JP2008258224A - Solid electrolyte, and solid electrolytic capacitor using the same - Google Patents
Solid electrolyte, and solid electrolytic capacitor using the same Download PDFInfo
- Publication number
- JP2008258224A JP2008258224A JP2007095863A JP2007095863A JP2008258224A JP 2008258224 A JP2008258224 A JP 2008258224A JP 2007095863 A JP2007095863 A JP 2007095863A JP 2007095863 A JP2007095863 A JP 2007095863A JP 2008258224 A JP2008258224 A JP 2008258224A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- conductive polymer
- solid
- electrolytic capacitor
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、固体電解質及びそれを用いた固体電解コンデンサとその製造方法に関し、特に高耐電圧特性を有する固体電解質及びそれを用いた固体電解コンデンサに関する。 The present invention relates to a solid electrolyte, a solid electrolytic capacitor using the same, and a manufacturing method thereof, and more particularly to a solid electrolyte having high withstand voltage characteristics and a solid electrolytic capacitor using the same.
アルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極電極としての弁作用金属をエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、に欠かせないものとなっている。 An electrolytic capacitor using a metal having a valve action such as aluminum can obtain a small size and a large capacity by expanding the surface of the dielectric by making the valve action metal as an anode electrode into the shape of an etching foil or the like. It is widely used because it can. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization and high functionality of electronic equipment.
固体電解コンデンサに用いられる固体電解質としては、電導度が高く、陽極電極の酸化皮膜層との密着性に優れた導電性ポリマーが固体電解質として用いられている。この導電性ポリマーとしては、例えば、ポリアニリン、ポリチオフェン、ポリエチレンジオキシチオフェン等が知られている。 As the solid electrolyte used for the solid electrolytic capacitor, a conductive polymer having high conductivity and excellent adhesion to the oxide film layer of the anode electrode is used as the solid electrolyte. As this conductive polymer, for example, polyaniline, polythiophene, polyethylenedioxythiophene and the like are known.
なかでも、酸化皮膜の厚さに対して耐電圧を高くとることができるという理由から、高耐圧化が図れる導電性ポリマーとして、ポリエチレンジオキシチオフェン(以下、PEDOTと記す)が注目されている。このPEDOTを用いるコンデンサにおいては、化学酸化重合が用いられ、以下のようにして作製される。すなわち、陽極箔と陰極箔についてセパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子にEDOT及び酸化剤溶液を含浸し、加熱して、両電極間にPEDOTポリマー層を形成し、固体電解コンデンサを形成する(特許文献1)。 Among these, polyethylenedioxythiophene (hereinafter referred to as PEDOT) has attracted attention as a conductive polymer that can achieve a high breakdown voltage because the withstand voltage can be increased with respect to the thickness of the oxide film. In the capacitor using PEDOT, chemical oxidative polymerization is used, and it is manufactured as follows. That is, the anode foil and the cathode foil are wound through a separator to form a capacitor element. The capacitor element is impregnated with EDOT and an oxidant solution and heated to form a PEDOT polymer layer between the two electrodes. An electrolytic capacitor is formed (Patent Document 1).
このような固体電解コンデンサは、車載用途、インバータ用途に用いられるが、使用電圧は20WVから35WVへと上昇し、これらに対応すべくコンデンサ素子内にビニル基を有する化合物とホウ酸化合物とからなる結合体を含有させることによって耐電圧を上昇させることが開示されている(特許文献2)。 Such a solid electrolytic capacitor is used for in-vehicle use and inverter use, but the working voltage increases from 20 WV to 35 WV, and in order to cope with these, the capacitor element is composed of a compound having a vinyl group and a boric acid compound. It is disclosed that the withstand voltage is increased by including a conjugate (Patent Document 2).
しかしながら、このような技術をもってしても、高耐電圧化は十分ではなく、さらに高耐電圧特性を有する固体電解コンデンサ、及びその製造方法を提供することを目的とする。 However, even with such a technique, a high withstand voltage is not sufficient, and an object is to provide a solid electrolytic capacitor having a high withstand voltage characteristic and a method for manufacturing the same.
前記の課題を解決するために本発明の第1の側面である固体電解質は、ドーピングされた導電性高分子粒子を分散させるとともに、イオン伝導性高分子およびその電解質塩を溶解した溶液を作成し、この溶液の溶媒を除去して形成することを特徴とする。 In order to solve the above-mentioned problems, the solid electrolyte according to the first aspect of the present invention is prepared by dispersing a doped conductive polymer particle and preparing a solution in which an ion conductive polymer and an electrolyte salt thereof are dissolved. The solution is formed by removing the solvent.
また、導電性高分子がポリ3、4−エチレンジオキシチオフェンであり、イオン伝導性高分子がポリエチレンオキシドであってもよい。 Further, the conductive polymer may be poly 3,4-ethylenedioxythiophene, and the ion conductive polymer may be polyethylene oxide.
さらに、ポリ3、4−エチレンジオキシチオフェン:ポリエチレンオキシド=1:0.2〜1:1であってもよい。 Further, poly3,4-ethylenedioxythiophene: polyethylene oxide = 1: 0.2 to 1: 1 may be used.
加えて、ポリエチレンオキシドの酸素原子と電解質塩のカチオンのモル比が6〜10であってもよい。 In addition, the molar ratio between the oxygen atom of polyethylene oxide and the cation of the electrolyte salt may be 6-10.
次に、電解質塩がホウ酸アンモニウムであってもよい。 Next, the electrolyte salt may be ammonium borate.
また本発明の第2の側面である固体電解コンデンサは、前記の固体電解質層を用いることを特徴とする。 The solid electrolytic capacitor according to the second aspect of the present invention is characterized by using the solid electrolyte layer.
2) イオン伝導性高分子は常温固体であり、リフローなどの高温試験時に気化することがなく、水を加えた場合の高温気化の体積膨張による皮膜と高分子の剥離や高分子鎖同士の剥離が生じないため、容量の低下やESRの増大を防ぎ、製品としての高温時の特性劣化が防止できる。
2) Ion-conducting polymer is a solid at room temperature and does not vaporize during high-temperature tests such as reflow. The film and polymer are peeled off due to high-temperature vaporization volume expansion when water is added. Therefore, a decrease in capacity and an increase in ESR can be prevented, and deterioration of characteristics at a high temperature as a product can be prevented.
本発明は、固体電解コンデンサの電解質としてドーピングされた導電性高分子粒子とイオン伝導性高分子とその電解質塩の三者の複合体を用いるものである。 The present invention uses a three-component composite of doped conductive polymer particles, an ion conductive polymer, and an electrolyte salt thereof as an electrolyte of a solid electrolytic capacitor.
イオン伝導性高分子は、周知の高分子が用いられ、代表的なものとしてポリエチレンオキシド(式(1))やポリプロピレンオキシド等のポリエーテル系高分子が挙げられるが、ポリエステル系やポリアミン系高分子を用いることも出来る。また、これらの共重合体、架橋体および誘導体も用いることが出来る。導電性高分子としては、ポリ3、4−エチレンジオキシチオフェン、ポリアニリン等を挙げることができる。なかでもポリ3、4−エチレンジオキシチオフェンが好ましい。 A well-known polymer is used as the ion conductive polymer, and representative examples include polyether polymers such as polyethylene oxide (formula (1)) and polypropylene oxide. Polyester polymers and polyamine polymers Can also be used. Moreover, these copolymers, crosslinked bodies, and derivatives can also be used. Examples of the conductive polymer include poly 3,4-ethylenedioxythiophene and polyaniline. Of these, poly3,4-ethylenedioxythiophene is preferable.
イオン伝導性高分子の伝導イオン種として存在させる電解質塩としては、カチオンとしてアンモニア(式(2))が挙げられ、アニオンとしてはアジピン酸等のカルボン酸やホウ酸が挙げられ、これらのカチオンとアニオンの組み合わせの電解質塩が使用される。ここで、式(3)はPEDOTを示す。 Examples of the electrolyte salt to be present as the conductive ion species of the ion conductive polymer include ammonia (formula (2)) as a cation, and examples of the anion include carboxylic acid such as adipic acid and boric acid. An electrolyte salt of a combination of anions is used. Here, Formula (3) shows PEDOT.
本発明の固体電解質は、電性高分子粒子を分散させるとともに、イオン伝導性高分子およびその電解質塩を溶解した溶液を作成し、この溶液の溶媒を除去して形成した固体電解質であるが、一例としては、導電性高分子粒子を分散させた溶液とイオン伝導性高分子およびその電解質塩を溶解させた溶液を混合させ、この混合液をアルミ箔上に滴下し、溶媒を乾燥除去することで固体電解質を形成させる。 The solid electrolyte of the present invention is a solid electrolyte formed by dispersing a conductive polymer particle, creating a solution in which an ion conductive polymer and an electrolyte salt thereof are dissolved, and removing the solvent of the solution. As an example, a solution in which conductive polymer particles are dispersed is mixed with a solution in which an ion conductive polymer and an electrolyte salt thereof are dissolved, and this mixed solution is dropped on an aluminum foil to remove the solvent by drying. To form a solid electrolyte.
以上の本発明の固体電解質は、あらかじめドーピングした導電性高分子を用いているので、固体電解質の形成過程で酸化剤を用いることがなく、固体電解コンデンサの酸化皮膜の酸化剤による損傷がないので、酸化皮膜の耐電圧特性の劣化が防止できる。 Since the solid electrolyte of the present invention uses a conductive polymer doped in advance, an oxidant is not used in the formation process of the solid electrolyte, and the oxide film of the solid electrolytic capacitor is not damaged by the oxidant. In addition, deterioration of the withstand voltage characteristics of the oxide film can be prevented.
ここで、図1a、図1bに複合ポリマー膜を用いたコンデンサについての容量特性とESR特性に関する電解塩量効果をグラフに示す。アルミニウム基板としてアルミニウムエッチング箔を160Vで化成したもので化成したものを用い、PEDOTの分散水溶液の重量比は3wt%であり、ホウ酸アンモニウムの水溶液にPEO溶液は重量比が1wt%である。図1aが、PEOの酸素原子とアンモニウムカチオンのモル比に対する静電容量特性を示し、図1bが、モル比に対するESR値を示している。 Here, FIG. 1a and FIG. 1b are graphs showing the effect of the amount of electrolytic salt on the capacity characteristics and ESR characteristics of the capacitor using the composite polymer film. As an aluminum substrate, an aluminum etching foil formed by conversion at 160 V is used. The weight ratio of the aqueous dispersion of PEDOT is 3 wt%, and the weight ratio of the PEO solution to the aqueous solution of ammonium borate is 1 wt%. FIG. 1a shows the capacitance characteristics with respect to the molar ratio of oxygen atom and ammonium cation of PEO, and FIG. 1b shows the ESR value with respect to the molar ratio.
また、図2には、複合ポリマー膜を使用するエッチング箔型コンデンサのブレークダウン電圧特性を示す。アルミニウム基板としてアルミニウムエッチング箔を160V化成したものを用い、低湿度条件として温度が25度で5kPa以下の減圧器内に15時間以上放置し、その後に電圧印加を開始した時の、モル比に対するショート電圧特性を示す。これらの結果より、イオン伝導性高分子と電解質塩のモル比は、6〜10が好ましい。 FIG. 2 shows the breakdown voltage characteristics of an etching foil type capacitor using a composite polymer film. A short of the molar ratio when an aluminum etching foil made of 160V is used as an aluminum substrate and left in a decompressor at a temperature of 25 degrees Celsius and 5 kPa as a low-humidity condition for 15 hours or more and then voltage application is started. The voltage characteristics are shown. From these results, the molar ratio of the ion conductive polymer to the electrolyte salt is preferably 6 to 10.
1wt%のポリエリレンオキシド(PEO)水溶液にPEO酸素原子一モルに対して、アンモニウムカチオンが1/8モルになるように5ホウ酸アンモニウムを溶解した水溶液を作成した。また、3wt%の粒径が30〜40nmの3、4−エチレンジオキシチオフェン(PEDOT)粒子を含有する分散水溶液を作成した。これらの水溶液をPEDOTとPEOの比を異ならせて混合して溶液を作成した。これらに水溶液をアルミニウムプレーン箔に滴下、乾燥して数十μmの高分子層を形成し、静電容量、ESR、耐電圧を測定した。それぞれを、添付資料の図3a〜図4bに示す。 An aqueous solution in which ammonium pentaborate was dissolved in a 1 wt% polyeryrene oxide (PEO) aqueous solution so that the ammonium cation was 1/8 mol with respect to 1 mol of PEO oxygen atoms was prepared. Further, a dispersion aqueous solution containing 3,4-ethylenedioxythiophene (PEDOT) particles having a particle size of 3 wt% of 30 to 40 nm was prepared. These aqueous solutions were mixed at different ratios of PEDOT and PEO to prepare solutions. An aqueous solution was dropped onto an aluminum plain foil and dried to form a polymer layer of several tens of μm, and the capacitance, ESR, and withstand voltage were measured. Each is shown in Figures 3a-4b of the attachment.
(実施例1)
実施例1ではPEDOT分散水溶液にPEO水溶液を加えてプレーン箔について静電容量特性とESR特性について評価した。評価に用いた箔はプレーン箔であり、150Vで化成したものを用いる。PEOについては、5ホウ酸アンモニウム(O/NH4)に1wt%のPEO水溶液と、3wt%PEDOT分散水溶液を用いて、静電容量のPEDOTに対するPEO比特性を図3aに示す。いずれの配合比でも高い静電容量であることを示している。
Example 1
In Example 1, the PEOOT dispersion aqueous solution was added with a PEO aqueous solution, and the plain foil was evaluated for capacitance characteristics and ESR characteristics. The foil used for the evaluation is a plain foil, which is formed at 150V. For PEO, 1 wt% PEO aqueous solution and 3 wt% PEDOT dispersion aqueous solution are used for ammonium pentaborate (O / NH 4), and the PEO ratio characteristics of capacitance to PEDOT are shown in FIG. It shows that the capacitance is high at any compounding ratio.
一方、図3bは同一条件でESR値のPEDOTに対するPEO比特性を示す。PEDOT:PEO比が1:3までは数倍の増大に抑えられることが示されている。 On the other hand, FIG. 3b shows the PEO ratio characteristics of the ESR value against PEDOT under the same conditions. It is shown that the PEDOT: PEO ratio can be suppressed to several times increase up to 1: 3.
(実施例2)
実施例2では、PEDOT分散水溶液とPEO水溶液、プレーン箔についてVI特性と、ショート電圧特性について示す。評価に用いた箔はプレーン箔であり、150Vで化成したものを用いる。PEOについては、5ホウ酸アンモニウム(O/NH4)に1wt%のPEO水溶液と、3wt%PEDOT分散水溶液を用いている。
(Example 2)
In Example 2, the VI characteristics and the short voltage characteristics are shown for the PEDOT dispersion aqueous solution, the PEO aqueous solution, and the plain foil. The foil used for the evaluation is a plain foil, which is formed at 150V. About PEO, 1 wt% PEO aqueous solution and 3 wt% PEDOT dispersion aqueous solution are used for ammonium borate (O / NH4).
図4aに本条件における印加電圧対する電流特性を示す。配合比の増大につれて耐圧が高くなることが示されている。 FIG. 4a shows the current characteristics with respect to the applied voltage under this condition. It is shown that the pressure resistance increases as the compounding ratio increases.
図4bに本条件におけるショート電圧特性を示す。モル比が4となるまでショート電圧が高くなり、モル比が4以上ではショート電圧が一定となる。 FIG. 4b shows the short voltage characteristics under this condition. The short-circuit voltage increases until the molar ratio is 4, and the short-circuit voltage is constant when the molar ratio is 4 or more.
以上から、PEDOT:PEO=1:0.3〜1:1の範囲で、静電容量、ESRとも良好で、耐電圧特性はPEDOTより向上している。 From the above, in the range of PEDOT: PEO = 1: 0.3 to 1: 1, both the capacitance and the ESR are good, and the withstand voltage characteristic is improved as compared with PEDOT.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095863A JP4849257B2 (en) | 2007-03-31 | 2007-03-31 | Solid electrolyte and solid electrolytic capacitor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095863A JP4849257B2 (en) | 2007-03-31 | 2007-03-31 | Solid electrolyte and solid electrolytic capacitor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008258224A true JP2008258224A (en) | 2008-10-23 |
JP4849257B2 JP4849257B2 (en) | 2012-01-11 |
Family
ID=39981532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007095863A Active JP4849257B2 (en) | 2007-03-31 | 2007-03-31 | Solid electrolyte and solid electrolytic capacitor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4849257B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114902361A (en) * | 2020-01-22 | 2022-08-12 | 日本贵弥功株式会社 | Solid electrolytic capacitor |
WO2023054099A1 (en) | 2021-09-29 | 2023-04-06 | 日本ケミコン株式会社 | Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05144676A (en) * | 1991-11-25 | 1993-06-11 | Matsushita Electric Ind Co Ltd | Electrolytic capacitor |
JPH06157699A (en) * | 1992-11-19 | 1994-06-07 | Matsushita Electric Ind Co Ltd | Ionically conductive polymer composition and its production |
-
2007
- 2007-03-31 JP JP2007095863A patent/JP4849257B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05144676A (en) * | 1991-11-25 | 1993-06-11 | Matsushita Electric Ind Co Ltd | Electrolytic capacitor |
JPH06157699A (en) * | 1992-11-19 | 1994-06-07 | Matsushita Electric Ind Co Ltd | Ionically conductive polymer composition and its production |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114902361A (en) * | 2020-01-22 | 2022-08-12 | 日本贵弥功株式会社 | Solid electrolytic capacitor |
WO2023054099A1 (en) | 2021-09-29 | 2023-04-06 | 日本ケミコン株式会社 | Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion |
Also Published As
Publication number | Publication date |
---|---|
JP4849257B2 (en) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5995262B2 (en) | Method for improving the electrical parameters in capacitors containing PEDOT / PSS as solid electrolyte by means of polyglycerol | |
US9728338B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP5397531B2 (en) | Electrolytic capacitor manufacturing method | |
JP2018125555A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
JP6060381B2 (en) | Electrolytic capacitor and manufacturing method thereof | |
JP5388811B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2015165550A (en) | Solid electrolytic capacitor and method of manufacturing the same | |
CN109478466A (en) | Electrolytic capacitor and its manufacturing method | |
WO2014098006A1 (en) | Electrolytic capacitor and method for manufacturing same | |
JP2009111174A (en) | Method for manufacturing electrolytic capacitor and electrolytic capacitor | |
KR20120096438A (en) | Electrolytic capacitor and method of manufacturing electrolytic capacitor | |
WO2011121995A1 (en) | Solid electrolyte capacitor | |
JP2018110232A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
US11152158B2 (en) | Electrolytic capacitor and method for manufacturing same | |
WO2017163727A1 (en) | Electrolytic capacitor | |
WO2015119047A1 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2011216752A (en) | Solid-state electrolytic capacitor | |
WO2011121984A1 (en) | Solid electrolytic capacitor | |
JP4849257B2 (en) | Solid electrolyte and solid electrolytic capacitor using the same | |
CN113795899A (en) | Electrode body, electrolytic capacitor provided with electrode body, and method for manufacturing electrode body | |
JP6433024B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2003173932A (en) | Solid-state capacitor and its manufacturing method | |
WO2024143419A1 (en) | Solid electrolytic capacitor and method for producing same | |
WO2023190189A1 (en) | Winding electrolytic capacitor | |
TWI602206B (en) | Capacitor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4849257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |