TWI694446B - Non-volatile memory device and non-volatile memory device - Google Patents

Non-volatile memory device and non-volatile memory device Download PDF

Info

Publication number
TWI694446B
TWI694446B TW108126635A TW108126635A TWI694446B TW I694446 B TWI694446 B TW I694446B TW 108126635 A TW108126635 A TW 108126635A TW 108126635 A TW108126635 A TW 108126635A TW I694446 B TWI694446 B TW I694446B
Authority
TW
Taiwan
Prior art keywords
current
memory element
memory
resistance state
volatile memory
Prior art date
Application number
TW108126635A
Other languages
Chinese (zh)
Other versions
TW202105390A (en
Inventor
林媛宣
Original Assignee
卡比科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡比科技有限公司 filed Critical 卡比科技有限公司
Priority to TW108126635A priority Critical patent/TWI694446B/en
Application granted granted Critical
Publication of TWI694446B publication Critical patent/TWI694446B/en
Publication of TW202105390A publication Critical patent/TW202105390A/en

Links

Images

Abstract

A non-volatile memory includes a first memory component and a second memory component. The first memory component is configured to receive a control voltage and an input voltage, and output a first current. The second memory component is coupled to the first memory component and configured to receive the control voltage and the input voltage, and output a second current. The first memory component and the second memory component are changed from a high resistance state to a low resistance state according to a setting operation, and are changed from a low resistance state to a high resistance state according to a reset operation. The first current is changed according to the first memory component is in the high resistance state or the low resistance state, the second current is changed according to the second memory component is in the high resistance state or the low resistance state.

Description

非揮發式記憶體及非揮發式記憶體裝置 Non-volatile memory and non-volatile memory device

本揭示文件係關於一種非揮發式記憶體及非揮發式記憶體裝置,特別是一種差動式架構的非揮發式記憶體及非揮發式記憶體裝置。 The present disclosure relates to a non-volatile memory and non-volatile memory device, in particular to a differential architecture of non-volatile memory and non-volatile memory device.

近年來,隨著可攜式電子產品的發展,促使記憶體研究的蓬勃發展,記憶體當中的電阻式隨機存取記憶體(Resistive random-access memory,RRAM)因為具有高儲存密度及優越可靠度等優點,被視為最具潛力的非揮發性記憶體之一。 In recent years, with the development of portable electronic products, the research on memory has vigorously developed. Resistive random-access memory (RRAM) in memory has high storage density and superior reliability And other advantages, it is regarded as one of the most potential non-volatile memory.

傳統的電阻式隨機存取記憶體(Resistive random-access memory,RRAM)元件會利用外部電路提供一參考電流,用以與電阻式隨機存取記憶體產生之電流比較進而分辨電阻式隨機存取記憶體所儲存之邏輯狀態,額外的參考電流源大幅增加整體電路面積。此外,在高溫下,單一電阻式隨機存取記憶體元件的電阻狀態會隨著時間往參考電流移動,容易發生資料誤判之狀況而存在許多可靠度問題。 Conventional Resistive Random Access Memory (RRAM) devices use an external circuit to provide a reference current to compare with the current generated by resistive random access memory to distinguish resistive random access memory The logic state stored in the body, the additional reference current source greatly increases the overall circuit area. In addition, under high temperature, the resistance state of the single-resistance random access memory device will move to the reference current with time, which is prone to data misjudgment and there are many reliability problems.

本揭示文件的一實施例中,一種非揮發式記憶體包含第一記憶體元件及第二記憶體元件。第一記憶體元件用以接收控制電壓及輸入電壓並輸出第一電流。第二記憶體元件耦接於第一記憶體元件,用以接收控制電壓及輸入電壓並輸出第二電流。第一記憶體元件及第二記憶體元件根據設定操作從高阻態改變為低阻態,根據重置操作從低阻態改變為高阻態,第一電流根據第一記憶體元件處於高阻態或低阻態而改變,第二電流根據第二記憶體元件處於高阻態或低阻態而改變。 In an embodiment of the present disclosure, a non-volatile memory includes a first memory element and a second memory element. The first memory element is used to receive the control voltage and the input voltage and output the first current. The second memory element is coupled to the first memory element and used to receive the control voltage and the input voltage and output a second current. The first memory element and the second memory element change from a high resistance state to a low resistance state according to a setting operation, and from a low resistance state to a high resistance state according to a reset operation, and the first current is in a high resistance according to the first memory element State or low resistance state, the second current changes according to whether the second memory element is in a high resistance state or a low resistance state.

本揭示文件的另一實施例中,一種非揮發式記憶體裝置包含複數個非揮發式記憶體及感測電路。非揮發式記憶體的其中一者用以根據控制電壓及輸入電壓產生第一電流或第二電流。感測電路用以比較第一電流或第二電流以判斷該非揮發式記憶體裝置為低邏輯狀態或高邏輯狀態。 In another embodiment of the present disclosure, a non-volatile memory device includes a plurality of non-volatile memories and a sensing circuit. One of the non-volatile memories is used to generate the first current or the second current according to the control voltage and the input voltage. The sensing circuit is used to compare the first current or the second current to determine whether the non-volatile memory device is in a low logic state or a high logic state.

綜上所述,非揮發式記憶體根據控制電壓及輸入電壓輸出第一電流及第二電流,並根據設定操作及重置操作設定為高阻態或低阻態,第一電流及第二電流根據記憶體元件的高阻態或低阻態而有所改變。 In summary, the non-volatile memory outputs the first current and the second current according to the control voltage and the input voltage, and is set to the high resistance state or the low resistance state according to the setting operation and the reset operation, the first current and the second current It changes according to the high resistance state or low resistance state of the memory device.

100‧‧‧非揮發性記憶體 100‧‧‧ Non-volatile memory

110‧‧‧非揮發性記憶體元件 110‧‧‧ Non-volatile memory device

110a、110b‧‧‧記憶體元件 110a, 110b‧‧‧ memory element

110c、110d‧‧‧選取元件 110c, 110d‧‧‧selected components

120‧‧‧感測電路 120‧‧‧sensing circuit

200‧‧‧非揮發性記憶體裝置 200‧‧‧ Non-volatile memory device

SL、SL1、SL2‧‧‧資料線 SL, SL1, SL2‧‧‧Data cable

WL、WL1、WL2‧‧‧字元線 WL, WL1, WL2 ‧‧‧ character line

BL、BL1、BL2、BLB、BLB1、BLB2‧‧‧位元線 BL, BL1, BL2, BLB, BLB1, BLB2 ‧‧‧ bit lines

HRS‧‧‧高阻態 HRS‧‧‧High resistance state

LRS‧‧‧低阻態 LRS‧‧‧Low resistance state

IBL‧‧‧第一電流 I BL ‧‧‧ First current

IBLB‧‧‧第二電流 I BLB ‧‧‧second current

第1圖繪示根據本揭示文件之一實施例的非揮發性記憶體電路圖。 FIG. 1 is a circuit diagram of a non-volatile memory according to an embodiment of the present disclosure.

第2圖繪示根據本揭示文件之一實施例的非揮發性記憶體低邏輯狀態及高邏輯狀態示意圖。 FIG. 2 is a schematic diagram of a low logic state and a high logic state of a non-volatile memory according to an embodiment of the present disclosure.

第3圖繪示根據本揭示文件之一實施例的非揮發性記憶體裝置電路圖。 FIG. 3 is a circuit diagram of a non-volatile memory device according to an embodiment of the present disclosure.

在本文中所使用的用詞『包含』、『具有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。 The words "including", "having", etc. used in this article are all open terms, which means "including but not limited to". In addition, "and/or" as used in this article includes any one or more of the listed items and all combinations thereof.

於本文中,當一元件被稱為『連結』或『耦接』時,可指『電性連接』或『電性耦接』。『連結』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本揭示文件。 In this article, when an element is called "connected" or "coupled", it can be referred to as "electrically connected" or "electrically coupled." "Link" or "Coupling" can also be used to indicate the operation or interaction of two or more components. In addition, although terms such as "first", "second", etc. are used in this document to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless the context clearly dictates, the term does not specifically refer to or imply the order or order, nor is it intended to limit the present disclosure.

請參考第1圖,第1圖繪示根據本揭示文件之一實施例的非揮發性記憶體100電路圖。非揮發性記憶體100包含非揮發性記憶體元件110及感測電路120。非揮發性記憶體元件110包含記憶體元件110a、記憶體元件110b、選取元件110c及選取元件110d。非揮發性記憶體元件110是 由記憶體元件110a及記憶體元件110b串聯而成,記憶體元件110a及記憶體元件110b共用字元線WL及資料線SL,形成差動式結構,在此實施例中,記憶體元件110a及記憶體元件110b可使用相同的記憶體元件。 Please refer to FIG. 1, which illustrates a circuit diagram of a non-volatile memory 100 according to an embodiment of the present disclosure. The non-volatile memory 100 includes a non-volatile memory element 110 and a sensing circuit 120. The non-volatile memory device 110 includes a memory device 110a, a memory device 110b, a selection device 110c, and a selection device 110d. The non-volatile memory device 110 is The memory element 110a and the memory element 110b are connected in series. The memory element 110a and the memory element 110b share the character line WL and the data line SL to form a differential structure. In this embodiment, the memory element 110a and The memory element 110b may use the same memory element.

選取元件110c耦接於記憶體元件110a,選取元件110d耦接於記憶體元件110b,選取元件110c及選取元件110d響應於控制電壓導通,控制電壓可由字元線WL傳送到選取元件110c及選取元件110d的控制端。於一實施例中,選取元件110c及選取元件110d可由電晶體實現,本揭示文件不以此為限。 The selection element 110c is coupled to the memory element 110a, the selection element 110d is coupled to the memory element 110b, the selection element 110c and the selection element 110d are turned on in response to the control voltage, and the control voltage can be transmitted from the word line WL to the selection element 110c and the selection element 110d control terminal. In one embodiment, the selection element 110c and the selection element 110d may be implemented by transistors, which is not limited in this disclosure.

感測電路120用以比較記憶體元件110a及記憶體元件110b所輸出的電流大小,以判斷非揮發性記憶體100為低邏輯狀態(邏輯0)或高邏輯裝態(邏輯1)。 The sensing circuit 120 is used to compare the current output by the memory element 110a and the memory element 110b to determine whether the non-volatile memory 100 is in a low logic state (logic 0) or a high logic state (logic 1).

請參考第2圖,第2圖繪示根據本揭示文件之一實施例的非揮發性記憶體100低邏輯狀態及高邏輯狀態示意圖。非揮發性記憶體100是由左右兩個相反電阻狀態的記憶體元件構成一個位元的差動式記憶體架構,換句話說,當其中一個記憶體元件為低阻態(low resistance state,LRS)時,另外一個記憶體元件為高阻態(high resistance state,HRS)。例如記憶體元件110a為高阻態HRS時,記憶體元件110b為低阻態LRS,如第2圖上圖所示。記憶體元件110a為低阻態LRS時,記憶體元件110b為高阻態HRS,如第2圖下圖所示。 Please refer to FIG. 2, which illustrates a schematic diagram of a low logic state and a high logic state of the non-volatile memory 100 according to an embodiment of the present disclosure. The non-volatile memory 100 is a one-bit differential memory architecture composed of left and right memory elements in opposite resistance states. In other words, when one of the memory elements is in a low resistance state (LRS) ), the other memory device is in a high resistance state (HRS). For example, when the memory element 110a is a high-resistance HRS, the memory element 110b is a low-resistance LRS, as shown in the upper diagram of FIG. 2. When the memory element 110a is a low-resistance LRS, the memory element 110b is a high-resistance HRS, as shown in the lower diagram of FIG. 2.

記憶體元件110a用以接收控制電壓及輸入電 壓並輸出第一電流IBL,記憶體元件110b耦接於記憶體元件110a,用以接收控制電壓及輸入電壓並輸出第二電流IBLB。記憶體元件110a及記憶體元件110b根據設定操作從高阻態HRS改變為低阻態LRS,根據重置操作從低阻態LRS改變為高阻態HRS。第一電流IBL根據記憶體元件110a處於高阻態HRS或低阻態LRS而改變,第二電流IBLB根據記憶體元件110b處於高阻態HRS或低阻態LRS而改變。 The memory element 110a is used for receiving the control voltage and the input voltage and outputting the first current I BL . The memory element 110b is coupled to the memory element 110a for receiving the control voltage and the input voltage and outputting the second current I BLB . The memory device 110a and the memory device 110b change from the high-resistance HRS to the low-resistance LRS according to the setting operation, and change from the low-resistance LRS to the high-resistance HRS according to the reset operation. The first current I BL changes according to the memory element 110 a being in the high resistance state HRS or the low resistance state LRS, and the second current I BLB changes according to the memory element 110 b being in the high resistance state HRS or the low resistance state LRS.

控制電壓經由字元線WL傳送到選取元件110c及選取元件110d,輸入電壓經由資料線SL傳送到記憶體元件110a及記憶體元件110b。記憶體元件110a及記憶體元件110b根據輸入電壓進行設定操作或重置操作。 The control voltage is transmitted to the selection element 110c and the selection element 110d via the word line WL, and the input voltage is transmitted to the memory element 110a and the memory element 110b via the data line SL. The memory element 110a and the memory element 110b perform a setting operation or a reset operation according to the input voltage.

在記憶體元件110a及記憶體元件110b進行寫入前,需要將記憶體元件110a及記憶體元件110b進行抹除。於一實施例中,將記憶體元件110a及記憶體元件110b設定為高阻態HRS,使非揮發性記憶體100操作於抹除狀態。抹除後,如果要將此位元寫入邏輯0,需要將記憶體元件110b進行設定操作使記憶體元件110b從高阻態HRS設定為低阻態LRS,如第2圖上圖所示。如果要將此位元寫入邏輯1,需要將記憶體元件110a進行設定操作使記憶體元件110a從高阻態HRS設定為低阻態LRS,如第2圖下圖所示。 Before the memory element 110a and the memory element 110b are written, the memory element 110a and the memory element 110b need to be erased. In one embodiment, the memory element 110a and the memory element 110b are set to a high-resistance HRS, so that the non-volatile memory 100 operates in an erased state. After erasing, if you want to write this bit to logic 0, you need to set the memory element 110b to set the memory element 110b from the high-resistance HRS to the low-resistance LRS, as shown in the upper diagram of Figure 2. To write this bit to logic 1, the memory element 110a needs to be set to set the memory element 110a from the high-resistance state HRS to the low-resistance state LRS, as shown in the lower diagram of FIG. 2.

經由上述操作,即可使記憶體元件110a及記憶體元件110b存在不同阻態,完成寫入動作。 Through the above operations, the memory element 110a and the memory element 110b can have different resistance states to complete the writing operation.

差動式記憶體結構於讀取存取狀態時,不需要透過外部電路提供參考電流,只需要將右邊的記憶體元件 110b當作參考電流,便可以判斷左邊的記憶體元件110a之狀態。 The differential memory structure does not need to provide a reference current through an external circuit when reading and accessing the state, only the memory element on the right 110b is used as a reference current to determine the state of the memory element 110a on the left.

請參考第2圖上圖,當記憶體元件110a為高阻態HRS,記憶體元件110b為低阻態LRS時,輸入電壓經由資料線SL進入後,經過記憶體元件110a會形成第一電流IBL,經過記憶體元件110b會形成第二電流IBLB,第一電流IBL通過選取元件110c並經由位元線BL到感測電路120,第二電流IBLB通過選取元件110d並經由位元線BLB到感測電路120。第一電流IBL的大小會根據記憶體元件110a處於高阻態HRS或低阻態LRS而改變,第二電流IBLB的大小會根據記憶體元件110b處於高阻態HRS或低阻態LRS而改變。電流和電阻的關係為成反比,當電阻越大,電流就越小。因此,第一電流IBL小於第二電流IBLB,藉由感測電路120判斷非揮發性記憶體元件110為低邏輯狀態,也就是邏輯0。 Please refer to the upper diagram of FIG. 2, when the memory element 110a is a high-resistance HRS and the memory element 110b is a low-resistance LRS, after the input voltage enters through the data line SL, a first current I will form through the memory element 110a BL , a second current I BLB is formed through the memory element 110b, the first current I BL passes through the selection element 110c and passes through the bit line BL to the sensing circuit 120, and the second current I BLB passes through the selection element 110d and passes through the bit line The BLB to the sensing circuit 120. The magnitude of the first current I BL will change according to the memory element 110a in the high resistance state HRS or low resistance state LRS, the magnitude of the second current I BLB will depend on the memory element 110b in the high resistance state HRS or low resistance state LRS change. The relationship between current and resistance is inversely proportional. When the resistance is larger, the current is smaller. Therefore, the first current I BL is smaller than the second current I BLB , and the sensing circuit 120 determines that the non-volatile memory device 110 is in a low logic state, that is, logic 0.

請參考第2圖下圖,當記憶體元件110a為低阻態LRS,記憶體元件110b為高阻態HRS時,輸入電壓經由資料線SL進入後,經過記憶體元件110a會形成第一電流IBL,經過記憶體元件110b會形成第二電流IBLB。此時,第一電流IBL大於第二電流IBLB,藉由感測電路120判斷非揮發性記憶體元件110為高邏輯狀態,也就是邏輯1。 Please refer to the lower diagram of FIG. 2, when the memory element 110a is a low-resistance LRS and the memory element 110b is a high-resistance HRS, the input voltage enters through the data line SL, and a first current I is formed through the memory element 110a BL , a second current I BLB will form through the memory element 110b. At this time, the first current I BL is greater than the second current I BLB , and the sensing circuit 120 determines that the non-volatile memory device 110 is in a high logic state, that is, logic 1.

在高密度記憶體的應用時,可以用交叉點記憶體陣列而省略選擇記憶體,但如果沒有使用選取元件而單純使用一個電阻(1R)的陣列會產生連通管原理,又稱為潛行電流(sneak current)。通常在選定的記憶體元件為高阻態 HRS而周圍的記憶體元件為低阻態LRS時最容易發生連通管原理。在選定位元線BL及字元線WL要操作或讀取一個儲存高阻態HRS的記憶體元件時,由於周圍路徑上的記憶體元件皆為低阻態LRS,電流會選擇流向等效電阻較低的路徑而造成讀取錯誤或是使其他未被選取的記憶體元件遭受干擾,因此記憶體需要與選取元件結合使用,避免潛行電流的問題。 In the application of high-density memory, you can use a cross-point memory array and omit the selection memory, but if you do not use the selected components and simply use a resistor (1R) array will produce the principle of the connecting tube, also known as the sneak current ( sneak current). Usually the selected memory device is in high resistance state HRS and the surrounding memory element is the low resistance state LRS. When selecting the bit line BL and the word line WL to operate or read a memory element that stores a high-resistance HRS, since the memory elements in the surrounding paths are all low-resistance LRS, the current will choose to flow to the equivalent resistance The lower path causes read errors or interferes with other unselected memory components. Therefore, the memory needs to be used in combination with the selected components to avoid the problem of stealth current.

為了解決上述連通管問題,在二維陣列使用選取元件110c及選取元件110d驅動記憶體元件110a及記憶體元件110b的陣列,如第3圖所示。記憶體元件110a及記憶體元件110b的一端與選取元件110c及選取元件110d的一端共用形成NOR型陣列,利用字元線WL的控制電壓調變可以穩定地控制記憶體元件110a及記憶體元件110b電阻值轉換時兩端的電壓及電流,進而提高元件耐久度,也可關閉未被選取的通道避免連通管問題。 In order to solve the above-mentioned communication tube problem, the selection element 110c and the selection element 110d are used in the two-dimensional array to drive the array of the memory element 110a and the memory element 110b, as shown in FIG. 3. One end of the memory element 110a and the memory element 110b is shared with the end of the selection element 110c and the selection element 110d to form a NOR type array, and the memory element 110a and the memory element 110b can be stably controlled by the control voltage modulation of the word line WL When the resistance value is converted, the voltage and current at both ends improve the durability of the device, and the unselected channels can be closed to avoid the problem of the communication tube.

請參考第3圖,第3圖繪示根據本揭示文件之一實施例的非揮發性記憶體裝置200電路圖,此實施例繪示2X2 NOR型差動式電阻式記憶體陣列。本揭示文件之記憶體陣列的數量及排列方式不以2X2為限,可以根據實際需求而有所調整。非揮發性記憶體裝置200包含四組非揮發性記憶體元件110以及感測電路(未繪示)。四組非揮發性記憶體元件110以2X2的方式排列,感測電路可以使用如第1圖及第2圖所示之感測電路120。操作方式相似於上述描述,位元線WL1的控制電壓用以控制左邊兩個非揮發性記憶體元 件110,位元線WL2的控制電壓用以控制右邊兩個非揮發性記憶體元件110。 Please refer to FIG. 3, which illustrates a circuit diagram of a non-volatile memory device 200 according to an embodiment of the present disclosure. This embodiment illustrates a 2X2 NOR differential resistive memory array. The number and arrangement of memory arrays in this disclosure are not limited to 2X2, and can be adjusted according to actual needs. The non-volatile memory device 200 includes four sets of non-volatile memory elements 110 and a sensing circuit (not shown). The four sets of non-volatile memory elements 110 are arranged in a 2×2 manner, and the sensing circuit may use the sensing circuit 120 shown in FIGS. 1 and 2. The operation mode is similar to the above description. The control voltage of the bit line WL1 is used to control the two non-volatile memory cells on the left. Device 110, the control voltage of the bit line WL2 is used to control the two non-volatile memory devices 110 on the right.

左上的非揮發性記憶體元件110操作方法與第2圖相同,在此不再贅述。當右上的非揮發性記憶體元件110被選取時,控制電壓經由資料線SL2輸入。經過左邊記憶體元件到節點B的電流,接著流向位元線BLB1。經過右邊記憶體元件到節點C的電流,接著流向位元線BL1。右上的非揮發性記憶體元件110可藉由設定操作及重置操作而改變阻值狀態以改變上述流經左邊記憶體元件及右邊記憶體元件的電流,感測電路偵測這兩個電流的大小以判斷右上的非揮發性記憶體元件110之邏輯狀態。 The operation method of the non-volatile memory device 110 on the upper left side is the same as that in FIG. 2 and will not be repeated here. When the upper right non-volatile memory device 110 is selected, the control voltage is input via the data line SL2. The current passing through the left memory element to node B then flows to bit line BLB1. The current passing through the memory element on the right to node C then flows to bit line BL1. The non-volatile memory element 110 on the upper right can change the resistance state through the setting operation and the reset operation to change the current flowing through the left memory element and the right memory element. The sensing circuit detects the two currents. The size determines the logic state of the non-volatile memory device 110 in the upper right.

例如,當左邊記憶體元件為低阻態,右邊記憶體元件為高阻態時,流向位元線BLB1的電流會大於流向位元線BL1的電流,此時感測電路判斷右上的非揮發性記憶體元件110為低邏輯狀態(邏輯0),反之則為高邏輯狀態(邏輯1)。 For example, when the left memory element is in a low resistance state and the right memory element is in a high resistance state, the current flowing to the bit line BLB1 will be greater than the current flowing to the bit line BL1. At this time, the sensing circuit determines that the upper right is non-volatile The memory element 110 is in a low logic state (logic 0), otherwise it is in a high logic state (logic 1).

左下及右下的非揮發性記憶體元件110操作方法同上,在此不再贅述。 The operation methods of the non-volatile memory device 110 at the lower left and lower right are the same as above, and will not be repeated here.

位元線BL1及位元線BLB1上的電流比較結果與位元線BL2及位元線BLB2上的電流比較結果決定被選取的非揮發性記憶體元件110之邏輯狀態。 The current comparison result on bit line BL1 and bit line BLB1 and the current comparison result on bit line BL2 and bit line BLB2 determine the logic state of the selected nonvolatile memory device 110.

綜上所述,非揮發性記憶體使用兩個記憶體元件組成差動式結構,兩個記憶體元件共用字元線及資料線,將陣列面積最小化。使用兩個記憶體元件取代傳統電阻式記 憶體需要額外參考電流以判斷非揮發性記憶體的邏輯狀態,大幅減少整體電路面積,並放大讀取視窗。除了單一記憶體單元,本揭示文件之差動式結構可排列成NOR型記憶體陣列,提供高密度儲存功能。 In summary, the non-volatile memory uses two memory elements to form a differential structure. The two memory elements share character lines and data lines to minimize the array area. Use two memory elements to replace traditional resistive memory The memory requires an additional reference current to determine the logic state of the non-volatile memory, which greatly reduces the overall circuit area and enlarges the reading window. In addition to a single memory cell, the differential structure of this disclosure can be arranged in a NOR memory array to provide high-density storage.

此外,傳統單一電阻式記憶體元件的電阻狀態在高溫下,會隨時間往參考電流移動,使資料判斷上發生誤判之情況。然而,本揭示文件所提出的差動式結構透過兩個記憶體元件自我比較的方式,即使在長時間的溫度作用後,仍可維持極大的電流差異,不發生資料翻轉的情形。 In addition, the resistance state of the conventional single-resistance memory device will move to the reference current with time under high temperature, which may cause a misjudgment in data judgment. However, the differential structure proposed in this disclosure uses the self-comparison of the two memory elements to maintain a large current difference even after a long period of temperature, without data flipping.

100‧‧‧非揮發性記憶體 100‧‧‧ Non-volatile memory

110‧‧‧非揮發性記憶體元件 110‧‧‧ Non-volatile memory device

110a、110b‧‧‧記憶體元件 110a, 110b‧‧‧ memory element

110c、110d‧‧‧選取元件 110c, 110d‧‧‧selected components

120‧‧‧感測電路 120‧‧‧sensing circuit

SL‧‧‧資料線 SL‧‧‧Data cable

WL‧‧‧字元線 WL‧‧‧character line

BL、BLB‧‧‧位元線 BL, BLB‧‧‧bit line

Claims (9)

一種非揮發式記憶體,包含:一第一記憶體元件,用以接收一控制電壓及一輸入電壓並輸出一第一電流;以及一第二記憶體元件,耦接於該第一記憶體元件,並用以接收該控制電壓及該輸入電壓並輸出一第二電流,其中該第一記憶體元件及該第二記憶體元件根據一設定操作從一高阻態改變為一低阻態,根據一重置操作從該低阻態改變為該高阻態,該第一電流根據該第一記憶體元件處於該高阻態或該低阻態而改變,該第二電流根據該第二記憶體元件處於該高阻態或該低阻態而改變。 A non-volatile memory includes: a first memory element for receiving a control voltage and an input voltage and outputting a first current; and a second memory element coupled to the first memory element And used to receive the control voltage and the input voltage and output a second current, wherein the first memory element and the second memory element change from a high resistance state to a low resistance state according to a setting operation, according to a The reset operation changes from the low resistance state to the high resistance state, the first current changes according to whether the first memory element is in the high resistance state or the low resistance state, and the second current changes according to the second memory element Change in the high resistance state or the low resistance state. 如請求項1所述之非揮發式記憶體,更包含:一感測電路,用以比較該第一電流及該第二電流以判斷該非揮發式記憶體為一低邏輯狀態或一高邏輯狀態。 The non-volatile memory according to claim 1, further comprising: a sensing circuit for comparing the first current and the second current to determine whether the non-volatile memory is in a low logic state or a high logic state . 如請求項2所述之非揮發式記憶體,其中當該第一電流小於該第二電流時,該感測電路判斷該非揮發式記憶體為該低邏輯狀態,當該第一電流大於該第二電流時,該感測電路判斷該非揮發式記憶體為該高邏輯狀態。 The non-volatile memory of claim 2, wherein when the first current is less than the second current, the sensing circuit determines that the non-volatile memory is in the low logic state, and when the first current is greater than the first At two currents, the sensing circuit determines that the non-volatile memory is in the high logic state. 如請求項3所述之非揮發式記憶體,其中當該第一記憶體元件為該高阻態時,使該第一電流降低,當該第一記憶體元件為該低阻態時,使該第一電流提高, 當該第二記憶體元件為該高阻態時,使該第二電流降低,當該第二記憶體元件為該低阻態時,使該第二電流提高。 The non-volatile memory according to claim 3, wherein when the first memory element is in the high resistance state, the first current is reduced, and when the first memory element is in the low resistance state, the The first current increases, When the second memory element is in the high resistance state, the second current is decreased, and when the second memory element is in the low resistance state, the second current is increased. 如請求項4所述之非揮發式記憶體,其中當該第一記憶體元件及該第二記憶體元件為該高阻態時,該非揮發式記憶體操作於一抹除狀態。 The non-volatile memory according to claim 4, wherein when the first memory element and the second memory element are in the high-resistance state, the non-volatile memory operates in an erasing state. 如請求項5所述之非揮發式記憶體,更包含:一第一選取元件,耦接於該第一記憶體元件;以及一第二選取元件,耦接於該第二記憶體元件,其中該第一選取元件及該第二選取元件響應於該控制電壓而導通。 The non-volatile memory according to claim 5, further comprising: a first selection element coupled to the first memory element; and a second selection element coupled to the second memory element, wherein The first selection element and the second selection element are turned on in response to the control voltage. 一種非揮發式記憶體裝置,包含:複數個非揮發式記憶體,該些非揮發式記憶體的其中一者用以根據一控制電壓及一輸入電壓產生一第一電流及一第二電流;以及一感測電路,用以比較該第一電流或該第二電流以判斷該非揮發式記憶體裝置為一低邏輯狀態或一高邏輯狀態,其中該些非揮發式記憶體的其中一者包含:一第一記憶體元件,用以接收該控制電壓及該輸入電壓並輸出該第一電流;一第一選取元件,耦接於該第一記憶體元件;一第二記憶體元件,耦接於該第一記憶體元件,並用 以接收該控制電壓及該輸入電壓並輸出該第二電流;以及一第二選取元件,耦接於該第二記憶體元件,其中該第一選取元件及該第二選取元件響應於該控制電壓而導通。 A non-volatile memory device includes: a plurality of non-volatile memories, one of which is used to generate a first current and a second current according to a control voltage and an input voltage; And a sensing circuit for comparing the first current or the second current to determine whether the non-volatile memory device is in a low logic state or a high logic state, wherein one of the non-volatile memories includes : A first memory element for receiving the control voltage and the input voltage and outputting the first current; a first selection element, coupled to the first memory element; a second memory element, coupled Used in the first memory element To receive the control voltage and the input voltage and output the second current; and a second selection element coupled to the second memory element, wherein the first selection element and the second selection element are responsive to the control voltage And turn on. 如請求項7所述之非揮發式記憶體裝置,其中該第一記憶體元件及該第二記憶體元件根據一設定操作從一高阻態改變為一低阻態,根據一重置操作從該低阻態改變為該高阻態。 The non-volatile memory device according to claim 7, wherein the first memory element and the second memory element change from a high resistance state to a low resistance state according to a setting operation, and from The low resistance state changes to the high resistance state. 如請求項8所述之非揮發式記憶體裝置,其中當該第一電流小於該第二電流時,該感測電路判斷該該些非揮發式記憶體的其中一者為該低邏輯狀態,當該第一電流大於該第二電流時,該感測電路判斷該些非揮發式記憶體的其中一者為該高邏輯狀態。 The non-volatile memory device according to claim 8, wherein when the first current is less than the second current, the sensing circuit determines that one of the non-volatile memories is the low logic state, When the first current is greater than the second current, the sensing circuit determines that one of the non-volatile memories is in the high logic state.
TW108126635A 2019-07-26 2019-07-26 Non-volatile memory device and non-volatile memory device TWI694446B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108126635A TWI694446B (en) 2019-07-26 2019-07-26 Non-volatile memory device and non-volatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108126635A TWI694446B (en) 2019-07-26 2019-07-26 Non-volatile memory device and non-volatile memory device

Publications (2)

Publication Number Publication Date
TWI694446B true TWI694446B (en) 2020-05-21
TW202105390A TW202105390A (en) 2021-02-01

Family

ID=71896248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126635A TWI694446B (en) 2019-07-26 2019-07-26 Non-volatile memory device and non-volatile memory device

Country Status (1)

Country Link
TW (1) TWI694446B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134687A1 (en) * 2008-05-27 2011-06-09 Samsung Electronics Co., Ltd. Resistance variable memory device and method of writing data
JP2012084202A (en) * 2010-10-12 2012-04-26 Fujitsu Ltd Semiconductor memory and system
TW201521034A (en) * 2013-11-26 2015-06-01 Realtek Semiconductor Corp Method and apparatus for sensing tunnel magneto-resistance
TW201721650A (en) * 2015-12-08 2017-06-16 華邦電子股份有限公司 Resistive memory apparatus and memory cell thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134687A1 (en) * 2008-05-27 2011-06-09 Samsung Electronics Co., Ltd. Resistance variable memory device and method of writing data
JP2012084202A (en) * 2010-10-12 2012-04-26 Fujitsu Ltd Semiconductor memory and system
TW201521034A (en) * 2013-11-26 2015-06-01 Realtek Semiconductor Corp Method and apparatus for sensing tunnel magneto-resistance
TW201721650A (en) * 2015-12-08 2017-06-16 華邦電子股份有限公司 Resistive memory apparatus and memory cell thereof

Also Published As

Publication number Publication date
TW202105390A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
KR102406868B1 (en) Semiconductor memory device, memory system and method of operating the same
TWI582771B (en) Resistive memory apparatus and sensing circuit thereof
US9837149B2 (en) Low read current architecture for memory
JP4133149B2 (en) Semiconductor memory device
EP3244417B1 (en) Magnetic random access memory (mram) and method of operation
US8379430B2 (en) Memory device and method of reading memory device
US20090027977A1 (en) Low read current architecture for memory
US20190043580A1 (en) Reset refresh techniques for self-selecting memory
JP5811693B2 (en) Resistance change type memory device and driving method thereof
WO2015131775A1 (en) 2-1t1r rram storage unit and storage array
CN110619901B (en) Memory device, reference circuit and method for generating reference current
WO2007069405A1 (en) Non-volatile semiconductor memory device
KR102215359B1 (en) Nonvolatile memory device and method for sensing the same
Liu et al. A weighted sensing scheme for ReRAM-based cross-point memory array
TW202139197A (en) Three-state programming of memory cells
JP2017102993A (en) Resistive random access memory device and sense circuit thereof
JP5744164B2 (en) Resistor-based random access memory and method of operating the same
TWI623939B (en) Memory device and control method thereof
CN107993683A (en) Sensing amplifier, storage device and include its system
TWI694446B (en) Non-volatile memory device and non-volatile memory device
JP2011198440A (en) Nonvolatile semiconductor memory
Lei et al. Enhanced read performance for phase change memory using a reference column
US11514965B2 (en) Resistive memory device
KR102374096B1 (en) Cross-Point Array Memory Device Using Double Dummy Word Line
JP7471422B2 (en) Tri-state programming of memory cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees