOH/g-反応油以下まで低下したところで反応を停止した。結果を表1に示す。
Comparative Example 2
The prepared immobilized enzyme (5.1 g) was charged into a 200 mL four-necked flask. Next, 72.8 g of O-95R (Kao Co., Ltd.) whose main component is monoacylglycerol oleate (monoacylglycerol having a straight chain fatty acid as a constituent fatty acid) is added, and the temperature of the liquid is adjusted with a temperature controller. The temperature was adjusted to 52 ° C., and 49.3 g of myristic acid was further added while stirring at 200 rpm. Next, the reaction was carried out while adjusting the stirring speed to 500 rpm, reducing the pressure in the flask to 0.2 to 0.4 kPa, and removing reaction water from the system. During the reaction, the reaction solution was sampled over time, and the reaction was stopped when the acid value of the reaction oil in the reaction solution decreased to 25 mg-KOH / g-reaction oil or less. The results are shown in Table 1.

比較例3及び4
比較例2におけるモノアシルグリセロールとミリスチン酸の反応時の真空度を0.7〜1.2、6〜7kPaとした以外は、比較例2と同様の操作により反応を行った。結果を表1に示す。
Comparative Examples 3 and 4
The reaction was performed in the same manner as in Comparative Example 2 except that the vacuum degree during the reaction of monoacylglycerol and myristic acid in Comparative Example 2 was 0.7 to 1.2 and 6 to 7 kPa. The results are shown in Table 1.

Figure 2008263784
Figure 2008263784

表1から明らかなように、分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールと直鎖脂肪酸とを、リパーゼの存在下、0.01〜10kPaの減圧下で反応させることにより、反応率が高く、ジアシルグリセロール純度が高いエステル反応油が得られ、分岐脂肪酸を有するジアシルグリセロール含有油脂を効率的に製造できることがわかった(実施例1〜4)。
真空設備の負荷を低減するためには、真空度をなるべく低く(圧力を高く)するほうが好ましいが、圧力が10kPaを超える場合(比較例1)は、反応が遅く、反応時間を長くしても反応率及びジアシルグリセロール純度が低く、工業的生産性が悪いことがわかった。
また、直鎖脂肪酸を構成脂肪酸とするモノアシルグリセロールと直鎖脂肪酸とを反応させた場合(比較例2〜4)は、真空度が低く(圧力が高く)なるにつれて、反応率を高くした場合にジアシルグリセロール純度が低下してしまい、反応率とジアシルグリセロール純度が両立しない傾向となった。これに対して、分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールと直鎖脂肪酸を反応させる場合(実施例1〜4)は、真空度が低く(圧力が高く)なるにつれて、反応率を高くした場合のジアシルグリセロール純度の低下が小さく、反応率とジアシルグリセロール純度が両立できるという特徴を有していることがわかった。
As is clear from Table 1, a monoacylglycerol having a branched fatty acid as a constituent fatty acid and a linear fatty acid react with each other under a reduced pressure of 0.01 to 10 kPa in the presence of lipase. It was found that an ester reaction oil having a high glycerol purity was obtained, and diacylglycerol-containing fats and oils having branched fatty acids could be produced efficiently (Examples 1 to 4).
In order to reduce the load on the vacuum equipment, it is preferable to reduce the degree of vacuum as much as possible (the pressure is increased). However, when the pressure exceeds 10 kPa (Comparative Example 1), the reaction is slow and the reaction time is lengthened. It was found that the reaction rate and the purity of diacylglycerol were low and the industrial productivity was poor.
In addition, when reacting a monoacylglycerol having a linear fatty acid as a constituent fatty acid with a linear fatty acid (Comparative Examples 2 to 4), the reaction rate is increased as the degree of vacuum decreases (the pressure increases). As a result, the purity of diacylglycerol was lowered, and the reaction rate and the diacylglycerol purity tended to be incompatible. On the other hand, in the case of reacting monoacylglycerol having a branched fatty acid as a constituent fatty acid and a linear fatty acid (Examples 1 to 4), the reaction rate is increased as the degree of vacuum is lowered (pressure is increased). It was found that the decrease in the purity of diacylglycerol was small, and the reaction rate and the purity of diacylglycerol were compatible.

Claims (3)

分岐脂肪酸を構成脂肪酸とするモノアシルグリセロールと、直鎖脂肪酸又はその低級アルコールエステルとを、リパーゼの存在下、0.01〜10kPaの減圧下で反応させることを特徴とする分岐脂肪酸を有するジアシルグリセロール含有油脂の製造方法。   A diacylglycerol having a branched fatty acid, characterized by reacting a monoacylglycerol having a branched fatty acid as a constituent fatty acid with a linear fatty acid or a lower alcohol ester thereof in the presence of lipase under a reduced pressure of 0.01 to 10 kPa. The manufacturing method of oil containing fat. リパーゼがモノアシルグリセロールの1,3位に特異的に作用するものである、請求項1に記載の分岐脂肪酸を有するジアシルグリセロール含有油脂の製造方法。   The method for producing a diacylglycerol-containing oil or fat having a branched fatty acid according to claim 1, wherein the lipase specifically acts at positions 1 and 3 of monoacylglycerol. リパーゼが固定化されたものである請求項1又は2に記載の分岐脂肪酸を有するジアシルグリセロール含有油脂の製造方法。   The method for producing a diacylglycerol-containing oil or fat having a branched fatty acid according to claim 1 or 2, wherein the lipase is immobilized.
JP2007106693A 2007-04-16 2007-04-16 Process for producing diacylglycerol-containing fats and oils having branched fatty acids Active JP4971018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106693A JP4971018B2 (en) 2007-04-16 2007-04-16 Process for producing diacylglycerol-containing fats and oils having branched fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106693A JP4971018B2 (en) 2007-04-16 2007-04-16 Process for producing diacylglycerol-containing fats and oils having branched fatty acids

Publications (2)

Publication Number Publication Date
JP2008263784A true JP2008263784A (en) 2008-11-06
JP4971018B2 JP4971018B2 (en) 2012-07-11

Family

ID=40044205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106693A Active JP4971018B2 (en) 2007-04-16 2007-04-16 Process for producing diacylglycerol-containing fats and oils having branched fatty acids

Country Status (1)

Country Link
JP (1) JP4971018B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101890A (en) * 1987-10-14 1989-04-19 Kao Corp Production of polyol fatty acid ester
JPH02270811A (en) * 1989-04-13 1990-11-05 Kao Corp Pack cosmetic
JPH08294394A (en) * 1995-04-28 1996-11-12 Kao Corp Production of diglyceride
JPH10234392A (en) * 1997-02-26 1998-09-08 Kao Corp Production of diglycerides
JPH10234391A (en) * 1997-02-26 1998-09-08 Kao Corp Production of diglycerides and reactor for the production process
JP2006328383A (en) * 2005-04-28 2006-12-07 Kao Corp Production process of oil and fat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101890A (en) * 1987-10-14 1989-04-19 Kao Corp Production of polyol fatty acid ester
JPH02270811A (en) * 1989-04-13 1990-11-05 Kao Corp Pack cosmetic
JPH08294394A (en) * 1995-04-28 1996-11-12 Kao Corp Production of diglyceride
JPH10234392A (en) * 1997-02-26 1998-09-08 Kao Corp Production of diglycerides
JPH10234391A (en) * 1997-02-26 1998-09-08 Kao Corp Production of diglycerides and reactor for the production process
JP2006328383A (en) * 2005-04-28 2006-12-07 Kao Corp Production process of oil and fat

Also Published As

Publication number Publication date
JP4971018B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5101206B2 (en) Process for producing fats and oils with high diacylglycerol content
US7906305B2 (en) Process for preparing an immobilized enzyme
KR100944071B1 (en) Production process of diglycerides
JP5242230B2 (en) Method for producing immobilized enzyme
US20100279375A1 (en) Method for producing immobilized enzyme
JP4971018B2 (en) Process for producing diacylglycerol-containing fats and oils having branched fatty acids
JP4849967B2 (en) Method for producing fatty acids
KR101297957B1 (en) Two-staged process for the preparation of fatty acids from fat or oil comprising one step of enzymatic hydrolysis employing an immobilized lipase and an other step of high temperature and pressure hydrolysis
JP3929890B2 (en) Method for producing diglyceride
JP4012117B2 (en) Method for producing immobilized enzyme
JP3813585B2 (en) Method for producing diglyceride
JP3893107B2 (en) Method for producing fatty acid
JP4694938B2 (en) Method for producing fatty acids
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP2019094445A (en) Method for producing linseed oil
JP2019054738A (en) Production method of fatty acids
JP3847729B2 (en) Method for producing docosahexaenoic acid-rich oil
JP3893106B2 (en) Method for producing diglyceride
JP3720205B2 (en) Method for producing partial glyceride
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP4616755B2 (en) Method for producing immobilized enzyme
JP3954016B2 (en) Immobilized enzyme
JP2019010014A (en) Methods for producing diacylglycerol rich oil or fat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4971018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250