JP2008260704A - Method for removing palladium - Google Patents

Method for removing palladium Download PDF

Info

Publication number
JP2008260704A
JP2008260704A JP2007103489A JP2007103489A JP2008260704A JP 2008260704 A JP2008260704 A JP 2008260704A JP 2007103489 A JP2007103489 A JP 2007103489A JP 2007103489 A JP2007103489 A JP 2007103489A JP 2008260704 A JP2008260704 A JP 2008260704A
Authority
JP
Japan
Prior art keywords
palladium
reaction
solution
activated alumina
dichlorobis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103489A
Other languages
Japanese (ja)
Other versions
JP5240750B2 (en
Inventor
Hideo Sakka
秀雄 属
Yasuaki Hanazaki
保彰 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Organic Chemical Co Ltd
Original Assignee
Tosoh Organic Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Organic Chemical Co Ltd filed Critical Tosoh Organic Chemical Co Ltd
Priority to JP2007103489A priority Critical patent/JP5240750B2/en
Publication of JP2008260704A publication Critical patent/JP2008260704A/en
Application granted granted Critical
Publication of JP5240750B2 publication Critical patent/JP5240750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a commercial method for removing palladium, by which the palladium that is contained in an organic reaction product solution using a palladium catalyst and may cause problems in the fields of medicines, agrochemicals, electronic materials, and the like can be removed with an inexpensive adsorbent in a simple operation. <P>SOLUTION: This method for removing the palladium comprises treating a solution after an organic reaction using a palladium catalyst with activated alumina. Namely, the method for removing the palladium is characterized by treating the solution after the organic reaction using the catalyst containing a phosphorous ligand and a palladium compound with the activated alumina having a specific surface area of 50 to 400 m<SP>2</SP>per g. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パラジウム触媒を用いた有機反応後の溶液からパラジウムを除去する方法に関する。   The present invention relates to a method for removing palladium from a solution after an organic reaction using a palladium catalyst.

従来、リン系配位子とパラジウム化合物からなる触媒を用いた有機反応には、例えば鈴木−宮浦カップリング反応、薗頭クロスカップリング反応、ブッフバルド−ハートウィッグ反応、溝呂木−ヘック反応などがある。これらの反応は、最近では医薬品、農薬、電子材料などの分野で特に有用なトリアルキルホスフィン類とパラジウム化合物からなる触媒を用いたハロゲン化アリールとアミン類のアリールアミノ化反応として知られている。
これらの反応における課題は、目的とする反応生成物に触媒由来のパラジウムが含有することであり、医薬品、農薬、電子材料などの分野ではこのパラジウム含有量の削減が強く求められていた。
Conventional organic reactions using a catalyst comprising a phosphorus-based ligand and a palladium compound include, for example, Suzuki-Miyaura coupling reaction, Sonogashira cross-coupling reaction, Buchwald-Heartwig reaction, Mizorogi-Heck reaction, and the like. These reactions are recently known as arylamination reactions of aryl halides and amines using a catalyst comprising a trialkylphosphine and a palladium compound that are particularly useful in the fields of pharmaceuticals, agricultural chemicals, electronic materials and the like.
The problem in these reactions is that the catalyst-derived palladium is contained in the target reaction product, and reduction of this palladium content has been strongly demanded in the fields of pharmaceuticals, agricultural chemicals, electronic materials and the like.

このため、このパラジウムを除去するための方法が種々検討されており、例えばゼオライト、特に活性白土を用いて吸着除去する方法などが報告されている(例えば、特許文献1参照)。
しかしながら、このゼオライトを用いる除去方法では、吸着剤用として天然ゼオライトを用いた場合であっても比表面積を大きくするなどの処理が必要なために高価になること、また、処理前のパラジウム含有溶液に反応溶媒として用いた水または反応後の水洗などによる水分が混在する場合、パラジウムの除去率が著しく低下するなどの問題があった。このため、混在する水分を共沸溶媒で除去するなどの煩雑な操作が必要のため、経済性ならびに操作面において工業規模の製造プロセスとしては必ずしも未だ満足できるものではなかった。
特開2005−324078公報
For this reason, various methods for removing this palladium have been studied, and for example, a method of adsorbing and removing using zeolite, particularly activated clay, has been reported (see, for example, Patent Document 1).
However, in this removal method using zeolite, even when natural zeolite is used as an adsorbent, it is expensive due to the need for treatment such as increasing the specific surface area, and the palladium-containing solution before treatment In the case where water used as a reaction solvent or water after the reaction is mixed, there is a problem that the palladium removal rate is remarkably lowered. For this reason, complicated operations such as removal of mixed water with an azeotropic solvent are necessary, so that it is not always satisfactory as an industrial scale production process in terms of economy and operation.
JP 2005-324078 A

本発明は、反応生成物溶液中に水分が混在してもパラジウム除去率を低下させず、また工業的にも安価に使用できる吸着剤を用いた、反応生成物溶液からのパラジウムの除去方法を提供することにある。   The present invention provides a method for removing palladium from a reaction product solution using an adsorbent that does not decrease the palladium removal rate even when water is mixed in the reaction product solution and can be used industrially at a low cost. It is to provide.

本発明は、リン系配位子とパラジウム化合物を含む触媒を用いた有機反応後の溶液を、比表面積が1g当たり50〜400mである活性アルミナで処理することを特徴とするパラジウムの除去方法に関する。 The present invention relates to a method for removing palladium, comprising treating a solution after an organic reaction using a catalyst containing a phosphorus ligand and a palladium compound with activated alumina having a specific surface area of 50 to 400 m 2 per gram. About.

本発明によれば、パラジウム含有溶液を工業的に安価に使用できる活性アルミナで処理することにより、処理溶液中に水分が混在していても反応生成物に対するパラジウム量を10ppb以下まで削減した反応生成物を得ることができる。従って、本発明は、工業的に極めて有用な技術である。   According to the present invention, a palladium-containing solution is treated with activated alumina which can be used industrially at low cost, thereby reducing the amount of palladium to the reaction product to 10 ppb or less even when moisture is mixed in the treatment solution. You can get things. Therefore, the present invention is an industrially extremely useful technique.

以下、本発明について詳細に説明する。
本発明で用いられるパラジウムを除去するための溶液としては、リン系配位子とパラジウム化合物を含む触媒を用いた有機反応溶液であり、その反応としては、特に限定するものではない。この有機反応としては、例えば、有機ホウ素化合物とハロゲン化アリールを反応させる鈴木−宮浦クロスカップリング反応、末端アルキンとハロゲン化アリールを反応させる薗頭クロスカップリング反応、ハロゲン化アリールまたはビニルを末端オレフィンと反応させる溝呂木−ヘック反応、ハロゲン化アリールとアミン類を反応させるブッフバルド−ハートウィッグ反応、有機スズ化合物と有機ハロゲン化物を反応させる右田−小杉−スティルカップリング反応などが挙げられ、特に医薬品、農薬、電子材料などの分野で有用なトリアルキルホスフィン類とパラジウム化合物を含む触媒を用いたハロゲン化アリールとアミン類のアリールアミノ化反応が好適に適用される。
Hereinafter, the present invention will be described in detail.
The solution for removing palladium used in the present invention is an organic reaction solution using a catalyst containing a phosphorus-based ligand and a palladium compound, and the reaction is not particularly limited. Examples of this organic reaction include a Suzuki-Miyaura cross-coupling reaction in which an organoboron compound and an aryl halide are reacted, a Sonogashira cross-coupling reaction in which a terminal alkyne and an aryl halide are reacted, and an aryl halide or vinyl as a terminal olefin. And Mizorogi-Heck reaction, Buchwald-Hartwig reaction in which aryl halides and amines are reacted, and Mita-Kosugi-Still coupling reaction in which organotin compounds are reacted with organic halides. The arylamination reaction of aryl halides and amines using a catalyst containing a trialkylphosphine useful in the field of electronic materials and a palladium compound is preferably applied.

次に、触媒系を構成するリン系配位子としては、パラジウムに配位可能なリン原子を有するものであれば特に限定されず、例えばトリメチルホスフィン、トリエチルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリ−iso−ブチルホスフィン、トリ−tert−ブチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、1,1’−ビス(ジフェニルホスフィノ)フェロセンなどが挙げられる。中でも、トリメチルホスフィン、トリエチルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリ−iso−ブチルホスフィン、トリ−tert−ブチルホスフィン、トリシクロヘキシルホスフィンなどのトリアルキルホスフィン類が好ましく、特に好ましくはトリ−tert−ブチルホスフィンである。   Next, the phosphorus-based ligand constituting the catalyst system is not particularly limited as long as it has a phosphorus atom capable of coordinating with palladium. For example, trimethylphosphine, triethylphosphine, triisopropylphosphine, tri-n- Butylphosphine, tri-iso-butylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, triphenylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,1′-bis (diphenylphosphino) ferrocene, etc. Is mentioned. Among them, trialkylphosphines such as trimethylphosphine, triethylphosphine, triisopropylphosphine, tri-n-butylphosphine, tri-iso-butylphosphine, tri-tert-butylphosphine, and tricyclohexylphosphine are preferable, and tri-phosphine is particularly preferable. tert-Butylphosphine.

また、上記リン系配位子と共に使用されるパラジウム化合物しては、特に限定するものではないが、例えばヘキサクロロパラジウム(IV)酸ナトリウム四水和物、ヘキサクロロパラジウム(IV)酸カリウムなどの4価パラジウム化合物類、塩化パラジウム(II)、臭化パラジウム(II)、酢酸パラジウム(II)、パラジウムアセチルアセトナート(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロテトラアンミンパラジウム(II)、ジクロロ(シクロオクタ−1,5−ジエン)パラジウム(II)、パラジウムトリフルオロアセテート(II)などの2価パラジウム化合物類、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウムクロロホルム錯体(0)、テトラキス(トリフェニルホスフィン)パラジウム(0)などの0価パラジウム化合物類が挙げられる。   Moreover, it does not specifically limit as a palladium compound used with the said phosphorus-type ligand, For example, tetravalent, such as sodium hexachloro palladium (IV) acid tetrahydrate, hexachloro palladium (IV) acid potassium, etc. Palladium compounds, palladium chloride (II), palladium bromide (II), palladium acetate (II), palladium acetylacetonate (II), dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), Divalent palladium compounds such as dichlorobis (triphenylphosphine) palladium (II), dichlorotetraamminepalladium (II), dichloro (cycloocta-1,5-diene) palladium (II), palladium trifluoroacetate (II), tris Dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium chloroform complex (0), zero-valent palladium compounds such as tetrakis (triphenylphosphine) palladium (0) and the like.

このリン系配位子とパラジウム化合物を含む触媒を用いた有機反応で使用される反応溶媒としては、特に限定するものではないが、ペンタン、ヘキサン、オクタン、シクロヘキサンなどの脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフランなどのエーテル系溶媒、酢酸メチル、酢酸エチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒などが挙げられ、これら反応溶媒は単独若しくは混合して用いても差し支えない。使用される反応溶媒の使用量としては、特に限定するものではないが、反応で得られる生成物に対して、通常、1〜200重量倍、好ましくは5〜100重量倍が選ばれる。   The reaction solvent used in the organic reaction using the catalyst containing the phosphorus ligand and the palladium compound is not particularly limited, but is an aliphatic hydrocarbon solvent such as pentane, hexane, octane, cyclohexane, Aromatic hydrocarbon solvents such as benzene, toluene and xylene, ether solvents such as diethyl ether, diisopropyl ether and tetrahydrofuran, ester solvents such as methyl acetate and ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, acetonitrile, N , N-dimethylformamide, aprotic polar solvents such as dimethyl sulfoxide, and the like, and these reaction solvents may be used alone or in combination. The amount of the reaction solvent to be used is not particularly limited, but is usually 1 to 200 times by weight, preferably 5 to 100 times by weight with respect to the product obtained by the reaction.

なお、ハロゲン化アリールとアミン類とのアリールアミノ化反応において、反応中の雰囲気は、窒素、アルゴンなどの不活性ガス雰囲気下であることが好ましく、窒素が最も好ましい。また、常圧下もしくは加圧下いずれでも行うことができる。
また、反応は、好ましくは−20〜250℃、より好ましくは50〜150℃に加熱して反応させることが好ましい。
さらに、反応時間は、用いる原料化合物や反応温度などに依存して変化するため一概に言えないが、通常、1〜48時間である。
In the arylamination reaction between an aryl halide and an amine, the atmosphere during the reaction is preferably an inert gas atmosphere such as nitrogen or argon, and most preferably nitrogen. Moreover, it can carry out under normal pressure or under pressure.
The reaction is preferably carried out by heating to -20 to 250 ° C, more preferably 50 to 150 ° C.
Furthermore, the reaction time varies depending on the raw material compound used, the reaction temperature, and the like, and thus cannot be generally stated, but is usually 1 to 48 hours.

以上のリン系配位子とパラジウム化合物を含む触媒を用いた有機反応液中のパラジウム含有量は、反応で使用されるパラジウム化合物量にもよるが、通常、0.1ppm〜5重量%の範囲である。なお、このパラジウム処理前の溶液には、水洗、分液後の水分が混在していても差し支えない。   The palladium content in the organic reaction liquid using the catalyst containing the phosphorus-based ligand and the palladium compound is usually in the range of 0.1 ppm to 5% by weight, although it depends on the amount of the palladium compound used in the reaction. It is. The solution before the palladium treatment may contain water after washing and liquid separation.

なお、得られる有機反応液は、反応終了後、10〜90℃まで冷却し、水を反応溶液に対し1〜200重量倍程度加えて、析出している塩を溶解し、分液により反応液を分取し、この反応液にパラジウム除去用の活性アルミナを添加して、パラジウムの除去を行う。   The obtained organic reaction liquid is cooled to 10 to 90 ° C. after completion of the reaction, water is added about 1 to 200 times by weight to the reaction solution, the precipitated salt is dissolved, and the reaction liquid is separated by liquid separation. The activated alumina for removing palladium is added to the reaction solution to remove palladium.

ここで、本発明のパラジウム除去で使用する活性アルミナは特に限定するものではないが、通常、1g当たり50〜400m、好ましくは100〜300mの比表面積を有するものであれば問題ない。1g当たり50m未満の比表面積を有するアルミナの場合、パラジウムの除去率が低下する傾向にあり、一方、400mを超える比表面積を有するアルミナの場合、生成物の収率が低下するため、好ましくない
また、活性アルミナは、表面の処理状態によって酸性、中性、塩基性タイプに分かれるが、どのタイプのものを用いてもよく、通常、工業的に使用される安価な塩基性タイプが選ばれる。
活性アルミナの使用量としては、特に限定するものではないが、処理する反応液に存在する反応生成物1重量部に対して、通常、0.01〜100重量部、好ましくは0.2〜30重量部使用される。0.01重量部未満では、パラジウムの除去率が低下し、一方、100重量部を超えると生成物の収率が低下するため、好ましくない。
Here, although not particularly limited activated alumina for use in palladium removal of the present invention, usually, 1g per 50 to 400 m 2, preferably no problem as long as it has a specific surface area of 100 to 300 m 2. In the case of alumina having a specific surface area of less than 50 m 2 per gram, the palladium removal rate tends to decrease, whereas in the case of alumina having a specific surface area exceeding 400 m 2 , the yield of the product is decreased, which is preferable. In addition, activated alumina is divided into acidic, neutral, and basic types depending on the surface treatment state, but any type may be used, and an inexpensive basic type that is usually used industrially is selected. .
The amount of activated alumina used is not particularly limited, but is usually 0.01 to 100 parts by weight, preferably 0.2 to 30 parts per 1 part by weight of the reaction product present in the reaction solution to be treated. Used by weight. If the amount is less than 0.01 parts by weight, the palladium removal rate decreases. On the other hand, if it exceeds 100 parts by weight, the yield of the product decreases, which is not preferable.

本発明の方法でパラジウムを除去する方法としては、通常、活性アルミナとパラジウム含有溶液を混合し、所定時間接触させた後、パラジウムが吸着された活性アルミナをろ過、遠心分離などの一般的な分離手段で分離する方法、活性アルミナが充填された塔内にパラジウム含有溶液を通液するなどの方法が挙げられる。これらパラジウムの除去における処理温度としては、特に限定するものではないが、通常、−30〜200℃であり、好ましくは0〜150℃である。処理時間は、特に限定するものではないが、通常、0.1〜48時間、好ましくは0.5〜10時間である。なお、このパラジウム除去処理は、活性アルミナ中のパラジウムが飽和に達するまで活性アルミナを繰り返し使用しても差し支えない。   As a method for removing palladium by the method of the present invention, generally, activated alumina and a palladium-containing solution are mixed and contacted for a predetermined time, and then the activated alumina on which palladium is adsorbed is filtered, centrifuged, or the like. Examples thereof include a method of separating by means, and a method of passing a palladium-containing solution into a column packed with activated alumina. Although it does not specifically limit as the processing temperature in the removal of these palladium, Usually, it is -30-200 degreeC, Preferably it is 0-150 degreeC. Although processing time is not specifically limited, Usually, it is 0.1 to 48 hours, Preferably it is 0.5 to 10 hours. The palladium removal treatment may be repeated using activated alumina until the palladium in the activated alumina reaches saturation.

以下、本発明を実施例により具体的に説明するが、本発明は実施例のみに限定されるものではない。
なお、反応生成物に含有されるパラジウムの含有量は、採取した試料溶液を溶媒除去した後、その残渣を硫酸と硝酸で湿式分解し、メスアップ後、パラジウム(以下、Pdと略記する。)の含有量が1ppm以上の場合はICP−Atomic Emission Spectrometry(以下、ICP−AESと略記する。)で分析し、パラジウム含有量が1ppm以下の場合はICP−Mass Spectrometry(以下、ICP−MSと略記する。)で分析した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to an Example.
The content of palladium contained in the reaction product was determined by removing the solvent from the collected sample solution, wet-decomposing the residue with sulfuric acid and nitric acid, measuring the volume, and then palladium (hereinafter abbreviated as Pd). When the content of Pb is 1 ppm or more, it is analyzed by ICP-Atomic Emission Spectrometry (hereinafter abbreviated as “ICP-AES”). ).

調製例1
温度計、冷却管を備えた1.0lの四つ口フラスコに、4,4’−ジブロモビフェニル 25.0g(80mmol)、ジフェニルアミン 27.7g(163mmol)、ナトリウム−tert−ブトキシド 23.1g(240mmol)、o−キシレン 519.5gを仕込み、系内を撹拌しながら、室温下、窒素置換を行った。ついで、酢酸Pd18mg(0.08mmol)、トリ(tert−ブチル)ホスフィン 49mg(0.24mmol)を予め少量のo−キシレン中で加熱攪拌して調製しておいた触媒溶液を、先の四つ口フラスコに加え、内温を約130℃まで加熱し、3時間反応を行った。反応終了後、60℃まで冷却し、水148gを加えて析出している塩を溶解し、分液により反応液 566gを得た。溶液中のテトラ−N−フェニルベンジジンの含有量は38.7gであり、Pdの含有量はICP−AESで分析した結果、テトラ−N−フェニルベンジジンに対して79ppmであった。なお、この得られた反応液中には水分の混在が確認された。
以下、この得られたテトラ−N−フェニルベンジジン反応液を用いてPdの除去を行った。
Preparation Example 1
In a 1.0 l four-necked flask equipped with a thermometer and a condenser tube, 25.0 g (80 mmol) of 4,4′-dibromobiphenyl, 27.7 g (163 mmol) of diphenylamine, 23.1 g (240 mmol) of sodium tert-butoxide ) And 519.5 g of o-xylene were charged, and nitrogen substitution was performed at room temperature while stirring the system. Next, a catalyst solution prepared by previously stirring 18 mg (0.08 mmol) of Pd acetate and 49 mg (0.24 mmol) of tri (tert-butyl) phosphine in a small amount of o-xylene in advance was added to the above four necks. In addition to the flask, the internal temperature was heated to about 130 ° C., and the reaction was carried out for 3 hours. After completion of the reaction, the reaction mixture was cooled to 60 ° C., 148 g of water was added to dissolve the precipitated salt, and 566 g of a reaction solution was obtained by liquid separation. The content of tetra-N-phenylbenzidine in the solution was 38.7 g, and the content of Pd was analyzed by ICP-AES. As a result, it was 79 ppm with respect to tetra-N-phenylbenzidine. In addition, mixing of moisture was confirmed in the obtained reaction solution.
Hereinafter, Pd was removed using the obtained tetra-N-phenylbenzidine reaction solution.

実施例1
温度計、冷却管を備えた100mlの四つ口フラスコに、調製例1で得られたテトラ−N−フェニルベンジジン含有溶液 50gと1g当たり250mの比表面積を有する塩基性タイプの活性アルミナ(和光純薬工業社製、クロマトグラフ用) 10gを仕込み、内温60℃で1時間撹拌した。その後、活性アルミナを減圧濾過し、ろ別した活性アルミナを適当量のo−キシレンで洗浄した後、このろ液を濃縮乾固し、ほぼ定量的にテトラ−N−フェニルベンジジンを回収した。この濃縮乾固後の残渣について、ICP−MS分析を行った結果、Pdの含有量は10ppb以下であり、Pdの除去率は99.9%以上であった。
Example 1
In a 100 ml four-necked flask equipped with a thermometer and a condenser tube, 50 g of the tetra-N-phenylbenzidine-containing solution obtained in Preparation Example 1 and a basic type activated alumina having a specific surface area of 250 m 2 per g (sum) 10 g of Koto Pure Chemical Industries, Ltd. (for chromatograph) was charged and stirred for 1 hour at an internal temperature of 60 ° C. Thereafter, the activated alumina was filtered under reduced pressure, and the filtered activated alumina was washed with an appropriate amount of o-xylene, and then the filtrate was concentrated to dryness to recover tetra-N-phenylbenzidine almost quantitatively. As a result of ICP-MS analysis of the residue after concentration to dryness, the Pd content was 10 ppb or less, and the Pd removal rate was 99.9% or more.

実施例2〜4
実施例1と同様な容器を用い、活性アルミナの種類および処理条件を表1に示した条件に変更した以外は実施例1と同様に行った。結果を、表1に示す。
Examples 2-4
The same container as in Example 1 was used, and the same procedure as in Example 1 was performed except that the type of activated alumina and the treatment conditions were changed to the conditions shown in Table 1. The results are shown in Table 1.

Figure 2008260704
Figure 2008260704

なお、表1の活性アルミナのうち、塩基性は和光純薬工業社製のクロマトグラフ用、酸性は和光純薬工業社製のスーパーI(酸性)、中性は和光純薬工業社製のスーパーI(塩基性)を用いた。   Of the activated aluminas in Table 1, basic is for chromatographs manufactured by Wako Pure Chemical Industries, acid is super I (acidic) manufactured by Wako Pure Chemical Industries, and neutral is super manufactured by Wako Pure Chemical Industries. I (basic) was used.

実施例5
直径35mmのガラス製カラムに、1g当たり250mの比表面積を有する塩基性タイプの活性アルミナ(和光純薬工業社製、クロマトグラフ用) 20gを充填し、次に実施例1で得たテトラ−N−フェニルベンジジン含有溶液 50gを室温下、通液した後、カラム中に残存するテトラ−N−フェニルベンジジンを適当量のo−キシレンで洗浄した。カラム処理して得たテトラ−N−フェニルベンジジン溶液を濃縮乾固し、ほぼ定量的にテトラ−N−フェニルベンジジンを回収した。この濃縮乾固後の残渣について、ICP−MS分析を行った結果、Pdの含有量は10ppb以下であり、Pdの除去率は99.9%以上であった。
Example 5
A glass column having a diameter of 35 mm was charged with 20 g of basic type activated alumina having a specific surface area of 250 m 2 per gram (manufactured by Wako Pure Chemical Industries, Ltd., for chromatograph). After passing 50 g of an N-phenylbenzidine-containing solution at room temperature, tetra-N-phenylbenzidine remaining in the column was washed with an appropriate amount of o-xylene. The tetra-N-phenylbenzidine solution obtained by column treatment was concentrated to dryness, and tetra-N-phenylbenzidine was recovered almost quantitatively. As a result of ICP-MS analysis of the residue after concentration to dryness, the Pd content was 10 ppb or less and the Pd removal rate was 99.9% or more.

比較例1
温度計、冷却管を備えた100mlの四つ口フラスコに、調製例1で得られたテトラ−N−フェニルベンジジン含有溶液 50gと活性白土(和光純薬工業社製) 10gを仕込み、内温60℃で1時間撹拌した。その後、活性アルミナを減圧濾過し、ろ別した活性アルミナを適当量のo−キシレンで洗浄した後、このろ液を濃縮乾固し、ほぼ定量的にテトラ−N−フェニルベンジジンを回収した。この濃縮乾固後の残渣について、ICP−AES分析を行った結果、Pdの含有量は20ppmであり、Pdの除去率は74.7%であった。
Comparative Example 1
A 100 ml four-necked flask equipped with a thermometer and a condenser tube was charged with 50 g of the tetra-N-phenylbenzidine-containing solution obtained in Preparation Example 1 and 10 g of activated clay (manufactured by Wako Pure Chemical Industries, Ltd.). Stir for 1 hour at ° C. Thereafter, the activated alumina was filtered under reduced pressure, and the filtered activated alumina was washed with an appropriate amount of o-xylene, and then the filtrate was concentrated to dryness to recover tetra-N-phenylbenzidine almost quantitatively. As a result of ICP-AES analysis of the residue after concentration to dryness, the Pd content was 20 ppm and the Pd removal rate was 74.7%.

比較例2〜4
比較例1と同様な容器を用い、ゼオライトの種類および処理条件を表1に示した条件に変更した以外は比較例1と同様に行った。結果を、表2に示す。
Comparative Examples 2-4
The same container as in Comparative Example 1 was used, and the same procedure as in Comparative Example 1 was performed except that the type of zeolite and the treatment conditions were changed to the conditions shown in Table 1. The results are shown in Table 2.

Figure 2008260704
Figure 2008260704

表2中の吸着剤は、以下のとおりである。
Y型ゼオライト:東ソー社製、320HOA
L型ゼオライト:東ソー社製、500−KOH
ZSM−5 :東ソー社製、ZSM−5
The adsorbents in Table 2 are as follows.
Y-type zeolite: manufactured by Tosoh Corporation, 320HOA
L-type zeolite: manufactured by Tosoh Corporation, 500-KOH
ZSM-5: manufactured by Tosoh Corporation, ZSM-5

比較例5
直径35mmのガラス製カラムに、活性白土 20gを充填し、次に調製例1で得たテトラ−N−フェニルベンジジン含有溶液 50gを室温下、通液した後、カラム中に残存するテトラ−N−フェニルベンジジンを適当量のo−キシレンで洗浄した。カラム処理して得たテトラ−N−フェニルベンジジン溶液を濃縮乾固し、ほぼ定量的にテトラ−N−フェニルベンジジンを回収した。この濃縮乾固後の残渣について、ICP−AES分析を行った結果、Pdの含有量は25ppmであり、Pdの除去率は68.4%であった。
Comparative Example 5
A glass column having a diameter of 35 mm was filled with 20 g of activated clay, and then 50 g of the tetra-N-phenylbenzidine-containing solution obtained in Preparation Example 1 was passed at room temperature, and then remained in the column. Phenylbenzidine was washed with an appropriate amount of o-xylene. The tetra-N-phenylbenzidine solution obtained by column treatment was concentrated to dryness, and tetra-N-phenylbenzidine was recovered almost quantitatively. As a result of ICP-AES analysis of the residue after concentration and drying, the Pd content was 25 ppm and the Pd removal rate was 68.4%.

比較例6
温度計、冷却管を備えた100mlの四つ口フラスコに、調製例1で得られたテトラ−N−フェニルベンジジン含有溶液 50gと1g当たり20mの比表面積を有する塩基性タイプのアルミナ(和光純薬工業社製) 10gを仕込み、内温60℃で1時間撹拌した。その後、アルミナを減圧濾過し、ろ別したアルミナを適当量のo−キシレンで洗浄した後、このろ液を濃縮乾固し、ほぼ定量的にテトラ−N−フェニルベンジジンを回収した。この濃縮乾固後の残渣について、ICP−AES分析を行った結果、Pdの含有量は66ppmであり、Pdの除去率は16.5%であった。
Comparative Example 6
In a 100 ml four-necked flask equipped with a thermometer and a condenser tube, 50 g of the tetra-N-phenylbenzidine-containing solution obtained in Preparation Example 1 and a basic type alumina having a specific surface area of 20 m 2 per g (Wako Pure) (Manufactured by Yakuhin Kogyo Co., Ltd.) Thereafter, the alumina was filtered under reduced pressure, and the filtered alumina was washed with an appropriate amount of o-xylene, and then the filtrate was concentrated to dryness to recover tetra-N-phenylbenzidine almost quantitatively. As a result of ICP-AES analysis of the residue after concentration to dryness, the Pd content was 66 ppm and the Pd removal rate was 16.5%.

本発明のパラジウムの除去方法は、リン系配位子とパラジウム化合物を含む触媒を用いた有機反応、例えば有機ホウ素化合物とハロゲン化アリールを反応させる鈴木−宮浦クロスカップリング反応、末端アルキンとハロゲン化アリールを反応させる薗頭クロスカップリング反応、ハロゲン化アリールまたはビニルを末端オレフィンと反応させる溝呂木−ヘック反応、ハロゲン化アリールとアミン類を反応させるブッフバルド−ハートウィッグ反応、有機スズ化合物と有機ハロゲン化物を反応させる右田−小杉−スティルカップリング反応などにおいて、パラジウムの除去として有用である。   The palladium removal method of the present invention includes an organic reaction using a catalyst containing a phosphorus-based ligand and a palladium compound, such as a Suzuki-Miyaura cross-coupling reaction in which an organoboron compound and an aryl halide are reacted, a terminal alkyne and a halogenation. Sonogashira cross coupling reaction for reacting aryl, Mizorogi-Heck reaction for reacting aryl halide or vinyl with terminal olefin, Buchwald-Heartwig reaction for reacting aryl halide with amines, organotin compound and organic halide It is useful for removing palladium in the reaction of right rice-Kosugi-still coupling.

Claims (6)

リン系配位子とパラジウム化合物を含む触媒を用いた有機反応後の溶液を、比表面積が1g当たり50〜400mである活性アルミナで処理することを特徴とするパラジウムの除去方法。 A method for removing palladium, comprising treating a solution after an organic reaction using a catalyst containing a phosphorus ligand and a palladium compound with activated alumina having a specific surface area of 50 to 400 m 2 per gram. リン系配位子が、トリアルキルホスフィン類である請求項1記載のパラジウムの除去方法。   The method for removing palladium according to claim 1, wherein the phosphorus ligand is a trialkylphosphine. リン系配位子が、トリ−tert−ブチルホスフィンである請求項1または2記載のパラジウムの除去方法。   The method for removing palladium according to claim 1 or 2, wherein the phosphorus-based ligand is tri-tert-butylphosphine. パラジウム化合物が、ヘキサクロロパラジウム(IV)酸ナトリウム四水和物、もしくはヘキサクロロパラジウム(IV)酸カリウムからなる4価パラジウム化合物類;塩化パラジウム(II)、臭化パラジウム(II)、酢酸パラジウム(II)、パラジウムアセチルアセトナート(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロテトラアンミンパラジウム(II)、ジクロロ(シクロオクタ−1,5−ジエン)パラジウム(II)、もしくはパラジウムトリフルオロアセテート(II)からなる2価パラジウム化合物類;トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウムクロロホルム錯体(0)、もしくはテトラキス(トリフェニルホスフィン)パラジウム(0)からなる0価パラジウム化合物類の群から選ばれた少なくとも1種である請求項1記載のパラジウムの除去方法。   Tetravalent palladium compounds in which the palladium compound is sodium hexachloropalladium (IV) tetrahydrate or potassium hexachloropalladium (IV); palladium (II) chloride, palladium (II) bromide, palladium (II) acetate , Palladium acetylacetonate (II), dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (triphenylphosphine) palladium (II), dichlorotetraamminepalladium (II), dichloro (cycloocta- 1,5-diene) palladium (II) or divalent palladium compounds consisting of palladium trifluoroacetate (II); tris (dibenzylideneacetone) dipalladium (0), tris (di 2. The method for removing palladium according to claim 1, which is at least one selected from the group of zero-valent palladium compounds consisting of benzylideneacetone) dipalladium chloroform complex (0) or tetrakis (triphenylphosphine) palladium (0). . 有機反応が、ハロゲン化アリールとアミン類との反応である請求項1〜4いずれかに記載のパラジウムの除去方法。   The method for removing palladium according to any one of claims 1 to 4, wherein the organic reaction is a reaction between an aryl halide and an amine. 活性アルミナの添加量が、反応溶液中の反応生成物1重量部に対し0.01〜100重量部である請求項1〜5いずれかに記載のパラジウムの除去方法。
The method for removing palladium according to any one of claims 1 to 5, wherein the amount of activated alumina added is 0.01 to 100 parts by weight with respect to 1 part by weight of the reaction product in the reaction solution.
JP2007103489A 2007-04-11 2007-04-11 How to remove palladium Active JP5240750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103489A JP5240750B2 (en) 2007-04-11 2007-04-11 How to remove palladium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103489A JP5240750B2 (en) 2007-04-11 2007-04-11 How to remove palladium

Publications (2)

Publication Number Publication Date
JP2008260704A true JP2008260704A (en) 2008-10-30
JP5240750B2 JP5240750B2 (en) 2013-07-17

Family

ID=39983463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103489A Active JP5240750B2 (en) 2007-04-11 2007-04-11 How to remove palladium

Country Status (1)

Country Link
JP (1) JP5240750B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041919A (en) * 2009-08-21 2011-03-03 Tosoh Corp Method of removing dissolved palladium
JP2013091057A (en) * 2011-10-03 2013-05-16 Tosoh Corp Palladium compound adsorbent and application thereof
JP2015074721A (en) * 2013-10-09 2015-04-20 東ソー株式会社 Method for producing arylamine compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054002A (en) * 1991-01-31 1993-01-14 Sumitomo Metal Mining Co Ltd Method for regenerating extract organic deteriorated in properties
JPH05132432A (en) * 1991-03-28 1993-05-28 Dow Chem Co:The Method for production of vinyl unsaturated compound
JPH11100355A (en) * 1997-09-30 1999-04-13 Tosoh Corp Production of n-arylamines
JP2004520322A (en) * 2000-12-27 2004-07-08 ロディア・ポリアミド・インターミーディエッツ Method for producing carboxylic acid by carbonylation using palladium
JP2005324078A (en) * 2004-05-12 2005-11-24 Sumitomo Chemical Co Ltd Palladium removing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054002A (en) * 1991-01-31 1993-01-14 Sumitomo Metal Mining Co Ltd Method for regenerating extract organic deteriorated in properties
JPH05132432A (en) * 1991-03-28 1993-05-28 Dow Chem Co:The Method for production of vinyl unsaturated compound
JPH11100355A (en) * 1997-09-30 1999-04-13 Tosoh Corp Production of n-arylamines
JP2004520322A (en) * 2000-12-27 2004-07-08 ロディア・ポリアミド・インターミーディエッツ Method for producing carboxylic acid by carbonylation using palladium
JP2005324078A (en) * 2004-05-12 2005-11-24 Sumitomo Chemical Co Ltd Palladium removing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013007483; アルドリッチ ファインケミカル カタログ/ハンドブック , 1991, p.47-48 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041919A (en) * 2009-08-21 2011-03-03 Tosoh Corp Method of removing dissolved palladium
JP2013091057A (en) * 2011-10-03 2013-05-16 Tosoh Corp Palladium compound adsorbent and application thereof
JP2015074721A (en) * 2013-10-09 2015-04-20 東ソー株式会社 Method for producing arylamine compound

Also Published As

Publication number Publication date
JP5240750B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
KR970007425B1 (en) Method for producing hydrogen peroxide
JP2009538293A (en) Recovery of dimethylformamide and other solvents from the process stream of trichlorogalactosucrose production
JP7085537B2 (en) Method for producing hexafluoro-1,3-butadiene
JP2014208786A (en) Method for purifying polyethylene glycol having one amino group
JPS6075530A (en) Novel method for separating and purifying metallic element
CN115340558B (en) Fubi tavir
JP5240750B2 (en) How to remove palladium
JPH0145457B2 (en)
JP5344684B2 (en) Aromatic halide dehalogenation method
US20060252938A1 (en) Process for the separation of palladium catalyst from crude reaction mixtures of aryl acetic acids obtained by carbonylation
CN108211423B (en) Method for adsorbing and separating phenolic compounds in oil by using biodegradable compound as adsorbent
JP6061335B2 (en) Solvent extraction separation of osmium, iridium, platinum, gold or mercury from hydrochloric acid solution
JP5114704B2 (en) Method for separating metal and method for recovering metal
EP2358470B1 (en) Process for preparing cationic ruthenium complexes
TWI667203B (en) Manufacturing method of zinc halide aqueous solution
JP2013032563A (en) Selective extractant of metal
KR101827034B1 (en) Process for preparing adamantane polyol
Matsuda et al. Improved adsorption capacity of EDTA-type chitosan for separation of rare earths
JPH069438A (en) Separation of m-xylene
JP7485492B2 (en) Process for removing arsine from hydrocarbon mixtures
JPH0639477B2 (en) Method for refining organometallic compound for epitaxial growth
AU2021238988B2 (en) A process for removing arsine from hydrocarbon mixture
JP2879648B2 (en) Selective metal ion separating agent containing kempimide derivative and method for treating aqueous solution containing metal ions using selective ion separating agent
KR20110009045A (en) An adsorptive purification method for iodixanol
JP4821239B2 (en) Method for removing arsenic from germanium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5240750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250