JP2008261038A - Treatment method for melting and reforming steelmaking slag - Google Patents

Treatment method for melting and reforming steelmaking slag Download PDF

Info

Publication number
JP2008261038A
JP2008261038A JP2007106444A JP2007106444A JP2008261038A JP 2008261038 A JP2008261038 A JP 2008261038A JP 2007106444 A JP2007106444 A JP 2007106444A JP 2007106444 A JP2007106444 A JP 2007106444A JP 2008261038 A JP2008261038 A JP 2008261038A
Authority
JP
Japan
Prior art keywords
burner
slag
reforming
distance
steelmaking slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106444A
Other languages
Japanese (ja)
Other versions
JP4937818B2 (en
Inventor
Takashi Morohoshi
隆 諸星
Junji Nakajima
潤二 中島
Hiroshi Hirata
浩 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007106444A priority Critical patent/JP4937818B2/en
Publication of JP2008261038A publication Critical patent/JP2008261038A/en
Application granted granted Critical
Publication of JP4937818B2 publication Critical patent/JP4937818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for melting and reforming steelmaking slag with high efficiency, in order to obtain such a slag of high quality as to contain little free CaO and have adequate volume stability. <P>SOLUTION: When melting and reforming the steelmaking slag by supplying a silicic-acid-containing material of a reforming material to a burner by airflow transportation, while supplying fuel and a combustion-supporting gas to the burner and burning them, and adding the silicic acid-containing material to the steelmaking slag in a molten state existing in a slag ladle which is placed right under the burner, this treatment method includes the steps of: previously determining a distance (P) between a burner exhaust-nozzle and a position at which a flame temperature of the thermal spraying burner becomes highest, and a distance (M) between the burner exhaust-nozzle and a position at which the silicic-acid-containing material keeps the molten state, according to the scheduled treatment condition on the property and amount of each of the silicic-acid-containing material, the fuel and the gas supplied to the burner; setting the location of the burner so that a distance (J) between the burner exhaust-nozzle and the slag surface can be in a range of P<J≤M; and melting and reforming the steelmaking slag. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,製鋼スラグの処理方法に関し,特に,製鋼工程の精錬処理時に発生する製鋼スラグを溶融状態で改質処理する方法に関する。   The present invention relates to a method for processing steelmaking slag, and more particularly, to a method for reforming steelmaking slag generated during a refining process in a steelmaking process in a molten state.

溶銑予備処理および脱炭処理等の製鋼工程の精錬処理により生成される製鋼スラグは,遊離CaO(f.CaOと記載することがある。)を含み,このf.CaOの水和反応により体積が膨張し,多くの微小な亀裂や開気孔を発生する場合がある。このようなf.CaOを多く含む製鋼スラグは体積安定性が低い。また,溶融状態の製鋼スラグは気泡(主としてCOガス)を多く含んでいる。このような気泡を含む溶融製鋼スラグを冷却すると気泡を含んだ状態で凝固してしまうため,吸水率が高い低品質のものとなる。   Steelmaking slag produced by the refining process of the steelmaking process such as hot metal pretreatment and decarburization process includes free CaO (may be described as f.CaO), and this f. The volume expands due to the hydration reaction of CaO, and many minute cracks and open pores may be generated. F. Steelmaking slag containing a large amount of CaO has low volume stability. In addition, molten steelmaking slag contains a large amount of bubbles (mainly CO gas). When the molten steelmaking slag containing bubbles is cooled, the molten steel slag is solidified in a state containing bubbles, so that the water absorption rate is low and the quality is low.

そのため,製鋼スラグは,土木工事用の仮設材,道路の地盤改良材,下層路盤材等の低級用途に専ら使用され,より高級用途である上層路盤材,コンクリート用骨材,石材原料等には用いられにくい。   For this reason, steelmaking slag is used exclusively for low-grade applications such as temporary materials for civil engineering, road ground improvement materials, lower-layer roadbed materials, etc., and for higher-grade applications such as upper-layer roadbed materials, concrete aggregates, and stone raw materials. It is difficult to use.

これに対して,製鋼スラグを,上層路盤材,コンクリート用骨材,石材原料等の用途に有効利用すべく,従来から,製鋼スラグの高品質化を図り商品価値を高めるために,製鋼スラグ中のf.CaOを低減させたり,溶融製鋼スラグ中の気泡を低減させたりすることが行われている。例えば、上層路盤材やコンクリート用骨材として利用する場合には、スラグ中のf.CaOは0.1%以下、吸水率を3.0%以下とすることが改質処理の目安とされている。   On the other hand, in order to effectively use steelmaking slag for applications such as upper roadbed materials, concrete aggregates, stone materials, etc., in order to improve the quality of steelmaking slag and increase its commercial value, F. Reducing CaO or reducing bubbles in molten steelmaking slag has been performed. For example, when used as an upper layer roadbed material or an aggregate for concrete, f. CaO is 0.1% or less and the water absorption is 3.0% or less.

例えば,非特許文献1には,転炉から排出された脱炭スラグを溶融状態のまま改質する方法が記載されている。この方法は,溶融スラグ中に酸素と珪酸(SiO)含有改質材を浸漬ランスを通じて吹き込み,スラグ中のFeOをFeに酸化させて,その際の反応熱で昇熱し,溶融状態を維持しながら改質材によってスラグの塩基度(CaO/SiO)を低減し,未滓化石灰を体積安定性のある化合物(2CaO・SiO)に変化させるものである。 For example, Non-Patent Document 1 describes a method of reforming decarburized slag discharged from a converter in a molten state. In this method, oxygen and silicic acid (SiO 2 ) -containing modifier are blown into the molten slag through an immersion lance, and FeO in the slag is oxidized to Fe 2 O 3 , which is heated by the reaction heat and melted. The basicity of slag (CaO / SiO 2 ) is reduced by the modifying material while maintaining the above, and the undehydrated lime is changed into a volume-stable compound (2CaO · SiO 2 ).

また,例えば,特許文献1および特許文献2には,溶銑予備処理や脱炭処理を行う精錬炉からスラグ鍋に排出された製鋼スラグに、酸素バーナーを用いて改質材を溶射することによりスラグを改質することを特徴とする製鋼スラグの溶融改質方法が開示されている。   Further, for example, Patent Document 1 and Patent Document 2 disclose that slag is produced by spraying a reforming material on a steelmaking slag discharged from a refining furnace for performing hot metal preliminary treatment or decarburization treatment to a slag pan using an oxygen burner. A method for melting and reforming steelmaking slag characterized by reforming is disclosed.

M.Kuehn, et al., 2nd European Steelmaking Congress, Taranto(1997年)p445〜453M.M. Kuehn, et al. , 2nd European Steelmaking Congress, Taranto (1997) p445-453. 特開2004−331449号公報JP 2004-331449 A 特開2006−169089号公報JP 2006-169089 A

上記の非特許文献1の方法では、脱炭処理後のスラグの様に1600℃以上の高温で流動性が確保されている場合には効果的である一方、スラグ温度やスラグ中のT.Fe(トータルのFe量)が低位である場合にはスラグ顕熱が不足するため、また、スラグの塩基度が高い場合は低い場合よりも同一温度における粘度が増すために、スラグの流動性が低下し改質効果が低下する。すなわち、スラグ温度やスラグ組成の制約を受けるという問題がある。   The above-mentioned method of Non-Patent Document 1 is effective when fluidity is ensured at a high temperature of 1600 ° C. or higher like slag after decarburization treatment, while slag temperature and T.V. When Fe (total Fe amount) is low, the slag sensible heat is insufficient, and when the basicity of slag is high, the viscosity at the same temperature is increased compared to the case of low slag. The reforming effect is reduced. That is, there is a problem that the slag temperature and slag composition are restricted.

一方、特許文献1および特許文献2は、酸素バーナーでスラグを外部から加熱するため、非特許文献1の上記の問題は解消できる。   On the other hand, since the patent document 1 and the patent document 2 heat slag from the outside with an oxygen burner, the above-mentioned problem of the non-patent document 1 can be solved.

すなわち、精錬炉から排出された溶融スラグのスラグ顕熱だけでは溶融改質処理を行うための熱量が不足するという点については、酸素バーナーを用いて熱源を供給することで、解消できる。例えば、1600℃未満の高粘性スラグでも、酸素バーナーで十分に加熱すればスラグの流動性を改善する事ができる。   That is, the point that the amount of heat for performing the melt reforming process is insufficient only by the slag sensible heat of the molten slag discharged from the refining furnace can be solved by supplying a heat source using an oxygen burner. For example, even if a highly viscous slag of less than 1600 ° C. is heated sufficiently with an oxygen burner, the fluidity of the slag can be improved.

同時に改質材を溶射してスラグの塩基度を低減して融点を低下させることで、スラグの溶融促進、およびf・CaOの2CaO・SiOへの反応促進を図っている。酸素バーナーから溶射した改質材は、改質作用に加えて、バーナー火炎中で溶融した後にスラグ表面に付着するため、スラグの着熱効率を向上させることができる。 At the same time, the modifier is sprayed to reduce the basicity of the slag to lower the melting point, thereby promoting the melting of the slag and the reaction of f · CaO to 2CaO · SiO 2 . The reforming material sprayed from the oxygen burner adheres to the surface of the slag after being melted in the burner flame in addition to the reforming action, so that the heat receiving efficiency of the slag can be improved.

この様に、スラグ外部から酸素バーナーで加熱する事により、スラグ温度や組成の制約を低減できる。また、流動性改善後に改質材を添加すれば、スラグ全体を均質に効率的に改質できる。   In this way, by heating from the outside of the slag with an oxygen burner, restrictions on the slag temperature and composition can be reduced. Moreover, if a modifier is added after fluidity improvement, the whole slag can be uniformly and efficiently modified.

但し、バーナー火炎中での改質材の溶融が不充分であることにより、未溶融の改質材がスラグに添加される際には、逆にスラグの顕熱を奪ってスラグ温度を低下させることになり、スラグの溶融状態が維持できなくなることが懸念されるため、さらなる改善が望まれている。   However, due to insufficient melting of the modifier in the burner flame, when unmelted modifier is added to the slag, the slag temperature is decreased by conversely depriving the slag of slag. Therefore, since there is a concern that the molten state of the slag cannot be maintained, further improvement is desired.

しかし、特許文献1では、実施例で、酸素バーナーを下降させてスラグ面上に照射した事が開示されているが、具体的な高さ条件の記載はない。そして、改質材を溶融状態でスラグ液面に溶射するためのバーナー条件や改質材添加条件は不明である。また、特許文献2には、バーナー下端の噴出口から噴出される火炎の温度が最も高くなる位置が、溶融スラグの液面付近となる様に設定する事が好ましい事が開示されているのみで、火炎の温度が最も高くなる位置の具体的条件は記載されていない。   However, Patent Document 1 discloses that in an example, the oxygen burner is lowered and irradiated onto the slag surface, but there is no description of a specific height condition. And the burner conditions and the modifier addition conditions for spraying the modifier on the slag liquid surface in a molten state are unknown. Further, Patent Document 2 only discloses that it is preferable to set the position where the temperature of the flame ejected from the lower end of the burner becomes the highest near the liquid surface of the molten slag. The specific conditions of the position where the flame temperature is highest are not described.

本発明は上記の課題を解決するためになされたもので、高い効率で製鋼スラグを溶融改質処理する方法を提供し、f.CaOをほとんど含まず体積安定性が良好な高品質スラグを得る事を目的とする。   The present invention has been made to solve the above-mentioned problems, and provides a method for melt-modifying steelmaking slag with high efficiency, f. The object is to obtain a high-quality slag containing almost no CaO and having good volume stability.

本発明者は上記課題を解決するために鋭意研究を重ね、バーナー条件と改質材の溶融状態との関係を調査した。その知見に基づき、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventor conducted intensive studies and investigated the relationship between the burner conditions and the molten state of the modifier. Based on this knowledge, the present invention has been completed.

すなわち、本発明の要旨とするところは以下のとおりである。
(1)バーナーを燃焼させながら、改質材として珪酸含有物質を搬送ガスにより前記バーナーへ供給し、該バーナー直下に配置されたスラグ鍋内の溶融状態の製鋼スラグに、前記珪酸含有物質を添加して製鋼スラグの溶融改質処理を行うに際し、予定されている前記バーナー燃焼条件および前記珪酸含有物質供給条件に応じて、前記バーナー噴出口から前記バーナーの火炎温度が最高となる位置までの距離(P)と、前記珪酸含有物質が溶融状態を維持している前記バーナー噴出口からの最大距離(M)と、を事前に求めておき、前記バーナー噴出口から前記製鋼スラグの表面までの距離(J)を、P<J≦Mの範囲となる様に設定して溶融改質処理を行うことを特徴とする、製鋼スラグの溶融改質処理方法。
(2)予定されている前記バーナー燃焼条件および前記珪酸含有物質供給条件に応じて、さらに、前記バーナーの火炎長(L)の変動長(△L)を事前に求めておき、前記バーナー噴出口から前記製鋼スラグの表面までの距離(J)を、(P+△L/2)<J≦Mの範囲とすることを特徴とする、(1)に記載の製鋼スラグの溶融改質処理方法。
(3)前記珪酸含有物質が、石炭灰であることを特徴とする、(1)または(2)に記載の製鋼スラグの溶融改質処理方法。
That is, the gist of the present invention is as follows.
(1) While burning the burner, a silicic acid-containing substance is supplied as a modifier to the burner by a carrier gas, and the silicic acid-containing substance is added to the molten steelmaking slag in a slag pan arranged immediately below the burner. Then, when performing the melt reforming treatment of the steelmaking slag, the distance from the burner outlet to the position where the flame temperature of the burner becomes maximum according to the planned burner combustion condition and the silicic acid-containing substance supply condition (P) and the maximum distance (M) from the burner outlet where the silicic acid-containing substance is maintained in a molten state are obtained in advance, and the distance from the burner outlet to the surface of the steel slag (J) is set so that it may become the range of P <J <= M, and a melt-modification process is performed, The melt-modification process method of the steelmaking slag characterized by the above-mentioned.
(2) In accordance with the planned burner combustion conditions and the silicic acid-containing substance supply conditions, the variation length (ΔL) of the flame length (L) of the burner is obtained in advance, and the burner outlet The distance (J) from the surface of the steelmaking slag to the surface of the steelmaking slag is in the range of (P + ΔL / 2) <J ≦ M. The method of melt reforming treatment of steelmaking slag according to (1),
(3) The method for melt reforming steelmaking slag according to (1) or (2), wherein the silicic acid-containing substance is coal ash.

本発明によれば、製鋼スラグ(以降、単に「スラグ」と記載する場合がある。)の溶融改質処理を高い効率で行うことができ、f.CaOをほとんど含まない高品質のスラグを高効率で得る事が可能となる。   According to the present invention, it is possible to perform the melt reforming treatment of steelmaking slag (hereinafter sometimes simply referred to as “slag”) with high efficiency, f. It is possible to obtain a high-quality slag containing almost no CaO with high efficiency.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

(改質処理対象)
本発明は製鋼スラグを改質処理の対象としており、改質対象の製鋼スラグとしては特に限定されるものではなく、例えば、脱炭スラグ、溶銑予備処理スラグ、電気炉スラグ等を使用することが出来る。
(Target for reforming treatment)
In the present invention, steelmaking slag is subject to reforming treatment, and the steelmaking slag to be reformed is not particularly limited. For example, decarburization slag, hot metal pretreatment slag, electric furnace slag, or the like may be used. I can do it.

(改質対象スラグの溶融状態維持の必要性)
本発明では、溶融状態の製鋼スラグを使用して、溶融状態を維持しながら、改質処理を行う。溶融状態で処理を行うのは、流動性を良好にしてf.CaOの低減を促進するためである。溶融状態のスラグに珪酸含有改質材を添加することにより、スラグ中の未反応のf.CaOとSiOを反応させてf.CaOを低減させることができる。したがって、f.CaOの水和反応(CaO+HO→Ca(OH))による体積膨張を防止することが出来る。溶融温度未満のスラグでは、流動性が悪いため、固相スラグ中のf.CaOと改質材のSiOとの反応が十分に進行せず、その結果、f.CaOを低減することができない。
(Need to maintain molten state of slag to be modified)
In the present invention, the steelmaking slag in a molten state is used to perform the reforming process while maintaining the molten state. The treatment in the molten state is to improve the fluidity and f. This is to promote the reduction of CaO. By adding a silicic acid-containing modifier to the molten slag, unreacted f. CaO and SiO 2 are reacted to f. CaO can be reduced. Therefore, f. Volume expansion due to CaO hydration (CaO + H 2 O → Ca (OH) 2 ) can be prevented. Since slag below the melting temperature has poor fluidity, f. The reaction between CaO and the modifier SiO 2 does not proceed sufficiently, resulting in f. CaO cannot be reduced.

(スラグの溶融状態の定義)
なお、「溶融状態のスラグ」とは流動性を有する状態のスラグであれば良く、必ずしも改質処理開始前から完全液相である必要はない。具体的な指標としては、市販の熱力学計算モデルソフト(例えば、SOLGASMIX)で求めた推定値で表すと、液相率30%以上であれば良い。改質処理を継続していくうちに、加熱、および改質材溶射による低塩基度化が進行するために固相率が低下する結果、流動性がさらに向上し改質が促進される。
(Definition of molten state of slag)
The “molten slag” may be a slag having fluidity, and does not necessarily have to be in a completely liquid phase before the start of the reforming process. As a specific index, the liquid phase ratio may be 30% or more when expressed by an estimated value obtained by commercially available thermodynamic calculation model software (for example, SOLGASMIX). As the reforming process is continued, the basicity is lowered by heating and thermal spraying of the reforming material. As a result, the solid phase ratio is lowered. As a result, the fluidity is further improved and the reforming is promoted.

(改質材の溶融状態の必要性)
上記のとおり、スラグの溶融改質処理では、スラグの溶融状態を維持すること、f.CaOと改質材のSiOとの反応を促進すること、の2点の理由のため、バーナーから溶射される珪酸含有改質材も溶融状態でスラグ表面に付着・添加されることが重要である。なぜなら、改質材が未溶融状態のままで、または一旦バーナー火炎中で溶融状態となったとしても温度が低下して凝固した後にスラグに添加された場合は、これらの改質材がスラグから顕熱を奪うため、逆にスラグ温度の低下を招き、スラグの溶融状態維持ができなくなるためである。さらに、未溶融状態の改質材、または一旦溶融した後に凝固した改質材では、スラグ中のf.CaOとの反応速度が遅く、効率的な改質を行えない。
(Necessity of molten state of modifier)
As described above, in the slag melt reforming treatment, maintaining the molten state of the slag, f. It is important that the silicic acid-containing modifier sprayed from the burner is also attached to and added to the slag surface in a molten state for the two reasons of promoting the reaction between CaO and the modifier SiO 2. is there. This is because when the modifiers are left in an unmelted state or are added to the slag after the temperature has been reduced and solidified even if they have been melted in the burner flame, these modifiers are removed from the slag. This is because, since sensible heat is taken away, the slag temperature is lowered, and the molten state of the slag cannot be maintained. Furthermore, in an unmelted modifier or a modifier that has been once melted and solidified, the f. The reaction rate with CaO is slow and efficient reforming cannot be performed.

(バーナー噴出口からスラグ湯面までの距離について)
そこで、本発明者は、バーナーから溶射した珪酸含有改質材を溶融状態のままスラグ湯面に添加することにより、従来よりもさらに高い効率で製鋼スラグを溶融改質処理し、f.CaOをほとんど含まず体積安定性が良好な高品質スラグを得ることを目的として、この条件を見出すために、バーナー条件と改質材の溶融状態との関係を調査した。そして、その結果に基づき、バーナー噴出口からスラグ湯面までの距離についての本発明の要件を決定した。以下に添付図面も用いて、両者の関係を調査した結果を説明する。
(About the distance from the burner spout to the slag hot water surface)
Therefore, the present inventor adds the silicic acid-containing modifier sprayed from the burner to the slag hot water surface in a molten state, thereby melt-treating the steelmaking slag with higher efficiency than before, f. In order to find this condition for the purpose of obtaining high-quality slag containing almost no CaO and good volume stability, the relationship between the burner condition and the molten state of the modifier was investigated. And based on the result, the requirements of the present invention for the distance from the burner outlet to the slag hot water surface were determined. The results of investigating the relationship between the two will be described below with reference to the accompanying drawings.

様々なバーナー燃焼条件で珪酸含有改質材を下方へ溶射し、バーナー噴出口からの直下の距離を段階的に大きくする様に変化させて、改質材の採取状況を確認するとともに、採取した改質材の断面を観察して溶融状態を調査した。   Spraying the silicic acid-containing reformer downward under various burner combustion conditions, changing the distance just below the burner outlet to increase stepwise, confirming the sampling status of the reformer and collecting it The cross section of the modifier was observed to investigate the molten state.

実験に用いたバーナーは灯油バーナーであり、燃料として灯油、支燃性ガスとして純酸素、改質材である珪酸含有物質として石炭灰をそれぞれ用い、そして改質材の気流搬送用ガスとして空気を供給した。   The burner used in the experiment is a kerosene burner, using kerosene as fuel, pure oxygen as a combustion-supporting gas, coal ash as a silicic acid-containing substance as a reforming material, and air as a gas for conveying the air flow of the reforming material. Supplied.

バーナー出力100%での灯油供給量は200リットル/分で、酸素比は1.0(すなわち灯油燃焼に化学量論的に必要な当量)で酸素を供給した。なお、酸素比には改質材搬送用の空気中の酸素も含まれている。珪酸含有物質を搬送ガスにより供給するが、この珪酸含有物質供給条件については、搬送空気中に対する改質材の質量比、すなわち(単位時間あたりの改質材供給質量)/(単位時間あたりの搬送空気供給質量、搬送空気の密度1.293g/リットル)を固気比と定義し、固気比とバーナー出力を変えて、バーナー噴出口からの距離と改質材の溶融状態、バーナー火炎長(L)、火炎長の変動長(△L)、火炎温度分布、および火炎温度がピークを示す距離(P)、そして改質材が溶融状態を維持できる最大距離(「最大溶融距離」という場合がある)(M)の関係を調査した。   The amount of kerosene supplied at a burner output of 100% was 200 liters / minute, and the oxygen ratio was 1.0 (that is, the stoichiometrically required equivalent for kerosene combustion). The oxygen ratio includes oxygen in the air for conveying the modifier. The silicic acid-containing substance is supplied by a carrier gas. Regarding the silicic acid-containing substance supply condition, the mass ratio of the modifier to the carrier air, that is, (modifier supply mass per unit time) / (convey per unit time) Air supply mass, carrier air density 1.293 g / liter) is defined as solid-gas ratio, changing solid-gas ratio and burner output, distance from burner outlet, melting state of modifier, burner flame length ( L), the variation length of the flame length (ΔL), the flame temperature distribution, the distance (P) at which the flame temperature peaks, and the maximum distance at which the modifier can maintain the molten state (the case of “maximum melting distance”) Yes) (M) was investigated.

バーナー火炎長(L)はビデオ画面で評価した。バーナー火炎長(L)は瞬間的に変動しているが、変動幅の中心位置で平均長を評価した。   The burner flame length (L) was evaluated on the video screen. The burner flame length (L) fluctuated instantaneously, but the average length was evaluated at the center position of the fluctuation range.

火炎の変動長(△L)は、瞬間的に最も短くなる長さと、最も長くなる長さの差で定義した。したがって、瞬間的な火炎長はL±△L/2の範囲内となる。   The flame fluctuation length (ΔL) was defined as the difference between the shortest length and the longest length instantaneously. Therefore, the instantaneous flame length is in the range of L ± ΔL / 2.

また、火炎温度は熱電対を用いて測定した。火炎温度は火炎の径方向に分布があるので、この径方向で最も高い温度を、火炎方向の温度測定位置における火炎温度とした。そして、バーナー噴出口からの距離と火炎温度の関係を求め、火炎温度がピークを示す距離をピーク温度距離(P)とした。   The flame temperature was measured using a thermocouple. Since the flame temperature has a distribution in the radial direction of the flame, the highest temperature in the radial direction is defined as the flame temperature at the temperature measurement position in the flame direction. And the relationship between the distance from a burner outlet and flame temperature was calculated | required, and the distance where flame temperature shows a peak was made into peak temperature distance (P).

バーナーから溶射された珪酸含有改質材が溶融状態か否かを評価する際に、未溶融状態と溶融状態との判別、および溶融状態と再凝固状態との判別の2つのケースについて、判断指標が必要となる。   When evaluating whether or not the silicic acid-containing modifier sprayed from the burner is in a molten state, a judgment index is provided for two cases: discrimination between an unmelted state and a molten state, and discrimination between a molten state and a resolidified state. Is required.

改質材の溶融状態は以下の方法で評価した。改質材を下方へ溶射しているバーナー噴出口からの直下の距離を段階的に大きくする様に変化させて、鉄板を一定時間(本実験では10秒間)挿入して、改質材を採取し、その採取状況について確認した。   The molten state of the modifier was evaluated by the following method. Change the distance just below the burner outlet spraying the reforming material downward to increase it stepwise, insert the iron plate for a certain time (10 seconds in this experiment), and collect the modifying material The collection status was confirmed.

具体的には、バーナー噴出口からの改質材採取の距離が小さい場合は、改質材が未溶融状態のため、鉄板に採取しづらかったが、この距離が所定の大きさ(A)以上では、改質材が溶融状態となるため、鉄板へ付着して採取される。しかし、この距離をさらに大きくしていくと、別の所定の大きさ(B)以上で、一旦、溶融した改質材が再凝固状態となるため、再度、鉄板に採取しづらくなった。   Specifically, when the distance for collecting the modifying material from the burner outlet is small, the modifying material is in an unmelted state, so it was difficult to collect it on the iron plate, but this distance is not less than a predetermined size (A). Then, since the modifier is in a molten state, it is collected by adhering to the iron plate. However, when this distance is further increased, the reformed material once melted in a re-solidified state at another predetermined size (B) or more becomes difficult to collect again on the iron plate.

改質材の採取状況については、上記の所定の距離(A)、あるいは別の所定の距離(B)のそれぞれについて、急激に採取状況が変化することが判明したことから、この手法を用いて、改質材の溶融状態の判断を行うことができる。   As for the sampling situation of the modifying material, it was found that the sampling situation suddenly changed for each of the predetermined distance (A) or another predetermined distance (B). The melting state of the modifier can be determined.

ちなみに、未溶融状態と溶融状態との判別については、改質材の性状を観察することに着目し、採取した改質材を樹脂に埋め込んだ後に研磨し、断面を走査型電子顕微鏡で観察することでも、溶融状態を評価した。   By the way, with regard to discrimination between the unmelted state and the molten state, paying attention to observing the properties of the modifier, the sampled modifier is embedded in the resin and then polished, and the cross section is observed with a scanning electron microscope. Also, the molten state was evaluated.

その結果、未溶融の改質材は、表面および内部に微細孔が多数分布する多孔質であり、その断面も多孔質であった。   As a result, the unmelted modifier was porous with many fine pores distributed on the surface and inside, and its cross section was also porous.

一方、溶融した改質材の個々の粒は球状(完全な球体ではないが、滑らかな曲面に覆われた形状)であり、凝集合体してクラスターを形成している場合が多く、その断面は緻密で均質である。これは、改質材が熱を受けて溶融した際に、液相で微細孔が埋まった、あるいは微細孔としての気泡が外部へ抜けたことによるものである。また、溶融部断面の一部に空隙が残存している場合も見られるが、溶融時に元の微細孔が合体したものであり、未溶融部の微細孔の数倍以上の大きさであることが確認された。   On the other hand, the individual grains of the molten modifier are spherical (not completely spherical, but covered with a smooth curved surface), often agglomerate and form clusters, and the cross section is It is dense and homogeneous. This is because when the modifier is melted by receiving heat, the micropores are filled in the liquid phase, or bubbles as micropores are removed to the outside. In addition, although there are cases where voids remain in a part of the cross section of the melted part, the original micropores are united at the time of melting, and the size is several times larger than the micropores of the unmelted part. Was confirmed.

従って、上記の観点から、改質材の溶融部と未溶融部の区別は容易であるため、改質材の溶融/未溶融の状態の判断について、改質材断面の溶融部の面積率でも評価できることがわかった。   Therefore, from the above viewpoint, it is easy to distinguish between the melted part and the unmelted part of the reforming material. It turned out that it can be evaluated.

そこで、上述の実験で、バーナー噴出口からの改質材採取の距離がA以上の場合で、鉄板に採取した改質材の各粒について、その断面を観察すると、中心部に未溶融部が残存している場合も見られたが、大部分は溶融しており、改質材の各粒において、溶融部の面積率は90%以上であることが確認された。従って、1つの粒において、改質材断面の溶融部の面積率が90%以上であれば、溶融状態の改質材粒であると判断できることがわかった。   Therefore, in the above-described experiment, when the distance from which the modifying material is collected from the burner outlet is A or more, when the cross section of each grain of the modifying material collected on the iron plate is observed, an unmelted portion is present at the center. Although some cases remained, most were melted, and it was confirmed that the area ratio of the melted portion was 90% or more in each grain of the reforming material. Accordingly, it was found that if the area ratio of the melted portion of the reformer cross section is 90% or more in one grain, it can be determined that the reformer grain is in a molten state.

そこで、少なくとも改質材100粒(クラスターを形成している場合は、クラスターを構成している個々の粒を1個とする)の改質材粒断面を観察し、溶融状態の改質材粒の面積率である、
{(溶融状態の改質材粒の断面積の合計)/(全改質材粒の断面積の総和)}×100(%)
が90%以上となる場合を、溶融状態と判定する手法を用いても良い。ここで、観察する改質材の個数を少なくとも100粒としたのは、別途、実験により、溶融状態の判断の信頼性が確認されているためである。
Therefore, by observing the cross section of the reformer grain of at least 100 modifiers (in the case where a cluster is formed, each grain constituting the cluster is one), the reformer grains in the molten state are observed. Is the area ratio of
{(Total cross-sectional area of the reformer grains in the molten state) / (sum of cross-sectional areas of all the reformer grains)} × 100 (%)
A method may be used for determining that the melting state is 90% or more. Here, the reason that the number of the modifiers to be observed is at least 100 is that the reliability of the determination of the molten state has been confirmed separately by experiments.

なお、未溶融状態と溶融状態との判別については、先に述べた鉄板への採取状況の手法に代えて、あるいは併用して、この手法を判断指標に用いても良い。   Note that, regarding the discrimination between the unmelted state and the molten state, this method may be used as a determination index instead of or in combination with the above-described method of collecting the iron plate.

以上、述べてきた改質材の溶融状態の判断指標に基づき、評価した結果を図1、図2に示す。   The evaluation results based on the above-described determination index of the melting state of the modifier are shown in FIGS.

図1は固気比が20.5と大きい場合の評価結果である。図1の縦軸はバーナー噴出口からの距離(m)であり、横軸はバーナー出力(%)である。火炎長Lと、火炎温度がピークとなる距離Pは、出力が高くなるとともに増加している。火炎温度がピークとなる距離Pは、ほぼL/2であった。   FIG. 1 shows the evaluation results when the solid-gas ratio is as large as 20.5. The vertical axis in FIG. 1 is the distance (m) from the burner outlet, and the horizontal axis is the burner output (%). The flame length L and the distance P at which the flame temperature peaks increase as the output increases. The distance P at which the flame temperature reaches a peak was approximately L / 2.

改質材が溶融状態と評価できたのは、火炎温度がピークとなる距離Pを超えた位置であることがわかった。ちなみに、未溶融状態と溶融状態との判別については、改質材断面の溶融部の面積率で評価を行い、その面積率が90%以上であるものを、溶融状態と評価した。これは、改質材が火炎から熱を受けてから、温度が上昇するので、火炎温度がピークとなる距離Pで最大の熱量を受けた時点よりも後に、溶融状態に達するためであると考えられる。   It was found that the modifier could be evaluated as a molten state at a position beyond the distance P at which the flame temperature peaked. Incidentally, the discrimination between the unmelted state and the molten state was evaluated by the area ratio of the melted portion of the reformer cross section, and those having an area ratio of 90% or more were evaluated as the molten state. This is because the temperature of the reformer increases after receiving heat from the flame, so that the molten material reaches a molten state after the maximum amount of heat at the distance P at which the flame temperature reaches a peak. It is done.

次に、溶融状態と再凝固状態との判別については、改質材の鉄板への採取状況により評価を行い、改質材の最大溶融距離Mを測定した。図1より、最大溶融距離Mは、火炎長Lよりも短いことがわかる。   Next, the discrimination between the melted state and the re-solidified state was evaluated according to the state of sampling of the reforming material on the iron plate, and the maximum melting distance M of the reforming material was measured. 1 that the maximum melting distance M is shorter than the flame length L.

さらに、未溶融状態と溶融状態との関係については、火炎の変動長を△Lとすると、P+△L/2を超えた位置では確実に溶融状態にあることが判明した。   Furthermore, with regard to the relationship between the unmelted state and the molten state, it was found that the molten state is surely obtained at a position exceeding P + ΔL / 2, where ΔL is the variation length of the flame.

具体的には、P+△L/2を超えた位置では、改質材断面の溶融部の面積率が95%以上であることが確認され、十分に溶融していることがわかった。   Specifically, at a position exceeding P + ΔL / 2, it was confirmed that the area ratio of the melted portion of the reformer cross section was 95% or more, and it was found that the melt was sufficiently melted.

火炎の変動長△Lは、瞬間的に最も短くなる長さと、最も長くなる長さの差と定義する。前述の火炎長Lは平均距離であるので、瞬間的にはピーク温度位置も最大でP±△L/2の間で変動する。したがって、改質材がP+△L/2を超えた位置まで移動する間には、常にピーク温度部を通過できる事になり、溶融状態がより確実に維持できる。   The flame fluctuation length ΔL is defined as the difference between the shortest instantaneous length and the longest length. Since the above-described flame length L is an average distance, the peak temperature position instantaneously varies between P ± ΔL / 2 at the maximum. Therefore, while the modifying material moves to a position exceeding P + ΔL / 2, it can always pass through the peak temperature portion, and the molten state can be more reliably maintained.

一方、図2は固気比を0.5と小さくした場合の評価結果である。出力が高くなるとともに、火炎長Lと、温度ピーク距離Pが増加する傾向は図1と同様である。   On the other hand, FIG. 2 shows the evaluation results when the solid-gas ratio is reduced to 0.5. As the output increases, the flame length L and the temperature peak distance P tend to increase as in FIG.

また、改質材が溶融状態と評価できたのは、火炎温度がピークとなる距離Pを超えた位置であり、改質材断面の溶融部の面積率が90%以上であること、P+△L/2を超えた位置であれば確実に溶融状態にあり、改質材断面の溶融部の面積率が95%以上であることは、上記の固気比が20.5の場合(図1参照)と同様であった。   Further, the reformed material could be evaluated as being in a molten state at a position beyond the distance P at which the flame temperature peaks, and the area ratio of the melted portion of the reformer cross section being 90% or more, P + Δ If the position exceeds L / 2, it is surely in a molten state, and the area ratio of the melted portion of the reformer cross section is 95% or more when the solid-gas ratio is 20.5 (FIG. 1). Reference).

しかし、改質材の最大溶融距離Mについて、上記と同様に、改質材の鉄板への採取状況により評価を行ったところ、最大溶融位置Mが火炎長Lより長くなる点が図1と異なっていた。   However, when the maximum melting distance M of the reforming material is evaluated according to the sampling state of the reforming material on the iron plate in the same manner as described above, the point that the maximum melting position M becomes longer than the flame length L is different from FIG. It was.

この理由は、固気比が小さい場合は、吹き込む改質材の量が少ないので、同じ火炎条件でも単位質量あたりの改質材に与えられる熱量が大きくなり、火炎温度がピークとなる距離Pを超えた時点で、改質材の温度が図1の場合よりも高温に達するためである。   The reason for this is that when the solid-gas ratio is small, the amount of reforming material to be blown is small, so that the amount of heat given to the reforming material per unit mass increases even under the same flame conditions, and the distance P at which the flame temperature peaks is set. This is because the temperature of the reforming material reaches a higher temperature than in the case of FIG.

以上の理由より、本発明では、改質材が溶射されるバーナー噴出口からスラグ表面までの距離(J)は、溶射バーナーの火炎温度が最高となる位置のバーナー噴出口からの距離(P)、珪酸含有物質が溶融状態を維持しているバーナー噴出口からの距離(M)とすると、P<J≦Mと設定することで、溶融状態の改質材をスラグに供給できる。   For the above reasons, in the present invention, the distance (J) from the burner outlet to which the modifier is sprayed to the slag surface is the distance (P) from the burner outlet at the position where the flame temperature of the thermal spray burner is the highest. When the distance (M) from the burner outlet where the silicic acid-containing substance is maintained in a molten state is set, P <J ≦ M can be set so that the molten modifier can be supplied to the slag.

さらに、(P+△L/2)<J≦Mとすると、より確実に溶融状態の改質材をスラグに供給できるため、さらに望ましい。   Furthermore, it is further preferable that (P + ΔL / 2) <J ≦ M because the molten modifier can be more reliably supplied to the slag.

また、以上の通り、固気比に応じて最大溶融距離Mが火炎長Lに対して変化することから、バーナー設置位置に制限がある場合は、固気比を調整して溶融状態の改質材をスラグに供給してもよい。   In addition, as described above, the maximum melting distance M changes with respect to the flame length L according to the solid-gas ratio. Therefore, when the burner installation position is limited, the solid-gas ratio is adjusted to improve the molten state. Material may be supplied to the slag.

(あらかじめ改質処理条件と各種指標を明らかにしておくことの必要性)
本発明においては、スラグ改質処理に先立ち、珪酸含有改質材、燃料、バーナーへの供給ガスのそれぞれの性状、および供給量に関して、予定されている処理条件に対応して、事前に、バーナー火炎長L、火炎長の変動長△L、火炎温度がピークを示す距離P、改質材が溶融状態を維持しているバーナー噴出口からの最大溶融距離M、を求めておくこととする。なお、この事前の検討については、前記の実験手法を用いることで実施できる。
(Need to clarify reforming treatment conditions and various indicators in advance)
In the present invention, prior to the slag reforming treatment, the respective properties of the silicic acid-containing reforming material, the fuel, and the supply gas to the burner, and the supply amount, in advance, corresponding to the planned processing conditions, The flame length L, the variation length ΔL of the flame length, the distance P at which the flame temperature reaches a peak, and the maximum melting distance M from the burner outlet where the reformer maintains a molten state are obtained. This prior study can be performed by using the above-described experimental method.

ちなみに、上記のL、△L、P、Mには、バーナー出力や固気比が大きく影響するが、この2つの要因以外(例えば、燃料の種類、改質材のサイズ等)も影響するので、実際の改質処理設備を使用して、改質処理条件(バーナー条件)とL、△L、P、Mの関係を明らかにしておくと、より好ましい。   Incidentally, the above-mentioned L, ΔL, P, and M are greatly affected by the burner output and the solid-gas ratio, but other factors (for example, the type of fuel, the size of the reformer, etc.) also have an effect. It is more preferable to clarify the relationship between the reforming process condition (burner condition) and L, ΔL, P, and M using an actual reforming process facility.

(火炎長Lの評価法)
バーナー火炎長Lの評価法としては、例えば、目視、またはビデオ画面で評価すれば良い。実際の火炎先端は一定幅で変動しているが、その変動幅の中心位置(平均位置)で評価すれば良い。写真や静止画ではある瞬間の火炎長を捉えるので、一定時間の変動を評価することが好ましい。
(Evaluation method of flame length L)
As an evaluation method of the burner flame length L, for example, it may be evaluated visually or on a video screen. Although the actual flame tip fluctuates within a certain range, it may be evaluated at the center position (average position) of the fluctuation range. It is preferable to evaluate the fluctuation over a certain period of time because a flame length at a certain moment is captured in a photograph or a still image.

(ピーク温度距離Pの評価法)
火炎温度分布は、例えば、熱電対、あるいは高温用放射温度計を用いて測定すれば良い。上述の通り、火炎温度は径方向に分布があるので、火炎の径方向で最も高い温度を、その位置における火炎温度とする。そして、バーナー噴出口からの距離と火炎温度の関係を求め、火炎温度がピークを示す距離をピーク温度距離Pとする。一定範囲にわたってピーク温度が続く場合は、バーナー噴出口から最も遠い位置をPとする。
(Evaluation method of peak temperature distance P)
The flame temperature distribution may be measured using, for example, a thermocouple or a high-temperature radiation thermometer. As described above, since the flame temperature is distributed in the radial direction, the highest temperature in the radial direction of the flame is set as the flame temperature at that position. Then, the relationship between the distance from the burner outlet and the flame temperature is obtained, and the distance at which the flame temperature reaches a peak is defined as a peak temperature distance P. When the peak temperature continues over a certain range, P is the position farthest from the burner outlet.

(改質材の要件)
改質材としては、珪酸含有物質、つまりSiOを含有しているものであれば良い。このSiOは、製鋼スラグの塩基度(質量ベースでCaO/SiO)を低減し、スラグ中のf.CaOと反応して、体積安定性の良好な化合物(2CaO・SiO)を形成するために必要である。例えば、石炭灰、ケイ砂などが例示できるが、これらに限定するものではない。また、改質材のサイズについても、例えば石炭灰は数十μm以下が大半を占める微細粉末であるが、バーナーから溶射できるサイズであれば、特に限定するものではない。
(Requirements for modifiers)
As the modifying material, any silicic acid-containing substance, that is, a material containing SiO 2 may be used. This SiO 2 reduces the basicity (CaO / SiO 2 on a mass basis) of steelmaking slag, and f. Necessary for reacting with CaO to form a compound with good volume stability (2CaO.SiO 2 ). For example, coal ash, silica sand and the like can be exemplified, but not limited thereto. Also, the size of the modifying material is not particularly limited as long as, for example, coal ash is a fine powder in which several tens of μm or less occupies most, but can be sprayed from a burner.

(バーナーの要件)
バーナーの燃料としては、例えば、灯油、重油、LPG、微粉炭などを用いる事ができる。また、改質処理は、複数のバーナーで実施しても良い。その場合、個々のバーナーで本発明の要件を満足すれば良く、それぞれのバーナー条件が異なっても良い。
(Burner requirements)
As the burner fuel, for example, kerosene, heavy oil, LPG, pulverized coal, or the like can be used. Further, the reforming process may be performed with a plurality of burners. In that case, it is only necessary to satisfy the requirements of the present invention for each burner, and the respective burner conditions may be different.

また、バーナー用の支燃性ガスとしては、酸素が用いられるが、純酸素でも空気でも良い。   In addition, oxygen is used as the combustion-supporting gas for the burner, but it may be pure oxygen or air.

さらに、改質材を気流搬送するための気体としては、空気が推奨されるが、これに限定するものでなく、燃焼に必要な酸素に混合したり、あるいは、燃焼に無関係な搬送気体を用いても良い。   Furthermore, air is recommended as a gas for carrying the reformer by airflow, but it is not limited to this, and it is mixed with oxygen necessary for combustion, or a carrier gas unrelated to combustion is used. May be.

従って、支燃性ガスと改質材を気流搬送するためのガスを総称して、バーナーへの供給ガスと呼称している。   Therefore, the gas for conveying the combustion-supporting gas and the reforming material in a gas stream is collectively referred to as a supply gas to the burner.

ちなみに、固気比は、(単位時間あたりの改質材供給質量)/(単位時間あたりの搬送気体供給質量)で定義している。   Incidentally, the solid-gas ratio is defined by (reforming material supply mass per unit time) / (carrier gas supply mass per unit time).

以下に、本発明の具体的な実施例を説明する。   Hereinafter, specific examples of the present invention will be described.

(実施例1)
溶銑予備処理スラグ20トンを改質処理用鍋に装入し、溶融状態のまま、バーナー下に移送し、以下の条件で改質処理を行った。バーナーの燃料は灯油を用いて、酸素、搬送空気、改質材として石炭灰を供給した。灯油供給量は500リットル/時、酸素比は1.0、固気比は20.1とした。処理時間は50分である。このバーナー燃焼・溶射条件における、火炎長L、火炎長の変動長△L、ピーク温度距離P、改質材の最大溶融距離Mを、改質処理に先立ち、実機設備を用いて予定されている条件と同一条件で実験を行った。また、改質材の溶融状態と未溶融状態との判断については、改質材断面の溶融部の面積率で評価を行った。具体的には、上述した[0039]及び[0040]に記載した評価法に準拠して、改質材100粒の改質材粒断面を観察し、単独の改質材粒の断面で溶融部の面積率が90%以上である改質材粒を「溶融状態の改質材粒」とし、全改質材粒の断面積に占める「溶融状態の改質材粒」の面積率が90%以上となる場合を、溶融状態と判断した。溶融状態と再凝固状態との判断については、鉄板への採取状況で評価を行うことで、あらかじめ調査した結果、L=5.2m、△L=0.6m、P=2.7m、M=4.4mであった。
Example 1
20 tons of hot metal pretreatment slag was charged into a reforming pan, transferred in the molten state under the burner, and reformed under the following conditions. Kerosene was used as the burner fuel, and oxygen, carrier air, and coal ash were supplied as a modifier. The kerosene supply rate was 500 liters / hour, the oxygen ratio was 1.0, and the solid-gas ratio was 20.1. The processing time is 50 minutes. The flame length L, the flame length variation length ΔL, the peak temperature distance P, and the maximum melting distance M of the reforming material under the burner combustion / spraying conditions are scheduled using actual equipment prior to the reforming process. The experiment was conducted under the same conditions. Moreover, about the judgment of the molten state of a modifier and an unmelted state, it evaluated by the area ratio of the fusion | melting part of a modifier cross section. Specifically, in accordance with the evaluation method described in [0039] and [0040] described above, the cross section of the reformer grain of 100 modifiers was observed, and the melting part was observed in the cross section of the single reformer grain. The reformer grains having an area ratio of 90% or more are referred to as “molten reformer grains”, and the area ratio of “modifier grains in the molten state” occupying the cross-sectional area of all the reformer grains is 90%. The case where it became the above was judged to be a molten state. About judgment of a molten state and a re-solidification state, as a result of investigating beforehand by evaluating with the collection condition to an iron plate, L = 5.2m, (DELTA) L = 0.6m, P = 2.7m, M = It was 4.4 m.

改質処理前のスラグ、溶射した石炭灰の成分を下記表1、2に示す。   The slag before the modification treatment and the components of the sprayed coal ash are shown in Tables 1 and 2 below.

Figure 2008261038
Figure 2008261038

Figure 2008261038
Figure 2008261038

以上の条件で、バーナー噴出口から製鋼スラグ液面までの距離Jを複数の水準で変えて、改質処理を行った。   Under the above conditions, the reforming process was performed by changing the distance J from the burner outlet to the steelmaking slag liquid level at a plurality of levels.

改質処理中は、製鋼スラグが溶融状態を維持するか、また、バーナーから溶射した改質材が十分にスラグ液面に付着するかを目視で評価した。   During the reforming treatment, it was visually evaluated whether the steelmaking slag was maintained in a molten state or whether the reformed material sprayed from the burner sufficiently adhered to the slag liquid surface.

また、改質処理後は鍋を傾転して別容器に排出して凝固させ、f.CaOを分析し、吸水率を評価した。   In addition, after the reforming treatment, the pan is tilted and discharged into another container to be solidified, f. CaO was analyzed and water absorption was evaluated.

その結果を表3に示す。   The results are shown in Table 3.

Figure 2008261038
Figure 2008261038

No.1の距離Jは2.8mであり、Pより遠く、M以下にスラグ液面を保持するとの本願の第1の発明の要件を満たしている。そして、No.2とNo.3の距離Jはそれぞれ、3.4m、4.4mであり、P+△L/2より遠く、M以下にスラグ液面を保持するとの、本願の第2の発明の要件を満たしている。この場合には、スラグの溶融状態は常に維持されており、改質材はスラグ液面に良好に付着しスラグ内に溶融した。特に、No.2とNo.3は付着後直ちにスラグ内に溶融した点で付着状況は非常に良好であった。改質処理後のスラグのf.CaOは0.1質量%以下、吸水率3.0質量%以下を達成したため、上層路盤材やコンクリート骨材として利用可能なものとすることができた。   No. The distance J of 1 is 2.8 m, which is far from P and satisfies the requirement of the first invention of the present application that the slag liquid level is maintained below M. And No. 2 and No. The distance J of 3 is 3.4 m and 4.4 m, respectively, which satisfy the requirement of the second invention of the present application that the slag liquid level is maintained below M and not more than P + ΔL / 2. In this case, the molten state of the slag was always maintained, and the modifier adhered well to the slag liquid surface and melted in the slag. In particular, no. 2 and No. No. 3 was very good in terms of adhesion because it melted in the slag immediately after adhesion. F. Of slag after reforming treatment. Since CaO achieved 0.1% by mass or less and a water absorption rate of 3.0% by mass or less, it could be used as an upper roadbed material or a concrete aggregate.

一方、No.4は距離Jが2.5mでピーク温度距離Pよりも近いため、そして、No.5の距離Jが4.6mでMよりも遠いため、本発明の要件を満たしていない。この場合には、未溶融状態または再凝固状態で改質材がスラグ液面に到達したため、スラグ温度が低下し、スラグの溶融状態が維持されず凝固が進行した。改質材が未溶融または再凝固状態でスラグ液面に到達した上、スラグ液面が凝固したため、改質材の付着状況は悪かった。その結果、改質反応が進行しなかったため、処理後のスラグのf.CaOは改善されず、吸水率も5質量%以上であり、所望するレベルの特性は得られなかった。   On the other hand, no. No. 4 has a distance J of 2.5 m and is closer than the peak temperature distance P. Since the distance J of 5 is 4.6 m and far from M, the requirement of the present invention is not satisfied. In this case, since the modifier reached the slag liquid level in an unmelted state or a re-solidified state, the slag temperature was lowered, and the molten state of the slag was not maintained and solidification proceeded. Since the reforming material reached the slag liquid level in an unmelted or re-solidified state, and the slag liquid surface solidified, the adhesion of the modifying material was poor. As a result, since the reforming reaction did not proceed, f. CaO was not improved, the water absorption was 5% by mass or more, and the desired level of characteristics could not be obtained.

(実施例2)
溶銑予備処理スラグ20トンを改質処理用鍋に装入し、溶融状態のまま、バーナー下に移送し、以下の条件で改質処理を行った。バーナーの燃料はLPGを用いて、酸素、搬送空気、改質材としてケイ砂を供給した。処理時間は35分とした。灯油供給量は700リットル/時、酸素比は1.0、固気比は0.9とした。このバーナー燃焼・溶射条件における、火炎長L、火炎長の変動長△L、ピーク温度距離P、改質材の最大溶融距離Mを、改質処理に先立ち、実施例1と同様の手法で、あらかじめ調査した結果、L=6.4m、△L=0.9m、P=3.3m、M=7.4mであった。
(Example 2)
20 tons of hot metal pretreatment slag was charged into a reforming pan, transferred in the molten state under the burner, and reformed under the following conditions. LPG was used as the burner fuel, and oxygen, carrier air, and silica sand were supplied as a modifier. The processing time was 35 minutes. The kerosene supply rate was 700 liters / hour, the oxygen ratio was 1.0, and the solid-gas ratio was 0.9. Prior to the reforming process, flame length L, flame length variation length ΔL, peak temperature distance P, and maximum melting distance M of the reforming material under the burner combustion / spraying conditions are the same as in Example 1. As a result of investigation in advance, L = 6.4 m, ΔL = 0.9 m, P = 3.3 m, and M = 7.4 m.

改質処理前のスラグ、溶射した石炭灰の成分を下記表4、5に示す。   The slag before the reforming treatment and the components of the sprayed coal ash are shown in Tables 4 and 5 below.

Figure 2008261038
Figure 2008261038

Figure 2008261038
Figure 2008261038

以上の条件で、バーナー噴出口から製鋼スラグ液面までの距離Jを表6に示す水準で変えて、改質処理を行った。改質処理中の状況、改質処理後のスラグ特性を実施例1と同様に評価した。その結果を表6に示す。   Under the above conditions, the reforming process was performed by changing the distance J from the burner outlet to the steelmaking slag liquid level at the level shown in Table 6. The situation during the reforming process and the slag characteristics after the reforming process were evaluated in the same manner as in Example 1. The results are shown in Table 6.

Figure 2008261038
Figure 2008261038

No.6は距離Jが3.4mであり、Pより遠く、M以下にスラグ液面を保持するとの本願の第1の発明の要件を満たしている。また、No.7とNo.8の距離Jはそれぞれ、3.8m、6.4mであり、P+△L/2より遠く、M以下にスラグ液面を保持するとの本願の第2の発明の要件を満たした実施例である。この場合には、スラグの溶融状態は常に維持されており、スラグ液面に改質材が良好に付着した後スラグ内に溶融した。特に、No.7とNo.8は付着後直ちにスラグ内に溶融した点で付着状況は非常に良好であった。改質処理後のスラグのf.CaOは0.1質量%以下、吸水率3.0質量%以下を達成したため、上層路盤材やコンクリート骨材として利用可能なものとすることができた。   No. No. 6 satisfies the requirement of the first invention of the present application that the distance J is 3.4 m, is farther than P, and holds the slag liquid level below M. No. 7 and no. The distance J of 8 is 3.8 m and 6.4 m, respectively, which is an example satisfying the requirement of the second invention of the present application that the slag liquid level is maintained at a distance that is farther than P + ΔL / 2 and below M. . In this case, the molten state of the slag was always maintained, and the modifier was well adhered to the slag liquid surface and then melted in the slag. In particular, no. 7 and no. No. 8 was very good in adhesion because it melted in the slag immediately after adhesion. F. Of slag after reforming treatment. Since CaO achieved 0.1% by mass or less and a water absorption rate of 3.0% by mass or less, it could be used as an upper roadbed material or a concrete aggregate.

一方、No.9は距離Jが3.1mでピーク温度距離Pよりも近いため、そしてNo.10は距離Jが7.5mでMより遠いために、本発明要件を満たしていない。この場合には、未溶融状態または再凝固状態で改質材がスラグ液面に到達したため、スラグ温度が低下し、スラグの溶融状態が維持されず凝固が進行した。改質材が未溶融または再凝固状態でスラグ液面に到達した上、スラグ液面が凝固したため、改質材の付着状況は悪かった。その結果、改質反応が進行しなかったため、処理後のスラグのf.CaOは改善されず、吸水率も3質量%を超えており、所望するレベルの特性は得られなかった。   On the other hand, no. No. 9 has a distance J of 3.1 m and is closer than the peak temperature distance P. No. 10 does not satisfy the requirements of the present invention because the distance J is 7.5 m and is further than M. In this case, since the modifier reached the slag liquid level in an unmelted state or a re-solidified state, the slag temperature was lowered, and the molten state of the slag was not maintained and solidification proceeded. Since the reforming material reached the slag liquid level in an unmelted or re-solidified state, and the slag liquid surface solidified, the adhesion of the modifying material was poor. As a result, since the reforming reaction did not proceed, f. CaO was not improved and the water absorption rate exceeded 3% by mass, and the desired level of properties could not be obtained.

以上、比較例と共に、本発明の実施例を説明したが、本発明は上記の例に限定されるものではない。特許請求の範囲に記載された範疇において、当業者であれば容易に推定し得る様な、各種の変更例または修正例についても、当然本発明の技術的範囲に属すると了解される。   As mentioned above, although the Example of this invention was described with the comparative example, this invention is not limited to said example. It will be understood that various changes or modifications that can be easily estimated by those skilled in the art within the scope of the claims are also within the technical scope of the present invention.

バーナー出力と、改質材の溶融状況、バーナー火炎長の関係(固気比20.5の場合)を示す説明図である。It is explanatory drawing which shows the relationship (in the case of solid-gas ratio 20.5) of a burner output, the melting condition of a modifier, and burner flame length. バーナー出力と、改質材の溶融状況、バーナー火炎長の関係(固気比0.5の場合)を示す説明図である。It is explanatory drawing which shows the relationship (in the case of solid-gas ratio 0.5) of a burner output, the melting condition of a modifier, and burner flame length.

Claims (3)

バーナーを燃焼させながら、改質材として珪酸含有物質を搬送ガスにより前記バーナーへ供給し、該バーナー直下に配置されたスラグ鍋内の溶融状態の製鋼スラグに、前記珪酸含有物質を添加して製鋼スラグの溶融改質処理を行うに際し、
予定されている前記バーナー燃焼条件および前記珪酸含有物質供給条件に応じて、前記バーナー噴出口から前記バーナーの火炎温度が最高となる位置までの距離(P)と、前記珪酸含有物質が溶融状態を維持している前記バーナー噴出口からの最大距離(M)と、を事前に求めておき、
前記バーナー噴出口から前記製鋼スラグの表面までの距離(J)を、P<J≦Mの範囲となる様に設定して溶融改質処理を行うことを特徴とする、製鋼スラグの溶融改質処理方法。
While burning the burner, a silicic acid-containing substance is supplied to the burner as a modifier by a carrier gas, and the silicic acid-containing substance is added to the molten steelmaking slag in the slag pan arranged immediately below the burner. When performing slag melt reforming treatment,
Depending on the burner burning conditions and the silicic acid-containing substance supply conditions that are planned, the distance (P) from the burner outlet to the position where the flame temperature of the burner becomes maximum, and the silicic acid-containing substance is in a molten state. The maximum distance (M) from the burner outlet that is maintained is obtained in advance,
Melting and reforming of steelmaking slag, characterized in that the melting and reforming treatment is performed by setting the distance (J) from the burner outlet to the surface of the steelmaking slag so as to be in the range of P <J ≦ M. Processing method.
予定されている前記バーナー燃焼条件および前記珪酸含有物質供給条件に応じて、さらに、前記バーナーの火炎長(L)の変動長(△L)を事前に求めておき、
前記バーナー噴出口から前記製鋼スラグの表面までの距離(J)を、(P+△L/2)<J≦Mの範囲とすることを特徴とする、請求項1に記載の製鋼スラグの溶融改質処理方法。
In accordance with the planned burner combustion conditions and the silicic acid-containing substance supply conditions, the variation length (ΔL) of the flame length (L) of the burner is obtained in advance,
The distance (J) from the burner outlet to the surface of the steelmaking slag is in the range of (P + ΔL / 2) <J ≦ M. Quality processing method.
前記珪酸含有物質が、石炭灰であることを特徴とする、請求項1または2に記載の製鋼スラグの溶融改質処理方法。   The method for melt reforming steelmaking slag according to claim 1 or 2, wherein the silicic acid-containing substance is coal ash.
JP2007106444A 2007-04-13 2007-04-13 Method of melt reforming steelmaking slag Expired - Fee Related JP4937818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106444A JP4937818B2 (en) 2007-04-13 2007-04-13 Method of melt reforming steelmaking slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106444A JP4937818B2 (en) 2007-04-13 2007-04-13 Method of melt reforming steelmaking slag

Publications (2)

Publication Number Publication Date
JP2008261038A true JP2008261038A (en) 2008-10-30
JP4937818B2 JP4937818B2 (en) 2012-05-23

Family

ID=39983732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106444A Expired - Fee Related JP4937818B2 (en) 2007-04-13 2007-04-13 Method of melt reforming steelmaking slag

Country Status (1)

Country Link
JP (1) JP4937818B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446470A (en) * 2008-12-31 2009-06-03 甘肃锦世化工有限责任公司 Method for burning chromium salt calcium-free roasting coal powder
JP2016094664A (en) * 2014-11-06 2016-05-26 Jfeスチール株式会社 Steel slag grain, steel slag, and method for producing steel slag grain
JP2020011889A (en) * 2018-07-13 2020-01-23 韓国建設技術研究院KOREA INSTITUTE of CIVIL ENGINEERING and BUILDING TECHNOLOGY Anti-stripping agent for asphalt mixture using purified slowly cooled slag, method for producing the same, asphalt mixture containing the same, and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313918A (en) * 1996-06-04 1997-12-09 Nippon Sanso Kk Manufacture of inorganic spherical granule
JP2005307263A (en) * 2004-04-21 2005-11-04 Nippon Steel Corp Method for melting and reforming steelmaking slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313918A (en) * 1996-06-04 1997-12-09 Nippon Sanso Kk Manufacture of inorganic spherical granule
JP2005307263A (en) * 2004-04-21 2005-11-04 Nippon Steel Corp Method for melting and reforming steelmaking slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446470A (en) * 2008-12-31 2009-06-03 甘肃锦世化工有限责任公司 Method for burning chromium salt calcium-free roasting coal powder
JP2016094664A (en) * 2014-11-06 2016-05-26 Jfeスチール株式会社 Steel slag grain, steel slag, and method for producing steel slag grain
JP2020011889A (en) * 2018-07-13 2020-01-23 韓国建設技術研究院KOREA INSTITUTE of CIVIL ENGINEERING and BUILDING TECHNOLOGY Anti-stripping agent for asphalt mixture using purified slowly cooled slag, method for producing the same, asphalt mixture containing the same, and method for producing the same
US11365318B2 (en) 2018-07-13 2022-06-21 Korea Institute Of Civil Engineering And Building Technology Anti-stripping agent for asphalt mixture including refined slowly-cooled slag, method for preparing the same, asphalt mixture including the same and method for preparing the same

Also Published As

Publication number Publication date
JP4937818B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
CN104039987B (en) Steel slag reduction method
CN106045301B (en) A method of producing mineral wool using converter molten state early period slag
CN101460638B (en) A method for stabilizing slag and novel materials produced thereby
JP4571818B2 (en) Method for reforming steelmaking slag
JP4937818B2 (en) Method of melt reforming steelmaking slag
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP4388482B2 (en) Slag processing method
JP4418489B2 (en) High temperature slag treatment method
WO2015131438A1 (en) Device for online modification of thermal-state smelting slag
JP3965139B2 (en) Method for reforming steelmaking slag
JP7310745B2 (en) Method for producing reforming converter slag and method for producing granular material for roadbed material
CN102251115A (en) Method for producing high-carbon manganese-iron alloy from high-alkalinity manganese ore
Brandaleze et al. Treatments and recycling of metallurgical slags
TWI843517B (en) Direct-reduction iron melting method, solid iron and method for producing solid iron, civil engineering and construction material and method for producing civil engineering and construction material, and direct-reduction iron melting system
JP4157331B2 (en) How to treat fly ash
JP5801752B2 (en) Sintered ore
JP2000226284A (en) Production of citric soluble potash fertilizer
JP4705483B2 (en) Method for producing molten iron
JP5381357B2 (en) Method of melt reforming steelmaking slag
WO2023204069A1 (en) Method for melting direct-reduced iron, solid iron and method for producing solid iron, and civil engineering and construction material and method for producing civil engineering and construction material
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
WO2023204063A1 (en) Method for melting direct reduction iron, solid iron and method for manufacturing solid iron, material for civil engineering and construction, method for producing material for civil engineering and construction, and system for melting direct reduction iron
JP4511909B2 (en) Steelmaking slag treatment method
TW202409300A (en) Methods for melting direct reduced iron, solid iron and methods for manufacturing solid iron, and materials for civil engineering and construction and methods for manufacturing materials for civil engineering and construction
JP4191866B2 (en) Manufacturing method of light artificial aggregate made from blast furnace slag and coal ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4937818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees