JP2008258254A - Thermally conductive adhesives and heat radiation module using the same and power converter - Google Patents

Thermally conductive adhesives and heat radiation module using the same and power converter Download PDF

Info

Publication number
JP2008258254A
JP2008258254A JP2007096212A JP2007096212A JP2008258254A JP 2008258254 A JP2008258254 A JP 2008258254A JP 2007096212 A JP2007096212 A JP 2007096212A JP 2007096212 A JP2007096212 A JP 2007096212A JP 2008258254 A JP2008258254 A JP 2008258254A
Authority
JP
Japan
Prior art keywords
aluminum nitride
particles
thermal conductivity
filler
alumina particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007096212A
Other languages
Japanese (ja)
Inventor
Takuji Kozu
卓司 神頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007096212A priority Critical patent/JP2008258254A/en
Publication of JP2008258254A publication Critical patent/JP2008258254A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide thermally conductive adhesives that can improve thermal conductivity without degrading adhesivity and insulation and can be also used appropriately to connect a semiconductor device and a heat dissipating member, and to provide a heat radiation module using the same and a power converter. <P>SOLUTION: The thermally conductive adhesives is used to connect a semiconductor device and a heat dissipating member directly or by means of other members. It contains an insulation resin, aluminum nitride particles of 15 to 30 μm in average particle size and nearly spherical alumina particles of 0.5 to 2 μm in average particle size, and the mixing ratio (volume ratio) of the aluminum nitride particles and the nearly spherical alumina particles is 70:30-80:20. In addition, the total volume of them is 60-70 vol% of that of the insulation resin, the aluminum nitride particles and the alumina particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は熱伝導性接着剤、及びそれを用いた放熱モジュール、電力変換装置に関する。   The present invention relates to a heat conductive adhesive, a heat radiation module using the same, and a power converter.

ハイブリッド自動車、燃料電池自動車等の電気自動車に搭載されるモータ駆動用のインバータ装置や電力回生用電力変換装置には、スイッチング素子等の種々の半導体素子が使用されている。バッテリーの大容量化や高速スイッチング化に伴ってこのような半導体素子に流れる電流が大きくなり、半導体素子の温度上昇が問題となっている。   Various semiconductor elements such as switching elements are used in an inverter device for driving a motor and a power conversion device for power regeneration mounted on an electric vehicle such as a hybrid vehicle and a fuel cell vehicle. As the capacity of the battery is increased and the switching speed is increased, the current flowing through the semiconductor element is increased, and the temperature rise of the semiconductor element becomes a problem.

半導体素子の温度上昇を抑えるために、放熱フィン等の放熱部材を半導体素子に接続して使用している。たとえば、半導体素子を使用した放熱モジュールでは、図1に示すように、半導体素子1に半田層2を介して配線材3が接続され、さらに接着剤4を介して配線材3と放熱部材5が接続されている。このような構造とすることで半導体素子1の温度上昇を抑えることができる。   In order to suppress the temperature rise of the semiconductor element, a heat radiating member such as a heat radiating fin is connected to the semiconductor element. For example, in a heat dissipation module using a semiconductor element, as shown in FIG. 1, the wiring material 3 is connected to the semiconductor element 1 via the solder layer 2, and the wiring material 3 and the heat dissipation member 5 are further connected via the adhesive 4. It is connected. With such a structure, the temperature rise of the semiconductor element 1 can be suppressed.

半導体素子1に発生した熱を効率良く放熱部材に伝えるためには、接着剤4の熱伝導率を上げることが重要である。このため、種々の熱伝導性接着剤が検討されており、絶縁性の樹脂中に熱伝導率の高いフィラーを分散させた樹脂組成物が熱伝導性接着剤として使用されている。   In order to efficiently transmit the heat generated in the semiconductor element 1 to the heat dissipation member, it is important to increase the thermal conductivity of the adhesive 4. For this reason, various heat conductive adhesives have been studied, and a resin composition in which a filler having high heat conductivity is dispersed in an insulating resin is used as the heat conductive adhesive.

窒化アルミニウム粒子は熱伝導率が高く、熱伝導性接着剤に使用するフィラーとして適している。特許文献1には窒化アルミニウム焼結体の粉砕物からなり、平均粒子径が50μm以下であって3μm以下の微粉の含有率が10%以下であることを特徴とする樹脂充填用窒化アルミニウム粉末、及びこの窒化アルミニウム粉末を含有する樹脂組成物が開示されている。
特開2001−158609号公報
Aluminum nitride particles have high thermal conductivity and are suitable as fillers used in heat conductive adhesives. Patent Document 1 is made of a pulverized product of an aluminum nitride sintered body, the average particle diameter is 50 μm or less, and the content of fine powder of 3 μm or less is 10% or less, And a resin composition containing the aluminum nitride powder.
JP 2001-158609 A

熱伝導性接着剤の熱伝導率を向上させるためには、フィラーの充填量を上げ、隣接するフィラー同士の密着力を向上させることが必要である。しかしフィラーの充填量を上げすぎると接着性が悪くなり、半導体素子から放熱部材に至る放熱経路中で、所要の接着力が得られない。また特許文献1では、銅、銀、金などの熱伝導率の高い金属粉末を窒化アルミニウム粉末と混合して使用することも提案されている。しかし金属粉末は導電性であるため、このような粉末を使用して作成した熱伝導性接着剤は絶縁性を確保できない。一般に放熱部材としては熱伝導率の高い金属を使用することが多い。図1のような構造の放熱モジュールでは半導体素子1と配線材3の間に電流を流しており、接着層4の絶縁抵抗が低くなると配線材3から放熱部材5にも電流が流れてしまい、絶縁破壊電圧の低下やリーク電流の発生などの問題が起こる。   In order to improve the thermal conductivity of the thermally conductive adhesive, it is necessary to increase the filling amount of the filler and improve the adhesion between adjacent fillers. However, if the filling amount of the filler is increased too much, the adhesiveness deteriorates, and the required adhesive force cannot be obtained in the heat dissipation path from the semiconductor element to the heat dissipation member. Patent Document 1 also proposes to use a metal powder having a high thermal conductivity such as copper, silver, or gold mixed with an aluminum nitride powder. However, since the metal powder is conductive, a heat conductive adhesive made using such a powder cannot ensure insulation. In general, a metal having high thermal conductivity is often used as the heat radiating member. In the heat dissipation module having the structure as shown in FIG. 1, a current flows between the semiconductor element 1 and the wiring member 3. When the insulation resistance of the adhesive layer 4 decreases, a current flows from the wiring member 3 to the heat dissipation member 5. Problems such as reduction in dielectric breakdown voltage and generation of leakage current occur.

本発明は前記問題を解決するものであり、接着性と絶縁性を低下させることなく熱伝導率を向上することができ、半導体素子と放熱部材との接続に好適に用いることができる熱伝導性接着剤を提供する。さらにこの熱伝導性接着剤を用いることで温度上昇を抑えた放熱モジュール、及び電力変換装置を提供する。   The present invention solves the above-mentioned problems, can improve the thermal conductivity without lowering the adhesion and insulation, and can be suitably used for the connection between the semiconductor element and the heat dissipation member. Provide an adhesive. Furthermore, the heat dissipation module which suppressed the temperature rise by using this heat conductive adhesive agent, and a power converter device are provided.

本発明は、半導体素子と放熱部材を直接又は他の部材を介して接続するための熱伝導性接着剤であって、絶縁性樹脂、平均粒径15μm〜30μmの窒化アルミニウム粒子、及び平均粒径0.5μm〜2μmの略球状アルミナ粒子を含有し、前記窒化アルミニウム粒子と前記略球状アルミナ粒子の混合比率(体積比)が70:30〜80:20であり、
前記窒化アルミニウム粒子と前記略球状アルミナ粒子の合計量が、前記絶縁性樹脂、前記窒化アルミニウム粒子、及び前記アルミナ粒子の合計量に対して60〜70体積%であることを特徴とする熱伝導性接着剤である(請求項1)。
The present invention is a heat conductive adhesive for connecting a semiconductor element and a heat dissipation member directly or through another member, and is an insulating resin, aluminum nitride particles having an average particle diameter of 15 μm to 30 μm, and an average particle diameter 0.5 μm to 2 μm of substantially spherical alumina particles are contained, and the mixing ratio (volume ratio) of the aluminum nitride particles and the substantially spherical alumina particles is 70:30 to 80:20,
The total amount of the aluminum nitride particles and the substantially spherical alumina particles is 60 to 70% by volume with respect to the total amount of the insulating resin, the aluminum nitride particles, and the alumina particles. It is an adhesive (Claim 1).

先述したように、窒化アルミニウム粒子等のフィラーを含む熱伝導性接着剤において、フィラーの充填密度は熱伝導性に大きく影響し、フィラーの充填密度が高くなるほど熱伝導性を向上できる。ここでフィラーの球状度が良く、かつ粒径が揃っていると、フィラーの充填密度を高くできる。図2は理想的なフィラーの充填状態を示す模式図である。球状度が高く粒径の揃ったフィラー6は互いに密着して配列することができ、このようなフィラーを使用した熱伝導接着剤では熱伝導率が高くなる。   As described above, in a thermally conductive adhesive containing a filler such as aluminum nitride particles, the filler packing density greatly affects the thermal conductivity, and the higher the filler packing density, the better the thermal conductivity. Here, if the filler has a good sphericity and has a uniform particle size, the filling density of the filler can be increased. FIG. 2 is a schematic diagram showing an ideal filling state of the filler. Fillers 6 having a high sphericity and a uniform particle size can be arranged in close contact with each other, and a thermal conductive adhesive using such a filler has a high thermal conductivity.

しかし一般に窒化アルミニウム粒子の球状度は高くない。これは、窒化アルミニウム粒子は粉砕物として得られることが多いからである。これに対し、アルミナ粒子は球状度の高い物が得られやすいが、アルミナの熱伝導率は窒化アルミニウムの熱伝導率に比べて低い。本発明者はこれらの粒子の形状に着目し、平均粒径15μm〜30μmの窒化アルミニウム粒子に対して、平均粒径0.5μm〜2μmの略球状アルミナ粒子を組み合わせて使用することでフィラーの充填密度を高くして熱伝導率を向上できることを見いだした。図3は本発明のフィラーの充填状態を示す模式図である。窒化アルミニウム粒子7の隙間を略球状アルミナ粒子8が埋めている。このような組み合わせとすることでフィラーの充填密度を高くでき、熱伝導率の高い熱伝導性接着剤が得られる。   However, in general, the sphericity of aluminum nitride particles is not high. This is because the aluminum nitride particles are often obtained as a pulverized product. In contrast, alumina particles with a high sphericity are easily obtained, but the thermal conductivity of alumina is lower than that of aluminum nitride. The present inventor pays attention to the shape of these particles, and fills the filler by using substantially spherical alumina particles having an average particle size of 0.5 μm to 2 μm in combination with aluminum nitride particles having an average particle size of 15 μm to 30 μm. We found that the thermal conductivity can be improved by increasing the density. FIG. 3 is a schematic view showing a filling state of the filler of the present invention. The substantially spherical alumina particles 8 fill the gaps between the aluminum nitride particles 7. By setting it as such a combination, the filling density of a filler can be made high and the heat conductive adhesive with high heat conductivity is obtained.

また本発明は、前記絶縁性樹脂が、エポキシ樹脂を主成分とすることを特徴とする、請求項1に記載の熱伝導性接着剤である(請求項2)。エポキシ樹脂は耐熱性が高く、半導体素子の発熱量が大きくなった場合においても接続信頼性の高い熱伝導性接着剤を得ることができる。   Moreover, this invention is a heat conductive adhesive of Claim 1 characterized by the above-mentioned insulating resin having an epoxy resin as a main component (Claim 2). Epoxy resin has high heat resistance, and a heat conductive adhesive with high connection reliability can be obtained even when the amount of heat generated by the semiconductor element increases.

また本発明は、半導体素子に接続した配線材、及び放熱部材を有する放熱モジュールであって、前記配線材と前記放熱部材が請求項1又は2に記載の熱伝導性接着剤を介して接続されていることを特徴とする放熱モジュールである(請求項3)。上記のような熱伝導性接着剤を使用することで、半導体素子に発生した熱を効率良く放熱でき、半導体素子の温度上昇を抑えることができる。   Moreover, this invention is a thermal radiation module which has the wiring material connected to the semiconductor element, and a thermal radiation member, Comprising: The said wiring material and the said thermal radiation member are connected via the heat conductive adhesive of Claim 1 or 2. It is a heat dissipation module characterized by the above-mentioned (Claim 3). By using the above heat conductive adhesive, the heat generated in the semiconductor element can be efficiently dissipated, and the temperature rise of the semiconductor element can be suppressed.

また本発明は、請求項3に記載の放熱モジュールと制御装置を有する電力変換装置である(請求項4)。上記のような熱伝導性接着剤を使用することで温度上昇の起こりにくい電力変換装置が得られる。   Moreover, this invention is a power converter device which has the thermal radiation module and control apparatus of Claim 3. (Claim 4). By using the heat conductive adhesive as described above, a power conversion device in which the temperature rise hardly occurs can be obtained.

本発明は、接着性と絶縁性を低下させることなく熱伝導率を向上することができ、半導体素子と放熱部材との接続に好適に用いることができる熱伝導性接着剤を提供する。さらに、温度上昇を抑えた放熱モジュール、及び電力変換装置を提供する。   The present invention provides a thermal conductive adhesive that can improve thermal conductivity without deteriorating adhesion and insulation, and can be suitably used for connection between a semiconductor element and a heat dissipation member. Furthermore, a heat dissipation module and a power conversion device that suppresses a temperature rise are provided.

本発明に使用する窒化アルミニウム粒子としては、市販されている種々の粒子を使用することができる。形状は特に限定されず、無定型、焼結、粉砕状、球状などのものを使用できる。窒化アルミニウム粒子の平均粒径は15μm〜30μmとする。平均粒径が30μmを超えると、熱伝導性接着剤を塗布した時に表面が粗くなって、薄く塗布することができない。また平均粒径が15μmよりも小さいと、粒子同士が効率良く接触できず、熱伝導性が低下する。なお平均粒径は、レーザードップラー法を応用した粒度分布測定装置等により測定でき、50%累積粒度径を平均粒径とする。   As the aluminum nitride particles used in the present invention, various commercially available particles can be used. The shape is not particularly limited, and amorphous, sintered, pulverized, spherical and the like can be used. The average particle diameter of the aluminum nitride particles is 15 μm to 30 μm. When the average particle size exceeds 30 μm, the surface becomes rough when the heat conductive adhesive is applied, and it cannot be applied thinly. On the other hand, if the average particle size is less than 15 μm, the particles cannot contact each other efficiently, and the thermal conductivity is lowered. The average particle size can be measured by a particle size distribution measuring apparatus using a laser Doppler method, and the 50% cumulative particle size is defined as the average particle size.

本発明に使用する略球状アルミナ粒子は、略球状のものであれば特に制限無く、市販されている種々の粒子を使用することができる。略球状アルミナ粒子の平均粒径は0.5μm〜2μmとする。平均粒径が2μmよりも大きいと、上記の窒化アルミニウム粒子との組み合わせ効果を発揮することができない。また平均粒径が0.5μmよりも小さいと粒子同士が効率良く接触できず、熱伝導性が低下する。   The substantially spherical alumina particles used in the present invention are not particularly limited as long as they are substantially spherical, and various commercially available particles can be used. The average particle diameter of the substantially spherical alumina particles is 0.5 μm to 2 μm. When the average particle size is larger than 2 μm, the combined effect with the above aluminum nitride particles cannot be exhibited. On the other hand, if the average particle size is smaller than 0.5 μm, the particles cannot efficiently contact each other and the thermal conductivity is lowered.

さらに、窒化アルミニウム粒子と略球状アルミナ粒子の組み合わせ効果を発揮し、充填密度を高めるために、窒化アルミニウム粒子と略球状アルミナ粒子の混合比率は体積比で70:30〜80:20とする。アルミナ粒子の熱伝導率は窒化アルミニウムの熱伝導率と比べると低いため、アルミナ粒子の割合が30体積%よりも多くなると、熱伝導性接着剤全体の熱伝導率を上げることができない。またアルミナ粒子の割合が20体積%よりも少ないと、上記の組み合わせ効果を発揮することができない。   Furthermore, in order to exhibit the combined effect of the aluminum nitride particles and the substantially spherical alumina particles and increase the packing density, the mixing ratio of the aluminum nitride particles and the substantially spherical alumina particles is 70:30 to 80:20 in volume ratio. Since the thermal conductivity of alumina particles is lower than the thermal conductivity of aluminum nitride, if the proportion of alumina particles exceeds 30% by volume, the thermal conductivity of the entire thermally conductive adhesive cannot be increased. Moreover, when the ratio of alumina particles is less than 20% by volume, the above combination effect cannot be exhibited.

なお、樹脂中にフィラーを混合した樹脂組成物の熱伝導率は、以下に示す式(ブラッグマンの予測式)により予測することができる。   In addition, the heat conductivity of the resin composition which mixed the filler in resin can be estimated by the formula (Braggman's prediction formula) shown below.

Figure 2008258254
φ :フィラーの体積充填率
λe:フィラー混合後の樹脂の熱伝導率(W/m・K)
λd:フィラーの熱伝導率(W/m・K)
λc:樹脂の熱伝導率(W/m・K)
Figure 2008258254
φ: Volume filling factor of filler λe: Thermal conductivity of resin after filler mixing (W / m · K)
λd: thermal conductivity of filler (W / m · K)
λc: Thermal conductivity of resin (W / m · K)

この予測式はフィラーが樹脂中に良好に分散している理想的な状態を示しており、フィラーの球状度が高い場合には実際の熱伝導率と式から予測される熱伝導率は一致する。しかし先述したように窒化アルミニウム粒子の球状度は高くないため、フィラーの体積充填率が60%を超えると理想的な充填状態とはならず、実際の樹脂組成物の熱伝導率は予測値よりも低くなる。   This prediction formula shows an ideal state in which the filler is well dispersed in the resin. When the filler has a high sphericity, the actual thermal conductivity matches the thermal conductivity predicted from the formula. . However, as described above, since the sphericity of the aluminum nitride particles is not high, if the volume filling rate of the filler exceeds 60%, the ideal filling state is not achieved, and the actual thermal conductivity of the resin composition is more than the predicted value. Also lower.

しかし窒化アルミニウム粒子と略球状アルミナ粒子を上記の比率で混合して使用することでフィラーの充填状態が良くなり、フィラーの体積充填率を上げてもブラッグマンの予測式から計算される値に近い熱伝導率を持つ樹脂組成物が得られる。   However, by using a mixture of aluminum nitride particles and substantially spherical alumina particles in the above ratio, the filling state of the filler is improved, and even if the volume filling rate of the filler is increased, it is close to the value calculated from the Braggman prediction formula A resin composition having thermal conductivity is obtained.

さらに、窒化アルミニウム粒子と略球状アルミナ粒子の合計量(フィラー量)は、絶縁性樹脂及びフィラー量の合計量に対して60〜70体積%とする。フィラー量が70体積%を超えると接着力が低下し、接続信頼性が悪くなる。またフィラー量が60%よりも少ないと熱伝導率が低くなる。なお、本発明の効果を妨げない範囲において、フィラーとして窒化アルミニウム粒子、略球状アルミナ粒子以外の無機粒子を更に添加しても良い。   Furthermore, the total amount (filler amount) of the aluminum nitride particles and the substantially spherical alumina particles is 60 to 70% by volume with respect to the total amount of the insulating resin and the filler amount. When the filler amount exceeds 70% by volume, the adhesive strength is lowered, and the connection reliability is deteriorated. On the other hand, if the amount of filler is less than 60%, the thermal conductivity is lowered. In addition, inorganic particles other than aluminum nitride particles and substantially spherical alumina particles may be further added as a filler within a range not impeding the effects of the present invention.

本発明に使用する絶縁性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等を使用することができる。熱伝導性接着剤の耐熱性を考慮すると熱硬化性樹脂を使用することが好ましく、特にエポキシ樹脂を使用することが好ましい。エポキシ樹脂の種類は特に限定されないが、ビスフェノールA、F、S、AD等を骨格とするビスフェノール型エポキシ樹脂等の他、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂等が例示される。さらにエポキシ樹脂の硬化剤として公知のものを適宜選択して使用することができる。これらの絶縁性樹脂は溶剤に溶解して使用することもできる。   As the insulating resin used in the present invention, epoxy resin, phenol resin, polyester resin, polyurethane resin, acrylic resin, melamine resin, polyimide resin, polyamideimide resin, and the like can be used. Considering the heat resistance of the heat conductive adhesive, it is preferable to use a thermosetting resin, and it is particularly preferable to use an epoxy resin. Although the kind of epoxy resin is not specifically limited, A cresol novolak type epoxy resin, an alicyclic epoxy resin, etc. other than the bisphenol type epoxy resin which makes bisphenol A, F, S, AD etc. frame | skeleton are illustrated. Furthermore, known curing agents for epoxy resins can be appropriately selected and used. These insulating resins can be used by dissolving in a solvent.

さらに要求特性に応じて硬化促進剤、酸化防止剤、チクソ剤、レベリング剤等の添加剤を混合しても良い。これらの材料を3本ロール、回転攪拌脱泡機、ボールミルなどにより混合、分散して均一な状態として熱伝導性接着剤を作製する。   Furthermore, additives such as a curing accelerator, an antioxidant, a thixotropic agent, and a leveling agent may be mixed according to required characteristics. These materials are mixed and dispersed by a three roll, a rotary stirring defoaming machine, a ball mill or the like to prepare a heat conductive adhesive in a uniform state.

さらに本発明は、半導体素子、前記半導体素子に接続した配線材、及び放熱部材を有し、前記配線材と前記放熱部材がこれらの熱伝導性接着剤を介して接続されていることを特徴とする放熱モジュール、及びこの放熱モジュールと制御装置を有する電力変換装置を提供する。この放熱モジュール及び電力変換装置は、ハイブリッド自動車や燃料電池自動車等の電気自動車において、例えばモータ駆動用のインバータ装置として適用されるものである。半導体素子としては、SiC(シリコンカーバイト)、GaN(窒化ガリウム)等が使用される。また配線材としては、銅または銅合金等からなる金属板で形成されたバスバー等が使用される。放熱部材としては、熱伝導性にすぐれた金属板等が使用できる。   Furthermore, the present invention has a semiconductor element, a wiring material connected to the semiconductor element, and a heat radiating member, wherein the wiring material and the heat radiating member are connected via these thermally conductive adhesives. A heat dissipation module and a power conversion device including the heat dissipation module and a control device are provided. The heat dissipation module and the power conversion device are applied as, for example, an inverter device for driving a motor in an electric vehicle such as a hybrid vehicle or a fuel cell vehicle. As the semiconductor element, SiC (silicon carbide), GaN (gallium nitride), or the like is used. As the wiring material, a bus bar formed of a metal plate made of copper or a copper alloy is used. As the heat radiating member, a metal plate having excellent thermal conductivity can be used.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。   Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.

(実施例1)
(熱伝導性接着剤の作製)
エポキシ樹脂、及び硬化剤としてジシアンジアミドを酢酸ブチルセロソルブに溶解した絶縁性樹脂溶液を作製した。ここにフィラーとして平均粒径30μmの窒化アルミニウム粒子と平均粒径1μmのアルミナ粒子を体積比で75:25となるように加えて均一になるように混合し、フィラー含有量70体積%の熱伝導性接着剤を作製した。
Example 1
(Production of heat conductive adhesive)
An insulating resin solution was prepared by dissolving an epoxy resin and dicyandiamide as a curing agent in butyl cellosolve. Here, aluminum filler particles having an average particle diameter of 30 μm and alumina particles having an average particle diameter of 1 μm are added as a filler in a volume ratio of 75:25 and mixed to be uniform, and heat conduction with a filler content of 70% by volume is conducted. An adhesive was prepared.

(熱伝導率の評価)
作製した熱伝導性接着剤のサンプルを基材に塗布し、150℃30分、220℃1時間熱処理して硬化させ、0.1mm厚みのシートを作製した。得られたシートの熱伝導率を京都電子工業製TPA−501を用いてホットディスク法で測定した。
(Evaluation of thermal conductivity)
The sample of the produced heat conductive adhesive was applied to a base material and cured by heat treatment at 150 ° C. for 30 minutes and 220 ° C. for 1 hour to produce a sheet having a thickness of 0.1 mm. The thermal conductivity of the obtained sheet was measured by a hot disk method using TPA-501 manufactured by Kyoto Electronics Industry.

(接着力評価)
作製した熱伝導性接着剤のサンプルを厚み1.5mmのアルミニウム板に塗布し、150℃30分乾燥した後、オーバーラップ面積が10mm角になるように厚み1.5mmのアルミニウム板を重ね合わせ、220℃で1時間硬化させてアルミニウム板同士を接着した。5mm/minで引張試験を行い、剪断接着力を測定した。接着力8MPa以上を合格とする。
(Adhesive strength evaluation)
After applying the prepared heat conductive adhesive sample to an aluminum plate having a thickness of 1.5 mm and drying at 150 ° C. for 30 minutes, the aluminum plate having a thickness of 1.5 mm is overlaid so that the overlap area is 10 mm square. The aluminum plates were bonded by curing at 220 ° C. for 1 hour. A tensile test was performed at 5 mm / min to measure the shear adhesive strength. An adhesive strength of 8 MPa or more is considered acceptable.

(絶縁性評価:絶縁破壊電圧)
熱伝導率の評価と同様に作製した0.1mm厚みのシートサンプルを23℃、50%RH雰囲気で5分間処理した後、JIS K6911に準拠して100kV・3kV絶縁耐力試験装置で絶縁破壊電圧を測定した。絶縁破壊電圧10kV/mm以上を合格とする。
(Insulation evaluation: breakdown voltage)
A 0.1 mm thick sheet sample prepared in the same manner as the evaluation of thermal conductivity was treated for 5 minutes in an atmosphere of 23 ° C. and 50% RH, and then the dielectric breakdown voltage was measured using a 100 kV / 3 kV dielectric strength test device in accordance with JIS K6911. It was measured. A dielectric breakdown voltage of 10 kV / mm or more is considered acceptable.

(絶縁性評価:リーク電流)
熱伝導率の評価と同様に作製した0.1mm厚みのシートサンプルの表面に10mmφの電極、裏面に26mmφの電極を貼り合わせ、50Hz AC1.5kVを印加して60秒間の最大リーク電流を計測した。最大リーク電流0.1mA以下を合格とする。
(Insulation evaluation: leakage current)
A 0.1 mm-thick sheet sample produced in the same manner as the thermal conductivity evaluation was bonded to a 10 mmφ electrode on the surface and a 26 mmφ electrode on the back, and 50 Hz AC 1.5 kV was applied to measure the maximum leakage current for 60 seconds. . A maximum leakage current of 0.1 mA or less is considered acceptable.

(実施例2)
フィラー含有量を62体積%としたこと以外は実施例1と同様にして熱伝導性接着剤を作製し、一連の評価を行った。
(Example 2)
A heat conductive adhesive was produced in the same manner as in Example 1 except that the filler content was 62% by volume, and a series of evaluations were performed.

(比較例1)
フィラー含有量を55体積%としたこと以外は実施例1と同様に熱伝導性接着剤を作製し、一連の評価を行った。
(Comparative Example 1)
A heat conductive adhesive was prepared in the same manner as in Example 1 except that the filler content was 55% by volume, and a series of evaluations were performed.

(比較例2)
フィラーとして、平均粒径13μmのアルミナ粒子と、平均粒径1μmの略球状アルミナ粒子を体積比で75:25とし、フィラー含有量を67体積%としたこと以外は実施例1と同様に熱伝導性接着剤を作製し、一連の評価を行った。以上の結果を表1に示す。
(Comparative Example 2)
The heat conduction was the same as in Example 1 except that alumina particles with an average particle diameter of 13 μm and substantially spherical alumina particles with an average particle diameter of 1 μm were 75:25 in volume ratio and the filler content was 67 volume%. Adhesive adhesives were prepared and subjected to a series of evaluations. The results are shown in Table 1.

Figure 2008258254
Figure 2008258254

表1に示すように、比較例1はフィラー充填率が55体積%と低いため、熱伝導率が低くなっており要求特性を満たさない。また比較例2では熱伝導率の低いアルミナ粒子のみを使用しているため、フィラー充填率を67%と高くしても熱伝導率が低くなっている。これに対して本発明の実施例1、2は熱伝導率が高く、また接着力、リーク電流、絶縁破壊電圧も要求特性を満たしている。   As shown in Table 1, since Comparative Example 1 has a low filler filling rate of 55% by volume, the thermal conductivity is low and the required characteristics are not satisfied. In Comparative Example 2, only alumina particles having a low thermal conductivity are used, so that the thermal conductivity is low even when the filler filling rate is increased to 67%. In contrast, Examples 1 and 2 of the present invention have high thermal conductivity, and adhesive strength, leakage current, and dielectric breakdown voltage satisfy the required characteristics.

ここでブラッグマンの予測式によりフィラーとして窒化アルミニウム粒子のみを使用したときのフィラー体積充填率と熱伝導率を計算し、これに実施例1、2の熱伝導率と体積充填率をプロットすると図4のようになる。なお窒化アルミニウム粒子の熱伝導率を200W/m・K、樹脂の熱伝導率を0.2W/m・Kとして計算している。   Here, the filler volume filling factor and thermal conductivity when only aluminum nitride particles are used as the filler are calculated by Braggman's prediction formula, and the thermal conductivity and volume filling factor of Examples 1 and 2 are plotted on this. It becomes like 4. The calculation is made assuming that the thermal conductivity of the aluminum nitride particles is 200 W / m · K, and the thermal conductivity of the resin is 0.2 W / m · K.

アルミナ粒子の熱伝導率は窒化アルミニウム粒子の熱伝導率よりも低いため、両者の混合フィラーの熱伝導率は窒化アルミニウム単独の粒子に比べて低くなり、混合フィラーを使用した樹脂組成物(熱伝導性接着剤)の熱伝導率は窒化アルミニウム粒子単体を使用した場合に比べて低くなると予想された。しかし実施例1、2の熱伝導率はブラッグマンの予測式から計算される熱伝導率とほぼ同じ値となっており、予想値を上回る熱伝導率となった。このことからも本発明の熱伝導性接着剤が熱伝導性に優れていることがわかる。   Since the thermal conductivity of alumina particles is lower than that of aluminum nitride particles, the thermal conductivity of both mixed fillers is lower than that of particles of aluminum nitride alone, and the resin composition using the mixed filler (thermal conductivity) The thermal conductivity of the adhesive was expected to be lower than when the aluminum nitride particles were used alone. However, the thermal conductivities of Examples 1 and 2 were almost the same as the thermal conductivity calculated from the Braggman prediction formula, and the thermal conductivity exceeded the expected value. This also shows that the heat conductive adhesive of this invention is excellent in heat conductivity.

放熱モジュールの構造を示す、断面模式図である。It is a cross-sectional schematic diagram which shows the structure of a thermal radiation module. 理想的なフィラーの充填状態を示す模式図である。It is a schematic diagram which shows the filling state of an ideal filler. 本発明の熱伝導接着剤のフィラー充填状態を示す模式図である。It is a schematic diagram which shows the filler filling state of the heat conductive adhesive of this invention. 本発明の熱伝導接着剤の熱伝導率と、フィラー充填率との関係を示す図である。It is a figure which shows the relationship between the heat conductivity of the heat conductive adhesive of this invention, and a filler filling factor.

符号の説明Explanation of symbols

1 半導体素子
2 半田層
3 配線材
4 接着剤
5 放熱部材
6 球状フィラー
7 窒化アルミニウム粒子
8 略球状アルミナ粒子
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Solder layer 3 Wiring material 4 Adhesive 5 Heat radiation member 6 Spherical filler 7 Aluminum nitride particle 8 Substantially spherical alumina particle

Claims (4)

半導体素子と放熱部材を直接又は他の部材を介して接続するための熱伝導性接着剤であって、
絶縁性樹脂、平均粒径15μm〜30μmの窒化アルミニウム粒子、及び平均粒径0.5μm〜2μmの略球状アルミナ粒子を含有し、
前記窒化アルミニウム粒子と前記略球状アルミナ粒子の混合比率(体積比)が70:30〜80:20であり、
前記窒化アルミニウム粒子と前記略球状アルミナ粒子の合計量が、前記絶縁性樹脂、前記窒化アルミニウム粒子、及び前記アルミナ粒子の合計量に対して60〜70体積%であることを特徴とする、熱伝導性接着剤。
A thermally conductive adhesive for connecting a semiconductor element and a heat dissipation member directly or through another member,
Containing an insulating resin, aluminum nitride particles having an average particle size of 15 μm to 30 μm, and substantially spherical alumina particles having an average particle size of 0.5 μm to 2 μm,
The mixing ratio (volume ratio) of the aluminum nitride particles and the substantially spherical alumina particles is 70:30 to 80:20,
The total amount of the aluminum nitride particles and the substantially spherical alumina particles is 60 to 70% by volume with respect to the total amount of the insulating resin, the aluminum nitride particles, and the alumina particles. Adhesive.
前記絶縁性樹脂が、エポキシ樹脂を主成分とすることを特徴とする、請求項1に記載の熱伝導性接着剤。   The thermally conductive adhesive according to claim 1, wherein the insulating resin contains an epoxy resin as a main component. 半導体素子、前記半導体素子に接続した配線材、及び放熱部材を有する放熱モジュールであって、前記配線材と前記放熱部材が請求項1又は2に記載の熱伝導性接着剤を介して接続されていることを特徴とする放熱モジュール。   A heat dissipation module including a semiconductor element, a wiring material connected to the semiconductor element, and a heat dissipation member, wherein the wiring material and the heat dissipation member are connected via the thermally conductive adhesive according to claim 1 or 2. A heat dissipating module. 請求項3に記載の放熱モジュールと制御装置を有する電力変換装置。   The power converter device which has the thermal radiation module and control apparatus of Claim 3.
JP2007096212A 2007-04-02 2007-04-02 Thermally conductive adhesives and heat radiation module using the same and power converter Withdrawn JP2008258254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096212A JP2008258254A (en) 2007-04-02 2007-04-02 Thermally conductive adhesives and heat radiation module using the same and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096212A JP2008258254A (en) 2007-04-02 2007-04-02 Thermally conductive adhesives and heat radiation module using the same and power converter

Publications (1)

Publication Number Publication Date
JP2008258254A true JP2008258254A (en) 2008-10-23

Family

ID=39981561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096212A Withdrawn JP2008258254A (en) 2007-04-02 2007-04-02 Thermally conductive adhesives and heat radiation module using the same and power converter

Country Status (1)

Country Link
JP (1) JP2008258254A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033768A (en) * 2010-07-30 2012-02-16 Sumitomo Bakelite Co Ltd Adhesive material
JP2012515836A (en) * 2009-01-22 2012-07-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Low compressive force non-silicone high thermal conductivity formulations and packages for thermal interface materials
KR101205226B1 (en) 2011-03-28 2012-11-30 금오공과대학교 산학협력단 Themally conductive sheet and method for producing the same
JP2017054967A (en) * 2015-09-10 2017-03-16 日産自動車株式会社 Power conversion device
JP2017101243A (en) * 2008-12-19 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High temperature electrostatic chuck adhesive
KR20180084631A (en) 2015-11-19 2018-07-25 세키스이가가쿠 고교가부시키가이샤 Thermosetting materials and cured products
JP2018178032A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Resin composition, and electronic component and electronic apparatus using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101243A (en) * 2008-12-19 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High temperature electrostatic chuck adhesive
US11264261B2 (en) 2008-12-19 2022-03-01 Applied Materials, Inc. High temperature electrostatic chuck bonding adhesive
JP2012515836A (en) * 2009-01-22 2012-07-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Low compressive force non-silicone high thermal conductivity formulations and packages for thermal interface materials
JP2012033768A (en) * 2010-07-30 2012-02-16 Sumitomo Bakelite Co Ltd Adhesive material
KR101205226B1 (en) 2011-03-28 2012-11-30 금오공과대학교 산학협력단 Themally conductive sheet and method for producing the same
JP2017054967A (en) * 2015-09-10 2017-03-16 日産自動車株式会社 Power conversion device
KR20180084631A (en) 2015-11-19 2018-07-25 세키스이가가쿠 고교가부시키가이샤 Thermosetting materials and cured products
US11866635B2 (en) 2015-11-19 2024-01-09 Sekisui Chemical Co., Ltd. Thermosetting material and cured product
JP2018178032A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Resin composition, and electronic component and electronic apparatus using the same

Similar Documents

Publication Publication Date Title
JP6627303B2 (en) Thermal conductive resin composition, laminate for circuit board, circuit board and semiconductor device
JP2008258254A (en) Thermally conductive adhesives and heat radiation module using the same and power converter
JP6634717B2 (en) Thermal conductive sheet, cured product of thermal conductive sheet, and semiconductor device
WO2017014238A1 (en) Thermoconductive resin composition, thermoconductive sheet, and semiconductor device
JP6657616B2 (en) Thermal conductive sheet, cured product of thermal conductive sheet, and semiconductor device
JP6418348B1 (en) Composite material
JP7092676B2 (en) Heat dissipation sheet, manufacturing method of heat dissipation sheet and laminated body
JP2008255186A (en) Heat-conductive resin sheet and power module
JP6413478B2 (en) Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member
WO2018235920A1 (en) Resin material, method for producing resin material, and laminate
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP2016127046A (en) Granulated powder, resin composition for heat dissipation, heat dissipation sheet, semiconductor device, and heat dissipation member
JP2017098376A (en) Resin composition, circuit board, exothermic body-mounted substrate and circuit board manufacturing method
JPWO2018207821A1 (en) Insulating sheet and laminate
JP2017028128A (en) Substrate for power module, circuit board for power module, and power module
JP6508384B2 (en) Thermal conductive sheet and semiconductor device
JP2011100757A (en) Electronic component, and method of manufacturing the same
CN106133900B (en) Thermally conductive sheet and semiconductor device
JP2016074546A (en) Granulated powder, resin composition for heat radiation, heat radiation sheet, semiconductor device, and heat radiation member
JP6572643B2 (en) Thermally conductive sheet, cured product of thermally conductive sheet, and semiconductor device
JP6476820B2 (en) Granulated powder, resin composition for heat dissipation, heat dissipation sheet, semiconductor device, and heat dissipation member
JP3739335B2 (en) Heat dissipation member and power module
JP6281663B2 (en) Power module board, power module circuit board and power module
JP2017028130A (en) Substrate for power module, circuit board for power module, and power module
JP2017028129A (en) Substrate for power module, circuit board for power module, and power module

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706