JP2008257789A - Cross-point rram memory array having reduced bit line crosstalk - Google Patents

Cross-point rram memory array having reduced bit line crosstalk Download PDF

Info

Publication number
JP2008257789A
JP2008257789A JP2007098047A JP2007098047A JP2008257789A JP 2008257789 A JP2008257789 A JP 2008257789A JP 2007098047 A JP2007098047 A JP 2007098047A JP 2007098047 A JP2007098047 A JP 2007098047A JP 2008257789 A JP2008257789 A JP 2008257789A
Authority
JP
Japan
Prior art keywords
bit line
cross
memory array
memory
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007098047A
Other languages
Japanese (ja)
Inventor
Sheng Teng Hsu
シェン・テン・スー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007098047A priority Critical patent/JP2008257789A/en
Publication of JP2008257789A publication Critical patent/JP2008257789A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce leak current in a cross-point RRAM memory cell. <P>SOLUTION: A cross-point RRAM memory array includes a word line array having an array of parallel word lines and a bit line array having an array of parallel bit lines perpendicular to the word lines, wherein a cross-point is formed between the word lines and the bit lines. A memory resistor is provided between the word lines and the bit lines at each cross-point. A high-open-circuit-voltage gain bit line sensing differential amplifier circuit provided at each bit line, includes a feedback resistor and a high-open-circuit-voltage gain amplifier, arranged in parallel, wherein a resistance of the feedback resistors is greater than a resistance of any of the memory resistors programmed at a low resistance state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リーク電流が非常に少ないクロスポイント型RRAM三次元メモリアレイに関し、より具体的には、各ビット線上に高利得ビット線検出増幅器を備えたクロスポイント型RRAM三次元メモリアレイに関する。   The present invention relates to a cross-point type RRAM three-dimensional memory array with very little leakage current, and more specifically to a cross-point type RRAM three-dimensional memory array having a high gain bit line detection amplifier on each bit line.

RRAM(Resistance Random Access Memory)は、非常に低電圧での抵抗のスイッチングが可能であり、大規模なメモリアレイにおいて不揮発性メモリ抵抗体として用いられる。しかし、単一のRRAMメモリセルはクロスポイントメモリアレイでの使用には適さない。   RRAM (Resistance Random Access Memory) is capable of switching resistance at a very low voltage, and is used as a nonvolatile memory resistor in a large-scale memory array. However, a single RRAM memory cell is not suitable for use in a cross-point memory array.

米国特許第6,753,561号明細書(Rinerson他、“複数の薄膜を有するクロスポイント型メモリアレイ”、2004年6月22日特許付与)には、実質的に平行な複数の導電性配列線の第1グループと、実質的に平行な複数の導電性配列線の第2のグループと、複数のメモリプラグを備えたメモリアレイが記載されている。実質的に平行な導電性配列線の第2のグループは、実質的に平行な導電性配列線の第1のグループに対して実質的に直交して配置されており、複数のメモリプラグは、実質的に平行な導電性配列線の第1のグループと実質的に平行な導電性配列線の第2のグループの交点に配置されている。各メモリプラグは、メモリ素子の薄膜層と非オーミック素子を構成する少なくとも1枚の薄膜を含む多層膜から成る金属/絶縁体/金属(MIM)装置を備える。上記課題を解決する方法として、上記Rinerson他は、各メモリ抵抗体に電流リミッタを挿入することを提案している。しかし、電流リミッタを加えることにより、製造工程が複雑になり、回路の信頼性が増す。   US Pat. No. 6,753,561 (Rinerson et al., “Crosspoint Memory Array with Multiple Thin Films”, granted Jun. 22, 2004) discloses a plurality of substantially parallel conductive arrays. A memory array is described that includes a first group of lines, a second group of conductive array lines that are substantially parallel, and a plurality of memory plugs. The second group of substantially parallel conductive array lines is disposed substantially orthogonal to the first group of substantially parallel conductive array lines, and the plurality of memory plugs are: The first group of substantially parallel conductive array lines and the second group of substantially parallel conductive array lines are disposed at the intersection of the first group of substantially parallel conductive array lines. Each memory plug includes a metal / insulator / metal (MIM) device comprising a multilayer film including a thin film layer of a memory element and at least one thin film constituting a non-ohmic element. As a method of solving the above problem, Rinerson et al. Proposes to insert a current limiter into each memory resistor. However, adding a current limiter complicates the manufacturing process and increases circuit reliability.

図1に、従来のクロスポイント型メモリアレイの等価回路を示す。図1では回路全体を矢符10で示し、ビット線B、B、B、Bを有するメモリアレイ、及び、クロストーク経路を示している。電圧VRがワード線に印加される時、例えばビット線B上の抵抗体R34で書き込みが行われるが、Bと隣接するビット線の間でクロストークが発生する。クロストークが発生するとメモリ信号出力に歪が生じるため、ビット線上のクロストークは非常に深刻な問題である。 FIG. 1 shows an equivalent circuit of a conventional cross-point type memory array. In FIG. 1, the entire circuit is indicated by an arrow 10, and a memory array having bit lines B 1 , B 2 , B 3 , and B 4 and a crosstalk path are shown. When the voltage VR is applied to the word line, for example, writing is performed by the resistor R 34 on the bit line B 4 , but crosstalk occurs between B 4 and the adjacent bit line. When crosstalk occurs, distortion occurs in the memory signal output, so that crosstalk on the bit line is a very serious problem.

S.T.Hsu他及びT.K.Liによる、シャープ米国研究所の内部文書である“MSM/PCMOメモリセルを備えた超高密度クロスポイント型抵抗メモリアレイ」”2005年5月5日に提出)では、各メモリセルに挿入された金属/半導体/金属(MSM)電流リミッタを開示している。当該文書に記載されたMSMは双方向ショットキーダイオードであり、上記Rinerson他によるMIMダイオードよりも大きな電流を扱うことが可能である。   S. T.A. Hsu et al. K. In Li, Sharp US Laboratory's internal document “Ultra High Density Crosspoint Resistive Memory Array with MSM / PCMO Memory Cells” (submitted on May 5, 2005) was inserted into each memory cell. A metal / semiconductor / metal (MSM) current limiter is disclosed, the MSM described in that document is a bidirectional Schottky diode and can handle larger currents than the MIM diode by Rinerson et al.

米国特許第6,753,561号明細書US Pat. No. 6,753,561

本発明の目的は、クロスポイント型RRAM三次元メモリアレイにおけるリーク電流を最小限に抑える回路技術を提供することにある。   An object of the present invention is to provide a circuit technique for minimizing leakage current in a cross-point RRAM three-dimensional memory array.

本発明の他の目的は、各ビット線に高利得のビット線検出増幅器を備えるクロスポイント型RRAM三次元メモリアレイを提供することにある。   Another object of the present invention is to provide a cross-point RRAM three-dimensional memory array having a high gain bit line detection amplifier for each bit line.

本発明に係るクロスポイント型RRAMメモリアレイは、複数のワード線を実質的に平行に配列してなるワード線配列と、前記ワード線に対して実質的に直交する複数のビット線を実質的に平行に配列してなるビット線配列を備え、前記ワード線と前記ビット線との間にはクロスポイントが形成されている。各クロスポイントにおいて前記ワード線と前記ビット線の間にメモリ抵抗体を備える。各ビット線上にある高利得ビット線検出増幅回路は、帰還抵抗と高利得差動増幅器を並列に配置してなり、帰還抵抗の抵抗値は、低抵抗状態に書き込まれた何れのメモリ抵抗体の抵抗値よりも大きく、また、高抵抗状態に書き込まれた何れのメモリ抵抗体の抵抗値よりも小さい。   A cross-point type RRAM memory array according to the present invention includes a word line array formed by arranging a plurality of word lines substantially in parallel and a plurality of bit lines substantially orthogonal to the word lines. A bit line array arranged in parallel is provided, and a cross point is formed between the word line and the bit line. A memory resistor is provided between the word line and the bit line at each cross point. The high gain bit line detection amplifier circuit on each bit line has a feedback resistor and a high gain differential amplifier arranged in parallel, and the resistance value of the feedback resistor is the value of any memory resistor written in the low resistance state. It is larger than the resistance value and smaller than the resistance value of any memory resistor written in the high resistance state.

本発明の要旨、及び、目的によって、本発明の特徴の可及的速やかな理解が提供される。更に、本発明の十分な理解は、下記に詳述された図面と発明を実施するための最良の形態を参照することによって得られる。   The gist and purpose of the present invention provide as soon as possible an understanding of the features of the present invention. In addition, a full understanding of the present invention can be obtained by reference to the drawings detailed below and the best mode for carrying out the invention.

本発明に係る三次元クロスポイント型RRAMメモリアレイの第一の目的は、ビット線間のクロストークを除去することにある。本発明に係るRRAMメモリアレイでは、高開路電圧利得増幅器がビット線検出差動増幅器として使用される。高利得増幅器の入力電圧は0に等しいため、ビット線間のクロストークは最小限に抑えられる。増幅器の開路利得は100よりも高くなければならない。また、ビット線検出増幅回路には低抵抗状態の時のメモリ抵抗体の抵抗値より大きな抵抗値を持つ帰還抵抗を備える。   The first object of the three-dimensional cross-point type RRAM memory array according to the present invention is to eliminate crosstalk between bit lines. In the RRAM memory array according to the present invention, a high open circuit voltage gain amplifier is used as a bit line detection differential amplifier. Since the input voltage of the high gain amplifier is equal to 0, the crosstalk between the bit lines is minimized. The open circuit gain of the amplifier must be higher than 100. Further, the bit line detection amplifier circuit includes a feedback resistor having a resistance value larger than the resistance value of the memory resistor in the low resistance state.

図2に、2本の隣接するビット線の等価回路を示す。矢符20は回路全体を示す。この回路には、開路電圧利得Aの増幅器、メモリ抵抗体RM1及びRM2、帰還抵抗Rが含まれる。ここで、Rは任意のビット線に接続する全ての非選択メモリ抵抗体に相当し、Vは選択ワード線電圧、V01及びV02は夫々ビット線1、ビット線2上の増幅器の出力電圧を表す。Iは選択ワード線からメモリ抵抗体RM1を経てビット線1に流れる電流であり、Iは選択ワード線からメモリ抵抗RM2を経てビット線2に流れる電流であり、Iはクロストークの原因となるリーク電流を表す。上記の関係を式に表すと以下の数1〜数5に示すようになる。 FIG. 2 shows an equivalent circuit of two adjacent bit lines. An arrow 20 indicates the entire circuit. This circuit includes an amplifier with an open circuit voltage gain A, memory resistors R M1 and R M2 , and a feedback resistor R F. Here, R corresponds to all unselected memory resistors connected to an arbitrary bit line, V is a selected word line voltage, V 01 and V 02 are output voltages of amplifiers on the bit line 1 and the bit line 2, respectively. Represents. I 1 is a current that flows from the selected word line to the bit line 1 via the memory resistor R M1 , I 2 is a current that flows from the selected word line to the bit line 2 via the memory resistor R M2 , and I 3 is crosstalk It represents the leakage current that causes The above relationship is expressed by the following equations 1 to 5.

Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789

数1〜数5より以下の数6及び数7が導出される。   The following Equation 6 and Equation 7 are derived from Equation 1 to Equation 5.

Figure 2008257789
Figure 2008257789
Figure 2008257789
Figure 2008257789

数6及び数7から、出力電圧V01とV02間の関係は以下の数8のように規定される。 From the equations 6 and 7, the relationship between the output voltages V 01 and V 02 is defined as the following equation 8.

Figure 2008257789
Figure 2008257789

数8を、図3及び図4に夫々、RM2=5RM1=5kΩ、RM2=10RM1=10kΩの場合について、開路電圧利得Aをパラメータとし、非選択メモリ抵抗体の抵抗値が最小の場合におけるリーク経路数の関数として示す。帰還抵抗Rの抵抗値は2kΩである。これらの結果により、開路電圧利得Aが500より大きい時は、リーク抵抗経路数が最小で100であるならば、出力電圧比V01/V02が夫々約2.8及び4となることが分かる。開路電圧利得Aが1000の時は、出力電圧比V01/V02は夫々約3.5及び5.4となる。これは、出力電圧比が検出増幅器の開路電圧利得とメモリ抵抗体の高抵抗対低抵抗の比と共に増加することを明らかに示している。検出増幅器を適切に設計することによって、電流リミッタを設けることなく、大規模なクロスポイント型RRAMアレイが製造可能となる。 3 and FIG. 4 respectively, in the case of R M2 = 5R M1 = 5 kΩ and R M2 = 10R M1 = 10 kΩ, the open circuit voltage gain A is a parameter, and the resistance value of the non-selected memory resistor is the smallest As a function of the number of leak paths in the case. Resistance of the feedback resistor R F is a 2 k.OMEGA. From these results, it can be seen that when the open circuit voltage gain A is greater than 500, the output voltage ratio V 01 / V 02 is about 2.8 and 4, respectively, if the number of leak resistance paths is a minimum of 100. . When the open circuit voltage gain A is 1000, the output voltage ratio V 01 / V 02 is about 3.5 and 5.4, respectively. This clearly shows that the output voltage ratio increases with the open circuit voltage gain of the sense amplifier and the high resistance to low resistance ratio of the memory resistor. By appropriately designing the sense amplifier, a large-scale cross-point RRAM array can be manufactured without providing a current limiter.

ビット線における電圧は実質的には接地電位と等しいため、図5に矢符30で示したメモリアレイはワード単位で読み出される。メモリアレイ30は、夫々実質的に平行に並ぶ複数のワード線とビット線を備え、ビット線はワード線に対して実質的に直交している。ワード線とビット線が交差する箇所にはクロスポイントが形成されており、メモリアレイ30の各クロスポイントにはメモリ抵抗体が配置されている。読み出し動作中は、非選択ワード線が接地電位にバイアスされることが望ましい。   Since the voltage on the bit line is substantially equal to the ground potential, the memory array indicated by the arrow 30 in FIG. 5 is read in units of words. The memory array 30 includes a plurality of word lines and bit lines arranged substantially in parallel, and the bit lines are substantially orthogonal to the word lines. Cross points are formed at the intersections of the word lines and the bit lines, and memory resistors are arranged at the respective cross points of the memory array 30. During the read operation, it is desirable that the unselected word line is biased to the ground potential.

図6に示すように、メモリアレイ30はビット単位で読み出すことも可能である。図6において、T及びTは短絡トランジスタであり、T及びTはパストランジスタである。任意のワード線とビット線が選択された場合、T及びTをオン、T及びTをオフにすることによって、選択ワード線は電圧Vにバイアスされ、選択ビット線の出力は検出増幅器に接続される。非選択ワード線、非選択ビット線に対しては、T及びTをオフ、T及びTをオンにすることによって、全ての非選択ワード線、非選択ビット線は接地電位に短絡される。 As shown in FIG. 6, the memory array 30 can also be read in bit units. In FIG. 6, T 2 and T 4 are short-circuit transistors, and T 1 and T 3 are pass transistors. When any word line and bit line is selected, the selected word line is biased to voltage V by turning on T 1 and T 3 and turning off T 2 and T 4 and the output of the selected bit line is detected Connected to an amplifier. For unselected word lines and unselected bit lines, all the unselected word lines and unselected bit lines are short-circuited to the ground potential by turning off T 1 and T 3 and turning on T 2 and T 4. Is done.

以上、クロスポイントRRAMメモリアレイにおけるビット線間クロストークを除去可能な回路について説明した。本発明は、特許請求の範囲で示される本発明の技術的範囲内において適宜変更可能である。   The circuit capable of removing the crosstalk between bit lines in the cross point RRAM memory array has been described above. The present invention can be appropriately changed within the technical scope of the present invention shown in the claims.

ビット線にクロストーク経路がある従来のクロスポイント型メモリアレイの等価回路図Equivalent circuit diagram of a conventional crosspoint memory array with a crosstalk path in the bit line ビット線検出増幅器を備えた2本の隣接するビット線の等価回路図Equivalent circuit diagram of two adjacent bit lines with bit line sense amplifier 1kΩの抵抗体RM1と5kΩの抵抗体RM2を備えた本発明に係るクロスポイント型RRAMの低抵抗メモリセルと高抵抗メモリセル間の出力電圧比を示す図It shows the output voltage ratio between 1kΩ resistor R M1 and 5kΩ resistor R M2 a cross-point RRAM low-resistance memory cell and a high-resistance memory cell according to the present invention comprising 1kΩの抵抗体RM1と10kΩの抵抗体RM2を備えた本発明に係るクロスポイント型RRAMの低抵抗メモリセルと高抵抗メモリセル間の出力電圧比を示す図It shows the output voltage ratio between 1kΩ resistor R M1 and 10kΩ resistor R M2 a cross-point RRAM low-resistance memory cell and a high-resistance memory cell according to the present invention comprising ワード単位で読み出す場合の本発明に係るメモリアレイを示す図The figure which shows the memory array based on this invention when reading by a word unit ビット単位で読み出す場合の本発明に係るメモリアレイの要部を示す図The figure which shows the principal part of the memory array based on this invention in the case of reading by a bit unit

符号の説明Explanation of symbols

10: 従来のクロスポイント型メモリアレイ
20: 2本の隣接するビット線の等価回路
30: 本発明に係るクロスポイント型メモリアレイ
10: Conventional cross-point type memory array 20: Equivalent circuit of two adjacent bit lines 30: Cross-point type memory array according to the present invention

Claims (5)

複数のワード線を平行に配列してなるワード線配列と、前記複数のワード線に対して直交する複数のビット線を平行に配列してなるビット線配列を備え、
前記ワード線と前記ビット線との間にはクロスポイントが形成され、
前記各クロスポイントにおいて前記ワード線と前記ビット線の間に位置するメモリ抵抗体を備え、
前記各ビット線上に高開路電圧利得のビット線検出差動増幅回路を備えることを特徴とするクロスポイント型RRAMメモリアレイ。
A word line array formed by arranging a plurality of word lines in parallel and a bit line array formed by arranging a plurality of bit lines orthogonal to the plurality of word lines in parallel;
A cross point is formed between the word line and the bit line,
A memory resistor positioned between the word line and the bit line at each cross point;
A cross-point type RRAM memory array comprising a bit line detection differential amplifier circuit having a high open circuit voltage gain on each bit line.
前記高開路電圧利得のビット線検出差動増幅回路が、帰還抵抗と高開路電圧利得のビット線検出差動増幅器を並列に配置してなることを特徴とする請求項1に記載のRRAMメモリアレイ。   2. The RRAM memory array according to claim 1, wherein said high open circuit voltage gain bit line detection differential amplifier circuit comprises a feedback resistor and a high open circuit voltage gain bit line detection differential amplifier arranged in parallel. . 前記帰還抵抗の抵抗値が、低抵抗状態に書き込まれた何れの前記メモリ抵抗体の抵抗値よりも大きいことを特徴とする請求項2に記載のRRAMメモリアレイ。   3. The RRAM memory array according to claim 2, wherein a resistance value of the feedback resistor is larger than a resistance value of any of the memory resistors written in a low resistance state. 前記帰還抵抗の抵抗値が、高抵抗状態に書き込まれた何れの前記メモリ抵抗体の抵抗値よりも小さいことを特徴とする請求項2または3に記載のRRAMメモリアレイ。   4. The RRAM memory array according to claim 2, wherein a resistance value of the feedback resistor is smaller than a resistance value of any of the memory resistors written in a high resistance state. 前記高開示電圧利得のビット線検出差動増幅器の開路電圧利得が100より大きいことを特徴とする請求項2〜4の何れか1項に記載のRRAMメモリアレイ。   5. The RRAM memory array according to claim 2, wherein an open circuit voltage gain of the high-disclosure voltage gain bit line detection differential amplifier is greater than 100. 6.
JP2007098047A 2007-04-04 2007-04-04 Cross-point rram memory array having reduced bit line crosstalk Withdrawn JP2008257789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098047A JP2008257789A (en) 2007-04-04 2007-04-04 Cross-point rram memory array having reduced bit line crosstalk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098047A JP2008257789A (en) 2007-04-04 2007-04-04 Cross-point rram memory array having reduced bit line crosstalk

Publications (1)

Publication Number Publication Date
JP2008257789A true JP2008257789A (en) 2008-10-23

Family

ID=39981204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098047A Withdrawn JP2008257789A (en) 2007-04-04 2007-04-04 Cross-point rram memory array having reduced bit line crosstalk

Country Status (1)

Country Link
JP (1) JP2008257789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169720A (en) * 2010-02-25 2011-08-31 复旦大学 Resistor random access memory for eliminating over-write and error-write phenomena
CN102638030A (en) * 2012-04-20 2012-08-15 北京大学 Voltage protection circuit based on resistive switching memristor and application thereof
US9058857B2 (en) 2011-10-10 2015-06-16 Micron Technology, Inc. Cross-point memory compensation
US10008666B2 (en) 2012-07-31 2018-06-26 Hewlett Packard Enterprise Development Lp Non-volatile resistive memory cells

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169720A (en) * 2010-02-25 2011-08-31 复旦大学 Resistor random access memory for eliminating over-write and error-write phenomena
CN102169720B (en) * 2010-02-25 2014-04-02 复旦大学 Resistor random access memory for eliminating over-write and error-write phenomena
US9058857B2 (en) 2011-10-10 2015-06-16 Micron Technology, Inc. Cross-point memory compensation
US9679642B2 (en) 2011-10-10 2017-06-13 Micron Technology, Inc. Cross-point memory compensation
US10679696B2 (en) 2011-10-10 2020-06-09 Micron Technology, Inc. Cross-point memory compensation
US11004510B2 (en) 2011-10-10 2021-05-11 Micron Technology, Inc. Cross-point memory compensation
US11587615B2 (en) 2011-10-10 2023-02-21 Micron Technology, Inc. Cross-point memory compensation
CN102638030A (en) * 2012-04-20 2012-08-15 北京大学 Voltage protection circuit based on resistive switching memristor and application thereof
CN102638030B (en) * 2012-04-20 2014-07-02 北京大学 Voltage protection circuit based on resistive switching memristor and application thereof
US10008666B2 (en) 2012-07-31 2018-06-26 Hewlett Packard Enterprise Development Lp Non-volatile resistive memory cells

Similar Documents

Publication Publication Date Title
US7236389B2 (en) Cross-point RRAM memory array having low bit line crosstalk
US7248498B2 (en) Serial transistor-cell array architecture
JP4377817B2 (en) Programmable resistance memory device
US8780609B2 (en) Variable-resistance memory device and driving method thereof
TWI307098B (en)
US8861244B2 (en) Non-volatile memory cell with multiple resistive sense elements sharing a common switching device
TW201921356A (en) Circuitry for writing to and reading from an array of resistive random access memory cells
TWI523014B (en) Select device for cross point memory structures
TW201508747A (en) Voltage control for crosspoint memory structures
Yoon et al. Comprehensive Writing Margin Analysis and its Application to Stacked one Diode‐One Memory Device for High‐Density Crossbar Resistance Switching Random Access Memory
JP6482959B2 (en) Semiconductor memory device
JP5763004B2 (en) Nonvolatile semiconductor memory device
JP2008257789A (en) Cross-point rram memory array having reduced bit line crosstalk
JP2014010876A (en) Semiconductor memory device
JP2011060389A (en) Semiconductor memory device
Chen et al. 3D-HIM: A 3D High-density Interleaved Memory for bipolar RRAM design
US8576605B2 (en) Nonvolatile semiconductor memory device
JP2005251381A (en) Electrically writable cross point type nonvolatile variable resistive storage, and cross point type variable resistive memory array
KR100730254B1 (en) Programmable resistance memory device
US8995168B2 (en) Semiconductor storage device
WO2022222274A1 (en) Data readout circuit for resistive random access memory, and resistive random access memory circuit
Lin et al. Resistance requirements of threshold switching selectors in 1S1R crossbar array
TWI694446B (en) Non-volatile memory device and non-volatile memory device
WO2016117225A1 (en) Memory cell and memory device
JP2015149351A (en) Nonvolatile semiconductor memory

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706