JP2008259966A - High pressure fluidized bed type aerobic waste water treatment equipment - Google Patents

High pressure fluidized bed type aerobic waste water treatment equipment Download PDF

Info

Publication number
JP2008259966A
JP2008259966A JP2007104867A JP2007104867A JP2008259966A JP 2008259966 A JP2008259966 A JP 2008259966A JP 2007104867 A JP2007104867 A JP 2007104867A JP 2007104867 A JP2007104867 A JP 2007104867A JP 2008259966 A JP2008259966 A JP 2008259966A
Authority
JP
Japan
Prior art keywords
gas
reactor
sand
cylinder
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104867A
Other languages
Japanese (ja)
Inventor
Koji Takewaki
幸治 竹脇
Kenji Sato
健治 佐藤
Michitomo Sakai
通友 酒井
Toshi Otsuki
利 大月
Koichi Mogi
浩一 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007104867A priority Critical patent/JP2008259966A/en
Publication of JP2008259966A publication Critical patent/JP2008259966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide high pressure fluidized bed type aerobic waste water treatment equipment in which clogging of a separator part with sand can be prevented. <P>SOLUTION: The high pressure fluidized bed aerobic waste water treatment equipment has inside a reactor body 14 into which waste water is introduced: a reactor part 11 equipped with an inner tube 15 for air lift; and the separator part 12 disposed above the reactor part 11 and separating waste water, sand and gas, wherein the separator part 12 is equipped with a gas collection tube 21 located above the inner tube 15 and collecting gas, and a sedimentation layer 24 for subjecting waste water and sand made to overflow from the gas collection tube to sedimentation is formed between the gas collection tube 21 and the upper reactor body 14, and further, a gap 29 for returning the sand subjected to the sedimentation in the sedimentation layer 24 to the reactor part 11 is formed between the reactor body 14 and the gas collection tube 21. The high pressure fluidized bed aerobic waste water treatment equipment is characterized in that the reactor body 14 or the gas collection tube 21 is equipped with a deposition preventing means 30 destroying the lump of the sand clogging the gap 29, so that the sand is caused to flow down to the reactor part 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物が含まれる排水を、微生物が担持された砂を反応器内で循環させつつ好気性処理する好気性排水処理設備に係り、特に溶存酸素濃度を高めるべく反応器内を高圧型とした高圧流動床式好気性排水処理設備に関するものである。   The present invention relates to an aerobic wastewater treatment facility for aerobically treating wastewater containing organic matter while circulating sand carrying microorganisms in the reactor, and in particular, a high-pressure type inside the reactor to increase the concentration of dissolved oxygen. This relates to a high pressure fluidized bed aerobic wastewater treatment facility.

従来の高圧流動床式好気性排水処理設備を図2により説明する。   A conventional high-pressure fluidized bed aerobic wastewater treatment facility will be described with reference to FIG.

反応器10は、排水中の有機物を砂が担持された微生物で好気性処理するリアクター部11と、リアクター部11からの排水と砂と空気を含むガスを分離するセパレータ部12とから構成される。   The reactor 10 includes a reactor unit 11 that performs aerobic treatment of organic substances in waste water with microorganisms on which sand is supported, and a separator unit 12 that separates waste water from the reactor unit 11 and gas containing sand and air. .

リアクター部11は、排水流入管13が接続されたリアクター本体14と内筒15とからなり、その内筒15の下部に圧縮空気ライン16から圧縮空気を吹き込む散気管17が設けられ、また後述するように反応器10から排気される排ガスを吹き込むエアリフト用ガス吹込管18が設けられて構成される。   The reactor unit 11 includes a reactor main body 14 and an inner cylinder 15 to which a drainage inflow pipe 13 is connected, and a diffuser pipe 17 for blowing compressed air from a compressed air line 16 is provided below the inner cylinder 15 and will be described later. Thus, an air lift gas blowing pipe 18 for blowing the exhaust gas exhausted from the reactor 10 is provided.

このリアクター部11では、排水が排水流入管13からリアクター本体14と内筒15間に供給されて、セパレータ部12からの砂と共に図示の矢印のように降下し、内筒15内で散気管17からの圧縮空気とガス吹込管18からのガスでエアリフトされて内筒15内を上昇し、その間に砂に担持された微生物で好気性処理がなされる。   In the reactor unit 11, wastewater is supplied from the drainage inflow pipe 13 between the reactor main body 14 and the inner cylinder 15, and descends along with sand from the separator unit 12 as shown in the figure, and the diffuser pipe 17 in the inner cylinder 15. The air is lifted by the compressed air from the gas and the gas from the gas blowing pipe 18 and ascends in the inner cylinder 15, and the aerobic treatment is performed with the microorganisms supported on the sand during that time.

セパレータ部12は、リアクター本体14の上部を拡径した筒部20内に内筒15を上昇した砂を含む排水とガスとを収集してガスを分離する逆ロート状のガス収集筒21を設け、その筒部20の上部と外周とを覆いその筒部20からオーバーフローした排水を排出管22から排出するガス分離キャップ23で構成され、さらにガス収集筒21と筒部20間に形成される沈降層24内に、ガス収集筒21のガスをガス分離キャップ23に設けたガス排出管25に案内すると共にガス収集筒21からオーバーフローした排水中の砂の分離をさらに促進するための逆ロート状の沈降筒26が適宜設けられて構成される。   The separator 12 is provided with a reverse funnel-shaped gas collecting cylinder 21 that collects the waste water containing the sand rising the inner cylinder 15 and the gas and separates the gas in the cylindrical part 20 whose diameter of the upper part of the reactor main body 14 is expanded. And a gas separation cap 23 that covers the upper portion and the outer periphery of the cylindrical portion 20 and discharges the waste water overflowing from the cylindrical portion 20 from the discharge pipe 22, and further, a sediment formed between the gas collecting cylinder 21 and the cylindrical portion 20. In the layer 24, the gas in the gas collection cylinder 21 is guided to a gas discharge pipe 25 provided in the gas separation cap 23, and the reverse funnel shape for further promoting the separation of the sand in the waste water overflowing from the gas collection cylinder 21 is provided. A settling cylinder 26 is provided as appropriate.

またガス排出管25には、排出される排ガスを、循環ポンプ27にてガス吹込管18に戻す循環ライン28が設けられる。   Further, the gas discharge pipe 25 is provided with a circulation line 28 for returning exhaust gas discharged to the gas blowing pipe 18 by a circulation pump 27.

このセパレータ部12では、内筒15から好気性処理がなされた砂を含む排水とガスとが上向流で上昇し、ガス収集筒21で捕集されガスがガス分離キャップ23の気相部に放出されてガス排出管25に放出され、排水と砂とがガス収集筒21からオーバーフローして沈降層24に流れ、沈降筒26で更に固液分離と気液分離がなされ、固液分離がなされた砂は、ガス収集筒21と筒部20の間隙29を通ってリアクター本体14と内筒15間に流下し、排水は筒部20をオーバーフローして排水管22に排水されるようになっている。   In this separator 12, the wastewater containing sand and gas that has been subjected to aerobic treatment from the inner cylinder 15 rises in an upward flow, and is collected by the gas collection cylinder 21, and the gas enters the gas phase part of the gas separation cap 23. The gas is discharged into the gas discharge pipe 25, and the waste water and sand overflow from the gas collection cylinder 21 and flow into the sedimentation layer 24. Further, solid-liquid separation and gas-liquid separation are performed in the sedimentation cylinder 26, and solid-liquid separation is performed. The sand flows down between the reactor main body 14 and the inner cylinder 15 through the gap 29 between the gas collecting cylinder 21 and the cylinder portion 20, and the drainage overflows the cylinder portion 20 and is drained to the drain pipe 22. Yes.

この高圧流動床式好気性排水処理設備では、砂を内部循環させながら、砂の表面に高濃度に微生物を増殖させることにより、通常の好気性排水処理設備に比べて、高負荷での処理が可能となっている。また高圧にすることで、溶存酸素濃度を高めることができ、汚泥(微生物の増殖による産物)を減らすことができるという利点がある。   In this high-pressure fluidized bed aerobic wastewater treatment facility, microorganisms are propagated at a high concentration on the surface of the sand while circulating the sand internally. It is possible. Further, by increasing the pressure, there is an advantage that the dissolved oxygen concentration can be increased, and sludge (product due to the growth of microorganisms) can be reduced.

特開2002−239575号公報JP 2002-239575 A 特開昭54−81660号公報JP 54-81660 A

ところで、高圧流動床式好気性排水処理設備では、微生物を担持させた砂を循環させるために、内筒15に、空気と反応器10から排出された排ガスを吹き込んでエアリフト構造とし、セパレータ部12の沈降層24では、砂とガスと排水を分離し、分離した砂をガス収集筒21と筒部20の間隙29を通してリアクター本体14と内筒15間のリアクター部11に戻すようにしているが、微生物を担持した砂は、バイオフィルムにより付着し易くなっており、この間隙29を閉塞する問題がある。   By the way, in the high pressure fluidized bed aerobic wastewater treatment facility, in order to circulate the sand carrying microorganisms, air and exhaust gas discharged from the reactor 10 are blown into the inner cylinder 15 to form an air lift structure. In the sedimentation layer 24, the sand, gas, and drainage are separated, and the separated sand is returned to the reactor section 11 between the reactor main body 14 and the inner cylinder 15 through the gap 29 between the gas collection cylinder 21 and the cylinder section 20. The sand carrying microorganisms is easily adhered by the biofilm, and there is a problem of closing the gap 29.

この沈降層24では、微生物を担持した砂は空気やガスを含んで比重が軽くなっており、排水と砂とを分離するためには、沈降層24とリアクター部11との差圧をもたせて、沈降層24内での比重差による沈降分離を確保する必要があり、このため、閉塞を防止するために間隙29を大きくすることはできない問題がある。仮に隙間29を大きくしたのでは、沈降分離が行われる砂が排水側に排出されたり、ガスがガス収集筒21側に流れて砂の循環に支障をきたしてしまう。   In the sedimentation layer 24, the sand carrying microorganisms contains air and gas and has a low specific gravity. In order to separate the waste water from the sand, a differential pressure between the sedimentation layer 24 and the reactor unit 11 is applied. Therefore, it is necessary to ensure sedimentation separation due to the difference in specific gravity in the sedimentation layer 24, and therefore there is a problem that the gap 29 cannot be enlarged in order to prevent clogging. If the gap 29 is increased, the sand that undergoes sedimentation separation is discharged to the drainage side, or the gas flows to the gas collection cylinder 21 side and hinders the circulation of the sand.

そこで、本発明の目的は、上記課題を解決し、セパレータ部に砂が閉塞することを防止できる高圧流動床式好気性排水処理設備を提供することにある。   Accordingly, an object of the present invention is to provide a high-pressure fluidized bed type aerobic wastewater treatment facility that can solve the above-described problems and prevent sand from being clogged in a separator portion.

上記目的を達成するために請求項1の発明は、排水が導入されるリアクター本体内にエアリフト用の内筒が設けられたリアクター部と、リアクター部の上部に設けられ排水、砂、ガスを分離するセパレータ部とを有し、セパレータ部に、内筒上に位置して、ガスを収集するガス収集筒を設け、そのガス収集筒と上部のリアクター本体間にガス収集筒からオーバーフローした排水と砂を沈降分離する沈降層を形成すると共に、リアクター本体とガス収集筒間に、沈降層で沈降分離した砂をリアクター部に戻す間隙を形成した高圧流動床式好気性排水処理設備において、リアクター本体又はガス収集筒に、上記間隙に閉塞する砂の塊を壊してリアクター部に流下させる堆積防止手段を設けたことを特徴とする高圧流動床式好気性排水処理設備である。   In order to achieve the above object, the invention of claim 1 is to separate a waste water, sand and gas from a reactor part provided with an inner cylinder for an air lift in a reactor body into which waste water is introduced, and an upper part of the reactor part. The separator part is provided with a gas collecting cylinder that is located on the inner cylinder and collects gas, and the drainage and sand overflowed from the gas collecting cylinder between the gas collecting cylinder and the upper reactor body In a high-pressure fluidized bed aerobic wastewater treatment facility, a gap is formed between the reactor main body and the gas collecting cylinder, and a sand returning to the reactor section is returned between the reactor main body and the gas collecting cylinder. A high-pressure fluidized bed aerobic wastewater treatment facility characterized in that the gas collection cylinder is provided with a deposition preventing means for breaking a lump of sand blocked in the gap and flowing down to the reactor section. .

請求項2の発明は、堆積防止手段は、セパレータ部に回転自在に設けたガス収集筒と、ガス収集筒の回転軸に設けた内部磁石と、セパレータ部の外側に設けられ上記内部磁石を磁力にて回転する外部磁石とからなる請求項1記載の高圧流動床式好気性排水処理設備である。   According to a second aspect of the present invention, the deposition preventing means includes a gas collecting cylinder rotatably provided in the separator part, an internal magnet provided on the rotating shaft of the gas collecting cylinder, and an external magnet provided on the outer side of the separator part. The high-pressure fluidized bed aerobic wastewater treatment facility according to claim 1, comprising an external magnet rotating at the top.

請求項3の発明は、堆積防止手段は、上記間隙近傍のリアクター本体の外周に設けた超音波振動部材からなる請求項1記載の高圧流動床式好気性排水処理設備である。   The invention according to claim 3 is the high-pressure fluidized bed aerobic wastewater treatment facility according to claim 1, wherein the deposition preventing means comprises an ultrasonic vibration member provided on the outer periphery of the reactor main body in the vicinity of the gap.

請求項4の発明は、堆積防止手段は、セパレータ部に回転自在に設けたガス収集筒と、そのガス収集筒の内周面に設けられ、内筒を上昇する上向流でガス収集筒を回転する回転羽根からなる請求項1記載の高圧流動床式好気性排水処理設備である。   According to a fourth aspect of the present invention, the deposition preventing means includes a gas collecting cylinder rotatably provided in the separator portion, and an inner flow of the gas collecting cylinder. 2. The high-pressure fluidized bed aerobic wastewater treatment facility according to claim 1, comprising rotating rotor blades.

本発明によれば、リアクター本体とガス収集筒間の間隙に、微生物が担持された砂が塊となって詰まろうとしても、堆積防止手段によりこれを壊してリアクター部側に流すことが可能となる。また反応器内は高圧に維持されているが、堆積防止手段は、外部から間接的に駆動するため、シール等の問題を必要としない。   According to the present invention, even when sand carrying microorganisms is clumped in the gap between the reactor main body and the gas collecting cylinder as a lump, it can be broken by the deposition preventing means and flowed to the reactor side. Become. Although the inside of the reactor is maintained at a high pressure, the deposition preventing means is indirectly driven from the outside, and therefore does not require a problem such as a seal.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の一実施の形態を示し、基本的には図2で説明した通りであり、これを再度説明すると、反応器10は、排水中の有機物を砂が担持された微生物で好気性処理するリアクター部11と、リアクター部11からの排水と砂と空気を含むガスを分離するセパレータ部12とから構成される。   FIG. 1 shows an embodiment of the present invention, which is basically the same as described in FIG. 2. This will be described again. The reactor 10 is a microorganism in which sand is loaded with organic substances in waste water. It comprises a reactor unit 11 that performs aerobic treatment, and a separator unit 12 that separates waste gas from the reactor unit 11 and gas containing sand and air.

リアクター部11は、排水流入管13が接続された有底筒体状のリアクター本体14とそのリアクター本体14内に同心状に設けられた内筒15とからなり、その内筒15の下部に圧縮空気ライン16から圧縮空気を吹き込む散気管17が設けられ、また反応器10から排気される排ガスを吹き込むエアリフト用ガス吹込管18が設けられて構成される。   The reactor unit 11 includes a bottomed cylindrical reactor main body 14 to which a drainage inflow pipe 13 is connected and an inner cylinder 15 provided concentrically within the reactor main body 14. An air diffusion pipe 17 for blowing compressed air from the air line 16 is provided, and an air lift gas blowing pipe 18 for blowing exhaust gas exhausted from the reactor 10 is provided.

このリアクター部11では、排水が排水流入管13からリアクター本体14と内筒15間に供給されて、セパレータ部12から分離された砂と共に図示の矢印のように降下し、内筒15内で散気管17からの圧縮空気とガス吹込管18からのガスでエアリフトされて内筒15内を上昇し、その間に砂に担持された微生物で好気性処理がなされる。   In the reactor unit 11, wastewater is supplied from the drainage inflow pipe 13 between the reactor main body 14 and the inner cylinder 15, falls with the sand separated from the separator unit 12 as shown in the figure, and is scattered in the inner cylinder 15. The air is lifted by the compressed air from the trachea 17 and the gas from the gas blow-in pipe 18 and ascends in the inner cylinder 15, and the aerobic treatment is performed with the microorganisms supported on the sand during that time.

セパレータ部12は、リアクター本体14の上部を拡径した筒部20内に、内筒15を上昇した砂を含む排水とガスとを収集してガスを分離する逆ロート状のガス収集筒21が内筒15の上方に臨むように設けられ、その筒部20の上部と外周とを覆いその筒部20からオーバーフローした排水を排出管22から排出するガス分離キャップ23が設けられて構成される。   The separator portion 12 includes a reverse funnel-shaped gas collecting cylinder 21 that collects wastewater and gas containing sand that has risen up the inner cylinder 15 and separates the gas in a cylindrical section 20 in which the upper portion of the reactor main body 14 is expanded. A gas separation cap 23 is provided so as to face the upper side of the inner cylinder 15 and covers the upper part and the outer periphery of the cylinder part 20 and discharges the waste water overflowing from the cylinder part 20 from the discharge pipe 22.

さらにガス収集筒21と筒部20間に形成される沈降層24内に、ガス収集筒21のガスをガス分離キャップ23の中心からずらして設けたガス排出管25に流すと共にガス収集筒21からオーバーフローした排水中の砂の分離をさらに促進するための逆ロート状の沈降筒26が、適宜筒部20に支持板40を介して設けられて構成される。   Further, the gas in the gas collection cylinder 21 is caused to flow into a gas discharge pipe 25 provided by being shifted from the center of the gas separation cap 23 in the sedimentation layer 24 formed between the gas collection cylinder 21 and the cylinder portion 20 and from the gas collection cylinder 21. A reverse funnel-shaped sedimentation cylinder 26 for further promoting the separation of the sand in the overflowed drainage is appropriately provided on the cylinder portion 20 via the support plate 40.

またガス排出管29には、排出される排ガスを、循環ポンプ27にてガス吹込管18に戻す循環ライン28が設けられる。この循環ライン28からガス吹込管18を介してガスを内筒15内に吹き込むことで、散気管17から吹き込む圧縮空気量を調整することなく内筒15内での排水のリフト量を調整できる。   Further, the gas discharge pipe 29 is provided with a circulation line 28 for returning exhaust gas discharged to the gas blowing pipe 18 by a circulation pump 27. By blowing gas into the inner cylinder 15 from the circulation line 28 through the gas blowing pipe 18, the lift amount of the drainage in the inner cylinder 15 can be adjusted without adjusting the amount of compressed air blown from the air diffusion pipe 17.

セパレータ部12では、内筒15から好気性処理がなされた砂を含む排水とガスとが上向流で上昇し、ガス収集筒21で捕集されたガスが、ガス分離キャップ23の気相部に放出されてガス排出管25に放出され、排水と砂とがガス収集筒21からオーバーフローして沈降層24に流れ、沈降筒26で更に固液分離と気液分離がなされ、固液分離がなされた砂は、ガス収集筒21と筒部20の間隙29を通ってリアクター本体14と内筒15間に流下し、排水は筒部20をオーバーフローして排水管22に排水されるようになっている。   In the separator unit 12, the wastewater containing sand and gas that has been subjected to aerobic treatment from the inner cylinder 15 rises in an upward flow, and the gas collected by the gas collection cylinder 21 flows into the gas phase part of the gas separation cap 23. Is discharged to the gas discharge pipe 25, and the waste water and sand overflow from the gas collection cylinder 21 and flow into the sedimentation layer 24. Further, solid-liquid separation and gas-liquid separation are performed in the sedimentation cylinder 26, and solid-liquid separation is performed. The sand that has been made flows between the reactor main body 14 and the inner cylinder 15 through the gap 29 between the gas collection cylinder 21 and the cylinder section 20, and the drainage overflows the cylinder section 20 and is drained to the drain pipe 22. ing.

さて、本発明においては、間隙29に付着堆積する砂の塊を防止すべく堆積防止手段30を設けたものである。   In the present invention, the deposition preventing means 30 is provided to prevent the lump of sand that adheres and accumulates in the gap 29.

この堆積防止手段30は、ガス収集筒21を回転する磁力を利用した回転手段31や、リアクター本体14の外側で、間隙29に位置して設けた超音波振動部材32、あるいはガス収集筒21を内筒15を上昇する排水の上向流で回転する回転羽根33のいずれか一つあるいはこれらを組み合わせて構成される。   The deposition preventing means 30 includes a rotating means 31 using a magnetic force that rotates the gas collecting cylinder 21, an ultrasonic vibration member 32 provided in the gap 29 outside the reactor main body 14, or the gas collecting cylinder 21. One of the rotating blades 33 rotating in the upward flow of the drainage rising up the inner cylinder 15 or a combination thereof is configured.

以下これを説明すると、ガス収集筒21内には、十字状の支持板34を介して回転軸35が取り付けられ、その回転軸35が、ガス分離キャップ23を挿通して、ガス分離キャップ23上に設けた回転手段31に支持される。   This will be described below. A rotary shaft 35 is attached to the gas collection cylinder 21 via a cross-shaped support plate 34, and the rotary shaft 35 is inserted through the gas separation cap 23 to be above the gas separation cap 23. It is supported by the rotating means 31 provided in.

この回転手段31は、ガス分離キャップ23上に延出された回転軸35を覆うシールキャップ36とそのシールキャップ36内に設けられ回転軸35を回転自在に支持する軸受37と、その軸受37上の回転軸35に設けられた内部磁石38と、シールキャプ36の外周に回転自在に外部磁石39とで構成される。   The rotating means 31 includes a seal cap 36 that covers the rotating shaft 35 extended on the gas separation cap 23, a bearing 37 that is provided in the seal cap 36 and rotatably supports the rotating shaft 35, and on the bearing 37 An inner magnet 38 provided on the rotary shaft 35 and an outer magnet 39 rotatably on the outer periphery of the seal cap 36.

この回転手段31からなる堆積防止手段30は、外部磁石39を回転することで内部磁石38が回転され、これによりガス収集筒21が回転され、ガス収集筒21とリアクター本体14の筒部20間に付着堆積した閉塞物(砂と微生物の塊)を壊し、砂をリアクター部11に流下させるものであり、ガス収集筒21の回転は常時回転してもあるいは間欠的に回転してもいずれでも良い。   The deposition preventing means 30 comprising the rotating means 31 rotates the internal magnet 38 by rotating the external magnet 39, thereby rotating the gas collecting cylinder 21, and between the gas collecting cylinder 21 and the cylinder portion 20 of the reactor main body 14. The clogging material (sand and microbial lump) adhering to and depositing is broken, and the sand is allowed to flow down to the reactor unit 11. The gas collecting cylinder 21 can be rotated either continuously or intermittently. good.

また、回転手段31からなる堆積防止手段30に代えて、あるいはこれと併用して超音波振動部材32からなる堆積防止手段30を用い、その超音波振動部材32を駆動することにより、閉塞物を壊すことができる。   Further, instead of or in combination with the deposition preventing means 30 comprising the rotating means 31, the deposition preventing means 30 comprising the ultrasonic vibration member 32 is used, and the ultrasonic vibration member 32 is driven to thereby remove the obstruction. Can be broken.

さらに、回転手段31で内外の磁石を用いる代わりに、ガス収集筒21を軸受37のみで回転手段31を構成し、ガス収集筒21の逆ロート状に拡径した内面に回転羽根33を設けることで堆積防止手段30を構成し、内筒15を上昇する排水やリフトガスの上向流にて回転羽根33を介してガス収集筒21を回転させて 堆積防止手段30を構成するようにしてもよい。この回転羽根33は、ガス収集筒21に回転動力を与える他に、微生物が担持された砂にガスが含まれていた場合、これを撹拌によるガス分離を促進させることができ、堆積防止の他に、沈降層24での沈降分離効率を高めることができる。   Further, instead of using the inner and outer magnets in the rotating means 31, the rotating means 31 is composed of the gas collecting cylinder 21 only by the bearing 37, and the rotating blade 33 is provided on the inner surface of the gas collecting cylinder 21 whose diameter is enlarged in a reverse funnel shape. The accumulation preventing means 30 may be configured by the above, and the accumulation preventing means 30 may be configured by rotating the gas collecting cylinder 21 via the rotary blade 33 in the upward flow of drainage or lift gas rising the inner cylinder 15. . In addition to providing rotational power to the gas collecting cylinder 21, the rotary blade 33 can promote gas separation by agitation when sand is contained in microorganisms, thereby preventing deposition. Moreover, the sedimentation efficiency in the sedimentation layer 24 can be increased.

このように、堆積防止手段30は、磁石を用いて外部からあるいは上向流を用いてガス収集筒21を間接的に回転したり、超音波振動を与えるため、反応器10内が高圧の状態を維持したまま駆動でき、シール等の問題を必要としない。   In this way, the deposition preventing means 30 rotates the gas collection cylinder 21 indirectly from the outside using a magnet or by using an upward flow or applies ultrasonic vibration, so that the reactor 10 is in a high pressure state. It can be driven while maintaining the above, and no problems such as sealing are required.

このように本発明は、セパレータ部12に回転や超音波などにて振動を与えることで、セパレータ部12で発生した閉塞物(砂と微生物の塊)を壊すことが可能となり、運転時間によって、セパレータ部12が閉塞気味になり、セパレーター効率が低下し、砂が排水と一緒に反応器10の外へ流出してしまう不具合を防止できる。   Thus, according to the present invention, it is possible to break the obstruction (sand and microbial lump) generated in the separator unit 12 by applying vibration to the separator unit 12 by rotation or ultrasonic waves. The separator part 12 becomes obstructive, the separator efficiency is lowered, and the problem that the sand flows out of the reactor 10 together with the drainage can be prevented.

本発明の一実施の形態を示す断面図である。It is sectional drawing which shows one embodiment of this invention. 従来例を示す断面図である。It is sectional drawing which shows a prior art example.

符号の説明Explanation of symbols

11 リアクター部
12 セパレータ部
14 リアクター本体
15 内筒
21 ガス収集筒
24 沈降層
29 間隙
30 堆積防止手段
DESCRIPTION OF SYMBOLS 11 Reactor part 12 Separator part 14 Reactor main body 15 Inner cylinder 21 Gas collection cylinder 24 Sedimentation layer 29 Gap 30 Deposition prevention means

Claims (4)

排水が導入されるリアクター本体内にエアリフト用の内筒が設けられたリアクター部と、リアクター部の上部に設けられ、排水、砂、ガスを分離するセパレータ部とを有し、セパレータ部に、内筒の上方に位置して、ガスを収集するガス収集筒を設け、そのガス収集筒と上部のリアクター本体間にガス収集筒からオーバーフローした排水と砂を沈降分離する沈降層を形成すると共に、リアクター本体とガス収集筒間に、沈降層で沈降分離した砂をリアクター部に戻す間隙を形成した高圧流動床式好気性排水処理設備において、リアクター本体又はガス収集筒に、上記間隙に閉塞する砂の塊を壊してリアクター部に流下させる堆積防止手段を設けたことを特徴とする高圧流動床式好気性排水処理設備。   The reactor body into which the waste water is introduced has a reactor part provided with an inner cylinder for air lift, and a separator part provided at the upper part of the reactor part for separating waste water, sand, and gas. A gas collection cylinder for collecting gas is provided above the cylinder, and a sedimentation layer is formed between the gas collection cylinder and the upper reactor main body to settle and separate waste water and sand overflowing from the gas collection cylinder. In a high-pressure fluidized bed aerobic wastewater treatment facility in which a gap is formed between the main body and the gas collection cylinder to return the sand settled and separated in the sedimentation layer to the reactor section, the reactor main body or the gas collection cylinder has sand that is blocked in the gap. A high-pressure fluidized bed aerobic wastewater treatment facility characterized in that it is provided with a deposition preventing means for breaking a lump and flowing down to a reactor section. 堆積防止手段は、セパレータ部に回転自在に設けたガス収集筒と、ガス収集筒の回転軸に設けた内部磁石と、セパレータ部の外側に設けられ上記内部磁石を磁力にて回転する外部磁石とからなる請求項1記載の高圧流動床式好気性排水処理設備。   The deposition preventing means includes a gas collection cylinder rotatably provided in the separator part, an internal magnet provided on a rotation shaft of the gas collection cylinder, an external magnet provided outside the separator part and rotating the internal magnet with a magnetic force, The high-pressure fluidized bed aerobic wastewater treatment facility according to claim 1, comprising: 堆積防止手段は、上記間隙近傍のリアクター本体の外周に設けた超音波振動部材からなる請求項1記載の高圧流動床式好気性排水処理設備。   2. The high-pressure fluidized bed aerobic wastewater treatment facility according to claim 1, wherein the deposition preventing means comprises an ultrasonic vibration member provided on the outer periphery of the reactor main body in the vicinity of the gap. 堆積防止手段は、セパレータ部に回転自在に設けたガス収集筒と、そのガス収集筒の内周面に設けられ、内筒を上昇する上向流でガス収集筒を回転する回転羽根からなる請求項1記載の高圧流動床式好気性排水処理設備。   The deposition preventing means comprises a gas collecting cylinder rotatably provided in the separator portion, and a rotary blade provided on an inner peripheral surface of the gas collecting cylinder and rotating the gas collecting cylinder with an upward flow rising up the inner cylinder. Item 1. The high-pressure fluidized bed aerobic wastewater treatment facility according to Item 1.
JP2007104867A 2007-04-12 2007-04-12 High pressure fluidized bed type aerobic waste water treatment equipment Pending JP2008259966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104867A JP2008259966A (en) 2007-04-12 2007-04-12 High pressure fluidized bed type aerobic waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104867A JP2008259966A (en) 2007-04-12 2007-04-12 High pressure fluidized bed type aerobic waste water treatment equipment

Publications (1)

Publication Number Publication Date
JP2008259966A true JP2008259966A (en) 2008-10-30

Family

ID=39982863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104867A Pending JP2008259966A (en) 2007-04-12 2007-04-12 High pressure fluidized bed type aerobic waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP2008259966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328989A (en) * 2011-09-06 2012-01-25 浙江大学 High-efficiency internal recycle ceramic-adhered biomembrane nitration reactor
CN108249563A (en) * 2016-12-28 2018-07-06 云南师范大学 A kind of ciculation fluidized high efficiency anaerobic reactor

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134870A (en) * 1976-05-07 1977-11-11 Ebara Infilco Co Ltd Apparatus for treating waste solution
JPS54107156A (en) * 1978-02-08 1979-08-22 Tokichi Tanemura Fluidized bed type biological treatment device
JPS55132695A (en) * 1979-03-28 1980-10-15 Toyobo Co Ltd Fluidized bed type waste water treatment
JPS57140612A (en) * 1981-02-21 1982-08-31 Sanwa Kigyo Kk Apparatus and method for dehydration
JPS58174297A (en) * 1982-04-07 1983-10-13 Sumitomo Chem Co Ltd Treatment of waste water from desulfurization of waste gas
JPS58223487A (en) * 1982-03-29 1983-12-26 ギスト・ブロカデス・ナ−ムロ−ゼ・フエンノ−トチヤツプ Fluidized bed reactor for purifying waste water
JPS59230694A (en) * 1983-06-14 1984-12-25 Ube Ind Ltd Fluidized aeration tank using particulate medium
JPS6475090A (en) * 1987-09-16 1989-03-20 Aqua Renaissance Gijutsu Suspension removal device for waste water
JPH02164497A (en) * 1988-12-19 1990-06-25 Komatsu Ltd Waste water treatment apparatus
JPH02164496A (en) * 1988-12-19 1990-06-25 Komatsu Ltd Waste water treatment apparatus
JPH0440295A (en) * 1990-06-01 1992-02-10 Shimizu Corp Waste water treatment device
JPH04284896A (en) * 1991-03-14 1992-10-09 Shimizu Corp Circulating fluidized bed type treatment vessel
JPH07987A (en) * 1993-06-16 1995-01-06 Tonen Corp Waste water treating device
JPH08108009A (en) * 1994-10-07 1996-04-30 Nippon Mektron Ltd Floc settling tank
JP2001353432A (en) * 2000-06-12 2001-12-25 Satake Chemical Equipment Mfg Ltd Hermetic stirring device
JP2002204936A (en) * 2001-01-10 2002-07-23 Ms Engineering:Kk Agitator shaft coupling using magnet and agitation tank

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134870A (en) * 1976-05-07 1977-11-11 Ebara Infilco Co Ltd Apparatus for treating waste solution
JPS54107156A (en) * 1978-02-08 1979-08-22 Tokichi Tanemura Fluidized bed type biological treatment device
JPS55132695A (en) * 1979-03-28 1980-10-15 Toyobo Co Ltd Fluidized bed type waste water treatment
JPS57140612A (en) * 1981-02-21 1982-08-31 Sanwa Kigyo Kk Apparatus and method for dehydration
JPS58223487A (en) * 1982-03-29 1983-12-26 ギスト・ブロカデス・ナ−ムロ−ゼ・フエンノ−トチヤツプ Fluidized bed reactor for purifying waste water
JPS58174297A (en) * 1982-04-07 1983-10-13 Sumitomo Chem Co Ltd Treatment of waste water from desulfurization of waste gas
JPS59230694A (en) * 1983-06-14 1984-12-25 Ube Ind Ltd Fluidized aeration tank using particulate medium
JPS6475090A (en) * 1987-09-16 1989-03-20 Aqua Renaissance Gijutsu Suspension removal device for waste water
JPH02164497A (en) * 1988-12-19 1990-06-25 Komatsu Ltd Waste water treatment apparatus
JPH02164496A (en) * 1988-12-19 1990-06-25 Komatsu Ltd Waste water treatment apparatus
JPH0440295A (en) * 1990-06-01 1992-02-10 Shimizu Corp Waste water treatment device
JPH04284896A (en) * 1991-03-14 1992-10-09 Shimizu Corp Circulating fluidized bed type treatment vessel
JPH07987A (en) * 1993-06-16 1995-01-06 Tonen Corp Waste water treating device
JPH08108009A (en) * 1994-10-07 1996-04-30 Nippon Mektron Ltd Floc settling tank
JP2001353432A (en) * 2000-06-12 2001-12-25 Satake Chemical Equipment Mfg Ltd Hermetic stirring device
JP2002204936A (en) * 2001-01-10 2002-07-23 Ms Engineering:Kk Agitator shaft coupling using magnet and agitation tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328989A (en) * 2011-09-06 2012-01-25 浙江大学 High-efficiency internal recycle ceramic-adhered biomembrane nitration reactor
CN108249563A (en) * 2016-12-28 2018-07-06 云南师范大学 A kind of ciculation fluidized high efficiency anaerobic reactor
CN108249563B (en) * 2016-12-28 2023-08-25 云南师范大学 Circulating fluidization efficient anaerobic reactor

Similar Documents

Publication Publication Date Title
WO2006117880A1 (en) Magnetic separation cleaning apparatus and magnetic separation cleaning method
JP2005125138A (en) Concentrator
CN106746148A (en) A kind of magnetic loading precipitation filtration, purification system
JP2008246282A (en) Muddy water purifying separator
JP2008012465A (en) Water treatment apparatus
JP2007326084A (en) Solid/liquid separation system
JP2008259966A (en) High pressure fluidized bed type aerobic waste water treatment equipment
JP2011072936A (en) Fluidized bed type biological treatment apparatus
KR100533523B1 (en) Settling tank having buffers for removing scum
JP3641700B2 (en) Water quality improvement system for closed water areas
KR101889663B1 (en) Circular Type Thickener
CN2504255Y (en) Water purifying unit by air float process
JP2008264664A (en) Fluidized bed aerobic wastewater treatment equipment
JP2006320777A (en) Waste water treatment apparatus
KR20150115989A (en) Clarifier Using Ultrasonic Generator and Method for Operating thereof
JP3358321B2 (en) Anaerobic treatment equipment
CN207738591U (en) A kind of sewage purification pipeline
KR100986634B1 (en) Pretreatment equipment of sludge or sewage
JP6460935B2 (en) Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus
JP2006297298A (en) Sludge concentration device
CN213416605U (en) Industrial wastewater recycling equipment
JP2008264646A (en) High-pressure fluidized bed aerobic wastewater treatment equipment
JP2001300514A (en) Pressure floatation device
JP2019126760A (en) Sewage treatment system and stirring device
JP2011058409A (en) Vortex type centrifugal pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025