JP2008261839A - Manufacturing method of acceleration sensing unit - Google Patents

Manufacturing method of acceleration sensing unit Download PDF

Info

Publication number
JP2008261839A
JP2008261839A JP2007312059A JP2007312059A JP2008261839A JP 2008261839 A JP2008261839 A JP 2008261839A JP 2007312059 A JP2007312059 A JP 2007312059A JP 2007312059 A JP2007312059 A JP 2007312059A JP 2008261839 A JP2008261839 A JP 2008261839A
Authority
JP
Japan
Prior art keywords
substrate
stress sensitive
support piece
fixed
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312059A
Other languages
Japanese (ja)
Inventor
Yoshikuni Saito
佳邦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007312059A priority Critical patent/JP2008261839A/en
Priority to US12/010,502 priority patent/US7954215B2/en
Publication of JP2008261839A publication Critical patent/JP2008261839A/en
Priority to US13/095,083 priority patent/US8307521B2/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an acceleration sensing unit which is suitable for mass production, can reduce manufacturing cost while maintaining characteristics of the acceleration sensing unit. <P>SOLUTION: The manufacturing method of the acceleration sensing unit includes a process for providing a stress sensing element substrate 40 having a plurality of stress sensing elements 41' coupled by element supporting pieces 43, a process for providing an element support substrate 50 having a plurality of element supporting members 51 coupled by supporting pieces 53, a process for coating adhesive on surfaces of respective fixing members 5 and movable members 20 and superimposing the element supporting substrate 50 and the stress sensing element substrate 40 in order to connect fixing ends 44 of the respective stress sensing elements 41' to the fixing members 5 for structuring the respective element supporting members 51 and the movable members 20, and a process for curing the adhesive and cutting the element supporting pieces 43 and the supporting pieces 53. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加速度検知ユニットの製造方法に関し、特に応力感応素子と、該応力感応素子を支持し応力印加により変形する素子支持部材とを同一圧電材料を使用し、エッチング手法を用いて構成した加速度検知ユニットの製造方法に関する。   The present invention relates to a method for manufacturing an acceleration detection unit, and in particular, an acceleration in which a stress sensitive element and an element support member that supports the stress sensitive element and deforms by applying stress are made of the same piezoelectric material and are etched using an etching technique. The present invention relates to a method for manufacturing a detection unit.

加速度センサは従来から自動車、航空機、ロッケットから各種プラントの異常振動監視等にまで、広く使用されている。特許文献1には、図14の斜視図に示すような加速度センサの梁構造が開示されている。図14において符号90は2つの振動ビーム91を有する水晶双音叉振動子、92は水晶双音叉振動子90の接着部、100は水晶双音叉振動子90と同一カットの水晶により構成した梁である。そして、水晶双音叉振動子90の接着部92と当接する梁100の部分の板厚のみを、他の部分の板厚より厚くした突起部110を梁100と一体的に形成し、突起部110と双音叉振動子の接着部92とは接着剤等により接着、固定される。更に、梁100の自由端には重り120を設け、重り120と対向する一端はベース130に固定する。   Conventionally, acceleration sensors have been widely used from automobiles, aircraft, and rockets to monitoring abnormal vibrations of various plants. Patent Document 1 discloses a beam structure of an acceleration sensor as shown in the perspective view of FIG. In FIG. 14, reference numeral 90 denotes a crystal double tuning fork vibrator having two vibration beams 91, 92 denotes a bonding portion of the crystal double tuning fork vibrator 90, and 100 denotes a beam made of the same crystal as the crystal double tuning fork vibrator 90. . Then, a protrusion 110 is formed integrally with the beam 100 in which only the thickness of the portion of the beam 100 in contact with the bonding portion 92 of the crystal double tuning fork vibrator 90 is thicker than the thickness of the other portion, and the protrusion 110 And the bonding portion 92 of the double tuning fork vibrator are bonded and fixed with an adhesive or the like. Furthermore, a weight 120 is provided at the free end of the beam 100, and one end facing the weight 120 is fixed to the base 130.

図14に示すように構成した加速度センサのベース130を被測定物に固定し、矢印方向に加速度を印加すると重り120は梁100を撓ませ、梁100に固定した水晶双音叉振動子90は、圧縮あるいは伸張応力を受け周波数が変化する。つまり、周波数の変化量から加速度の大きさを測定するセンサである。梁100上に突起部110を形成することにより、突起部110が無い場合に比べて水晶双音叉振動子90に加わる応力の大きさが増加するため、梁100の板厚を薄くすることなく、且つ重り120の質量を増加することなく、高感度の加速度センサを構成することができると開示されている。
特開平2−248866号公報
When the base 130 of the acceleration sensor configured as shown in FIG. 14 is fixed to the object to be measured and acceleration is applied in the direction of the arrow, the weight 120 deflects the beam 100, and the crystal double tuning fork vibrator 90 fixed to the beam 100 includes The frequency changes under compressive or tensile stress. That is, the sensor measures the magnitude of acceleration from the amount of change in frequency. By forming the protrusion 110 on the beam 100, the magnitude of the stress applied to the crystal double tuning fork vibrator 90 is increased as compared with the case where there is no protrusion 110, so that the plate thickness of the beam 100 is not reduced. In addition, it is disclosed that a highly sensitive acceleration sensor can be configured without increasing the mass of the weight 120.
JP-A-2-248866

しかしながら、特許文献1に記載の加速度センサでは重りが梁の端にあり、加速度による梁の変形が固定部付近に集中して発生し易い為に水晶双音叉振動子に十分には掛からないという問題と、梁の厚さが一様であるため加速度による応力が分散され易い。その為、小さな加速度では変形が起こりにくく、小さな加速度の測定精度が不十分であるという問題と、個別に各部材を形成するために量産性が悪いという問題があった。   However, in the acceleration sensor described in Patent Document 1, the weight is at the end of the beam, and deformation of the beam due to acceleration is likely to occur in the vicinity of the fixed portion, so that the crystal double tuning fork vibrator is not sufficiently applied. In addition, since the thickness of the beam is uniform, stress due to acceleration is easily dispersed. For this reason, there is a problem that deformation is difficult to occur at a small acceleration and measurement accuracy of the small acceleration is insufficient, and that mass productivity is poor because each member is individually formed.

本発明の加速度検知ユニットの製造方法は、固定部材、及び前記固定部材に梁にて支持される可動部材を備えた素子支持部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した応力感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持されたものである構成を有する加速度検知ユニットの製造方法であって、支持片にて連結され且つ平面状に配置された複数の前記素子支持部材を有する素子支持基板を用意する工程と、素子支持片にて連結され且つ平面状に配置された複数の応力感応素子を有する応力感応素子基板を用意する工程と、前記固定部材及び前記可動部材上に、前記各応力感応素子の固定端を重ねるように前記素子支持基板と前記応力感応素子基板とを重ね合わせる工程と、前記固定部材及び前記可動部材上に前記固定端を固定する工程と、前記素子支持片、支持片を切断する工程と、からなる。
以上のように加速度検知ユニットの製造方法を採用することにより、小さな加速度をも十分な精度で測定でき、温度特性も良く、且つ量産性に優れ、安いコストの加速度検知ユニットを多量に製造することができるという効果がある。
The method for manufacturing an acceleration detection unit of the present invention is integrated with a fixed member, an element support member having a movable member supported by the fixed member with a beam, a stress sensitive portion, and both ends of the stress sensitive portion. A stress sensitive element having a fixed end, and the beam has a flexibility that can be deformed to displace the movable member along an acceleration detection axis direction when an acceleration is applied to the movable member. The stress-sensitive element is a method of manufacturing an acceleration detection unit having a configuration in which both fixed ends are supported by the fixed member and the movable member, respectively, and is connected by a support piece and A step of preparing an element support substrate having a plurality of the element support members arranged in a plane and a stress sensitive element substrate having a plurality of stress sensitive elements connected by an element support piece and arranged in a plane are prepared. A step of superimposing the element support substrate and the stress sensitive element substrate on the fixed member and the movable member so that a fixed end of each stress sensitive element is superimposed on the fixed member and the movable member, and the fixed member and the movable member The method includes a step of fixing the fixed end on the top, and a step of cutting the element support piece and the support piece.
As described above, by adopting the method of manufacturing the acceleration detection unit, it is possible to measure a small acceleration with sufficient accuracy, good temperature characteristics, excellent mass productivity, and manufacturing a large amount of acceleration detection units at a low cost. There is an effect that can be.

また、本発明の加速度検知ユニットの製造方法は、前記重ね合わせる工程の際に前記支持片と前記素子と支持片とを重ねあわせることを特徴とする。
以上のように加速度検知ユニットの製造方法を採用することにより、素子支持片及び支持片は、応力感応素子や素子支持部材の寸法に比べ十分に細く形成してあり、ダイシング等の切断機を用いず、折り取り切断により素子支持片及び支持片の残片を少なくできので、より精度のよい加速度検出ユニットを低コストで製造することができるという利点がある。
The method for manufacturing an acceleration detection unit of the present invention is characterized in that the support piece, the element, and the support piece are overlapped in the superimposing step.
By adopting the method for manufacturing the acceleration detection unit as described above, the element support piece and the support piece are formed sufficiently thin compared to the dimensions of the stress sensitive element and the element support member, and a cutting machine such as dicing is used. In addition, since the element support piece and the remaining piece of the support piece can be reduced by cutting off, there is an advantage that a more accurate acceleration detection unit can be manufactured at low cost.

また、本発明の加速度検知ユニットの製造方法は、固定部材、及び前記固定部材に梁にて支持される可動部材を備えた素子支持部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した応力感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持されたものである構成を有する加速度検知ユニットの製造方法であって、支持片にて連結され且つ平面状に配置された複数の素子支持部材を有する素子支持基板を用意する工程と、重り部材支持片にて連結され且つ平面状に配置された複数の重り部材を有する重り部材支持基板を少なくとも一枚用意する工程と、素子支持片にて連結され且つ平面状に配置された複数の応力感応素子を有する応力感応素子基板を用意する工程と、少なくとも前記可動部材に前記重り部材を接続する為に、前記素子支持基板と前記重り部材支持基板とを重ね合わせて基板積層体を形成する工程と、前記重り部材支持片を切断する工程と、前記基板積層体と前記各応力感応素子の固定端を接続する為に、前記基板積層体と前記応力感応素子基板とを重ね合わせる工程と、該素子支持片と前記支持片を切断する工程と、からなる。
以上のように加速度検知ユニットの製造方法を採用することにより、重り部材支持片、素子支持片、及び支持片は、重り部材、応力感応素子、及び素子支持部材の寸法に比べ十分に細く形成してあり、折り取り切断により順次重り部材支持片、素子支持片、及び支持片を切断するので、各残片を少なくでき、加速度検知ユニットの寸法精度向上させることができるため、より精度のよい加速度検知ユニットを多量に低コストで製造することができるという利点がある。
Also, the method of manufacturing the acceleration detection unit of the present invention includes a fixed member, an element support member including a movable member supported by the fixed member by a beam, a stress sensitive portion, and both ends of the stress sensitive portion. A stress sensitive element having a fixed end, and the beam is deformable so as to displace the movable member along an acceleration detection axis direction when acceleration is applied to the movable member. The stress-sensitive element is a method of manufacturing an acceleration detection unit having a structure in which both fixed ends are supported by the fixed member and the movable member, respectively, and is connected by a support piece. And a step of preparing an element support substrate having a plurality of element support members arranged in a planar shape, and a weight member support substrate having a plurality of weight members connected in a planar shape and connected by weight member support pieces. Small A step of preparing at least one sheet, a step of preparing a stress-sensitive element substrate having a plurality of stress-sensitive elements connected in a planar shape by element support pieces, and connecting the weight member to at least the movable member In order to do so, the step of superposing the element support substrate and the weight member support substrate to form a substrate laminate, the step of cutting the weight member support piece, the substrate laminate and each of the stress sensitive elements In order to connect the fixed ends, the method includes a step of superimposing the substrate laminate and the stress-sensitive element substrate, and a step of cutting the element support piece and the support piece.
As described above, by adopting the manufacturing method of the acceleration detection unit, the weight member support piece, the element support piece, and the support piece are formed sufficiently thin as compared with the dimensions of the weight member, the stress sensitive element, and the element support member. Since the weight member support piece, the element support piece, and the support piece are cut sequentially by cutting off, each remaining piece can be reduced and the dimensional accuracy of the acceleration detection unit can be improved. There is an advantage that a large number of units can be manufactured at low cost.

また、本発明の加速度検知ユニットの製造方法は、固定部材、及び前記固定部材に梁にて支持される可動部材を備えた素子支持部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した応力感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持されたものである構成を有する加速度検知ユニットの製造方法であって、支持片にて連結され且つ平面状に配置された複数の素子支持部材を有する素子支持基板を用意する工程と、素子支持片にて連結され且つ平面状に配置された複数の応力感応素子を有する応力感応素子基板を用意する工程と、重り部材支持片にて連結され且つ平面状に配置された複数の重り部材を有する重り部材支持基板を少なくとも一枚用意する工程と、前記少なくとも可動部材に前記重り部材を接続する為に、前記素子支持基板と前記重り部材支持基板とを重ね合わせることにより基板積層体を形成する工程と、前記基板積層体と前記各応力感応素子の固定端を接続する為に、前記基板積層体と前記応力感応素子基板とを重ね合わせる工程と、前記支持片、前記重り部材支持片、及び前記素子支持片を切断する工程と、からなる。
以上のように加速度検知ユニットの製造方法を採用することにより、重り部材支持片、素子支持片、及び支持片は、重り部材、応力感応素子、及び素子支持部材の寸法に比べ十分に細く形成してあり、夫々の支持片を折り取りにより一括切断することができるので、寸法精度のよい加速度検知ユニットを効率よく多量に低コストで製造することができるという利点がある。
Also, the method of manufacturing the acceleration detection unit of the present invention includes a fixed member, an element support member including a movable member supported by the fixed member by a beam, a stress sensitive portion, and both ends of the stress sensitive portion. A stress sensitive element having a fixed end, and the beam is deformable so as to displace the movable member along an acceleration detection axis direction when acceleration is applied to the movable member. The stress-sensitive element is a method of manufacturing an acceleration detection unit having a structure in which both fixed ends are supported by the fixed member and the movable member, respectively, and is connected by a support piece. And a step of preparing an element supporting substrate having a plurality of element supporting members arranged in a plane, and a stress sensitive element substrate having a plurality of stress sensitive elements connected in an element supporting piece and arranged in a plane. for A step of preparing at least one weight member support substrate having a plurality of weight members connected in a planar manner and connected by a weight member support piece, and connecting the weight member to at least the movable member A step of forming a substrate laminate by superimposing the element support substrate and the weight member support substrate, and connecting the substrate laminate and a fixed end of each of the stress sensitive elements. And the step of superposing the stress-sensitive element substrate, and the step of cutting the support piece, the weight member support piece, and the element support piece.
As described above, by adopting the manufacturing method of the acceleration detection unit, the weight member support piece, the element support piece, and the support piece are formed sufficiently thin as compared with the dimensions of the weight member, the stress sensitive element, and the element support member. In addition, since each support piece can be collectively cut by folding, there is an advantage that an acceleration detecting unit with high dimensional accuracy can be efficiently manufactured in large quantities at low cost.

また、本発明の加速度検知ユニットの製造方法は、前記支持片、前記素子支持片、及び前記重り支持片には、凹所が設けられていることを特徴とする。
以上のような加速度検知ユニットの製造方法を採用することにより、重り部材支持片、素子支持片、及び支持片に夫々折り取り容易部(溝)を設けることにより、重り部材支持片、素子支持片、及び支持片を容易に折り取り切断でき、且つ夫々の支持片の残片をほぼ残すことなく切断できるので、加速度検知ユニットの寸法精度が向上し、検知ユニットの測定精度が良くなるという効果がある。
Moreover, the manufacturing method of the acceleration detection unit of this invention is characterized by the said support piece, the said element support piece, and the said weight support piece being provided with the recess.
By adopting the manufacturing method of the acceleration detection unit as described above, the weight member support piece, the element support piece, and the support piece are provided with easy-to-break parts (grooves), respectively. In addition, the support pieces can be easily folded and cut, and the support pieces can be cut almost without leaving the remaining pieces, so that the dimensional accuracy of the acceleration detection unit is improved and the measurement accuracy of the detection unit is improved. .

また、本発明の加速度検知ユニットの製造方法は、前記支持片に設けられた凹所は、応力感応素子基板の厚み方向に沿って形成された溝であり、前記素子支持片及び前記重り支持片に設けられた凹所は、前記支持片に設けた凹所の深さ方向へ延びる溝であることを特徴とする。
以上のような加速度検知ユニットの製造方法を採用することにより、重り部材支持片、素子支持片、及び支持片に夫々折り取る方向に沿って凹所を設けたので、折り取り切断の順序に従って凹所より容易に切断でき、且つ夫々の支持片の残片をほぼ残すことなく切断できるので、加速度検知ユニットの寸法精度が向上し、検知ユニットの測定精度が良くなるという効果がある。
Further, in the method for manufacturing the acceleration detection unit of the present invention, the recess provided in the support piece is a groove formed along the thickness direction of the stress sensitive element substrate, and the element support piece and the weight support piece The recess provided in is a groove extending in the depth direction of the recess provided in the support piece.
By adopting the method for manufacturing the acceleration detection unit as described above, the weight member support piece, the element support piece, and the support piece are provided with recesses along the direction of folding, respectively. Since it can be easily cut from the place and can be cut without substantially leaving the remaining pieces of the respective support pieces, there is an effect that the dimensional accuracy of the acceleration detection unit is improved and the measurement accuracy of the detection unit is improved.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明に記載の加速度検知ユニット1の構成を示す斜視図である。加速度検知ユニット1は、図示しない固定部に固定的に支持されることによって加速度の印加によって変位しない固定部材5と、固定部材5に対して梁10にて変位可能な状態で支持される可動部材20と、応力感応部34及び応力感応部の両端部に一体化された固定端32、33を有した応力感応素子30と、を備えている。梁10は、可動部材20に加速度検出軸方向(Z軸方向)への加速度が印加されると可動部材20を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有するように構成されている。
応力感応素子30は、一方の固定端32を固定部材5の上面に、他方の固定端33を可動部材20の上面に夫々支持され、接着材にて固定(支持)されている。固定部材5、可動部材20、及び梁10から成る素子支持部材6を、応力感応素子30と同材料にて構成する。更には素子支持部材6及び応力感応素子30を同一の材料(同一の圧電材料)により構成することが望ましい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a configuration of an acceleration detection unit 1 according to the present invention. The acceleration detection unit 1 includes a fixed member 5 that is fixedly supported by a fixed portion (not shown) so as not to be displaced by application of acceleration, and a movable member that is supported in a state in which the fixed member 5 can be displaced by a beam 10. 20 and a stress sensitive element 30 having fixed ends 32 and 33 integrated at both ends of the stress sensitive part 34 and the stress sensitive part. The beam 10 is configured to have a flexibility that can be deformed so as to displace the movable member 20 along the acceleration detection axis direction when an acceleration in the acceleration detection axis direction (Z-axis direction) is applied to the movable member 20. Has been.
In the stress sensitive element 30, one fixed end 32 is supported on the upper surface of the fixed member 5, and the other fixed end 33 is supported on the upper surface of the movable member 20, and is fixed (supported) with an adhesive. The element support member 6 including the fixed member 5, the movable member 20, and the beam 10 is made of the same material as that of the stress sensitive element 30. Furthermore, it is desirable that the element support member 6 and the stress sensitive element 30 are made of the same material (the same piezoelectric material).

圧電材料としては品質が安定し、周波数温度特性も良好であり、しかも大量生産に適し、コスト的にも安価である水晶を用いるのが望ましい。つまり、素子支持部材6及び応力感応素子30を同材料(水晶)で構成することが良い。更には単に同材料を使った材質の一致だけではなく、結晶軸に対して夫々の切断方位(カットアングル)を一致させた同一の水晶材料で構成(固定端32、33の水晶結晶軸と固定部材5と可動部材20の水晶結晶軸とが一致)しても良い。切断方位を一致させることにより、素子支持部材6及び応力感応素子30の線膨張係数が同一となり、応力感知ユニット1の周囲温度が変化しても、素子支持部材6と応力感応素子30との間で生じる熱歪みを最小限にすることが可能である。
従って、環境温度変化に対して高い信頼性及び優れた加速度検知能力を有する加速度検知ユニットを構成することができる。
固定部材5と可動部材20とを連結する梁10は、梁10の両端部から中央部に向けて厚みが漸減し、中央部の厚みが最少となるように構成されている。つまり、図1に示すように梁10の下面の中央部をZ軸方向に対称に、奥行き方向(Y軸方向)に半円形状あるいは放物線状になるように加工する。
As the piezoelectric material, it is desirable to use a quartz crystal that has stable quality, good frequency-temperature characteristics, is suitable for mass production, and is inexpensive. That is, the element support member 6 and the stress sensitive element 30 are preferably made of the same material (quartz). Furthermore, it is not only the coincidence of the materials using the same material but also the same crystal material in which the respective cutting orientations (cut angles) coincide with the crystal axis (fixed to the crystal crystal axes of the fixed ends 32 and 33) The member 5 and the crystal crystal axis of the movable member 20 may coincide with each other). By making the cutting orientations coincide, the linear expansion coefficients of the element support member 6 and the stress sensitive element 30 become the same, and even if the ambient temperature of the stress sensing unit 1 changes, the element support member 6 and the stress sensitive element 30 are not connected. Can be minimized.
Therefore, an acceleration detection unit having high reliability and excellent acceleration detection capability with respect to environmental temperature changes can be configured.
The beam 10 connecting the fixed member 5 and the movable member 20 is configured such that the thickness gradually decreases from both ends of the beam 10 toward the central portion, and the thickness of the central portion is minimized. That is, as shown in FIG. 1, the central portion of the lower surface of the beam 10 is processed so as to be symmetrical in the Z-axis direction and to be semicircular or parabolic in the depth direction (Y-axis direction).

図2に示す加速度検知ユニット2は、図1に示した加速度検知ユニット1の梁10の構造を改良して梁11とし、加速度検出軸方向(Z軸方向)の+方向(Z軸の矢印方向)に、ある大きさの加速度(Z軸の矢印方向の加速を正として+αの加速度)が印加された場合でも、−方向(Z軸の矢印方向と逆方向)に、同じ大きさの加速度(Z軸の矢印方向の加速を正として−αの加速度)が印加された場合でも、梁11の撓みが等しくなるようにした梁の構造である。図2に示す梁11のように中央部の上下面をX及びZ軸方向に対称で、奥行き方向(Y軸方向)に双曲線状に加工する。あるいは、梁の両端部から中央部に向けて段差状に厚みが漸減するように加工してもよい。   The acceleration detection unit 2 shown in FIG. 2 improves the structure of the beam 10 of the acceleration detection unit 1 shown in FIG. 1 to be a beam 11, and the + direction of the acceleration detection axis direction (Z axis direction) (the arrow direction of the Z axis) ) Even when a certain amount of acceleration (acceleration in the direction of the arrow on the Z axis is + α) is applied in the negative direction (the direction opposite to the direction of the arrow on the Z axis) This is a beam structure in which the deflection of the beam 11 is equal even when the acceleration in the arrow direction of the Z-axis is positive and −α acceleration is applied. Like the beam 11 shown in FIG. 2, the upper and lower surfaces of the central portion are processed symmetrically in the X and Z axis directions and hyperbolic in the depth direction (Y axis direction). Or you may process so that thickness may decrease gradually in the shape of a step toward the center part from the both ends of a beam.

図1、図2に示す梁10、11のように、梁の中央部の厚さを半円形、放物線状あるいは双曲線状に漸減するか、あるいは梁の厚みが両端部から中央部に向けて段差状に漸減するように加工することにより、梁(10、11等)は、加速度検出軸方向に加速度が可動部材20に印加されると、梁の中央部の最薄部で撓み、可動部材20を加速度検出軸方向へ変位させるよう変形する。梁の側面(Y軸方向から見た面)形状としてはX及びZ軸に対して対称な、例えば図2に示す梁11のような形状の梁が、加速度の正負(Z軸の矢印方向を正とし、逆向きを負とする)の方向に関わらず一様に撓むので望ましい形状である。
梁10、11は、加速度検出軸方向(Z軸方向)と直交する奥行き方向(Y方向)への可動部材20の変位を阻止するような形状、寸法を有しており、梁10、11の奥行き方向の寸法は、加速度検出軸方向(Z軸方向)の梁10、11の幅の寸法以上の長さとなるように形成されている。これは加速度検出軸方向以外の他軸方向に可動部材20が変位しないようにし、加速度検出軸方向のみの加速度を検出するようにするためである。
As shown in FIGS. 1 and 2, the thickness of the central portion of the beam is gradually reduced to a semicircular, parabolic or hyperbolic shape, or the thickness of the beam is stepped from both ends toward the central portion. The beam (10, 11, etc.) is bent at the thinnest part at the center of the beam when acceleration is applied to the movable member 20 in the acceleration detection axis direction. To be displaced in the direction of the acceleration detection axis. The side surface of the beam (the surface viewed from the Y-axis direction) is symmetrical with respect to the X and Z axes, for example, a beam like the beam 11 shown in FIG. This is a desirable shape because it bends uniformly regardless of the direction of positive (reverse direction is negative).
The beams 10 and 11 have shapes and dimensions that prevent displacement of the movable member 20 in the depth direction (Y direction) orthogonal to the acceleration detection axis direction (Z axis direction). The dimension in the depth direction is formed to be longer than the dimension of the width of the beams 10 and 11 in the acceleration detection axis direction (Z-axis direction). This is to prevent the movable member 20 from being displaced in directions other than the acceleration detection axis direction and to detect acceleration only in the acceleration detection axis direction.

図1、2に示すように、素子支持部材6、7における固定部材5の上面5aと、対向して配置される可動部材20の上面20aとは、X軸方向に平行、且つ同レベルな面となるように構成されている。固定部材5の上面5aに応力感応素子30の固定端32を、可動部材20の上面20aに固定端33を接着材にて接着固定する。なお、応力感応素子30の振動を妨げないように応力感応部34は、固定部材5の上面5a、及び可動部材20の上面20aに架からないように構成されている。
図1、2に示すように、応力感応素子30は、2つの固定端32、33、及び各固定端間32、33を連設する2つの振動ビームを備えた圧電基板からなる応力感応部34と、圧電基板の振動領域上に形成した励振電極と、を備えた双音叉型圧電振動素子である。図1に示す加速度検知ユニット1の実施例では、双音叉型水晶振動素子を用いた例を示している。双音叉型水晶振動素子は伸張・圧縮応力に対する感度が良好であり、分解能力が優れるために僅かな加速度の変化を知ることができる。また、双音叉型水晶振動素子が呈する周波数温度特性は、上に凸の二次曲線となり、その頂点温度が常温(25℃)になるように各パラメータを設定する。
As shown in FIGS. 1 and 2, the upper surface 5a of the fixed member 5 in the element support members 6 and 7 and the upper surface 20a of the movable member 20 arranged to face each other are parallel to the X-axis direction and are at the same level. It is comprised so that. The fixed end 32 of the stress sensitive element 30 is bonded and fixed to the upper surface 5a of the fixed member 5 and the fixed end 33 is bonded and fixed to the upper surface 20a of the movable member 20 with an adhesive. The stress sensitive part 34 is configured not to be hung on the upper surface 5a of the fixed member 5 and the upper surface 20a of the movable member 20 so as not to hinder the vibration of the stress sensitive element 30.
As shown in FIGS. 1 and 2, the stress sensitive element 30 includes two fixed ends 32 and 33, and a stress sensitive portion 34 formed of a piezoelectric substrate having two vibration beams connecting the fixed ends 32 and 33. And an excitation electrode formed on the vibration region of the piezoelectric substrate. In the embodiment of the acceleration detection unit 1 shown in FIG. 1, an example using a double tuning fork type crystal vibrating element is shown. The double tuning fork type quartz vibrating element has good sensitivity to extension / compression stress, and has excellent decomposition ability, so that a slight change in acceleration can be known. Further, the frequency temperature characteristic exhibited by the double tuning fork type crystal resonator element is an upwardly convex quadratic curve, and each parameter is set so that the apex temperature becomes room temperature (25 ° C.).

双音叉型水晶振動素子の2本の振動ビームに外力Fを加えたときの共振周波数fFは以下の如くである。
F=f0(1−(KL2F)/(2EI))1/2 (1)
ここで、f0は外力がないときの双音叉型水晶振動素子の共振周波数、Kは基本波モードによる定数(=0.0458)、Lは振動ビームの長さ、Eは縦弾性定数、Iは断面2次モーメントである。断面2次モーメントIはI=dw3/12より、式(1)は次式のように変形することができる。ここで、dは振動ビームの厚さ、wは幅である。
F=f0(1−SFσ)1/2 (2)
但し、応力感度SFと、応力σとはそれぞれ次式で表される。
F=12(K/E)(L/w)2 (3)
σ=F/(2A) (4)
ここで、Aは振動ビームの断面積(=w・d)である。以上から双音叉型振動子に作用する力Fを圧縮方向のとき負、伸張方向(引張り方向)を正としたとき、力Fと共振周波数fFの関係は、力Fが圧縮力で共振周波数fFが減少し、伸張(引張り)力では増加する。また応力感度SFは振動ビームのL/wの2乗に比例する。また、応力と頂点温度との関係は、双音叉型水晶振動素子に伸張応力を付加すると頂点温度は低音側へシフトし、圧縮応力を加えると高温側へシフトする特性を有している。
しかし、圧電振動素子としては、双音叉型水晶振動子に限らず、伸張・圧縮応力によって周波数が変化する圧電振動素子であればどのようなものを用いても良い。
The resonance frequency f F when the external force F is applied to the two vibrating beams of the double tuning fork type quartz vibrating element is as follows.
f F = f 0 (1- (KL 2 F) / (2EI)) 1/2 (1)
Here, f 0 is the resonance frequency of the double tuning fork type quartz vibrating element when there is no external force, K is a constant according to the fundamental mode (= 0.0458), L is the length of the vibrating beam, E is the longitudinal elastic constant, I Is the moment of inertia of the cross section. Second moment I are from I = dw 3/12, the equation (1) can be modified as follows. Here, d is the thickness of the vibration beam, and w is the width.
f F = f 0 (1−S F σ) 1/2 (2)
However, the stress sensitivity SF and the stress σ are respectively expressed by the following equations.
S F = 12 (K / E) (L / w) 2 (3)
σ = F / (2A) (4)
Here, A is the sectional area (= w · d) of the vibration beam. From the above, when the force F acting on the double tuning fork vibrator is negative in the compression direction and positive in the extension direction (tensile direction), the relationship between the force F and the resonance frequency f F is that the force F is a compression force and the resonance frequency. f F decreases and increases with stretching (tensile) force. The stress sensitivity S F is proportional to the square of the vibration beam L / w. Further, the relationship between the stress and the apex temperature has a characteristic that the apex temperature shifts to the low tone side when an extensional stress is applied to the double tuning fork type crystal vibrating element and shifts to the high temperature side when compressive stress is applied.
However, the piezoelectric vibration element is not limited to a double tuning fork type crystal resonator, and any piezoelectric vibration element whose frequency changes due to stretching / compression stress may be used.

図1に示す加速度検知ユニット1において、+Z軸方向(矢印方向)への加速度が印加されると、慣性の法則に基づいて可動部材20は梁10中央部の最薄部から加速度検出軸方向(この場合は−Z軸方向)に撓み、応力感応素子30には伸張応力が加わって、応力感応素子30の共振周波数は無負荷時の共振周波数から高い周波数へ変化する。逆に、−Z方向(矢印と反対方向)の加速度が印加されると、可動部材20は梁10中央部の最薄部から加速度検出軸方向(この場合は+Z軸方向)に撓み、応力感応素子30には圧縮応力が加わって、応力感応素子30の共振周波数は無負荷時の共振周波数から低い周波数へ変化する。この周波数の変化量から加速度の大きさを求める。
図2に示す加速度検知ユニット2の加速度印加時の作用は、図1の場合と同様である。
In the acceleration detection unit 1 shown in FIG. 1, when acceleration in the + Z-axis direction (arrow direction) is applied, the movable member 20 moves from the thinnest part at the center of the beam 10 to the acceleration detection axis direction (based on the law of inertia). In this case, the stress sensitive element 30 is bent in the -Z-axis direction), and an extensional stress is applied to the stress sensitive element 30, and the resonance frequency of the stress sensitive element 30 changes from the resonance frequency at the time of no load to a high frequency. Conversely, when acceleration in the −Z direction (the direction opposite to the arrow) is applied, the movable member 20 bends from the thinnest portion at the center of the beam 10 in the acceleration detection axis direction (in this case, the + Z axis direction), and is stress sensitive. Compressive stress is applied to the element 30, and the resonance frequency of the stress sensitive element 30 changes from the resonance frequency when no load is applied to a lower frequency. The magnitude of acceleration is obtained from the amount of change in frequency.
The operation of the acceleration detection unit 2 shown in FIG. 2 when applying acceleration is the same as in FIG.

図3は、素子支持部材8と応力感応素子30aとを個別に示す斜視図である。素子支持部材8は、上面5aに突起9を形成した固定部材5と、上面20aに突起9を形成した可動部材20と、両者5、20を結合する梁11とから成る。応力感応素子30aは、2つの固定端32、33、及び各固定端間32、33を連設する2つの振動ビームを備えた圧電基板からなる応力感応部34と、圧電基板の振動領域上に形成した励振電極と、を備え、両固定端32、33には、固定部材5及び可動部材20の各上面に形成した突起9と嵌合する穴38が形成されている。素子支持部材8の突起9の周辺に接着剤を塗布し、該突起9に応力感応素子30aの穴38を嵌合(且つ、固定端32、33と固定部材5、可動部材20このような構成は突起9により応力感応素子30aを素子支持部材8に強固に固定できる。従って、例えば、固定端32、33を接着する接着剤の収縮応力(接着応力)を軽減する為にシリコン接着剤等の軟質な接着剤を適用した場合であっても、突起9と穴38との接続構成により素子支持部材8のX軸方向へ伸張・圧縮力を応力感応素子30aに効率よく伝達することが可能である。
また、接着剤が硬化するまで突起9は応力感応素子30aを素子支持部材8に仮固定するよう機能する。そしてこのような機能は応力感応素子30aの搭載位置精度を高めると共に、加速度検知ユニットの組み立てを容易にする。
FIG. 3 is a perspective view showing the element support member 8 and the stress sensitive element 30a individually. The element support member 8 includes a fixed member 5 having a protrusion 9 formed on an upper surface 5a, a movable member 20 having a protrusion 9 formed on an upper surface 20a, and a beam 11 that couples the members 5 and 20 together. The stress sensitive element 30a includes two fixed ends 32 and 33 and a stress sensitive portion 34 formed of a piezoelectric substrate having two vibration beams connecting the fixed ends 32 and 33, and a vibration region of the piezoelectric substrate. The fixed electrodes 32 and 33 are formed with holes 38 that fit into the protrusions 9 formed on the upper surfaces of the fixed member 5 and the movable member 20. Adhesive is applied to the periphery of the protrusion 9 of the element support member 8, and the hole 38 of the stress sensitive element 30 a is fitted to the protrusion 9 (and the fixed ends 32, 33 and the fixed member 5, the movable member 20 have such a configuration. Can firmly fix the stress sensitive element 30a to the element supporting member 8 by the protrusion 9. Therefore, for example, in order to reduce the shrinkage stress (adhesive stress) of the adhesive that bonds the fixed ends 32 and 33, a silicon adhesive or the like Even when a soft adhesive is applied, the extension / compression force of the element support member 8 in the X-axis direction can be efficiently transmitted to the stress sensitive element 30a by the connection configuration of the protrusion 9 and the hole 38. is there.
Further, the protrusion 9 functions to temporarily fix the stress sensitive element 30a to the element supporting member 8 until the adhesive is cured. Such a function improves the mounting position accuracy of the stress sensitive element 30a and facilitates the assembly of the acceleration detection unit.

図4は差動型の加速度検知ユニット3の構成を示す斜視図である。加速度検知ユニット3は、加速度の印加によって変位しない固定部材5と、該固定部材5に梁11にて支持される可動部材20と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した第1及び第2の応力感応素子30、31と、を備えている。梁11は、可動部材20に加速度が印加されると可動部材20を加速度検出軸方向(Z軸方向)に沿って変位させるよう変形可能な可撓性を有するように構成されている。第1の応力感応素子30は、固定部材5の上面5aと可動部材20の上面20aとに、第2の応力感応素子31は、固定部材5の下面5bと可動部材20の下面20bとに、両固定端32、33及び35、36(図示しない)を夫々支持、固定されている。そして、固定部材5、可動部材20、及び梁11から成る素子支持部材7は、第1及び第2の応力感応素子30、31と同材料にて構成されている。   FIG. 4 is a perspective view showing the configuration of the differential acceleration detection unit 3. The acceleration detection unit 3 is integrated with a fixed member 5 that is not displaced by application of acceleration, a movable member 20 that is supported by the fixed member 5 with a beam 11, a stress sensitive portion, and both ends of the stress sensitive portion. And first and second stress sensitive elements 30 and 31 each having a fixed end. The beam 11 is configured to have a flexibility that can be deformed so as to displace the movable member 20 along the acceleration detection axis direction (Z-axis direction) when acceleration is applied to the movable member 20. The first stress sensitive element 30 is on the upper surface 5a of the fixed member 5 and the upper surface 20a of the movable member 20, and the second stress sensitive element 31 is on the lower surface 5b of the fixed member 5 and the lower surface 20b of the movable member 20. Both fixed ends 32, 33 and 35, 36 (not shown) are supported and fixed, respectively. The element support member 7 including the fixed member 5, the movable member 20, and the beam 11 is made of the same material as the first and second stress sensitive elements 30 and 31.

図4に示す加速度検知ユニット3を使用して加速度センサを構成する場合は、図5に示したように、第1及び第2の応力感応素子30、31の各端子電極と接続された第1及び第2の発振回路OSC1、OSC2と、ミキサMIXと、ローパスフィルタLPFと、周波数−電圧変換器F/Vと、を備えた回路を用いる必要がある。いま、加速度が印加されたとき、第1及び第2の発振回路OSC1、OSC2の発振周波数をf1、f2とする。この周波数f1、f2をミキサMIXにて混合すると、(f2−f1)、(f1+f2)等の周波数が得られ、ローパスフィルタLPFを通すことにより差周波数(f2−f1)のみを取り出すことができる。該差周波数(f2−f1)を周波数−電圧変換器F/Vにより電圧に変換して出力OUTとし、この出力電圧を外部の装置により加速度に変換する。   When an acceleration sensor is configured using the acceleration detection unit 3 shown in FIG. 4, as shown in FIG. 5, the first electrodes connected to the terminal electrodes of the first and second stress sensitive elements 30, 31 are used. It is necessary to use a circuit including the second oscillation circuits OSC1 and OSC2, a mixer MIX, a low-pass filter LPF, and a frequency-voltage converter F / V. Now, when acceleration is applied, the oscillation frequencies of the first and second oscillation circuits OSC1, OSC2 are set to f1, f2. When the frequencies f1 and f2 are mixed by the mixer MIX, frequencies (f2−f1) and (f1 + f2) are obtained, and only the difference frequency (f2−f1) can be extracted by passing through the low pass filter LPF. The difference frequency (f2-f1) is converted into a voltage by the frequency-voltage converter F / V to be output OUT, and this output voltage is converted into acceleration by an external device.

例えば、第1及び第2の応力感応素子30、31の無負荷時の共振周波数F1、F2を共に40kHzに設定する。−Z軸方向(Z軸の矢印方向と逆方向)にある加速度(Z軸の矢印方向の加速を正として−αの加速度)が印加され、共振周波数F1がf1=38kHzに、F2がf2=42kHzに変化したとする。このとき、差周波数の絶対値|f2−f1|は4kHzになる。逆に、+Z軸方向(Z軸の矢印方向)に同じ大きさの加速度(+αの加速度)が印加されると、共振周波数F1がf1=42kHzに、F2がf2=38kHzに変化する。このとき、差周波数の絶対値|f2−f1|は4kHzになる。このように、2つの応力感応素子30、31を用いて差動構造の加速度検知ユニットを構成すると、応力感応素子が1つの場合の変化量2kHzに比べて、差周波数は2倍となり、加速度検出感度は2倍となる。   For example, the resonance frequencies F1 and F2 when the first and second stress sensitive elements 30 and 31 are not loaded are both set to 40 kHz. −Acceleration in the Z-axis direction (opposite to the Z-axis arrow direction) (acceleration of −α with the acceleration in the Z-axis arrow direction being positive) is applied, the resonance frequency F1 is f1 = 38 kHz, and F2 is f2 = Assume that the frequency has changed to 42 kHz. At this time, the absolute value | f2-f1 | of the difference frequency is 4 kHz. Conversely, when the same acceleration (+ α acceleration) is applied in the + Z-axis direction (Z-axis arrow direction), the resonance frequency F1 changes to f1 = 42 kHz, and F2 changes to f2 = 38 kHz. At this time, the absolute value | f2-f1 | of the difference frequency is 4 kHz. As described above, when the acceleration detection unit having the differential structure is configured by using the two stress sensitive elements 30 and 31, the difference frequency becomes twice as large as the change amount 2 kHz in the case of one stress sensitive element, and the acceleration detection is performed. Sensitivity is doubled.

しかし、加速度はベクトルであり、大きさと方向を有している。ベクトルの方向を検出するには、第1及び第2の応力感応素子30、31の無負荷時の共振周波数に差を予め設定しておけばよい。例えば、第1及び第2の応力感応素子30、31の無負荷時の共振周波数F1、F2を夫々40kHz、50kHzとする。−Z軸方向(Z軸の矢印方向と逆方向)にある加速度(Z軸の矢印方向の加速を正として−αの加速度)が印加され、共振周波数F1がf1=38kHzに、F2がf2=52kHzに変化したとする。このとき、差周波数(f2−f1)は14kHzになる。反対に、+Z軸方向(Z軸の矢印方向)に同じ大きさの加速度(+αの加速度)が印加されると、共振周波数F1がf1=42kHzに、F2がf2=48kHzに変化する。この場合、差周波数(f2−f1)は6kHzになる。このように、第1及び第2の応力感応素子30、31の無負荷時における共振周波数の差である10kHzを中心として、−αの加速度が印加すると14kHz、+αの加速度が印加すると6kHzに変化するため、加速度の方向を検知することが可能である。
また、応力感応素子を2つ用いて差動型構造の加速度検知ユニット3を構成しているため、2つの応力感応素子30、31に同一感度の素子を用いれば、他軸、例えばY軸方向の加速度に対しては、2つの応力感応素子の周波数変化は同じとなり、2つの周波数の差を用いれば相殺することができる。また、加速度検知ユニット3の加速度検出感度は可動部材の質量を変化させることにより可変できる。
However, acceleration is a vector and has a magnitude and direction. In order to detect the vector direction, a difference may be set in advance in the resonance frequency when the first and second stress sensitive elements 30 and 31 are not loaded. For example, the resonance frequencies F1 and F2 when the first and second stress sensitive elements 30 and 31 are unloaded are set to 40 kHz and 50 kHz, respectively. −Acceleration in the Z-axis direction (opposite to the Z-axis arrow direction) (acceleration of −α with the acceleration in the Z-axis arrow direction being positive) is applied, the resonance frequency F1 is f1 = 38 kHz, and F2 is f2 = Assume that the frequency has changed to 52 kHz. At this time, the difference frequency (f2-f1) is 14 kHz. Conversely, when the same acceleration (+ α acceleration) is applied in the + Z-axis direction (Z-axis arrow direction), the resonance frequency F1 changes to f1 = 42 kHz, and F2 changes to f2 = 48 kHz. In this case, the difference frequency (f2-f1) is 6 kHz. Thus, centering on the resonance frequency difference of 10 kHz when the first and second stress sensitive elements 30 and 31 are unloaded, when the acceleration of -α is applied, it changes to 14 kHz, and when the acceleration of + α is applied, the frequency changes to 6 kHz. Therefore, it is possible to detect the direction of acceleration.
In addition, since the acceleration detection unit 3 having a differential structure is configured by using two stress sensitive elements, if two elements having the same sensitivity are used for the two stress sensitive elements 30, 31, the other axis, for example, the Y-axis direction With respect to the acceleration, the frequency changes of the two stress sensitive elements are the same, and can be canceled by using the difference between the two frequencies. Further, the acceleration detection sensitivity of the acceleration detection unit 3 can be varied by changing the mass of the movable member.

図6(a)、(b)、(c)は、本発明の実施形態に係る加速度感知ユニットの製造方法を説明する斜視図である。加速度感知ユニットは、例えば図2に示すように、加速度の印加によって変位しない固定部材5、及び前記固定部材5に梁11にて支持される可動部材20を備えた素子支持部材7と、応力感応部34及び該応力感応部34の両端部に一体化された固定端32、33を有した応力感応素子30と、を備えている。そして、梁11は、可動部材20に加速度が印加されると可動部材20を加速度検出軸方向(Z軸方向)へ変位させるよう変形可能な可撓性を有する構成となっている。応力感応素子30は、固定部材5と可動部材20とによって両固定端32、33を夫々支持されている。本実施形態は、このような構成の加速度感知ユニットの製造方法であり、図6(a)に示すように、素子支持片43にて連結され且つ平面状に配置された複数の応力感応素子41’を有する応力感応素子基板40を用意する工程と、図6(b)に示すように、支持片53にて連結され且つ平面状に配置された複数の素子支持部材51を有する素子支持基板50を用意する工程と、を有している。更に、各素子支持部材51を構成する固定部材5及び可動部材20に対して、各応力感応素子41’の固定端44を接続する為に、各固定部材5及び可動部材20の面に接着剤を塗布し、図6(c)に示すように、素子支持基板50と応力感応素子基板40とを重ね合わせる工程と、接着剤を硬化させた後、素子支持片43及び支持片53を切断する工程と、を有している。   6 (a), 6 (b), and 6 (c) are perspective views illustrating a method for manufacturing an acceleration sensing unit according to an embodiment of the present invention. For example, as shown in FIG. 2, the acceleration sensing unit includes a fixed member 5 that is not displaced by application of acceleration, an element support member 7 that includes a movable member 20 supported by the beam 11 on the fixed member 5, and a stress-sensitive member. And a stress sensitive element 30 having fixed ends 32 and 33 integrated at both ends of the stress sensitive part 34. The beam 11 has a flexible structure that can be deformed to displace the movable member 20 in the acceleration detection axis direction (Z-axis direction) when acceleration is applied to the movable member 20. The stress sensitive element 30 is supported by the fixed member 5 and the movable member 20 at both fixed ends 32 and 33, respectively. The present embodiment is a method of manufacturing an acceleration sensing unit having such a configuration, and as shown in FIG. 6A, a plurality of stress sensitive elements 41 connected by element support pieces 43 and arranged in a planar shape. A step of preparing a stress-sensitive element substrate 40 having ', and an element support substrate 50 having a plurality of element support members 51 connected by a support piece 53 and arranged in a plane as shown in FIG. 6B. And preparing a process. Further, in order to connect the fixed end 44 of each stress sensitive element 41 ′ to the fixed member 5 and the movable member 20 constituting each element support member 51, an adhesive is applied to the surface of each fixed member 5 and the movable member 20. As shown in FIG. 6C, the element supporting substrate 50 and the stress sensitive element substrate 40 are overlapped with each other, and after the adhesive is cured, the element supporting piece 43 and the supporting piece 53 are cut. And a process.

応力感応素子基板40の製造方法を説明すると、所定の大きさの水晶薄板(Z板)を用い、該水晶薄板に蒸着あるいはスパッタ等の手段で金属薄膜を成膜し、周知のフォトリソグラフィ技法とエッチング手法とを用いて水晶薄板をエッチング加工すると、図6(a)の破線で囲んだ水晶双音叉板41(水晶双音叉板に図示しない励振電極、電極端子を形成したものが応力感応素子41’)をマトリクス状に配列した応力感応素子基板40が得られる。水晶双音叉板41は、複数の素子支持片43により矩形環状の枠体42に保持された構造をしている。この応力感応素子基板40に図示しないメタルマスクをセットして蒸着装置等に入れ、真空中で各水晶双音叉板41に励振電極、電極端子等を形成して、応力感応素子基板40を製造する。   The manufacturing method of the stress sensitive element substrate 40 will be described. A crystal thin plate (Z plate) having a predetermined size is used, a metal thin film is formed on the crystal thin plate by means of vapor deposition or sputtering, and a known photolithography technique is used. When the crystal thin plate is etched by using an etching technique, a crystal double tuning fork plate 41 surrounded by a broken line in FIG. 6A (excitation electrode and electrode terminal not shown are formed on the crystal double tuning fork plate is a stress sensitive element 41. A stress-sensitive element substrate 40 in which ') is arranged in a matrix is obtained. The quartz twin tuning fork plate 41 has a structure in which a rectangular annular frame 42 is held by a plurality of element support pieces 43. A metal mask (not shown) is set on the stress sensitive element substrate 40 and placed in a vapor deposition apparatus or the like, and excitation electrodes, electrode terminals, and the like are formed on each crystal twin tuning fork plate 41 in a vacuum to manufacture the stress sensitive element substrate 40. .

次に、所定の厚さの水晶板(Z板)を用い、フォトリソグラフィ技法とエッチング手法とを用いて水晶板を加工し、図6(b)の破線で囲んだ素子支持部材51をマトリクス状に配列した素子支持基板50を形成する。固定部材5と梁11と可動部材20とから構成される素子支持部材51は、複数の支持片53により矩形環状の枠体52に保持された構造をしている。そして、図6(c)に示すように、複数の素子支持部材51の固定部材5及び可動部材20に接着材を塗布した素子支持基板50に、電極等を形成した応力感応素子基板40を整合するように重ね合わせ、加熱乾燥した後、素子支持片43、支持片53を、ダイシングソー等を用いて切断すれば、図7に示す加速度感知ユニットが得られる。応力感応素子基板40と素子支持基板50との接合法としては、ガラスを高温で溶融して接合する方法、金すずを用いて接合する方法、陽極接合法等、種々な手法を用いることが可能である。
また、可動部材20の質量が不足し加速度検出感度が小さい場合には、可動部材20の上下面にほぼ同じ重さの質量を付加することにより加速度検出感度を改善することができる。
そして、このような方法により一括して加速度検知ユニットを大量に製造すれば、加速度検知性能の品質のばらつきが小さい加速度検知ユニットを大量に効率良く得ることができる。
Next, using a quartz plate (Z plate) with a predetermined thickness, the quartz plate is processed using a photolithography technique and an etching technique, and the element support members 51 surrounded by broken lines in FIG. The element support substrate 50 arranged in the above is formed. The element support member 51 including the fixed member 5, the beam 11, and the movable member 20 has a structure in which a rectangular annular frame body 52 is held by a plurality of support pieces 53. Then, as shown in FIG. 6C, the stress-sensitive element substrate 40 having electrodes and the like is aligned with the element support substrate 50 in which the adhesive is applied to the fixed member 5 and the movable member 20 of the plurality of element support members 51. After the elements are superposed and heated and dried, the element support piece 43 and the support piece 53 are cut using a dicing saw or the like to obtain the acceleration sensing unit shown in FIG. As a method for bonding the stress sensitive element substrate 40 and the element support substrate 50, various methods such as a method of melting and bonding glass at a high temperature, a method of bonding using gold tin, and an anodic bonding method can be used. It is.
In addition, when the mass of the movable member 20 is insufficient and the acceleration detection sensitivity is low, the acceleration detection sensitivity can be improved by adding masses having substantially the same weight to the upper and lower surfaces of the movable member 20.
If a large number of acceleration detection units are manufactured collectively by such a method, acceleration detection units with small variations in the quality of acceleration detection performance can be efficiently obtained in large quantities.

尚、図6に示す加速度検知ユニットの製造方法を図4に示すような加速度検知ユニット3を構成するための方法として適用しても構わない。即ち、素子支持基板50を2枚の応力感応素子基板40にて挟むように、複数の素子支持部材51の固定部材5と、可動部材20との上下面に接着材を塗布した素子支持基板50に、電極等を形成した応力感応素子基板40を整合するように重ね合わせ、加熱乾燥した後、素子支持片43、支持片53を、ダイシングソー等を用いて切断して、加速度検知ユニット3を製造しても構わない。
また、図3に示す加速度検知ユニットの場合のように、素子支持部材51に突起9を形成した素子支持基板50と、水晶双音叉板41に穴38を形成した応力感応素子基板40とを用意し、図6に示す製造法に基づき加速度検知ユニットを製造する方法でも構わない。
Note that the method of manufacturing the acceleration detection unit shown in FIG. 6 may be applied as a method for configuring the acceleration detection unit 3 as shown in FIG. That is, the element support substrate 50 in which an adhesive is applied to the upper and lower surfaces of the fixed member 5 and the movable member 20 of the plurality of element support members 51 so that the element support substrate 50 is sandwiched between the two stress sensitive element substrates 40. In addition, the stress-sensitive element substrate 40 on which the electrodes and the like are formed are stacked so as to be aligned and heated and dried, and then the element support piece 43 and the support piece 53 are cut using a dicing saw or the like, and the acceleration detection unit 3 is You can make it.
Further, as in the case of the acceleration detection unit shown in FIG. 3, an element support substrate 50 in which the protrusion 9 is formed on the element support member 51 and a stress sensitive element substrate 40 in which the hole 38 is formed in the crystal twin tuning fork plate 41 are prepared. However, a method of manufacturing an acceleration detection unit based on the manufacturing method shown in FIG.

更に、図6に示すように素子支持片43は、応力感応素子41’の固定端の幅よりもはるかに細く、また支持片53は固定部材や可動部材に比し極めて細い構成である。これは、応力感応素子41’の固定端と、固定部材及び可動部材とを傷つけることなく素子支持片43、支持片53を切断しようとすれば、一般に素子支持片43、支持片53を固定端と、可動部材及び固定部材とから完全に残さずに切断することは不可能である。
しかし、上記の如く素子支持片43、支持片53が細い構成であれば、切断できずに加速度検知ユニットに残される夫々の支持片の量を僅かにすることができる。従って、特に可動部材20の質量設定条件が支持片の残量によって大きく狂わされることが無いので、個体間で加速度検知性能の品質のばらつきがより小さい加速度検知ユニットを大量に効率良く得ることができる。
Further, as shown in FIG. 6, the element support piece 43 is much thinner than the width of the fixed end of the stress sensitive element 41 ′, and the support piece 53 is extremely narrow compared to the fixed member and the movable member. If the element support piece 43 and the support piece 53 are to be cut without damaging the fixed end of the stress sensitive element 41 ′ and the fixed member and the movable member, the element support piece 43 and the support piece 53 are generally fixed to the fixed end. Then, it is impossible to cut without leaving the movable member and the fixed member completely.
However, if the element support piece 43 and the support piece 53 are thin as described above, the amount of each support piece that cannot be cut and remains in the acceleration detection unit can be made small. Therefore, in particular, the mass setting condition of the movable member 20 is not greatly deviated by the remaining amount of the support piece, so that it is possible to efficiently obtain a large number of acceleration detection units with small variations in the quality of acceleration detection performance among individuals. .

上記の加速度検知ユニットの製造方法では、応力感応素子基板40の素子支持片43と、素子支持基板50の支持片53とを、ダイシングソー等を用いて切断する製造方法を説明したが、応力感応素子41’の固定部、素子支持部材51の可動部材20に、夫々素子支持片43、支持片53の切断残片が若干残るという点があった。そこで、応力感応素子41’の固定部と、素子支持部材51の固定部材5及び可動部材20とに夫々素子支持片43、支持片53の切断残片が残らない、加速度検知ユニットの第2の製造方法について説明する。   In the manufacturing method of the acceleration detection unit, the manufacturing method of cutting the element supporting piece 43 of the stress sensitive element substrate 40 and the supporting piece 53 of the element supporting substrate 50 using a dicing saw or the like has been described. There is a point that the cutting pieces of the element support piece 43 and the support piece 53 remain slightly on the fixed portion of the element 41 ′ and the movable member 20 of the element support member 51, respectively. Therefore, the second manufacturing of the acceleration detection unit in which the element support piece 43 and the cutting residue of the support piece 53 do not remain in the fixed portion of the stress sensitive element 41 ′ and the fixed member 5 and the movable member 20 of the element support member 51, respectively. A method will be described.

図8乃至図11は、本発明の実施形態に係る加速度感知ユニットの第2の製造方法を説明するための図である。なお、加速度感知ユニットの構成は、第1の製造方法の場合と同一であるので説明は省略する。
本実施形態の加速度検知ユニットの第2の製造方法は、図8(a)に示すように、枠体52、該枠体52に設けられた複数の支持片53、及び各支持片53により個別に支持された素子支持部材51を有する素子支持基板55を用意する工程と、図8(c)に示すように、枠体62、該枠体62に対して前記素子支持基板55を構成する支持片53と同位置に設けられた複数の重り部材支持片63、及び各重り部材支持片63によって個別に支持された重り部材61を有する重り部材支持基板60を少なくとも一枚用意する工程と、を有する。更に、第2の製造方法は、図9(a)に示すように、枠体42、該枠体42に対して前記素子支持基板55を構成する支持片53と同位置に設けられた複数の素子支持片43、及び各素子支持片43にて個別に支持された応力感応素子41’を有する応力感応素子基板40を用意する工程と、を有する。
8 to 11 are views for explaining a second manufacturing method of the acceleration sensing unit according to the embodiment of the present invention. The configuration of the acceleration sensing unit is the same as that in the first manufacturing method, and a description thereof will be omitted.
As shown in FIG. 8A, the second manufacturing method of the acceleration detection unit of the present embodiment is individually made up of a frame body 52, a plurality of support pieces 53 provided on the frame body 52, and each support piece 53. A step of preparing an element support substrate 55 having an element support member 51 supported on the frame, and a support that constitutes the element support substrate 55 with respect to the frame 62 and the frame 62 as shown in FIG. Preparing at least one weight member support substrate 60 having a plurality of weight member support pieces 63 provided at the same position as the piece 53 and weight members 61 individually supported by each weight member support piece 63; Have. Further, as shown in FIG. 9A, the second manufacturing method includes a frame body 42, and a plurality of support pieces 53 provided at the same position as the support piece 53 constituting the element support substrate 55 with respect to the frame body 42. Preparing a stress sensitive element substrate 40 having an element supporting piece 43 and a stress sensitive element 41 ′ individually supported by each element supporting piece 43.

素子支持基板55、重り部材支持基板60及び応力感応素子基板40の製造方法は、夫々所定の厚さの水晶板(Z板)を用い、上述したフォトリソグラフィ技法とエッチング手法を用いて前記水晶板を夫々所望の形状に加工する。そして、素子支持基板55の各支持片53には、該支持片53が各固定部材5と接合する部分に、図8(b)の要部拡大平面図(Z軸方向からみた図)に示すような折り取り容易部、即ち溝(凹所)54がZ軸方向に沿って形成され、Z軸方向の力には強いが、Y軸方向に力を加えることにより容易に折り取り切断できるように形成されている。また、重り部材支持基板60の各重り部材支持片63には、該重り部材支持片63が各重り部材61と接合する部分に、図8(d)の要部拡大側面図(Y軸方向からみた図)に示すような折り取り容易部、即ち溝(凹所)64がY軸方向に沿って(凹所54の深さ方向に向かって)形成され、Z軸方向に力を加えることにより容易に折り取り切断できるように形成されている。同様に、応力感応素子基板40の各素子支持片43には、該素子支持片43が各応力感応素子41’の固定部44と接合する部分に、図9(b)の要部拡大側面図(Y軸方向からみた図)に示すような折り取り容易部、即ち溝(凹所)45がY軸方向に沿って(凹所54の深さ方向に向かって)形成され、Z軸方向に力を加えることにより容易に折り取り切断できるように形成されている。なお、図9(a)に示した応力感応素子基板40は、真空装置内で図示しないマスクを介して電極(図示しない)、電極端子46等を形成した例を示している。   The element supporting substrate 55, the weight member supporting substrate 60, and the stress sensitive element substrate 40 are manufactured by using a quartz plate (Z plate) having a predetermined thickness, and using the photolithography technique and the etching method described above, the quartz plate. Are each processed into a desired shape. Further, each support piece 53 of the element support substrate 55 is shown in an enlarged plan view of a main part (a view seen from the Z-axis direction) of FIG. 8B at a portion where the support piece 53 is joined to each fixing member 5. Such an easy-to-break part, that is, a groove (recess) 54 is formed along the Z-axis direction, which is strong against a force in the Z-axis direction, but can be easily broken and cut by applying a force in the Y-axis direction. Is formed. Further, each weight member support piece 63 of the weight member support substrate 60 has a main part enlarged side view (from the Y-axis direction) of FIG. 8D at a portion where the weight member support piece 63 is joined to each weight member 61. As shown in the drawing, an easy-to-break portion, that is, a groove (recess) 64 is formed along the Y-axis direction (toward the depth direction of the recess 54), and a force is applied in the Z-axis direction. It is formed so that it can be easily broken and cut. Similarly, each element support piece 43 of the stress sensitive element substrate 40 has a main part enlarged side view of FIG. 9B at a portion where the element support piece 43 joins the fixing portion 44 of each stress sensitive element 41 ′. As shown in the drawing (viewed from the Y-axis direction), an easily breakable portion, that is, a groove (recess) 45 is formed along the Y-axis direction (toward the depth direction of the recess 54), and in the Z-axis direction. It is formed so that it can be easily broken and cut by applying force. The stress sensitive element substrate 40 shown in FIG. 9A shows an example in which electrodes (not shown), electrode terminals 46, and the like are formed through a mask (not shown) in a vacuum apparatus.

そして、図10、図11に示すように、各素子支持部材51を構成する固定部材5及び可動部材20の少なくとも一面に対し各重り部材61を接続する為に、各固定部材5及び可動部材20の面に接着剤を塗布し、各支持片53に対して各重り部材支持片63を重ねた状態で、素子支持基板55と重り部材支持基板60とを重ね合わせて基板積層体Aを形成する。前記接着剤を硬化させた後、基板積層体Aから各重り部材支持片63を折り取りにより切断する。図11(a)に示す斜視図は、固定部材5及び可動部材20の上下両面に各重り部材61を接着した例を示す図である。そして、図11(b)に示すように、基板積層体Aを構成する各重り部材61の一方の面に対して、各応力感応素子41’の固定端44を接続する為に、各重り部材61の一方の面に接着剤を塗布し、各支持片53に対して各素子支持片43を重ねた状態で基板積層体Aと応力感応素子基板40とを重ね合わせて基板積層体Bを形成する。前記接着剤が硬化した後、図11(c)に示すように、基板積層体Bから応力感応素子基板40の素子支持片43を折り取りにより切断する工程と、素子支持基板55の支持片53を折り取りにより切断する工程と、から加速度検知ユニットの第2の製造方法は構成される。尚、重り部材61を少なくとも可動部材20に接続する構造であっても良い。   Then, as shown in FIGS. 10 and 11, in order to connect each weight member 61 to at least one surface of the fixed member 5 and the movable member 20 constituting each element support member 51, each fixed member 5 and each movable member 20 are connected. In the state where the weight member support pieces 63 are overlapped with the support pieces 53, the element support substrate 55 and the weight member support substrate 60 are overlapped to form the substrate laminate A. . After the adhesive is cured, each weight member support piece 63 is cut off from the substrate laminate A by folding. The perspective view shown in FIG. 11A is a diagram showing an example in which the weight members 61 are bonded to the upper and lower surfaces of the fixed member 5 and the movable member 20. And as shown in FIG.11 (b), in order to connect the fixed end 44 of each stress sensitive element 41 'with respect to one surface of each weight member 61 which comprises the board | substrate laminated body A, each weight member An adhesive is applied to one surface of 61, and a substrate laminate B is formed by superimposing the substrate laminate A and the stress sensitive element substrate 40 in a state where the element support pieces 43 are superimposed on the support pieces 53. To do. After the adhesive is cured, as shown in FIG. 11C, a step of cutting off the element supporting piece 43 of the stress sensitive element substrate 40 from the substrate laminate B and a supporting piece 53 of the element supporting substrate 55. The second manufacturing method of the acceleration detection unit is constituted by the step of cutting by cutting. The weight member 61 may be connected to at least the movable member 20.

図11(a)〜図11(c)の斜視図では各固定部材5及び可動部材20の上下両面に各重り部材61を重ね合わせて接着する工程図を示したが、固定部材5及び可動部材20のいずれか一方の面に各重り部材61を重ね合わせて接着する工程で加速度検知ユニットを構成してもよい。この場合、応力感応素子基板40の重ね合わせは、各固定部材5及び可動部材20の面でもよいし、固定部材5及び可動部材20の面に重ねた各重り部材61の面であってもよい。   11 (a) to 11 (c) show process diagrams in which the weight members 61 are superposed and bonded to the upper and lower surfaces of each fixed member 5 and movable member 20, but the fixed member 5 and movable member are shown. The acceleration detection unit may be configured in a process in which the weight members 61 are superposed and bonded to any one of the surfaces. In this case, the stress sensitive element substrate 40 may be superimposed on the surfaces of the fixed members 5 and the movable members 20 or the surfaces of the weight members 61 superimposed on the surfaces of the fixed members 5 and the movable members 20. .

加速度検知ユニットの第2の製造方法の特徴は、素子支持基板55、重り部材支持基板60及び応力感応素子基板40に形成する支持片53、重り部材支持片63、及び素子支持片43が、素子支持部材51、重り部材61及び応力感応素子41’の固定部44に比して十分に幅狭く形成され、且つ支持片53、重り部材支持片63、及び素子支持片43には夫々溝(凹所)54、64、45が形成されているので容易に折り取りにより切断することが可能である。しかも、溝(凹所)54、64、45を設けているので、支持片53、重り部材支持片63、及び素子支持片43の残片も極めて小さくすることが可能となり、精度のよい加速度感知ユニットを多量に製造することができるという効果がある。   A feature of the second manufacturing method of the acceleration detection unit is that the element support substrate 55, the weight member support substrate 60, and the support piece 53 formed on the stress sensitive element substrate 40, the weight member support piece 63, and the element support piece 43 include an element The support member 51, the weight member 61, and the stress sensitive element 41 ′ are formed to be sufficiently narrower than the fixing portion 44, and the support piece 53, the weight member support piece 63, and the element support piece 43 have grooves (recesses), respectively. 5) Since 54, 64, 45 are formed, it can be easily cut off by folding. In addition, since the grooves (recesses) 54, 64, 45 are provided, the support piece 53, the weight member support piece 63, and the remaining pieces of the element support piece 43 can be made extremely small, and a highly accurate acceleration sensing unit. Can be produced in large quantities.

次に、本発明の実施形態に係る加速度検知ユニットの第3の製造方法について説明する。加速度感知ユニットの構成は上述したので説明は省略する。また、素子支持基板55を用意する工程と、重り部材支持基板60を少なくとも一枚用意する工程と、応力感応素子基板40を用意する工程と、素子支持基板55と重り部材支持基板60とを重ね合わせることにより基板積層体を形成する工程と、該基板積層体と応力感応素子基板40とを重ね合わせる工程と、については第2の製造方法において説明したので省略する。第3の製造方法が第2の製造方法と異なる点は、素子支持基板55と重り部材支持基板60とを重ね合わせて基板積層体Aを形成し、該基板積層体Aに応力感応素子基板40を重ね合わせて基板積層体Bを構成し、接着剤を硬化させた後、素子支持片43、重り部材支持片63、及び支持片53を折り取りにより一括して切断する点である。
加速度検知ユニットの第3の製造方法の特徴は、素子支持片43、重り部材支持片63、及び支持片53を一括して切断できるので、効率が向上するという利点がある。
Next, the 3rd manufacturing method of the acceleration detection unit which concerns on embodiment of this invention is demonstrated. Since the configuration of the acceleration sensing unit has been described above, a description thereof will be omitted. Also, the step of preparing the element support substrate 55, the step of preparing at least one weight member support substrate 60, the step of preparing the stress sensitive element substrate 40, and the element support substrate 55 and the weight member support substrate 60 are overlapped. Since the step of forming the substrate laminate by combining them and the step of superimposing the substrate laminate and the stress sensitive element substrate 40 have been described in the second manufacturing method, they are omitted. The third manufacturing method is different from the second manufacturing method in that the element support substrate 55 and the weight member support substrate 60 are overlapped to form a substrate laminate A, and the stress sensitive element substrate 40 is formed on the substrate laminate A. Are stacked to form the substrate laminate B, and after the adhesive is cured, the element support piece 43, the weight member support piece 63, and the support piece 53 are collectively cut and cut.
The feature of the third manufacturing method of the acceleration detection unit is that the element support piece 43, the weight member support piece 63, and the support piece 53 can be cut at a time, so that the efficiency is improved.

次に、本発明の実施形態に係る加速度検知ユニットの第4の製造方法について説明する。加速度感知ユニットの第4の製造方法は、図12に示すように、枠体52、該枠体52に設けられた複数の支持片53、及び各支持片53により個別に支持された素子支持部材51を有する素子支持基板55を用意する工程と、枠体42、該枠体42に対して素子支持基板55を構成する支持片53と同位置に設けられた複数の素子支持片43、及び各素子支持片43にて個別に支持された応力感応素子41’を有する応力感応素子基板40を用意する工程と、を有している。更に、各素子支持部材51を構成する固定部材5及び可動部材20に対して、各応力感応素子41’の固定端44を接続する為に、各固定部材5及び可動部材20に接着剤を塗布する工程と、各支持片53に対して各素子支持片43を重ねた状態で素子支持基板55と応力感応素子基板40とを重ね合わせて基板積層体を形成する工程と、を有している。そして、基板積層体の接着剤を硬化させる工程を経た後、素子支持基板55と応力感応素子基板40との基板積層体から支持片53と、素子支持43とを折り取りにより切断する工程とからなる。   Next, the 4th manufacturing method of the acceleration detection unit which concerns on embodiment of this invention is demonstrated. As shown in FIG. 12, the fourth method of manufacturing the acceleration sensing unit includes a frame body 52, a plurality of support pieces 53 provided on the frame body 52, and element support members individually supported by the support pieces 53. A step of preparing an element support substrate 55 having 51, a frame body 42, a plurality of element support pieces 43 provided at the same position as the support pieces 53 constituting the element support substrate 55 with respect to the frame body 42, and Preparing a stress sensitive element substrate 40 having stress sensitive elements 41 ′ individually supported by the element support pieces 43. Further, an adhesive is applied to each fixed member 5 and movable member 20 in order to connect the fixed end 44 of each stress sensitive element 41 ′ to the fixed member 5 and movable member 20 constituting each element support member 51. And a step of superposing the element support substrate 55 and the stress sensitive element substrate 40 in a state where the element support pieces 43 are overlapped on the support pieces 53 to form a substrate laminate. . And after passing through the process of hardening the adhesive agent of a board | substrate laminated body, from the board | substrate laminated body of the element support substrate 55 and the stress sensitive element board | substrate 40, the process of cutting off the support piece 53 and the element support 43 by cutting off. Become.

加速度検知ユニットの第4の製造方法においては、素子支持基板55及び応力感応素子基板40には、図8(b)、図9(b)に示したような溝54、45を設けてもよいし、設けなくともよい。
加速度検知ユニットの第4の製造方法によれば、重り部材支持基板60を必要としないので、製造工程が簡略化され、コスト低減に寄与するという利点がある。
In the fourth method of manufacturing the acceleration detection unit, the element support substrate 55 and the stress sensitive element substrate 40 may be provided with grooves 54 and 45 as shown in FIGS. 8B and 9B. However, it may not be provided.
According to the fourth manufacturing method of the acceleration detection unit, since the weight member support substrate 60 is not required, there is an advantage that the manufacturing process is simplified and the cost is reduced.

図13(a)は加速度センサ70の構成を示す側面図、同図(b)は平面図である。加速度センサ70は、例えば、加速度検知ユニット3と、加速度検知ユニット3を気密的に封止するハウジング(固定部)75と、応力感応素子30、31を構成する励振電極とそれぞれ電気的に接続される発振回路80と、を備えた構成となっている。図13に示す加速度検知ユニット3は、図4に示した加速度検知ユニット3を横に倒したもので、載置台78に接着固定して、応力感応素子30、31の電極端子39と発振回路80とをボンディングワイヤ85で接続する。発振回路80の電極端子は、載置台78を経てハウジング75の外部端子77と導通している。なお、ハウジング75に蓋76を被せ内部を密封し気密構造とする。   FIG. 13A is a side view showing the configuration of the acceleration sensor 70, and FIG. 13B is a plan view. The acceleration sensor 70 is electrically connected to, for example, the acceleration detection unit 3, a housing (fixed portion) 75 that hermetically seals the acceleration detection unit 3, and excitation electrodes that constitute the stress sensitive elements 30 and 31. The oscillation circuit 80 is provided. The acceleration detection unit 3 shown in FIG. 13 is the one in which the acceleration detection unit 3 shown in FIG. 4 is tilted sideways. The acceleration detection unit 3 is bonded and fixed to the mounting table 78 and the electrode terminals 39 of the stress sensitive elements 30 and 31 and the oscillation circuit 80. Are connected by a bonding wire 85. The electrode terminal of the oscillation circuit 80 is electrically connected to the external terminal 77 of the housing 75 through the mounting table 78. The housing 75 is covered with a lid 76 and the inside is sealed to form an airtight structure.

本発明の実施形態に係る加速度検知ユニットの製造方法によれば、応力感応素子と、該応力感応素子を支持する素子支持部材と、重り部材とに水晶材料を用い、いずれもフォトリソグラフィ技法とエッチング手法を使ってバッチ処理にて製造するため、金属材料から成る素子支持部材を用いた場合に比して量産性に優れ、製造コストが低減できるという利点がある。また、素子支持部材、応力感応素子及び重り部材に水晶を用い、且つ同じカットアングルで切断した基板を用いているため、三者の線膨張係数は同じであり、周囲の熱変動による三者間の熱歪みを小さく抑えることができる。また、従来例のシリコン製の加速度センサでは、数ミクロン撓んでから応力が検出される性能であるのに対し、本加速度センサでは小さな加速度による梁(固定端)の極微小な撓みも双音叉型水晶振動素子により検出され、応答速度が速く、且つ精度、再現性がよいという利点がある。   According to the method of manufacturing the acceleration detection unit according to the embodiment of the present invention, the quartz material is used for the stress sensitive element, the element supporting member for supporting the stress sensitive element, and the weight member, both of which are photolithography technique and etching. Since it manufactures by a batch process using a method, it has the advantage that it is excellent in mass productivity compared with the case where the element supporting member which consists of metal materials is used, and manufacturing cost can be reduced. In addition, since quartz is used for the element support member, stress sensitive element and weight member, and a substrate cut at the same cut angle is used, the linear expansion coefficients of the three parties are the same, and the three parties are affected by the surrounding thermal fluctuations. The thermal distortion of can be suppressed to a small level. The conventional acceleration sensor made of silicon has the ability to detect stress after being bent several microns, whereas this acceleration sensor is capable of detecting a very small deflection of the beam (fixed end) due to a small acceleration. There is an advantage that the response speed is high, and the accuracy and reproducibility are good.

また、本実施形態において説明した製造工程はあくまでも一例であり、本発明の加速度検知ユニットの製造方法は、本実施形態において説明した製造方法に限定されるのでなく、工程手順などは適宜変更可能であることは言うまでもない。   The manufacturing process described in this embodiment is merely an example, and the method for manufacturing the acceleration detection unit of the present invention is not limited to the manufacturing method described in this embodiment, and the process procedure and the like can be changed as appropriate. Needless to say.

本発明に係る加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit which concerns on this invention. 第2の実施例の加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit of the 2nd Example. 第3の実施例の加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit of the 3rd Example. 第4の実施例の加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit of the 4th Example. 発振回路、ミキサ、ローパスフィルタ、周波数−電圧変換器から成る加速度測定回路を示す図。The figure which shows the acceleration measuring circuit which consists of an oscillation circuit, a mixer, a low-pass filter, and a frequency-voltage converter. (a)は応力感応素子基板を示す図、(b)は素子支持基板を示す図、(c)は素子支持基板と応力感応素子基板と重ね合わせた基板積層体を示す図。(A) is a figure which shows a stress sensitive element board | substrate, (b) is a figure which shows an element support substrate, (c) is a figure which shows the board | substrate laminated body which piled up the element support board | substrate and the stress sensitive element board | substrate. 加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit. (a)は素子支持基板を示す図、(b)支持片の要部拡大図、(c)は重り部材支持基板を示す図、(d)は重り部材支持片の要部拡大図。(A) is a figure which shows an element support substrate, (b) The principal part enlarged view of a support piece, (c) is a figure which shows a weight member support board, (d) is a principal part enlarged view of a weight member support piece. (a)は応力感応素子基板を示す図、(b)は素子支持片の要部拡大図。(A) is a figure which shows a stress sensitive element board | substrate, (b) is a principal part enlarged view of an element support piece. 素子支持基板と重り部材支持基板との基板積層体を示す図。The figure which shows the board | substrate laminated body of an element support substrate and a weight member support substrate. (a)素子支持基板と重り部材支持基板との基板積層体を示す図、(b)は基板積層体に応力感応素子基板を重ねあわせる様子を示す図、(c)は折り取りにより切断する工程を示す図。(A) The figure which shows the board | substrate laminated body of an element support substrate and a weight member support board, (b) is a figure which shows a mode that a stress sensitive element board | substrate is piled up on a board | substrate laminated body, (c) is the process cut | disconnected by folding FIG. 素子支持基板、重り部材支持基板及び応力感応素子基板の積層基板を示す図。The figure which shows the laminated substrate of an element support substrate, a weight member support substrate, and a stress sensitive element substrate. 加速度センサの構成を示す図で、(a)は側面図、(b)は平面図。It is a figure which shows the structure of an acceleration sensor, (a) is a side view, (b) is a top view. 従来の加速度センサを示す図。The figure which shows the conventional acceleration sensor.

符号の説明Explanation of symbols

1、2、3 加速度検知ユニット、5 固定部材、5a (固定部材の)上面、6、7、51 素子支持部材、10、11 梁、20 可動部材、20a (可動部材の)上面、30、31、41’ 応力感応素子、32、33、44 固定端、34 応力感応部、38 穴、39 電極端子、40 応力感応素子基板(水晶双音叉基板)、41 水晶双音叉板、42、52 枠体、43 素子支持片、45 溝、46 電極端子、50、55 素子支持基板、53 支持片、54、64 溝、60 重り部材支持基板、61 重り部材、62 枠体、63 重り部材支持片、A、B 基板積層体、70 加速度センサ、75 ハウジング、76 蓋、77 外部端子、78 載置台、80 発振回路、85 ボンディングワイヤ   1, 2, 3 Acceleration detection unit, 5 fixed member, 5a (fixed member) upper surface, 6, 7, 51 element support member, 10, 11 beam, 20 movable member, 20a (movable member) upper surface, 30, 31 , 41 'Stress sensitive element, 32, 33, 44 Fixed end, 34 Stress sensitive part, 38 holes, 39 Electrode terminal, 40 Stress sensitive element substrate (crystal double tuning fork substrate), 41 Crystal double tuning fork plate, 42, 52 Frame , 43 Element support piece, 45 groove, 46 Electrode terminal, 50, 55 Element support substrate, 53 Support piece, 54, 64 groove, 60 Weight member support substrate, 61 Weight member, 62 Frame body, 63 Weight member support piece, A , B substrate laminate, 70 acceleration sensor, 75 housing, 76 lid, 77 external terminal, 78 mounting table, 80 oscillation circuit, 85 bonding wire

Claims (6)

固定部材、及び前記固定部材に梁にて支持される可動部材を備えた素子支持部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した応力感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持されたものである構成を有する加速度検知ユニットの製造方法であって、
支持片にて連結され且つ平面状に配置された複数の前記素子支持部材を有する素子支持基板を用意する工程と、
素子支持片にて連結され且つ平面状に配置された複数の応力感応素子を有する応力感応素子基板を用意する工程と、
前記固定部材及び前記可動部材上に、前記各応力感応素子の固定端を重ねるように前記素子支持基板と前記応力感応素子基板とを重ね合わせる工程と、
前記固定部材及び前記可動部材上に前記固定端を固定する工程と、
前記素子支持片、支持片を切断する工程と、からなる加速度検知ユニットの製造方法。
An element support member comprising a fixed member, and a movable member supported by a beam on the fixed member; a stress sensitive element having a stress sensitive part and fixed ends integrated at both ends of the stress sensitive part; The beam is configured to have a flexibility that can be deformed so as to displace the movable member along an acceleration detection axis direction when acceleration is applied to the movable member, and the stress sensitive element includes A method of manufacturing an acceleration detection unit having a configuration in which both fixed ends are respectively supported by a fixed member and the movable member,
Preparing an element support substrate having a plurality of the element support members connected by a support piece and arranged in a plane;
Preparing a stress sensitive element substrate having a plurality of stress sensitive elements connected by an element support piece and arranged in a plane;
Superposing the element support substrate and the stress sensitive element substrate on the fixed member and the movable member so as to overlap the fixed ends of the stress sensitive elements; and
Fixing the fixed end on the fixed member and the movable member;
And a step of cutting the element support piece and the support piece.
前記重ね合わせる工程の際に前記支持片と前記素子と支持片とが重なり合うことを特徴とする請求項1に記載の加速度検知ユニットの製造方法。   The method for manufacturing an acceleration detection unit according to claim 1, wherein the support piece, the element, and the support piece overlap each other during the superimposing step. 固定部材、及び前記固定部材に梁にて支持される可動部材を備えた素子支持部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した応力感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持されたものである構成を有する加速度検知ユニットの製造方法であって、
支持片にて連結され且つ平面状に配置された複数の素子支持部材を有する素子支持基板を用意する工程と、
重り部材支持片にて連結され且つ平面状に配置された複数の重り部材を有する重り部材支持基板を少なくとも一枚用意する工程と、
素子支持片にて連結され且つ平面状に配置された複数の応力感応素子を有する応力感応素子基板を用意する工程と、
少なくとも前記可動部材に前記重り部材を接続する為に、前記素子支持基板と前記重り部材支持基板とを重ね合わせて基板積層体を形成する工程と、
前記重り部材支持片を切断する工程と、
前記基板積層体と前記各応力感応素子の固定端を接続する為に、前記基板積層体と前記応力感応素子基板とを重ね合わせる工程と、該素子支持片と前記支持片を切断する工程と、
からなることを特徴とする加速度検知ユニットの製造方法。
An element support member comprising a fixed member, and a movable member supported by a beam on the fixed member; a stress sensitive element having a stress sensitive part and fixed ends integrated at both ends of the stress sensitive part; The beam is configured to have a flexibility that can be deformed so as to displace the movable member along an acceleration detection axis direction when acceleration is applied to the movable member, and the stress sensitive element includes A method of manufacturing an acceleration detection unit having a configuration in which both fixed ends are respectively supported by a fixed member and the movable member,
A step of preparing an element support substrate having a plurality of element support members connected by a support piece and arranged in a plane;
Preparing at least one weight member support substrate having a plurality of weight members connected in a weight member support piece and arranged in a planar shape;
Preparing a stress sensitive element substrate having a plurality of stress sensitive elements connected by an element support piece and arranged in a plane;
Forming a substrate laminate by superimposing the element support substrate and the weight member support substrate in order to connect the weight member to at least the movable member;
Cutting the weight member support piece;
Superimposing the substrate laminate and the stress sensitive element substrate to connect the substrate laminate and the fixed end of each stress sensitive element, cutting the element support piece and the support piece,
A method of manufacturing an acceleration detection unit comprising:
固定部材、及び前記固定部材に梁にて支持される可動部材を備えた素子支持部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した応力感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向に沿って変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持されたものである構成を有する加速度検知ユニットの製造方法であって、
支持片にて連結され且つ平面状に配置された複数の素子支持部材を有する素子支持基板を用意する工程と、
素子支持片にて連結され且つ平面状に配置された複数の応力感応素子を有する応力感応素子基板を用意する工程と、
重り部材支持片にて連結され且つ平面状に配置された複数の重り部材を有する重り部材支持基板を少なくとも一枚用意する工程と、
前記少なくとも可動部材に前記重り部材を接続する為に、前記素子支持基板と前記重り部材支持基板とを重ね合わせることにより基板積層体を形成する工程と、
前記基板積層体と前記各応力感応素子の固定端を接続する為に、前記基板積層体と前記応力感応素子基板とを重ね合わせる工程と、
前記支持片、前記重り部材支持片、及び前記素子支持片を切断する工程と、
からなることを特徴とする加速度検知ユニットの製造方法。
An element support member comprising a fixed member, and a movable member supported by a beam on the fixed member; a stress sensitive element having a stress sensitive part and fixed ends integrated at both ends of the stress sensitive part; The beam is configured to have a flexibility that can be deformed so as to displace the movable member along an acceleration detection axis direction when acceleration is applied to the movable member, and the stress sensitive element includes A method of manufacturing an acceleration detection unit having a configuration in which both fixed ends are respectively supported by a fixed member and the movable member,
A step of preparing an element support substrate having a plurality of element support members connected by a support piece and arranged in a plane;
Preparing a stress sensitive element substrate having a plurality of stress sensitive elements connected by an element support piece and arranged in a plane;
Preparing at least one weight member support substrate having a plurality of weight members connected in a weight member support piece and arranged in a planar shape;
Forming a substrate laminate by superimposing the element support substrate and the weight member support substrate to connect the weight member to at least the movable member;
Superimposing the substrate laminate and the stress sensitive element substrate to connect the substrate laminate and the fixed end of each stress sensitive element;
Cutting the support piece, the weight member support piece, and the element support piece;
A method of manufacturing an acceleration detection unit comprising:
前記支持片、前記素子支持片、及び前記重り支持片には、凹所が設けられていることを特徴とする請求項3又は4に記載の加速度検知ユニットの製造方法。   The method for manufacturing an acceleration detection unit according to claim 3, wherein the support piece, the element support piece, and the weight support piece are provided with a recess. 前記支持片に設けられた凹所は、応力感応素子基板の厚み方向に沿って形成された溝であり、前記素子支持片及び前記重り支持片に設けられた凹所は、前記支持片に設けた凹所の深さ方向へ延びる溝であることを特徴とする請求項5に記載の加速度検知ユニットの製造方法。   The recess provided in the support piece is a groove formed along the thickness direction of the stress sensitive element substrate, and the recess provided in the element support piece and the weight support piece is provided in the support piece. The method for manufacturing an acceleration detection unit according to claim 5, wherein the groove extends in the depth direction of the recess.
JP2007312059A 2007-03-19 2007-12-03 Manufacturing method of acceleration sensing unit Pending JP2008261839A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007312059A JP2008261839A (en) 2007-03-19 2007-12-03 Manufacturing method of acceleration sensing unit
US12/010,502 US7954215B2 (en) 2007-03-19 2008-01-25 Method for manufacturing acceleration sensing unit
US13/095,083 US8307521B2 (en) 2007-03-19 2011-04-27 Method for manufacturing acceleration sensing unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007070215 2007-03-19
JP2007312059A JP2008261839A (en) 2007-03-19 2007-12-03 Manufacturing method of acceleration sensing unit

Publications (1)

Publication Number Publication Date
JP2008261839A true JP2008261839A (en) 2008-10-30

Family

ID=39984410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312059A Pending JP2008261839A (en) 2007-03-19 2007-12-03 Manufacturing method of acceleration sensing unit

Country Status (1)

Country Link
JP (1) JP2008261839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261889A (en) * 2009-05-11 2010-11-18 Seiko Epson Corp Inertial sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688728A (en) * 1992-09-08 1994-03-29 Japan Aviation Electron Ind Ltd Vibration type accelerometer
JPH0854411A (en) * 1994-06-29 1996-02-27 New Sd Inc Accelerometer and preparation thereof
JPH08139339A (en) * 1994-11-11 1996-05-31 Murata Mfg Co Ltd Semiconductor element and manufacturing method thereof
US7024934B2 (en) * 2003-10-31 2006-04-11 Honeywell International, Inc. Vibrating beam accelerometer
JP2006105948A (en) * 2004-10-05 2006-04-20 Kyowa Electron Instr Co Ltd Strain-causing body, physical quantity/electrical quantity converter, and manufacturing method of the strain-causing body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688728A (en) * 1992-09-08 1994-03-29 Japan Aviation Electron Ind Ltd Vibration type accelerometer
JPH0854411A (en) * 1994-06-29 1996-02-27 New Sd Inc Accelerometer and preparation thereof
JPH08139339A (en) * 1994-11-11 1996-05-31 Murata Mfg Co Ltd Semiconductor element and manufacturing method thereof
US7024934B2 (en) * 2003-10-31 2006-04-11 Honeywell International, Inc. Vibrating beam accelerometer
JP2006105948A (en) * 2004-10-05 2006-04-20 Kyowa Electron Instr Co Ltd Strain-causing body, physical quantity/electrical quantity converter, and manufacturing method of the strain-causing body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261889A (en) * 2009-05-11 2010-11-18 Seiko Epson Corp Inertial sensor

Similar Documents

Publication Publication Date Title
US8307521B2 (en) Method for manufacturing acceleration sensing unit
US8297124B2 (en) Pressure sensor
JP5305028B2 (en) pressure sensor
JP5375624B2 (en) Acceleration sensor and acceleration detection device
US20120096945A1 (en) Pressure sensor
JP2010197298A (en) Pressure sensor element and pressure sensor
US20140373633A1 (en) Physical quantity detector
US7856886B2 (en) Pressure sensor having a diaphragm having a pressure-receiving portion receiving a pressure and a thick portion adjacent to the pressure-receiving portion
JP2010197374A (en) Pressure detection unit and pressure sensor
JP2010243276A (en) Relative pressure sensor, relative pressure measuring device, and relative pressure measuring method
JP2008261839A (en) Manufacturing method of acceleration sensing unit
JP2011169671A (en) Inertia sensor and inertia sensor device
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JP5088672B2 (en) Pressure sensor and manufacturing method thereof
JP2008261750A (en) Pressure sensor, and diaphragm for pressure sensor
JP2014126423A (en) Pressure sensor and vacuum apparatus
JP5208466B2 (en) Tuning fork type vibration gyro
JP2009156831A (en) Acceleration detecting unit and acceleration detecting apparatus
JP5321812B2 (en) Physical quantity sensor and physical quantity measuring device
JP2008224345A (en) Acceleration detection unit, and acceleration sensor
JP2009271029A (en) Acceleration detection unit and its manufacturing method
JP4848973B2 (en) Acceleration detection unit and acceleration sensor
JP2013246121A (en) Pressure sensor element and method for manufacturing the same, pressure sensor, and electronic apparatus
JP2010223665A (en) Force sensor device
JP2009075037A (en) Force detection unit and pressure detection unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Effective date: 20110819

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Effective date: 20120217

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120217

A02 Decision of refusal

Effective date: 20120718

Free format text: JAPANESE INTERMEDIATE CODE: A02