JP2008262626A - Nonvolatile semiconductor memory - Google Patents

Nonvolatile semiconductor memory Download PDF

Info

Publication number
JP2008262626A
JP2008262626A JP2007103652A JP2007103652A JP2008262626A JP 2008262626 A JP2008262626 A JP 2008262626A JP 2007103652 A JP2007103652 A JP 2007103652A JP 2007103652 A JP2007103652 A JP 2007103652A JP 2008262626 A JP2008262626 A JP 2008262626A
Authority
JP
Japan
Prior art keywords
voltage
write
writing
erasing
weak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007103652A
Other languages
Japanese (ja)
Inventor
Seiji Yoshida
省史 吉田
Kazuharu Yamabe
和治 山部
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2007103652A priority Critical patent/JP2008262626A/en
Publication of JP2008262626A publication Critical patent/JP2008262626A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of improving data holding characteristics in a nonvolatile semiconductor memory having a MONOS (Metal-oxide-Nitride-Oxide-Silicon) type memory cell, in which an electric charge accumulating layer is formed of a nitride film. <P>SOLUTION: When the data are erased ("1" program), a weak writing operation (Post-Weak-Write) is carried out after normal erasing operation (Erase). The weak writing operation means an operation for writing by an applied voltage lower than that for the normal writing operation, or the operation for writing by applying the voltage in a short period, and so on. For instance, voltage of 12V is applied to a gate during 1ms period as for the normal write-in, voltage of -10v is applied to the gate during 1ms period as for the erase, and voltage of 4-6V is applied to the gate during 0.1ms period as for the weak write-in. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は不揮発性半導体メモリに関し、特に、窒化膜を電荷蓄積層としたMONOS(Metal−Oxide−Nitride−Oxide−Silicon)型メモリセルを有する不揮発性半導体メモリに関する。   The present invention relates to a nonvolatile semiconductor memory, and more particularly, to a nonvolatile semiconductor memory having a MONOS (Metal-Oxide-Nitride-Oxide-Silicon) type memory cell using a nitride film as a charge storage layer.

本発明者が検討した技術として、例えば、不揮発性半導体メモリにおいては、以下の技術が考えられる。   As a technique studied by the present inventors, for example, the following techniques can be considered in a nonvolatile semiconductor memory.

EEPROMやフラッシュメモリ等の不揮発性メモリセルとしては、例えば、酸化絶縁膜に囲まれた導電体多結晶シリコン中に電荷を蓄えるフローティング(浮遊)ゲート型や、シリコン窒化膜内の捕獲中心に電荷を蓄えるMONOS型などがある。   Non-volatile memory cells such as EEPROMs and flash memories include, for example, floating (floating) gate type that stores charges in conductive polycrystalline silicon surrounded by an oxide insulating film, and charges in trapping centers in silicon nitride films. There is a MONOS type to store.

フローティングゲート型の不揮発性メモリセルは、フローティングゲートの上に制御ゲートを重ねた2層構造のゲート電極を備えたトランジスタを使う。制御ゲートに高電圧を印加することで基板から電子をフローティングゲートに注入し、電荷を保持する。   A floating gate type nonvolatile memory cell uses a transistor having a two-layer gate electrode in which a control gate is superimposed on a floating gate. By applying a high voltage to the control gate, electrons are injected from the substrate into the floating gate to hold the charge.

MONOS型の不揮発性メモリセルは、MONOS(金属/酸化膜/窒化膜/酸化膜/シリコン)構造のゲートを有する。酸化膜/窒化膜/酸化膜(トンネル酸化膜)構造に存在している捕獲準位に電子あるいは正孔を注入し、電荷を蓄積・保持する。MONOS型は、フローティングゲート型でのフローティングゲート−シリコン基板間の酸化膜厚と比較して薄い酸化膜を使用することから、微細化の点で有利である。また、シリコン窒化膜内の電荷捕獲中心は空間的に離散していることから、電子や正孔の電荷は局所的に蓄積される。   The MONOS type nonvolatile memory cell has a gate having a MONOS (metal / oxide film / nitride film / oxide film / silicon) structure. Electrons or holes are injected into trap levels existing in the oxide film / nitride film / oxide film (tunnel oxide film) structure, and charges are accumulated and held. The MONOS type is advantageous in terms of miniaturization because it uses a thinner oxide film than the oxide film thickness between the floating gate and the silicon substrate in the floating gate type. In addition, since the charge trapping centers in the silicon nitride film are spatially discrete, charges of electrons and holes are accumulated locally.

なお、このような不揮発性半導体メモリに関する技術としては、例えば、特許文献1〜4に記載される技術などが挙げられる。
特開平1−113997号公報 特開昭60−95794号公報 特開2006−24309号公報 特開2005−332502号公報
In addition, as a technique regarding such a non-volatile semiconductor memory, the technique etc. which are described in patent documents 1-4 are mentioned, for example.
Japanese Unexamined Patent Publication No. 1-111397 JP 60-95794 A JP 2006-24309 A JP-A-2005-332502

ところで、前記のような不揮発性メモリの技術について、本発明者が検討した結果、以下のようなことが明らかとなった。   By the way, as a result of examination of the nonvolatile memory technology as described above by the present inventors, the following has been clarified.

例えば、2トランジスタ型MONOS型メモリセルを搭載したICカードの消去/書き込み方式として、MONOS型メモリセルとスイッチMOSトランジスタの2素子/ビット型不揮発性メモリの例がある。この方式は、閾値電圧が2レベル有る不揮発性メモリの、低い閾値電圧にしたい場合、低い閾値電圧にする電圧をゲート電極に印加する。またはその逆の、高い閾値電圧にしたい場合、高い閾値電圧にする電圧をゲート電極に印加する。低い閾値電圧は、メモリセルトランジスタの閾値電圧が負電圧となっているデプレッションモードであるがスイッチMOSトランジスタの閾値電圧は正電圧となっているエンハンスモードであることから、非選択時にはスイッチMOSトランジスタで電流を遮断するので、メモリセルトランジスタのゲート電極に印加する非選択時電圧が0Vであっても過電流が問題にならない。そのためメモリセルトランジスタがデプレッションモードとなるのに十分な時間、ゲート電極に低い閾値電圧にする電圧を印加することが可能である。しかし、MONOS型メモリセルだけの1素子/ビット型不揮発性メモリでは、デプレッションモードでは選択読み出し時だけでなく非選択時にも過電流が流れるので、メモリセルトランジスタのゲート電極に非選択時電圧として0Vを印加したのでは選択読み出しが不可能となる。   For example, as an erasing / writing method for an IC card equipped with a two-transistor MONOS memory cell, there is an example of a two-element / bit nonvolatile memory of a MONOS memory cell and a switch MOS transistor. In this method, when a low threshold voltage of a nonvolatile memory having two levels of threshold voltages is desired, a voltage for making the threshold voltage low is applied to the gate electrode. Alternatively, when a high threshold voltage is desired, a voltage for setting a high threshold voltage is applied to the gate electrode. The low threshold voltage is a depletion mode in which the threshold voltage of the memory cell transistor is a negative voltage, but the threshold voltage of the switch MOS transistor is an enhancement mode in which the threshold voltage is a positive voltage. Since the current is cut off, overcurrent does not cause a problem even when the non-selection voltage applied to the gate electrode of the memory cell transistor is 0V. Therefore, it is possible to apply a voltage for setting a low threshold voltage to the gate electrode for a time sufficient for the memory cell transistor to enter the depletion mode. However, in a single element / bit type nonvolatile memory having only MONOS type memory cells, an overcurrent flows not only during selective reading but also during non-selection in the depletion mode. It is impossible to perform selective reading by applying.

また、1素子/ビット型不揮発性メモリの消去方法として、特許文献1記載の技術がある。特許文献1は、閾値電圧が2レベル有る浮遊ゲート型不揮発性半導体メモリの、閾値電圧設定方法に関するものである。低い閾値電圧にしたい場合、低い閾値電圧にする電圧印加の前に、高い閾値電圧にする電圧印加を行う。またはその逆の、高い閾値電圧にしたい場合、高い閾値電圧にする電圧印加の前に、低い閾値電圧にする電圧印加を行う。しかし、この方法は、メモリ素子が浮遊ゲート素子であり、また非選択時電圧として0Vをゲート電極に印加するために2レベルの閾値電圧がどちらもエンハンスメントモードに限定されている。   Further, there is a technique described in Patent Document 1 as an erasing method for a one-element / bit type nonvolatile memory. Patent Document 1 relates to a threshold voltage setting method for a floating gate type nonvolatile semiconductor memory having two levels of threshold voltages. When a low threshold voltage is desired, a voltage application for a high threshold voltage is performed before voltage application for a low threshold voltage. Alternatively, when a higher threshold voltage is desired, voltage application for lower threshold voltage is performed before voltage application for higher threshold voltage. However, in this method, the memory element is a floating gate element, and the threshold voltage of two levels is limited to the enhancement mode in order to apply 0 V to the gate electrode as a non-selection voltage.

また、1素子/ビット型不揮発性メモリの読み出し時の電圧設定方法として、特許文献2記載の技術がある。特許文献2記載の技術は、1素子/ビット型不揮発性メモリで、消去されたビットがデプレッションモードになる場合、非選択読み出しワード線にその閾値電圧より低い電圧(負電圧)を印加して、過電流が流れないようにするものである。しかし、消去動作(メモリセルトランジスタの閾値電圧を低いしきい値電圧にする電圧の印加動作)が連続的に実施される場合、閾値電圧が徐々に下がって行き、非選択読み出しワード線電位より下がる可能性が有るが、これを回避する方法に言及していない。   Further, there is a technique described in Patent Document 2 as a voltage setting method at the time of reading from a one-element / bit type nonvolatile memory. The technique described in Patent Document 2 is a 1 element / bit type nonvolatile memory, and when an erased bit is in a depletion mode, a voltage (negative voltage) lower than the threshold voltage is applied to a non-selected read word line, This prevents overcurrent from flowing. However, when the erasing operation (the voltage applying operation for setting the threshold voltage of the memory cell transistor to a low threshold voltage) is continuously performed, the threshold voltage gradually decreases and falls below the unselected read word line potential. There is a possibility, but it does not mention how to avoid this.

また、1素子/ビット型不揮発性メモリのプログラム方式として、特許文献3記載の技術がある。特許文献3記載の技術は、1素子/ビット型不揮発性メモリで、消去の前に短い書き込み(Pre−Write)を入れる事により、消去を連続して行っても閾値電圧が下がらないようにしたプログラム方式である。これにより特許文献2記載の技術の有する課題を解決することは可能である。しかし、Pre−Writeの動作が追加された分、プログラム時間が長くなってしまう。   Further, there is a technique described in Patent Document 3 as a program method for a one-element / bit type nonvolatile memory. The technology described in Patent Document 3 is a 1 element / bit type non-volatile memory, and a short write (Pre-Write) is performed before erasure so that the threshold voltage does not decrease even if erasure is continuously performed. It is a program system. Thereby, it is possible to solve the problem of the technique described in Patent Document 2. However, since the Pre-Write operation is added, the program time becomes longer.

また、Flash−Single−MONOSとして、特許文献4記載の技術がある。特許文献4記載の技術は、非選択メモリセルの誤消去防止のため、非選択メモリセルのトランジスタがオンになり誤書き込みが発生しない範囲内で、非選択データ線とウェルとの間に印加される電圧を最小の値にするものである。しかし、リテンション特性の改善や、Pre−Writeが不要になる事については言及していない。   Moreover, there exists a technique of patent document 4 as Flash-Single-MONOS. The technique described in Patent Document 4 is applied between a non-selected data line and a well within a range in which erroneous writing does not occur because the transistor of the non-selected memory cell is turned on to prevent erroneous erasure of the non-selected memory cell. The voltage to be minimized. However, there is no mention of improvement of retention characteristics or the need for Pre-Write.

そこで、本発明の目的は、窒化膜を電荷蓄積層としたMONOS型メモリセルを有する不揮発性半導体メモリにおいて、データ保持特性を向上することができる技術を提供することにある。   Accordingly, an object of the present invention is to provide a technique capable of improving data retention characteristics in a nonvolatile semiconductor memory having a MONOS type memory cell using a nitride film as a charge storage layer.

本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、本発明による不揮発性半導体メモリは、データ消去時に、通常の消去動作の後に弱い書き込み動作(Post−Weak−Write)を行うものである。弱い書き込み動作とは、通常の書き込みの時よりも低い印加電圧で書き込みを行う動作、あるいは短い時間で電圧を印加して書き込みを行う動作等をいう。   That is, the nonvolatile semiconductor memory according to the present invention performs a weak write operation (Post-Weak-Write) after a normal erase operation when erasing data. The weak write operation refers to an operation of performing writing with an applied voltage lower than that in normal writing, or an operation of performing writing by applying a voltage in a short time.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。   Of the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

(1)消去動作後の弱い書き込みにより、消去側のデータ保持特性が改善する。   (1) Data retention characteristics on the erase side are improved by weak writing after the erase operation.

(2)消去動作後の弱い書き込みにより、消去動作を連続して行った場合の閾値電圧の変動を抑制することができる。   (2) Due to weak writing after the erasing operation, fluctuations in the threshold voltage when the erasing operation is continuously performed can be suppressed.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部材には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

図1は本発明の一実施の形態による不揮発性半導体メモリにおけるMONOS型メモリセルの概略構成を示す断面図、図2はMONOS型メモリセルのエネルギーバンド図、図3はMONOS型メモリセルへの書き込み状態及び消去状態のドレイン電流特性を示す図である。   1 is a cross-sectional view showing a schematic configuration of a MONOS type memory cell in a nonvolatile semiconductor memory according to an embodiment of the present invention, FIG. 2 is an energy band diagram of the MONOS type memory cell, and FIG. 3 is a write to the MONOS type memory cell. It is a figure which shows the drain current characteristic of a state and an erased state.

まず、図1により、本実施の形態による不揮発性半導体メモリにおけるMONOS型メモリセルの概略構成の一例を説明する。本実施の形態による不揮発性半導体メモリは、EEPROM、フラッシュメモリ等の不揮発性の半導体メモリである。この不揮発性半導体メモリは、周知の半導体製造技術によって1個の半導体チップ上に形成され、図1に示すようなMONOS型メモリセルが複数個、マトリクス状に配置されメモリアレイを構成している。そして、それぞれのメモリセルはワード線、ビット線に接続され、メモリアレイの周辺に配置されるアドレスデコーダ等の周辺回路により制御され、各々のメモリセルに対してデータの書き込み・消去及び読み出しが行われる。   First, an example of a schematic configuration of a MONOS type memory cell in the nonvolatile semiconductor memory according to the present embodiment will be described with reference to FIG. The nonvolatile semiconductor memory according to the present embodiment is a nonvolatile semiconductor memory such as an EEPROM or a flash memory. This nonvolatile semiconductor memory is formed on a single semiconductor chip by a well-known semiconductor manufacturing technique, and a plurality of MONOS type memory cells as shown in FIG. 1 are arranged in a matrix to form a memory array. Each memory cell is connected to a word line and a bit line, and is controlled by a peripheral circuit such as an address decoder arranged at the periphery of the memory array, and data writing / erasing and reading are performed on each memory cell. Is called.

このMONOS型メモリセルは、例えば図1に示すような断面構造を有しており、多結晶シリコン(Poly−Si)等のゲート101、トップ酸化膜(Top−SiO)102、離散的捕獲中心を有するシリコン窒化膜(Trapping−Si)103、トンネル酸化膜(Tunnel−SiO)104、ソース/ドレインとなるn型拡散層105、チャネル形成領域106などから構成される電界効果型トランジスタ(FET)である。このMONOS型メモリセルは、シリコン等の半導体基板上に形成されたpウェル107上にn型拡散層105、チャネル形成領域106が形成されている。チャネル形成領域106上に、厚さ2nm以下のトンネル酸化膜104が形成されている。トンネル酸化膜104上に、電子/正孔が蓄積されるシリコン窒化膜103が形成されている。シリコン窒化膜103上に、シリコン窒化膜103とゲート101間を絶縁するためのトップ酸化膜102が形成されている。トップ酸化膜102上に、データの書き込み・消去及び読み出しの制御を行うためのゲート101が形成されている。トップ酸化膜102、シリコン窒化膜103、トンネル酸化膜104の厚さは、全部で20nm程度であり、浮遊ゲート型のメモリセルと比較して非常に薄い構造となっている。また、トンネル酸化膜104は約1.8nmと非常に薄く、シリコン窒化膜103には、図2に示すように、電子も正孔も局所的にトラップされ、その電子と正孔は動きにくい。 This MONOS type memory cell has a cross-sectional structure as shown in FIG. 1, for example, a gate 101 such as polycrystalline silicon (Poly-Si), a top oxide film (Top-SiO 2 ) 102, discrete trapping centers. Field-effect transistor comprising a silicon nitride film (Tapping-Si 3 N 4 ) 103 having a gate electrode, a tunnel oxide film (Tunnel-SiO 2 ) 104, an n-type diffusion layer 105 serving as a source / drain, a channel formation region 106, and the like (FET). In this MONOS memory cell, an n-type diffusion layer 105 and a channel formation region 106 are formed on a p-well 107 formed on a semiconductor substrate such as silicon. A tunnel oxide film 104 having a thickness of 2 nm or less is formed on the channel formation region 106. A silicon nitride film 103 in which electrons / holes are accumulated is formed on the tunnel oxide film 104. A top oxide film 102 for insulating the silicon nitride film 103 and the gate 101 is formed on the silicon nitride film 103. On the top oxide film 102, a gate 101 for controlling data writing / erasing and reading is formed. The total thickness of the top oxide film 102, the silicon nitride film 103, and the tunnel oxide film 104 is about 20 nm, and has a very thin structure as compared with the floating gate type memory cell. Further, the tunnel oxide film 104 is very thin as about 1.8 nm, and as shown in FIG. 2, both electrons and holes are locally trapped in the silicon nitride film 103, and the electrons and holes hardly move.

このMONOS型メモリセルへのデータ書き込み・消去は、ゲート101とpウェル107間に印加する電界によって、トンネル酸化膜104を通してpウェル107側から電荷(電子/正孔)を注入し、シリコン窒化膜103中の空間的離散捕獲中心に電荷を捕獲(トラップ)させる。書き込み動作においてゲート101に正電圧が印加されることによりシリコン窒化膜103中に電子が注入され、消去動作においてゲート101に負電圧が印加されることによりシリコン窒化膜103中に正孔が注入される。データ読み出しは、図3に示すように、ゲート101とpウェル107間を0Vバイアスに保ち、ソース・ドレイン間を流れるチャネル電流の有無を検出して、書き込み状態“0”と消去状態“1”を判別する。すなわち、シリコン窒化膜103が電子又は正孔をトラップすることにより、FET構造を有するメモリセルの閾値電圧が変化し、その閾値電圧の変化をチャネル電流で読み取る。   Data writing / erasing in the MONOS type memory cell is performed by injecting charges (electrons / holes) from the p-well 107 side through the tunnel oxide film 104 by an electric field applied between the gate 101 and the p-well 107, and a silicon nitride film. Charges are trapped in the spatial discrete trap centers in 103. Electrons are injected into the silicon nitride film 103 by applying a positive voltage to the gate 101 in the write operation, and holes are injected into the silicon nitride film 103 by applying a negative voltage to the gate 101 in the erase operation. The As shown in FIG. 3, the data read is performed by maintaining the gate 101 and the p-well 107 at 0 V bias, detecting the presence or absence of a channel current flowing between the source and drain, and writing state “0” and erasing state “1”. Is determined. That is, when the silicon nitride film 103 traps electrons or holes, the threshold voltage of the memory cell having the FET structure changes, and the change in the threshold voltage is read by the channel current.

なお、メモリセルに対する書き込み方式には、FNトンネル現象を利用する方式とホットキャリアを利用する方式とがあるが、それらのどちらでもよい。FNトンネル現象を利用する方式は、ゲート101とpウェル107との間、またはゲート101とソースまたはドレイン(n型拡散層105)との間に電圧を印加してFNトンネル現象を利用してシリコン窒化膜103に電子/正孔を注入したり放出したりして閾値電圧を変化させる方式である。一方、ホットキャリアを利用する方式は、ゲート101に高電圧を印加した状態でソース・ドレイン間(n型拡散層105)に電流を流してチャネルで発生したホットキャリア(電子/正孔)をシリコン窒化膜103に注入して閾値電圧を変化させる方式である。   There are two types of writing methods for the memory cell, a method using an FN tunnel phenomenon and a method using a hot carrier, and either of them may be used. A method using the FN tunnel phenomenon is a method in which a voltage is applied between the gate 101 and the p-well 107 or between the gate 101 and the source or drain (n-type diffusion layer 105) to use the FN tunnel phenomenon to form silicon. This is a method of changing the threshold voltage by injecting or releasing electrons / holes into the nitride film 103. On the other hand, in the method using hot carriers, hot carriers (electrons / holes) generated in the channel by flowing current between the source and drain (n-type diffusion layer 105) with a high voltage applied to the gate 101 are converted into silicon. In this method, the threshold voltage is changed by being injected into the nitride film 103.

本実施の形態による不揮発性半導体メモリでは、データ消去時に、通常の消去動作の後に弱い書き込み動作(Post−Weak−Write)が行われる。弱い書き込み動作とは、通常の書き込みの時よりも低い印加電圧で書き込みを行う動作、あるいは短い時間で電圧を印加して書き込みを行う動作等をいう。   In the nonvolatile semiconductor memory according to the present embodiment, a weak write operation (Post-Weak-Write) is performed after a normal erase operation when erasing data. The weak write operation refers to an operation of performing writing with an applied voltage lower than that in normal writing, or an operation of performing writing by applying a voltage in a short time.

すなわち、消去動作でゲート101に負電圧が印加され、シリコン窒化膜103中に正孔が注入された後に、通常の書き込みより低い正電圧がゲート101に印加され、閾値電圧が過度に変化しない範囲内で弱い書き込みが行われ、シリコン窒化膜103中に電子が注入される。例えば、通常の書き込みはゲート101に電圧12Vを時間1ms印加し、消去はゲート101に電圧−10Vを時間1ms印加し、弱い書き込みはゲート101に電圧4〜6Vを時間0.1ms印加する。   That is, a negative voltage is applied to the gate 101 in the erase operation and holes are injected into the silicon nitride film 103, and then a positive voltage lower than normal writing is applied to the gate 101, and the threshold voltage does not change excessively. Weak writing is performed, and electrons are injected into the silicon nitride film 103. For example, for normal writing, a voltage of 12 V is applied to the gate 101 for 1 ms, for erase, a voltage of −10 V is applied to the gate 101 for 1 ms, and for weak writing, a voltage of 4 to 6 V is applied to the gate 101 for 0.1 ms.

図4は、消去後に弱い書き込みを行った場合と、消去のみの場合とのメモリセルの閾値電圧の変化を示す図である。図4において、縦軸は、メモリセルの閾値電圧(Vth)を示し、横軸は、放置時間(s)を示す。また、消去の電圧印加は−10V,1ms,1発、弱い書き込みの電圧印加は4V,0.1ms,1発である。図4に示すように、消去のみを行い放置した場合に比べ、消去後に弱い書き込み(Post−Weak−Write)を行うと、最初の閾値電圧は絶対値として低い電圧になるが、ある時間で逆転し、閾値電圧の変動が小さくなり、結果として、放置寿命が2桁程度延命し、データ保持特性が向上している。   FIG. 4 is a diagram showing changes in the threshold voltage of the memory cell when weak writing is performed after erasing and when only erasing is performed. In FIG. 4, the vertical axis indicates the threshold voltage (Vth) of the memory cell, and the horizontal axis indicates the standing time (s). Further, the erase voltage application is -10 V, 1 ms, one shot, and the weak write voltage application is 4 V, 0.1 ms, one shot. As shown in FIG. 4, compared with the case where only erasing is performed and left unattended, when weak writing (Post-Week-Write) is performed after erasing, the initial threshold voltage becomes a low voltage as an absolute value, but is reversed at a certain time. However, the fluctuation of the threshold voltage is reduced, and as a result, the shelf life is extended by about two digits, and the data retention characteristics are improved.

次に、消去後に弱い書き込み(Post−Weak−Write)を行うと、閾値電圧の変動が小さくなり、データ保持特性が向上する理由を説明する。   Next, the reason why the data retention characteristic is improved when the weak write (Post-Weak-Write) is performed after erasing to reduce the variation of the threshold voltage.

図5は、シリコン窒化膜中における電荷分布とトラップ密度を示す図であり、(a)は電荷が電子の場合(書き込み後)、(b)は電荷が正孔の場合(消去後)を示す。図5(a)において、縦軸はトラップされた電子(Trapped−electrons)の量(n)、横軸はシリコン窒化膜中におけるトンネル酸化膜界面からの距離、tは注入質量中心(Charge−centroid)を示す。図5(b)において、縦軸はトラップされた正孔(Trapped−holes)の量(n)、横軸はシリコン窒化膜中におけるトンネル酸化膜界面からの距離を示す。 5A and 5B are diagrams showing charge distribution and trap density in the silicon nitride film, where FIG. 5A shows the case where the charge is an electron (after writing), and FIG. 5B shows the case where the charge is a hole (after erasing). . In FIG. 5 (a), the amount (n e) of an electronic ordinate trapped (Trapped-electrons), the horizontal axis is the distance from the tunnel oxide film interface of the silicon nitride film, t c is injection centroid (Charge -Centroid). In FIG. 5B, the vertical axis represents the amount (n h ) of trapped holes (trapped-holes), and the horizontal axis represents the distance from the tunnel oxide film interface in the silicon nitride film.

書き込み後、電子は、図5(a)に示すように、シリコン窒化膜中においてボックス型で分布し、深い所までトラップされる。一方、消去後、正孔は、図5(b)に示すように、シリコン窒化膜中において界面局所(exp)型で分布し、浅い所にしかトラップされない。   After writing, as shown in FIG. 5A, the electrons are distributed in a box shape in the silicon nitride film and trapped deep. On the other hand, after erasing, as shown in FIG. 5B, the holes are distributed in the interface local (exp) type in the silicon nitride film and are trapped only in a shallow place.

図6(a)は、従来の消去のみの場合(消去後の弱い書き込み無し)のシリコン窒化膜中における電荷の分布モデルを示す図、図6(b)は、本実施の形態における消去後の弱い書き込み有りの場合のシリコン窒化膜中における電荷の分布モデルを示す図である。   FIG. 6A is a diagram showing a charge distribution model in the silicon nitride film in the case of conventional erasing only (no weak writing after erasing), and FIG. 6B is a diagram after erasing in the present embodiment. It is a figure which shows the distribution model of the electric charge in a silicon nitride film in case with weak writing.

図6(a)に示すように、消去のみの場合は、正孔がシリコン窒化膜103中のトンネル酸化膜104界面付近に蓄積され、電子がシリコン窒化膜中に蓄積されるかは不確定である。この状態で長時間放置した場合、正孔の自己電界で正孔が自然に放出してしまう。若しくはトンネル酸化膜104にかかる電界強度が比較的高いため、チャネル形成領域106に生じる電子がFNトンネル現象によりシリコン窒化膜に注入され、ホールと電子とが電気的に中和してしまう。   As shown in FIG. 6A, in the case of only erasing, it is uncertain whether holes are accumulated in the vicinity of the tunnel oxide film 104 interface in the silicon nitride film 103 and electrons are accumulated in the silicon nitride film. is there. When left in this state for a long time, holes are spontaneously emitted by the self electric field of the holes. Alternatively, since the electric field strength applied to the tunnel oxide film 104 is relatively high, electrons generated in the channel formation region 106 are injected into the silicon nitride film due to the FN tunnel phenomenon, and holes and electrons are electrically neutralized.

一方、図6(b)に示すように、消去後に弱い書き込み(Post−Weak−Write)を行った場合は、電子がシリコン窒化膜103の深くまで入り込みトラップされる。この電子のクーロン引力で、シリコン窒化膜103中の正孔の放出が抑制される。また、シリコン窒化膜103の電子のクーロン反発力とトンネル酸化膜104にかかる電界強度が緩和されることにより、pウェル107中にある電子がシリコン窒化膜103中に入ってきて正孔と再結合するのが阻止される。したがって、初期の閾値電圧が浅くても、長時間放置した場合のデータ保持特性(リテンション特性)は改善される。このように、電荷蓄積層に電子も正孔も蓄積されるMONOS型不揮発性メモリでは、電子と正孔のトラップ分布が異なるため、放置寿命を延命することが可能となる。なお、このような現象は、多結晶シリコンを電荷蓄積層とするフローティング(浮遊)ゲート型不揮発性メモリでは見られない現象である。   On the other hand, as shown in FIG. 6B, when weak writing (Post-Weak-Write) is performed after erasing, electrons penetrate deep into the silicon nitride film 103 and are trapped. The electron Coulomb attractive force suppresses the release of holes in the silicon nitride film 103. Further, since the Coulomb repulsive force of electrons in the silicon nitride film 103 and the electric field strength applied to the tunnel oxide film 104 are alleviated, electrons in the p well 107 enter the silicon nitride film 103 and recombine with holes. To be prevented. Therefore, even if the initial threshold voltage is shallow, the data retention characteristic (retention characteristic) when left for a long time is improved. As described above, in the MONOS type nonvolatile memory in which both electrons and holes are accumulated in the charge accumulation layer, since the trap distribution of electrons and holes is different, it is possible to extend the neglected life. Such a phenomenon is a phenomenon that cannot be seen in a floating gate type nonvolatile memory using polycrystalline silicon as a charge storage layer.

次に、弱い書き込みを消去の後に追加することにより、連続消去(連続“1”プログラム)における過消去問題が回避される効果について説明する。   Next, an effect of avoiding the over-erase problem in continuous erasure (continuous “1” program) by adding weak writing after erasing will be described.

図7は、従来方式による不揮発性メモリの書き込み(“0”プログラム)及び消去(“1”プログラム)のシーケンスを示す図、図8は、連続消去(連続“1”プログラム)の印加電圧パルスを示す図である。   FIG. 7 is a diagram showing a sequence of writing (“0” program) and erasing (“1” program) of a nonvolatile memory according to the conventional method, and FIG. 8 shows applied voltage pulses for continuous erasure (continuous “1” program). FIG.

図7に示すように、従来方式の不揮発性メモリの書き込み(“0”program)は、消去(Erase)を行った後、書き込み(Write)を行い、2ステージのシーケンスで実現していた。また、従来方式の不揮発性メモリの消去(“1”program)は、消去(Erase)を行った後、書き込み阻止(Write−inhibit)を行い(消去して書かない)、2ステージのシーケンスで実現していた。しかし、この方法では、図8に示すように消去(“1”program)が連続した場合、閾値電圧が徐々に下がり過消去の問題が発生する。   As shown in FIG. 7, writing (“0” program) of the conventional nonvolatile memory is realized by a two-stage sequence by performing writing (Write) after erasing (Erase). In addition, the conventional method of erasing the nonvolatile memory ("1" program) is realized in a two-stage sequence after erasing (erasing) and then performing write-inhibiting (not erasing and writing). Was. However, in this method, as shown in FIG. 8, when erasure (“1” program) is continued, the threshold voltage gradually decreases and the problem of over-erasure occurs.

図9は、過消去の問題を回避するために消去前の書き込み(Pre−Write)を追加した不揮発性メモリの書き込み(“0”プログラム)及び消去(“1”プログラム)のシーケンスを示す図、図10は、連続消去(連続“1”プログラム)の印加電圧パルスを示す図である。   FIG. 9 is a diagram showing a sequence of writing (“0” program) and erasing (“1” program) of a nonvolatile memory to which programming before erasing (Pre-Write) is added in order to avoid the problem of over-erasing. FIG. 10 is a diagram showing applied voltage pulses for continuous erasure (continuous “1” program).

図9及び図10に示すように、消去(Erase)の前に書き込み(Pre−Write)を追加することにより、連続消去による過消去の問題が回避される。すなわち、書き込み(“0”program)は、書き込み(Pre−Write)を行った後、消去(Erase)を行い、その後、書き込み(Write)を行い、3ステージのシーケンスで実現する。また、消去(“1”program)は、書き込み(Pre−Write)を行った後、消去(Erase)を行い、その後、書き込み阻止(Write−inhibit)を行い(消去して書かない)、3ステージのシーケンスで実現する。したがって、図10に示すように消去(“1”program)が連続した場合であっても、消去(Erase)の前に書き込み(Pre−Write)を行うため、閾値電圧は所定の電圧よりも下がることがないので過消去の問題が解消される。これはPre−Writeを行う直前のトンネル酸化膜104にかかる電圧強度に応じてシリコン窒化膜103に注入される電子の量が制限されるからである。この場合の電圧印加は、例えば、書き込み(Write)が電圧12V,時間1ms、書き込み(Pre−Write)が電圧12V,時間0.1ms、消去(Erase)が電圧−10V,時間1msである。   As shown in FIGS. 9 and 10, by adding writing (Pre-Write) before erasing, the problem of over-erasing due to continuous erasing is avoided. In other words, writing (“0” program) is performed in a three-stage sequence by writing (Pre-Write), erasing (Erase), and then writing (Write). In the erase ("1" program), after writing (Pre-Write), erasing (Erase) is performed, and then writing-inhibiting (Write-inhibit) is performed (not erased and written). This sequence is realized. Therefore, even if erasure (“1” program) continues as shown in FIG. 10, the threshold voltage falls below a predetermined voltage because writing (Pre-Write) is performed before erasing (Erase). This eliminates the problem of over-erasing. This is because the amount of electrons injected into the silicon nitride film 103 is limited in accordance with the voltage intensity applied to the tunnel oxide film 104 immediately before performing pre-write. The voltage application in this case is, for example, writing (Write) at a voltage of 12 V, time 1 ms, writing (Pre-Write) at a voltage of 12 V, time of 0.1 ms, and erasing (Erase) at a voltage of -10 V, and time of 1 ms.

図11は、連続消去による閾値電圧Vthの変動(Pre−Write有無の比較)を示す図である。図11において、縦軸は閾値電圧Vthを示す、横軸は消去(Erase)回数を示す。波形1101は消去前の書き込み(Pre−Write)が無い場合、波形1102は消去前の書き込み(Pre−Write)が有る場合を示す。図11に示すように、図7及び図8に示した消去前の書き込み(Pre−Write)が無い従来方式の場合は(1101)、消去(Erase)が連続すると、閾値電圧Vthが徐々に下がっていく。しかし、図9及び図10に示した消去前の書き込み(Pre−Write)が有る場合は(1102)、消去(Erase)が連続しても、閾値電圧Vthが所定の電圧以下には下がらない。   FIG. 11 is a diagram showing fluctuations in threshold voltage Vth (comparison of presence / absence of Pre-Write) due to continuous erasure. In FIG. 11, the vertical axis represents the threshold voltage Vth, and the horizontal axis represents the number of erases. A waveform 1101 indicates a case where there is no writing (Pre-Write) before erasing, and a waveform 1102 indicates a case where there is a writing before erasing (Pre-Write). As shown in FIG. 11, in the case of the conventional method without the pre-erase write (Pre-Write) shown in FIGS. 7 and 8, the threshold voltage Vth gradually decreases as the erase (Erase) continues. To go. However, when the pre-erase write (Pre-Write) shown in FIGS. 9 and 10 is present (1102), the threshold voltage Vth does not drop below a predetermined voltage even if erase is continued.

以上のように、消去前の書き込み(Pre−Write)を追加することにより、不揮発性メモリの連続消去(連続“1”プログラム)の過消去の問題を回避することができるが、書き込み・消去の総合時間(総プログラム時間)は増加してしまう。   As described above, by adding writing before erasing (Pre-Write), it is possible to avoid the problem of over-erasing of continuous erasing (continuous “1” program) of the nonvolatile memory. The total time (total program time) will increase.

そこで、本実施の形態では、消去前の書き込み(Pre−Write)を行わずに、消去後の弱い書き込みを行う。   Therefore, in this embodiment, weak writing after erasing is performed without performing writing before erasing (Pre-Write).

図12は、過消去の問題を回避するために消去後の弱い書き込み(Post−Weak−Write)を行う不揮発性メモリの書き込み(“0”プログラム)及び消去(“1”プログラム)のシーケンスを示す図、図13は、連続消去(連続“1”プログラム)の印加電圧パルスを示す図である。   FIG. 12 shows a sequence of writing (“0” program) and erasing (“1” program) of a nonvolatile memory that performs weak writing (Post-Week-Write) after erasing in order to avoid the problem of over-erasing. FIGS. 13 and 13 are diagrams showing applied voltage pulses for continuous erasure (continuous “1” program).

図12及び図13に示すように、消去時(“1”program)に、消去(Erase)後に弱い書き込み(Post−Weak−Write)を行うことにより、連続消去による過消去の問題が回避される。すなわち、書き込み(“0”program)は、消去(Erase)を行った後、書き込み(Write)を行い、2ステージのシーケンスで実現する。また、消去(“1”program)は、消去(Erase)を行った後、弱い書き込み(Post−Weak−Write)を行い、2ステージのシーケンスで実現する。   As shown in FIGS. 12 and 13, by performing weak writing (Post-Weak-Write) after erasing at the time of erasing (“1” program), the problem of over-erasing due to continuous erasing can be avoided. . That is, the write (“0” program) is realized in a two-stage sequence by performing write (Write) after performing erase (Erase). In addition, erasure (“1” program) is realized in a two-stage sequence by performing erasure (Erase) and then performing weak write (Post-Weak-Write).

具体的な制御としては、ワード線に接続される複数のメモリセル全てに対して消去(“1”program)を行う場合は弱い書き込み(Post−Weak−Write)としてワード線に書き込み(Write)を行う場合より低い電圧を印加し、または書き込み(Write)を行う場合と同程度の電圧で書き込みを行う場合より短時間印加することで行うことが出来る。またはワード線には書き込みを行う場合と同じ電圧を同じ時間印加し、その印加期間中に書き込み阻止(Write−inhibit)を行わない期間と書き込み阻止を行う期間とを設けるようにしてもよい。   As a specific control, when erasing (“1” program) is performed on all of the plurality of memory cells connected to the word line, writing (Write) to the word line is performed as weak writing (Post-Weak-Write). This can be done by applying a voltage lower than that in the case of performing writing, or by applying it for a shorter time than in the case of performing writing at a voltage comparable to the case of performing writing (Write). Alternatively, the same voltage as that for writing may be applied to the word line for the same time, and a period during which write-inhibit is not performed and a period during which write is blocked may be provided during the application period.

またワード線に接続される複数のメモリセルのうち一部のメモリセルに対しては書き込み(Write)を行い、残りのメモリセルには書き込み(Write)を行わない制御を行う場合、ワード線に書き込みを行う電圧を印加している期間中において、書き込みを行わない残りのメモリセルに対して書き込み阻止(Write−inhibit)を行わない期間と書き込み阻止を行う期間とを設けるようにすればよい。書き込み阻止を行わない期間には書き込みを行わない残りのメモリセルのシリコン窒化膜103にも電子が注入されるが、書き込み阻止を行う期間を含むことで、書き込みを行うメモリセルのシリコン窒化膜103に注入される電子の量よりも少ない電子が注入されることになるため、弱い書き込みを実現することができる。   In addition, when control is performed so that a part of the memory cells connected to the word line is written (Write) and the remaining memory cells are not written (Write), the word line During the period in which the voltage for performing writing is applied, a period in which write inhibition (write-inhibit) is not performed and a period in which write inhibition is performed may be provided for the remaining memory cells to which writing is not performed. Electrons are also injected into the silicon nitride film 103 of the remaining memory cells where writing is not performed during a period when writing is not blocked, but the silicon nitride film 103 of the memory cell where writing is performed is included by including the period during which writing is blocked. Since electrons smaller than the amount of electrons injected into the substrate are injected, weak writing can be realized.

したがって、図13に示すように消去(“1”program)が連続した場合であっても、消去(Erase)の後に弱い書き込み(Post−Weak−Write)を行うため、閾値電圧が下がることがないので過消去の問題が解消される。また、2ステージのシーケンスで実現しているため、書き込み・消去の総合時間は、従来の方式と同じである。なお、閾値電圧が下がらない理由は前述のとおりである。この場合の電圧印加は、例えば、書き込み(Write)が電圧12V,時間1ms、弱い書き込み(Post−Weak−Write)が電圧4〜6V,時間0.1ms、消去(Erase)が電圧−10V,時間1msである。   Therefore, even if erasure (“1” program) continues as shown in FIG. 13, the threshold voltage does not drop because weak write (Post-Week-Write) is performed after erase (Erase). This eliminates the problem of over-erasing. Further, since it is realized by a two-stage sequence, the total time for writing and erasing is the same as that of the conventional method. The reason why the threshold voltage does not decrease is as described above. The voltage application in this case is, for example, writing (Write) at a voltage of 12V, time of 1 ms, weak writing (Post-Weak-Write) at a voltage of 4 to 6 V, time of 0.1 ms, and erasing (Erase) at a voltage of -10 V, time. 1 ms.

図14は、連続消去による閾値電圧Vthの変動(Pre−Write有り/無し、Post−Weak−Write有りの比較)を示す図である。図14において、縦軸は閾値電圧Vthを示す、横軸は消去(Erase)回数を示す。波形1401は消去前の書き込み(Pre−Write)も消去後の弱い書き込み(Post−Weak−Write)も無い場合、波形1402は消去前の書き込み(Pre−Write)が有る場合、波形1403は消去後の弱い書き込み(Post−Weak−Write)が有る場合を示す。図14に示すように、図7及び図8に示した従来方式の場合は(1401)、消去(Erase)が連続すると、閾値電圧Vthが徐々に下がっていく。しかし、本実施の形態による不揮発性半導体メモリの場合は(1403)、消去(“1”program)時に、消去(Erase)後に弱い書き込み(Post−Weak−Write)を行うため、消去(Erase)が連続しても、閾値電圧Vthが下がり続けることがなく、一定の値を保っている。   FIG. 14 is a diagram showing fluctuations in threshold voltage Vth (comparison between presence / absence of pre-write and presence / absence of post-weak-write) due to continuous erasure. In FIG. 14, the vertical axis represents the threshold voltage Vth, and the horizontal axis represents the number of erases. Waveform 1401 indicates that there is no write before erasure (Pre-Write) or weak write after erasure (Post-Wake-Write). Waveform 1402 indicates that there is write before erasure (Pre-Write). Waveform 1403 indicates that after erasure. The case where there is a weak write (Post-Weak-Write) is shown. As shown in FIG. 14, in the case of the conventional method shown in FIG. 7 and FIG. 8 (1401), the threshold voltage Vth gradually decreases as erasing continues. However, in the case of the non-volatile semiconductor memory according to the present embodiment (1403), during erase (“1” program), weak write (Post-Wake-Write) is performed after erase (Erase). Even if it continues, the threshold voltage Vth does not continue to decrease and maintains a constant value.

したがって、本実施の形態による消去後の弱い書き込み(Post−Weak−Write)方式の不揮発性半導体メモリによれば、総書き込み・消去時間(プログラム時間)が従来方式と同じまま、連続消去時の閾値電圧の低下を抑制することができる。   Therefore, according to the non-volatile semiconductor memory of the post-erase weak write (Post-Weak-Write) method according to the present embodiment, the total write / erase time (program time) remains the same as that of the conventional method, and the threshold value at the time of continuous erase A decrease in voltage can be suppressed.

よって、本実施の形態の不揮発性半導体メモリによれば、以下の作用・効果が得られる。MONOS型メモリセルの場合、消去側は正孔をONO膜(酸化膜−窒化膜−酸化膜)中に蓄積し、データ保持を行い、放置によりこの正孔が離脱する事により閾値電圧が変動する。この正孔の離脱を遅くすれば、データ保持特性が改善する。消去の後にしきい値電圧が過度に上昇しない程度に弱い書き込み(Post−Weak−Write)を行い、電子を蓄積させると、この電子によるクーロン引力で正孔の離脱が遅くなり、データ保持特性が改善する。また、シリコン窒化膜の電子のクーロン反発力により、基板中にある電子がシリコン窒化膜内に入ってきて正孔と再結合するのが阻止され、データ保持特性が改善する。   Therefore, according to the nonvolatile semiconductor memory of the present embodiment, the following operations and effects can be obtained. In the case of a MONOS type memory cell, holes are accumulated in the ONO film (oxide film-nitride film-oxide film) on the erasing side, data is retained, and the threshold voltage fluctuates by leaving these holes when left unattended. . If the release of the holes is delayed, the data retention characteristics are improved. When writing is performed so as to prevent the threshold voltage from rising excessively after erasing and the electrons are accumulated, the Coulomb attraction by the electrons slows the detachment of holes, and the data retention characteristics are increased. Improve. In addition, the Coulomb repulsion of electrons in the silicon nitride film prevents electrons in the substrate from entering the silicon nitride film and recombining with holes, thereby improving data retention characteristics.

また、この消去後の弱い書き込み(Post−Weak−Write)により、消去を連続して行っても、閾値電圧の変動が、消去前の書き込み(Pre−Write)無しでも抑えられる。   In addition, this weak writing after erasing (Post-Weak-Write) can suppress the fluctuation of the threshold voltage even if the erasing is performed continuously or without the writing before the erasing (Pre-Write).

以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   Although the invention made by the present inventor has been specifically described based on the embodiment, the invention is not limited to the embodiment and can be variously modified without departing from the scope of the invention. Needless to say.

本発明は、半導体メモリ、特に不揮発性メモリに有効であり、とりわけMONOS型不揮発性メモリ、MONOS型不揮発性メモリ搭載のマイクロコンピュータ等に効果的である。   The present invention is effective for a semiconductor memory, particularly a nonvolatile memory, and is particularly effective for a MONOS nonvolatile memory, a microcomputer equipped with a MONOS nonvolatile memory, and the like.

本発明の一実施の形態による不揮発性半導体メモリにおけるMONOS型メモリセルの概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a MONOS type memory cell in a nonvolatile semiconductor memory according to an embodiment of the present invention. MONOS型メモリセルのエネルギーバンド図である。It is an energy band figure of a MONOS type memory cell. 本発明の一実施の形態による不揮発性半導体メモリにおけるMONOS型メモリセルへの書き込み状態及び消去状態のドレイン電流特性を示す図である。It is a figure which shows the drain current characteristic of the write-in state and erasure | elimination state to the MONOS type | mold memory cell in the non-volatile semiconductor memory by one Embodiment of this invention. 消去後に弱い書き込みを行った場合と、消去のみの場合とのメモリセルの閾値電圧の変化を示す図である。It is a figure which shows the change of the threshold voltage of a memory cell when weak writing is performed after erasing and when only erasing is performed. (a),(b)はMONOS型メモリセルのシリコン窒化膜中における電荷分布とトラップ密度を示す図であり、(a)は電荷が電子の場合(書き込み後)、(b)は電荷が正孔の場合(消去後)を示す。(A), (b) is a figure which shows the electric charge distribution and trap density in the silicon nitride film of a MONOS type | mold memory cell, (a) is a case where an electric charge is an electron (after writing), (b) is an electric charge positive. The case of holes (after erasure) is shown. (a)は、従来の消去のみの場合(消去後の弱い書き込み無し)のMONOS型メモリセルのシリコン窒化膜中における電荷の分布モデルを示す図、(b)は、本発明の一実施の形態における消去後の弱い書き込み有りの場合のMONOS型メモリセルのシリコン窒化膜中における電荷の分布モデルを示す図である。(A) is a figure which shows the distribution model of the electric charge in the silicon nitride film of the MONOS type | mold memory cell in the case of only the conventional erasing (there is no weak writing after erasing), (b) is one Embodiment of this invention 3 is a diagram showing a charge distribution model in a silicon nitride film of a MONOS type memory cell in the case where there is weak writing after erasing in FIG. 従来方式による不揮発性メモリの書き込み(“0”プログラム)及び消去(“1”プログラム)のシーケンスを示す図である。It is a figure which shows the sequence of the writing ("0" program) and the erasure | elimination ("1" program) of the non-volatile memory by a conventional system. 従来方式による不揮発性メモリの連続消去(連続“1”プログラム)の印加電圧パルスを示す図である。It is a figure which shows the applied voltage pulse of the continuous erase (continuous "1" program) of the non-volatile memory by a conventional system. 過消去の問題を回避するために消去前の書き込み(Pre−Write)を追加した不揮発性メモリの書き込み(“0”プログラム)及び消去(“1”プログラム)のシーケンスを示す図である。FIG. 10 is a diagram showing a sequence of writing (“0” program) and erasing (“1” program) of a nonvolatile memory to which writing before erasing (Pre-Write) is added in order to avoid the problem of over-erasing. 過消去の問題を回避するために消去前の書き込み(Pre−Write)を追加した不揮発性メモリの連続消去(連続“1”プログラム)の印加電圧パルスを示す図である。It is a figure which shows the applied voltage pulse of continuous erasure | elimination (continuous "1" program) of the non-volatile memory which added the write (Pre-Write) before erasure in order to avoid the problem of over erasure. 不揮発性メモリの連続消去による閾値電圧Vthの変動(Pre−Write有無の比較)を示す図である。It is a figure which shows the fluctuation | variation (comparison of the presence or absence of Pre-Write) of the threshold voltage Vth by continuous erasure | elimination of a non-volatile memory. 本発明の一実施の形態において、過消去の問題を回避するために消去後の弱い書き込み(Post−Weak−Write)を行う不揮発性メモリの書き込み(“0”プログラム)及び消去(“1”プログラム)のシーケンスを示す図である。In one embodiment of the present invention, writing (“0” program) and erasing (“1” program) of a non-volatile memory that performs weak writing (Post-Weak-Write) after erasing in order to avoid the problem of over-erasing FIG. 本発明の一実施の形態において、過消去の問題を回避するために消去後の弱い書き込み(Post−Weak−Write)を行う不揮発性メモリの連続消去(連続“1”プログラム)の印加電圧パルスを示す図である。In one embodiment of the present invention, an applied voltage pulse for continuous erasure (continuous “1” program) of a non-volatile memory that performs weak write (Post-Weak-Write) after erasure in order to avoid the problem of over-erasure. FIG. 不揮発性メモリの連続消去による閾値電圧Vthの変動(Pre−Write有り/無し、Post−Weak−Write有りの比較)を示す図である。It is a figure which shows the fluctuation | variation (comparison with / without Pre-Write, with Post-Weak-Write) of the threshold voltage Vth by continuous erasure | elimination of a non-volatile memory.

符号の説明Explanation of symbols

101 ゲート
102 トップ酸化膜(Top−SiO
103 シリコン窒化膜(Trapping−Si
104 トンネル酸化膜(Tunnel−SiO
105 n型拡散層
106 チャネル形成領域
107 pウェル
101 Gate 102 Top oxide film (Top-SiO 2 )
103 Silicon nitride film (Tapping-Si 3 N 4 )
104 Tunnel oxide film (Tunnel-SiO 2 )
105 n-type diffusion layer 106 channel formation region 107 p-well

Claims (5)

窒化膜を電荷蓄積層としたメモリセルを含む不揮発性半導体メモリであって、
データ書き込み時に、第1の電圧が前記メモリセルのゲート電極に第1の時間印加され、
データ消去時に、前記第1の電圧より低い第2の電圧が前記メモリセルのゲート電極に第2の時間印加され、その後、前記第1の電圧より低くかつ前記第2の電圧より高い第3の電圧が前記メモリセルのゲート電極に第3の時間印加されることを特徴とする不揮発性半導体メモリ。
A nonvolatile semiconductor memory including a memory cell having a nitride film as a charge storage layer,
When writing data, a first voltage is applied to the gate electrode of the memory cell for a first time;
During data erasing, a second voltage lower than the first voltage is applied to the gate electrode of the memory cell for a second time, and then a third voltage lower than the first voltage and higher than the second voltage. A nonvolatile semiconductor memory, wherein a voltage is applied to the gate electrode of the memory cell for a third time.
請求項1記載の不揮発性半導体メモリにおいて、
前記第1の電圧及び前記第3の電圧は正電圧であり、
前記第2の電圧は負電圧であることを特徴とする不揮発性半導体メモリ。
The nonvolatile semiconductor memory according to claim 1,
The first voltage and the third voltage are positive voltages;
The non-volatile semiconductor memory, wherein the second voltage is a negative voltage.
請求項1記載の不揮発性半導体メモリにおいて、
前記メモリセルは、半導体基板上に形成された電界効果型トランジスタであり、
ソース電極と、ドレイン電極と、前記ソース電極と前記ドレイン電極の間のチャネル形成領域とを有し、
前記電荷蓄積層は、前記チャネル形成領域の上に配置され、
前記ゲート電極は、前記電荷蓄積層の上に配置されていることを特徴とする不揮発性半導体メモリ。
The nonvolatile semiconductor memory according to claim 1,
The memory cell is a field effect transistor formed on a semiconductor substrate,
A source electrode, a drain electrode, and a channel formation region between the source electrode and the drain electrode,
The charge storage layer is disposed on the channel formation region,
The non-volatile semiconductor memory, wherein the gate electrode is disposed on the charge storage layer.
請求項1記載の不揮発性半導体メモリにおいて、
前記第3の時間は、前記第1の時間より短いことを特徴とする不揮発性半導体メモリ。
The nonvolatile semiconductor memory according to claim 1,
The non-volatile semiconductor memory, wherein the third time is shorter than the first time.
請求項1記載の不揮発性半導体メモリにおいて、
前記データ書き込み時に、前記第1の電圧が前記メモリセルのゲート電極に印加される前に、前記第2の電圧が前記メモリセルのゲート電極に印加されることを特徴とする不揮発性半導体メモリ。
The nonvolatile semiconductor memory according to claim 1,
The non-volatile semiconductor memory, wherein the second voltage is applied to the gate electrode of the memory cell before the first voltage is applied to the gate electrode of the memory cell during the data writing.
JP2007103652A 2007-04-11 2007-04-11 Nonvolatile semiconductor memory Pending JP2008262626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103652A JP2008262626A (en) 2007-04-11 2007-04-11 Nonvolatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103652A JP2008262626A (en) 2007-04-11 2007-04-11 Nonvolatile semiconductor memory

Publications (1)

Publication Number Publication Date
JP2008262626A true JP2008262626A (en) 2008-10-30

Family

ID=39984998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103652A Pending JP2008262626A (en) 2007-04-11 2007-04-11 Nonvolatile semiconductor memory

Country Status (1)

Country Link
JP (1) JP2008262626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157596A (en) * 2008-12-26 2010-07-15 Toshiba Corp Flash memory
JP2010192592A (en) * 2009-02-17 2010-09-02 Tokyo Electron Ltd Method of operating and controlling charge trap type memory device, the same device, and operation control program
JP2011014817A (en) * 2009-07-06 2011-01-20 Toshiba Corp Nonvolatile semiconductor memory device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230566A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Nonvolatile semiconductor memory device
JPH05190866A (en) * 1991-06-27 1993-07-30 Toshiba Corp Nonvolatile semiconductor memory and its operating method
JPH05258583A (en) * 1992-03-02 1993-10-08 Nec Corp Method for controlling nonvolatile storage
JPH06150676A (en) * 1992-11-13 1994-05-31 Nec Corp Data erasing method for nonvolatile semiconductor memory device
JPH06275799A (en) * 1993-03-22 1994-09-30 Nec Corp Method of controlling nonvolatile storage device
JPH07249701A (en) * 1994-03-11 1995-09-26 Nec Corp Operating method for nonvolatile semiconductor memory
JPH07320490A (en) * 1991-02-20 1995-12-08 Sundisk Corp Method about programming of floating-gate memory cell
JPH1055689A (en) * 1996-08-13 1998-02-24 Denso Corp Erasing method for flash memory
JP2006024309A (en) * 2004-07-09 2006-01-26 Renesas Technology Corp Nonvolatile memory, data processor, and microcomputer for ic card

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230566A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Nonvolatile semiconductor memory device
JPH07320490A (en) * 1991-02-20 1995-12-08 Sundisk Corp Method about programming of floating-gate memory cell
JPH05190866A (en) * 1991-06-27 1993-07-30 Toshiba Corp Nonvolatile semiconductor memory and its operating method
JPH05258583A (en) * 1992-03-02 1993-10-08 Nec Corp Method for controlling nonvolatile storage
JPH06150676A (en) * 1992-11-13 1994-05-31 Nec Corp Data erasing method for nonvolatile semiconductor memory device
JPH06275799A (en) * 1993-03-22 1994-09-30 Nec Corp Method of controlling nonvolatile storage device
JPH07249701A (en) * 1994-03-11 1995-09-26 Nec Corp Operating method for nonvolatile semiconductor memory
JPH1055689A (en) * 1996-08-13 1998-02-24 Denso Corp Erasing method for flash memory
JP2006024309A (en) * 2004-07-09 2006-01-26 Renesas Technology Corp Nonvolatile memory, data processor, and microcomputer for ic card

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157596A (en) * 2008-12-26 2010-07-15 Toshiba Corp Flash memory
JP2010192592A (en) * 2009-02-17 2010-09-02 Tokyo Electron Ltd Method of operating and controlling charge trap type memory device, the same device, and operation control program
JP2011014817A (en) * 2009-07-06 2011-01-20 Toshiba Corp Nonvolatile semiconductor memory device
US8654586B2 (en) 2009-07-06 2014-02-18 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
US7391652B2 (en) Method of programming and erasing a p-channel BE-SONOS NAND flash memory
JP4881401B2 (en) NAND flash memory
JP3962769B2 (en) Nonvolatile semiconductor memory device and writing method thereof
US8081513B2 (en) NAND flash memory
US20070036001A1 (en) Floating-gate nonvolatile semiconductor memory device
US20040029335A1 (en) Novel set of three level concurrent word line bias conditions for a NOR type flash memory array
US20070196982A1 (en) Nrom non-volatile mode of operation
JP3856694B2 (en) Flash memory device and erase method thereof
JP2010514196A (en) 2TNOR type nonvolatile memory cell array and data processing method for 2TNOR type nonvolatile memory
JP5059437B2 (en) Nonvolatile semiconductor memory device
JP2005012219A (en) Sonos memory device and method of erasing data from the same
US7773430B2 (en) Method of identifying logical information in a programming and erasing cell by on-side reading scheme
US7859904B1 (en) Three cycle memory programming
JP4113559B2 (en) Nonvolatile semiconductor memory device and writing method thereof
JP2008262626A (en) Nonvolatile semiconductor memory
US7483299B2 (en) Devices and operation methods for reducing second bit effect in memory device
US7170796B1 (en) Methods and systems for reducing the threshold voltage distribution following a memory cell erase
US7835192B2 (en) Method for programming a nonvolatile memory
US7554851B2 (en) Reset method of non-volatile memory
US20090135653A1 (en) Method for performing operations on a memory cell
US9190149B2 (en) Method and system for switchable erase or write operations in nonvolatile memory
JP2004006549A (en) Erasing method of information in nonvolatile semiconductor memory device
US6621736B1 (en) Method of programming a splity-gate flash memory cell with a positive inhibiting word line voltage
US6091638A (en) Method for programming, reading and erasing a flash memory
US20080304320A1 (en) Memory cell and method of programming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904