JP2008256718A - Metal detector - Google Patents

Metal detector Download PDF

Info

Publication number
JP2008256718A
JP2008256718A JP2008192122A JP2008192122A JP2008256718A JP 2008256718 A JP2008256718 A JP 2008256718A JP 2008192122 A JP2008192122 A JP 2008192122A JP 2008192122 A JP2008192122 A JP 2008192122A JP 2008256718 A JP2008256718 A JP 2008256718A
Authority
JP
Japan
Prior art keywords
frequency
magnetic field
detection
metal
electromagnetic noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192122A
Other languages
Japanese (ja)
Other versions
JP4633830B2 (en
Inventor
Hiroyuki Nishio
裕幸 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004250245A priority Critical patent/JP4173470B2/en
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2008192122A priority patent/JP4633830B2/en
Publication of JP2008256718A publication Critical patent/JP2008256718A/en
Application granted granted Critical
Publication of JP4633830B2 publication Critical patent/JP4633830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal detector capable of automatically adjusting the condition setting for detecting metal under a suitable condition to influence of external electromagnetic noise and its change. <P>SOLUTION: This metal detector is provided with a measuring means 40 for measuring electromagnetic noise in an inspection area by using a magnetic field detecting part 23 on a detecting operation frequency, corresponding to its respective preset frequencies, by changing the preset frequency of a magnetic field generating means 22 in a determined frequency range, in response to article influence of an inspection object W; and frequency selection setting means 32 and 35 for setting a frequency as the preset frequency of the magnetic field generating means 22, by selecting any among of the detecting operation frequencies becoming a predetermined or less on an electromagnetic noise level measured by a measuring means 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検査体中の金属又は金属成分を検出する金属検出装置、特に食品等の被検査体が交番磁界中を通過するときの磁界の変動を基に被検査体中における金属又は金属成分の有無を判定する金属検出装置に関する。   The present invention relates to a metal detection device for detecting a metal or a metal component in an object to be inspected, in particular, a metal or metal in an object to be inspected based on a change in a magnetic field when the object to be inspected such as food passes through an alternating magnetic field. The present invention relates to a metal detector for determining the presence or absence of a component.

従来のこの種の金属検出装置としては、例えばコンベア搬送されるワーク(被検査体)が所定周波数の交番磁界中を通過するように、送信コイルにより製品検査領域に交番磁界を発生させ、その磁界中でのワークの移動に起因する磁界変動を受信コイルへの誘起電圧の変動として検出し、この検出信号に送信コイルの励磁駆動信号と同期する検波処理を施して、その検波出力の出力レベルを閾値判定することで金属等の有無を判定するといったものが一般に知られている。   As a conventional metal detection device of this type, for example, an alternating magnetic field is generated in a product inspection region by a transmission coil so that a workpiece (inspected object) conveyed on a conveyor passes through an alternating magnetic field having a predetermined frequency, and the magnetic field is generated. The magnetic field fluctuation caused by the movement of the workpiece in the coil is detected as the fluctuation of the induced voltage to the receiving coil, and this detection signal is subjected to detection processing that synchronizes with the excitation driving signal of the transmission coil, and the output level of the detection output is It is generally known to determine the presence or absence of metal or the like by determining a threshold value.

また、金属や金属成分を含んでいない物品が前記交番磁界中を移動することにより前記磁界変動に与える影響(以下、これを物品影響という)を最小にし、検出対象の金属異物等に対する検出感度を高めるべく、前記検波処理の位相角や交番磁界周波数の設定を工夫したものがある(例えば特許文献1、2参照)。   In addition, the influence on the magnetic field fluctuation (hereinafter referred to as the article influence) caused by the movement of the article that does not contain metal or metal component in the alternating magnetic field (hereinafter referred to as the article influence) is minimized, and the detection sensitivity for the metallic foreign object to be detected is increased. In order to increase the frequency, there is a device in which the setting of the phase angle and the alternating magnetic field frequency of the detection processing is devised (for example, see Patent Documents 1 and 2).

さらに、受信コイルの検出信号を直交検波した2つの検波出力の出力レベルを直交座標成分として各被検査体が前記交番磁界中を通過する間に直交座標平面に描かれるリサージュ図形を作成し、この図形データを基に各製品中の磁性成分と非磁性成分の割合を把握して製品中の金属異物の有無を判定するとともに、前記割合を表わす指標であるワーク位相(前記リサージュ図形の長軸の傾きで表わされる)の変化に応じて、送信コイルに印加する励磁信号と直交検波用の各同期検波器に印加する励磁信号との相対位相を調整することで、検出精度の向上を図ったものがある(例えば特許文献3参照)。
特開平5−232248号公報 特開平5−100047号公報 特開2002−168834号公報
Further, a Lissajous figure drawn on the orthogonal coordinate plane while each inspection object passes through the alternating magnetic field is created with the output level of the two detection outputs obtained by orthogonal detection of the detection signal of the receiving coil as the orthogonal coordinate component, Based on the figure data, the ratio of the magnetic component and the non-magnetic component in each product is grasped to determine the presence or absence of metallic foreign matter in the product. The detection accuracy is improved by adjusting the relative phase between the excitation signal applied to the transmitter coil and the excitation signal applied to each synchronous detector for quadrature detection according to the change in (See, for example, Patent Document 3).
JP-A-5-232248 JP-A-5-100047 JP 2002-168834 A

上述のように交番磁界の変動を検出する金属検出装置では、金属を検出するのに最適な磁界の周波数が、被検査体の特性(水分や塩分あるいは包材の種類等)によって異なるという点を考慮して、磁界周波数範囲である数kHz〜数MHz程度の周波数帯域から被検査体に適当な周波数帯域を1つあるいは2つ選択して出力するのがよい。   As described above, in the metal detection device that detects the fluctuation of the alternating magnetic field, the optimum frequency of the magnetic field for detecting the metal differs depending on the characteristics of the object to be inspected (moisture, salt, type of packaging material, etc.). In consideration, it is preferable to select and output one or two appropriate frequency bands to the object to be inspected from the frequency band of several kHz to several MHz which is the magnetic field frequency range.

また、同じ周波数帯域を使用した複数の金属検出装置が近接配置される際に、相互の干渉を抑えるべく、それら複数の金属検出装置の使用磁界周波数を少しずつ異ならせるような微調整を行なうのがよい。   Further, when a plurality of metal detection devices using the same frequency band are arranged close to each other, fine adjustment is performed so that the magnetic field frequencies used by the plurality of metal detection devices are gradually changed in order to suppress mutual interference. Is good.

しかしながら、このようにして最適な磁界周波数を設定しても、なお、次のような未解決の課題が残る。   However, even if the optimum magnetic field frequency is set in this way, the following unsolved problems still remain.

すなわち、金属検出装置では、例えば磁界周波数等の検出条件を決定するために使用する、金属混入の無い代表的被検査体(以下、これをサンプル品という)の物品影響による検出信号レベルN(noise)を予め記憶しておき、各被検査体の検出信号レベルS(signal)とこの記憶した検出信号レベルNとのレベル比S/Nが予め定めた閾値(例えば5)以上のとき、その被検査体を金属混入品と判定する。そのため、より小さな金属が混入していて検出信号レベルSが小さい場合、被検査体を正しく金属混入品と判定するためには、サンプル品の物品影響による検出信号レベルNを小さくしなければ、十分なS/Nの比が得られない。   That is, in the metal detection device, for example, a detection signal level N (noise) due to the influence of a representative object to be inspected without metal contamination (hereinafter referred to as a sample product) used for determining a detection condition such as a magnetic field frequency. ) Is stored in advance, and when the level ratio S / N between the detection signal level S (signal) of each object to be inspected and the stored detection signal level N is equal to or greater than a predetermined threshold (for example, 5), The test object is determined as a metal-mixed product. Therefore, in the case where a smaller metal is mixed and the detection signal level S is small, in order to correctly determine the object to be inspected as a metal mixed product, it is sufficient if the detection signal level N due to the influence of the sample product is not reduced. A high S / N ratio cannot be obtained.

一方、被検査体の形状や水分含有率の変化に起因して物品影響が変化するような場合にも、その物品影響の変化に追従して良好な検出感度を維持しながら安定した金属検出を行なうためには、金属が混入していない被検査体(良品)の検出レベルが検出信号のノイズレベル以上であるのがよい(特許文献3参照)。したがって、サンプル品の物品影響による検出信号レベルが小さくなるような状態で、近接する他の金属検出機若しくは包装機器等による外来電磁ノイズの影響を受け、検出信号レベルを超えるノイズが検出されると、前記物品影響の変化を検知できないために金属検出性能が低下するばかりか、金属が混入していない被検査体を金属混入品と誤判定したり、逆に本来であれば検出可能な金属混入品を良品と誤判定したりすることがあり、金属検出装置の信頼性が大きく低下せざるを得ない。   On the other hand, even when the impact of an article changes due to changes in the shape of the object to be inspected or the moisture content, stable metal detection is performed while maintaining good detection sensitivity following the change in the impact of the article. In order to do this, the detection level of the object to be inspected (non-defective product) in which no metal is mixed should be equal to or higher than the noise level of the detection signal (see Patent Document 3). Therefore, when noise exceeding the detection signal level is detected due to the influence of external electromagnetic noise from other nearby metal detectors or packaging equipment, etc., in a state where the detection signal level due to the influence of the sample article is small. In addition, the metal detection performance deteriorates because the change in the influence of the article cannot be detected, and the object to be inspected not containing metal is erroneously determined as a metal-mixed product, or conversely, metal detection that is normally detectable The product may be misjudged as a non-defective product, and the reliability of the metal detector must be greatly reduced.

さらに、金属検出機の使用条件の変更や使用環境の変化、さらには、経時・経年変化等によっても、外来電磁ノイズの影響は変化する可能性が高い。このような理由から、外来電磁ノイズによる金属検出装置の性能低下が生じ易いという問題が解決できていなかった。   Furthermore, the influence of external electromagnetic noise is likely to change due to changes in the usage conditions of the metal detector, changes in the usage environment, and aging / aging. For this reason, the problem that the performance of the metal detection device is likely to deteriorate due to external electromagnetic noise has not been solved.

本発明は、かかる従来技術の問題を解決するためになされたもので、外来電磁ノイズの影響やその変化に対して金属検出の条件設定を自動的に好適な条件に調整可能な金属検出装置を提供することを目的とする。   The present invention has been made to solve the problems of the prior art, and provides a metal detection device capable of automatically adjusting the metal detection condition setting to a suitable condition with respect to the influence of external electromagnetic noise and changes thereof. The purpose is to provide.

本発明は、上記目的達成のため、被検査体の物品影響に対応して予め定められた周波数範囲に含まれる設定周波数の交番磁界を被検査体の検査領域に発生させる磁界発生手段と、前記被検査体が前記交番磁界中を通過することに起因する前記交番磁界の変動を前記設定周波数に対応する検出動作周波数で検出する磁界検出手段と、該磁界検出手段の検出信号に基づいて前記被検査体中における金属物又は金属成分の有無を判定する判定手段とを備えた金属検出装置において、前記磁界発生手段の前記設定周波数を前記周波数範囲内で変化させ、該設定周波数のそれぞれに対応する複数の異なる前記検出動作周波数について前記磁界検出手段を用いて前記検査領域中の電磁ノイズを測定する測定手段と、前記複数の異なる検出動作周波数のうち前記測定手段で測定された電磁ノイズレベルが所定値以下となるいずれかの周波数を選択し前記磁界発生手段の前記設定周波数として設定する周波数選択設定手段とを設けたものである。   In order to achieve the above object, the present invention provides a magnetic field generating means for generating an alternating magnetic field of a set frequency included in a predetermined frequency range corresponding to an article influence of an object to be inspected in an inspection region of the object to be inspected, Magnetic field detecting means for detecting a change in the alternating magnetic field caused by the inspection object passing through the alternating magnetic field at a detection operating frequency corresponding to the set frequency, and based on a detection signal of the magnetic field detecting means. In a metal detection apparatus comprising a determination means for determining the presence or absence of a metal object or metal component in an inspection object, the set frequency of the magnetic field generation means is changed within the frequency range, and each of the set frequencies is handled. Measuring means for measuring electromagnetic noise in the inspection region using the magnetic field detection means for a plurality of different detection operation frequencies, and among the plurality of different detection operation frequencies Electromagnetic noise level measured by serial measurement means is provided with a frequency selecting and setting means for setting as the set frequency of the selected said magnetic field generating means any frequency equal to or less than a predetermined value.

この構成により、外来電磁ノイズの影響が複数の異なる検出動作周波数について測定され、外来電磁ノイズの影響が小さくなる周波数を選択して磁界発生手段の発生磁界周波数が設定されるとともに、それに対応する検出動作周波数が設定されることになる。   With this configuration, the influence of external electromagnetic noise is measured for a plurality of different detection operating frequencies, the frequency at which the influence of external electromagnetic noise is reduced is selected and the magnetic field frequency generated by the magnetic field generation means is set, and the corresponding detection The operating frequency is set.

また、本発明の金属検出装置においては、前記測定手段が、前記磁界検出手段を用いて前記検査領域中の電磁ノイズを測定することで、既存の装備を利用して、前記測定手段をきわめて容易かつ低コストで実現できることになる。   Further, in the metal detection device of the present invention, the measurement means measures the electromagnetic noise in the inspection region using the magnetic field detection means, thereby making the measurement means extremely easy using existing equipment. It can be realized at low cost.

さらに、前記周波数選択設定手段が、前記複数の異なる検出動作周波数のうち前記測定手段で測定された電磁ノイズレベルが最低値となる周波数を選択し、前記設定周波数として設定するか、あるいは、前記周波数選択設定手段が、前記複数の異なる検出動作周波数のうち前記測定手段で測定された電磁ノイズレベルが予め定めた許容ノイズレベル以下となる周波数を選択し前記設定周波数として設定するのが好ましい。   Further, the frequency selection setting means selects a frequency at which the electromagnetic noise level measured by the measurement means becomes a minimum value from the plurality of different detection operation frequencies, and sets the frequency as the setting frequency, or the frequency Preferably, the selection setting means selects a frequency at which the electromagnetic noise level measured by the measurement means is equal to or lower than a predetermined allowable noise level from among the plurality of different detection operation frequencies, and sets the selected frequency as the setting frequency.

この構成により、外来電磁ノイズの影響による金属検出性能の低下を確実に抑えることが可能となる。   With this configuration, it is possible to reliably suppress a decrease in metal detection performance due to the influence of external electromagnetic noise.

本発明の金属検出装置においては、前記磁界制御手段、前記測定手段および前記周波数選択設定手段が、装置の起動時若しくは動作リセット時に作動するようにするのが好ましい。これにより、初期化処理の一部と並行して外来電磁ノイズの影響測定および好適な発生磁界周波数およびこれに対応する検出動作周波数の選択設定が可能となる。   In the metal detection apparatus of the present invention, it is preferable that the magnetic field control means, the measurement means, and the frequency selection setting means are activated when the apparatus is activated or when the operation is reset. Thus, in parallel with a part of the initialization process, it is possible to measure the influence of external electromagnetic noise and to select and set a suitable generated magnetic field frequency and a corresponding detection operation frequency.

本発明によれば、外来電磁ノイズの影響を複数の異なる検出動作周波数について測定して、外来電磁ノイズの影響が十分小さくなる周波数を選択し前記設定周波数として設定するようにしているので、使用環境の変化等に関わりなく、外来電磁ノイズの影響を少なくするよう金属検出の条件設定を自動的に好適条件に調整可能な金属検出装置を提供することができる。   According to the present invention, the influence of external electromagnetic noise is measured for a plurality of different detection operating frequencies, and a frequency at which the influence of external electromagnetic noise is sufficiently reduced is selected and set as the set frequency. It is possible to provide a metal detection device capable of automatically adjusting the metal detection condition setting to a suitable condition so as to reduce the influence of external electromagnetic noise regardless of the change of the noise.

以下、本発明の実施の形態について、図面を用いながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態]
図1〜図5は本発明の第1の実施の形態に係る金属検出装置の概略構成を示す図である。
[First embodiment]
1-5 is a figure which shows schematic structure of the metal detection apparatus based on the 1st Embodiment of this invention.

まず、その構成について説明する。   First, the configuration will be described.

図1において、被検査体であるワークWは、ワーク移動手段であるコンベア11によって所定方向に搬送され、その搬送速度はワークWの製造ラインの搬送速度に応じて設定されている。ワークWの搬送方向の所定区間は、ワークW中への金属異物(金属からなる異物又は金属成分を含んだ異物、欠品検出の場合は異物でなく構成要素となる)の検出を行なう検査領域12となっており、この検査領域12の入り口付近にはワークWの検査領域12への進入を検知する例えば光学式のワーク検知センサ13が設置されている。なお、ワークWは、複数製造される任意の製品、例えば量産される食品を包装材で個々に、あるいは所定数の輸送時の個数単位で包装したものであり、箱入り製品のような定形のものでも、流動物等を封入した可撓性の袋入り製品のような不定形のものでよい。   In FIG. 1, a workpiece W that is an object to be inspected is conveyed in a predetermined direction by a conveyor 11 that is a workpiece moving means, and the conveyance speed is set according to the conveyance speed of the production line of the workpiece W. The predetermined section in the conveyance direction of the workpiece W is an inspection area in which metal foreign matter (a foreign matter made of metal or a foreign matter containing a metal component, or a component in the case of missing parts detection) is detected. For example, an optical work detection sensor 13 for detecting the entry of the work W into the inspection area 12 is installed near the entrance of the inspection area 12. The workpiece W is an arbitrary product manufactured in plural, for example, a mass-produced food packaged individually by a packaging material or by a predetermined number of units during transportation, and is shaped like a boxed product. However, it may be an indefinite shape such as a flexible bag product enclosing a fluid or the like.

ワークWの検査領域12の近傍にはワークW中の金属異物を検出する検出部20が設けられている。   In the vicinity of the inspection area 12 of the workpiece W, a detection unit 20 that detects a metal foreign object in the workpiece W is provided.

この検出部20は、予め設定された振幅および周波数の送信信号を発生する信号発生部21と、信号発生部21からの信号により送信コイルを電流駆動する磁界発生部22(磁界発生手段)と、差動検出器等で構成される磁界検出部23とを含んで構成されている。   The detection unit 20 includes a signal generation unit 21 that generates a transmission signal having a preset amplitude and frequency, a magnetic field generation unit 22 (magnetic field generation unit) that current-drives the transmission coil using a signal from the signal generation unit 21, And a magnetic field detector 23 composed of a differential detector or the like.

詳細は図示しないが、信号発生部21は、ワーク検知センサ13に応動する基準信号発生器、測定期間を特定するためのタイマー、電力増幅器、同調回路等を有しており、ワークWが検査領域12を通過するとき、設定周波数の送信信号を発生して磁界発生部22の送信コイルを電流駆動する。また、磁界発生部22の送信コイルは、コンベア11によるワーク搬送路の近傍に配置され、信号発生部21からの電流駆動により励磁されたとき、前記送信信号の設定周波数に対応する交番磁界を検査領域12中に発生させることができる。   Although not shown in detail, the signal generator 21 includes a reference signal generator that responds to the workpiece detection sensor 13, a timer for specifying a measurement period, a power amplifier, a tuning circuit, and the like. When the signal passes through 12, a transmission signal having a set frequency is generated, and the transmission coil of the magnetic field generation unit 22 is current-driven. Further, the transmission coil of the magnetic field generator 22 is arranged in the vicinity of the work conveyance path by the conveyor 11 and inspects an alternating magnetic field corresponding to the set frequency of the transmission signal when excited by current drive from the signal generator 21. It can be generated in region 12.

磁界検出部23は、信号発生部21および磁界発生部22と協働して複数のワークW(被検査体)について、そのワークW中の金属異物を検出するようになっており、差動接続された一対の受信コイル、同調回路および増幅器等からなる。この磁界検出部23は、磁界発生部22からの交番磁界のみに対しては一対の受信コイルの誘起電圧が等しく平衡し、両者の差動出力がゼロになるように調整されている。   The magnetic field detection unit 23 is configured to detect a metal foreign object in the workpiece W for a plurality of workpieces W (inspected objects) in cooperation with the signal generation unit 21 and the magnetic field generation unit 22. And a pair of receiving coils, a tuning circuit and an amplifier. The magnetic field detection unit 23 is adjusted so that the induced voltages of the pair of receiving coils are equally balanced only with the alternating magnetic field from the magnetic field generation unit 22 and the differential output between them is zero.

磁界中を通過する磁性金属には磁束密度の大きさに比例してより多くの磁束が引き寄せられ、磁界中を通過する非磁性金属にはその移動による磁束密度の変化を打ち消すような向きでうず電流が生じ、ジュール熱が消費されるという性質がある。したがって、コンベア11上のワークWが検査領域12を通過するとき、磁界検出部23の受信コイル間の出力の平衡状態がくずれる。   The magnetic metal that passes through the magnetic field attracts more magnetic flux in proportion to the magnitude of the magnetic flux density, and the nonmagnetic metal that passes through the magnetic field swirls in such a direction as to cancel the change in the magnetic flux density due to the movement. An electric current is generated and Joule heat is consumed. Therefore, when the workpiece W on the conveyor 11 passes through the inspection region 12, the balanced state of the output between the receiving coils of the magnetic field detector 23 is lost.

磁界検出部23は、このようにコンベア11上のワークWの移動により両受信コイル間の出力平衡状態がくずれたとき、その磁界の変化に応じた検出信号を出力する。この検出信号は、磁界発生部22側からの交番磁界に対応して前記送信信号の設定周波数を有する交流信号成分に、ワークWの磁界通過により変化する低周波信号成分が重畳した信号形態となる。   When the output balanced state between the two receiving coils is lost due to the movement of the workpiece W on the conveyor 11, the magnetic field detector 23 outputs a detection signal corresponding to the change in the magnetic field. This detection signal has a signal form in which a low-frequency signal component that changes due to the magnetic field passing through the workpiece W is superimposed on an AC signal component having a set frequency of the transmission signal corresponding to an alternating magnetic field from the magnetic field generation unit 22 side. .

磁界検出部23の検出信号は信号レベル測定部24に取り込まれるようになっており、この信号レベル測定部24は、詳細は図示しないが、直交検波を行なう一対の同期検波器、移相器、バンドパスフィルタ、増幅器およびA/D変換器等によって構成されている。   The detection signal of the magnetic field detection unit 23 is taken into the signal level measurement unit 24. The signal level measurement unit 24 is not shown in detail, but a pair of synchronous detectors, phase shifters, which perform quadrature detection, A band pass filter, an amplifier, an A / D converter, and the like are included.

信号レベル測定部24の一対の同期検波器は、直交検波のために前記基準信号を位相調整した信号を取り込み、検出信号から送信信号相当の高周波成分を取り除いた検波出力を生成する。信号レベル測定部24は、この検波出力に更にフィルタによるノイズ除去およびA/D変換を施した信号を金属有無判定部26と検出条件制御回路30とにそれぞれ出力する。   The pair of synchronous detectors of the signal level measuring unit 24 takes in a signal obtained by adjusting the phase of the reference signal for quadrature detection, and generates a detection output by removing a high-frequency component corresponding to a transmission signal from the detection signal. The signal level measurement unit 24 outputs a signal obtained by further applying noise removal and A / D conversion to the detection output to the metal presence / absence determination unit 26 and the detection condition control circuit 30.

なお、前記直交検波の出力は、例えば、磁束密度変化が大きいほど外部磁界変化を引き起こす非磁性金属の影響が大きい検出信号と、磁束密度が大きいほど外部磁界変化を引き起こす磁性金属の影響の大きい検出信号となる。また、信号レベル測定部24から出力される低周波成分の検出信号は、差動検出信号の所定位相位置の瞬時値を結ぶ包絡線の波形、および前記所定位相位置から送信信号周期の1/4周期分、つまり90度だけ位相がずれた瞬時値を結ぶ包絡線の波形を形成するものとなる。   The output of the quadrature detection is, for example, a detection signal in which the influence of a non-magnetic metal causing an external magnetic field change is larger as the magnetic flux density change is larger, and a detection in which the influence of the magnetic metal causing an external magnetic field change is larger as the magnetic flux density is larger. Signal. Further, the detection signal of the low frequency component output from the signal level measuring unit 24 is a waveform of an envelope connecting instantaneous values of a predetermined phase position of the differential detection signal, and ¼ of the transmission signal period from the predetermined phase position. An envelope waveform connecting the instantaneous values whose phases are shifted by 90 degrees, that is, the phase is formed.

一方、検出条件制御回路30は、検出部20の検出信号および図示しない操作器からのユーザーの操作入力に基づいて所定の制御プログラムに従った演算処理を実行し、その処理結果を信号発生部21および磁界検出部23にそれぞれ出力するようになっている。   On the other hand, the detection condition control circuit 30 executes arithmetic processing according to a predetermined control program based on a detection signal of the detection unit 20 and a user's operation input from an operating device (not shown), and the processing result is obtained as a signal generation unit 21. And are output to the magnetic field detector 23, respectively.

検出条件制御回路30は、例えばCPU、RAM、ROMおよびI/Oインターフェースを含むマイクロコンピュータで構成されたもので、ROM内に格納された制御プログラムをRAMとの間でデータの授受を行ないながらCPUにより実行し、I/Oインターフェースを介して取り込んだ信号レベル測定部24からの信号等に基づいて、後述する処理を実行するようになっており、機能的には、図1に示す振幅設定手段31、検出周波数設定手段32、磁界検出部制御手段33、記憶手段34および検出周波数選択手段35を実現するものである。   The detection condition control circuit 30 is composed of, for example, a microcomputer including a CPU, a RAM, a ROM, and an I / O interface, and the CPU executes a control program stored in the ROM while exchanging data with the RAM. The processing described later is executed based on the signal from the signal level measurement unit 24 taken in via the I / O interface and functionally, the amplitude setting means shown in FIG. 31, a detection frequency setting unit 32, a magnetic field detection unit control unit 33, a storage unit 34, and a detection frequency selection unit 35 are realized.

信号発生部21の発生信号の振幅は振幅設定手段31により設定され、信号発生部21の送信信号の設定周波数は検出周波数設定手段32により設定される。   The amplitude of the signal generated by the signal generator 21 is set by the amplitude setting means 31, and the set frequency of the transmission signal of the signal generator 21 is set by the detection frequency setting means 32.

ここで、振幅設定手段31は、信号発生部21と共に、磁界発生部22の発生磁界の強度レベルを通常検出動作の磁界強度レベルである第1の強度レベルと、その第1の強度レベルより低い第2の強度レベルとのうち任意の一方の磁界強度レベルに切り替える磁界制御手段として機能し得る。また、検出周波数設定手段32は、通常検出時の磁界発生部22の発生磁界周波数を規定すべく信号発生部21の設定周波数(発生信号周波数)を設定する機能と、磁界検出部制御手段33を介して磁界検出部23の検出動作周波数を設定する周波数選択設定手段の機能とを有している。   Here, the amplitude setting means 31, together with the signal generator 21, lowers the intensity level of the generated magnetic field of the magnetic field generator 22 from the first intensity level, which is the magnetic field intensity level of the normal detection operation, and the first intensity level. It can function as a magnetic field control means for switching to any one of the second strength levels. The detection frequency setting means 32 includes a function of setting a setting frequency (generated signal frequency) of the signal generation unit 21 to define a generation magnetic field frequency of the magnetic field generation unit 22 during normal detection, and a magnetic field detection unit control unit 33. And a function of frequency selection setting means for setting the detection operating frequency of the magnetic field detection unit 23.

前記第1の強度レベルとは、通常の金属検出動作を行なう際に磁界発生部22で発生される範囲の磁界強度レベルであり、前記第2の強度レベルは、例えばその第1の強度レベルの1/5以下の磁界強度レベル(近接して配置されている金属検出機に対して影響を及ぼさない磁界強度レベルに相当する)である。第2の強度レベルは、好ましくは、例えば信号発生部21から磁界発生部22への送信信号出力を停止し、磁界発生部22による磁界の発生を停止した状態、すなわち発生磁界強度が通常の残留値レベル程度で実質的にゼロ(A/m)と言えるレベルである。   The first intensity level is a magnetic field intensity level in a range generated by the magnetic field generator 22 when performing a normal metal detection operation, and the second intensity level is, for example, the first intensity level. Magnetic field strength level of 1/5 or less (corresponding to a magnetic field strength level that does not affect the metal detectors arranged close to each other). The second strength level is preferably set such that, for example, transmission signal output from the signal generation unit 21 to the magnetic field generation unit 22 is stopped and generation of the magnetic field by the magnetic field generation unit 22 is stopped, that is, the generated magnetic field strength remains normal. It is a level that can be said to be substantially zero (A / m) at about the value level.

磁界検出部制御手段33は、磁界検出部23の検波器に検波クロック信号を供給するとともに検出周波数設定手段32からの設定周波数情報に基づいて、その検波クロック信号の周波数および位相(信号発生部21の基準信号に対する位相差)を調整する機能を有しており、磁界発生部22の作動の有無(磁界発生の有無)に関係なく、磁界検出部23の検出動作周波数を規定することができる。   The magnetic field detector control means 33 supplies a detection clock signal to the detector of the magnetic field detector 23 and, based on the set frequency information from the detection frequency setting means 32, the frequency and phase of the detection clock signal (signal generator 21). (Phase difference with respect to the reference signal) can be adjusted, and the detection operation frequency of the magnetic field detection unit 23 can be defined regardless of whether the magnetic field generation unit 22 is activated (whether the magnetic field is generated).

記憶手段34はRAM又は他の書き換え可能なメモリデバイスで構成されており、通常動作時の検出動作周波数をはじめとして、金属検出に関する各種設定情報や信号レベル測定部24での測定結果のデータを一時的に格納することができる。   The storage means 34 is composed of a RAM or other rewritable memory device, and temporarily stores various setting information related to metal detection and data of measurement results in the signal level measurement unit 24, including the detection operation frequency during normal operation. Can be stored.

検出周波数選択手段35は、検出周波数設定手段32、磁界検出部制御手段33および信号レベル測定部24と共に測定手段40を構成しており、この測定手段40は、磁界発生部22の発生磁界が前記第2の強度レベルとなっている状態で、磁界検出部23の複数の異なる検出動作周波数で、検査領域12中の電磁ノイズを測定するようになっている(詳細は後述する)。   The detection frequency selection unit 35 constitutes a measurement unit 40 together with the detection frequency setting unit 32, the magnetic field detection unit control unit 33, and the signal level measurement unit 24. In the measurement unit 40, the generated magnetic field of the magnetic field generation unit 22 is the above-mentioned. In the state of the second intensity level, electromagnetic noise in the inspection region 12 is measured at a plurality of different detection operation frequencies of the magnetic field detector 23 (details will be described later).

また、検出周波数選択手段35は、検出周波数設定手段32および磁界検出部制御手段33と協働して、前記複数の異なる検出動作周波数のうち測定手段40で測定された電磁ノイズレベルが所定値以下となるいずれかの周波数を選択し、磁界発生部22の設定周波数およびそれに対応する磁界検出部23の検出動作周波数(検波周波数)を設定する周波数選択設定手段となっている。   The detection frequency selection unit 35 cooperates with the detection frequency setting unit 32 and the magnetic field detection unit control unit 33 so that the electromagnetic noise level measured by the measurement unit 40 among the plurality of different detection operation frequencies is less than a predetermined value. The frequency selection setting means for selecting one of the frequencies and setting the setting frequency of the magnetic field generation unit 22 and the detection operation frequency (detection frequency) of the magnetic field detection unit 23 corresponding thereto.

ところで、金属有無判定部26は、検査領域12に搬送された各ワークWの検出信号振幅レベルを予め定めた閾値レベルと比較し、ワークW中に金属異物が含まれているか否か、すなわち製品としての合否を公知の判定方法で判定して、その判定結果を表示部27に出力する判定手段となっている。この金属有無判定部26は、併せて、コンベア11の検査領域12より下流側に設けられた選別部28に対し、不良品を良品と分けるための選別指令信号を出力するようになっている。   By the way, the metal presence / absence determination unit 26 compares the detection signal amplitude level of each workpiece W conveyed to the inspection area 12 with a predetermined threshold level to determine whether or not the metal W is contained in the workpiece W, that is, the product. As a determination means for determining pass / fail as a known determination method and outputting the determination result to the display unit 27. The metal presence / absence determination unit 26 also outputs a selection command signal for separating defective products from non-defective products to a selection unit 28 provided on the downstream side of the inspection region 12 of the conveyor 11.

次に、動作について説明する。   Next, the operation will be described.

金属検出装置の起動時には、電源投入により、制御系の初期化と設定データの読込等が実行され、例えば磁界発生部22で発生する送信信号の振幅や設定周波数が決定され、これに応じた交番磁界が磁界発生部22から発生されることになるが、この起動に際して、本実施形態では、次に述べるような動作周波数設定処理が実行される。   When the metal detector is activated, the control system is initialized and the setting data is read by turning on the power. For example, the amplitude and the setting frequency of the transmission signal generated by the magnetic field generator 22 are determined, and the alternating operation is performed accordingly. A magnetic field is generated from the magnetic field generator 22, but at the time of activation, an operation frequency setting process as described below is executed in the present embodiment.

図2は、その動作周波数設定処理の概略の手順を示すフローチャートである。   FIG. 2 is a flowchart showing a schematic procedure of the operating frequency setting process.

同図において、まず、最初に金属検出機の動作状態が、起動ボタンが押された直後の初期設定中であるか又はリセットボタンが操作された後の再設定中であるかがチェックされ(ステップS1)、そのいずれかの場合であれば(ステップS1でYESの場合)、次いで、今回の動作周波数設定処理の後で検査されるワークW(被検査物)の種別情報がユーザーによる設定入力又は既設定データから把握されて取得され(ステップS2)、そのワークWに関連する各種設定パラメータ等が記憶手段34その他のメモリデバイスから読み込まれる(ステップS3)。次いで、磁界発生部22の磁界発生強度が第2の強度レベル(通常動作レベルの1/5以下、例えば実質的に出力ゼロのレベル)に設定される(ステップS4)。これにより、検査領域12中への磁界発生部22からの磁界の影響が十分に弱く、検査領域12中への外来の電磁ノイズの影響測定が可能な状態となる。   In the figure, first, it is checked whether the operation state of the metal detector is initially set immediately after the start button is pressed or reset after the reset button is operated (step). S1) If it is one of those cases (YES in step S1), then the type information of the workpiece W (inspected object) to be inspected after the current operating frequency setting process is set by the user or Various setting parameters and the like related to the workpiece W are read from the storage means 34 and other memory devices (step S3). Next, the magnetic field generation intensity of the magnetic field generation unit 22 is set to a second intensity level (1/5 or less of the normal operation level, for example, a level of substantially zero output) (step S4). As a result, the influence of the magnetic field from the magnetic field generator 22 on the inspection area 12 is sufficiently weak, and it becomes possible to measure the influence of external electromagnetic noise on the inspection area 12.

次いで、ワークWの種別情報に基づいて、ワークW中の金属検出に適した磁界周波数の範囲、すなわち周波数帯域が設定されるとともに、その範囲中で動作周波数設定処理のための一時的な検出動作周波数である複数の検査周波数、例えばf1〜fn(nは1以上の整数)が設定される(ステップS5)。   Next, based on the type information of the workpiece W, a magnetic field frequency range suitable for metal detection in the workpiece W, that is, a frequency band is set, and a temporary detection operation for operating frequency setting processing within the range. A plurality of inspection frequencies which are frequencies, for example, f1 to fn (n is an integer of 1 or more) are set (step S5).

具体的には、ワークWの特性(水分や塩分あるいは包材の種類等)に応じて、そのワークW中の金属検出に適した周波数帯域が、数kHz〜数MHzの範囲で、1つあるいは複数選択される。そして、その検査周波数帯域で特定される測定範囲において、例えば使用して好ましい周波数順に検査周波数が選択されて、その検査周波数で検査領域12中への外来電磁ノイズのノイズレベルが測定され(ステップS6)、測定結果が記憶手段34に一時的に記憶される(ステップS7)。   Specifically, depending on the characteristics of the workpiece W (moisture, salt content, type of packaging material, etc.), one or more frequency bands suitable for metal detection in the workpiece W are in the range of several kHz to several MHz. Multiple selections are made. Then, in the measurement range specified by the inspection frequency band, for example, the inspection frequencies are selected in the order of preferred frequencies to be used, and the noise level of the external electromagnetic noise into the inspection region 12 is measured at the inspection frequency (step S6). ) And the measurement result is temporarily stored in the storage means 34 (step S7).

ここでの検査周波数の設定間隔は、検出部20における周波数安定度(例えばディジタル直接合成シンセサイザの確度や温度特性など)を基に決定され、検査周波数の設定範囲は、同調回路のQ(周波数選択性の良さを表わす同調特性値)に基づいて決定される。具体的には、全周波数帯を数kHz〜数MHzの範囲のうち複数の周波数帯とし、例えば1MHz帯に対応する同調回路のQの値が100であれば、1MHz帯における最適周波数サーチの帯域幅(=f/Q)は10kHzといった形で設定されており、複数の周波数帯の全部又はワークWに好適な特定の周波数帯が検査周波数として選択される。   The test frequency setting interval here is determined based on the frequency stability (for example, the accuracy and temperature characteristics of the digital direct synthesis synthesizer) in the detection unit 20, and the test frequency setting range is Q (frequency selection of the tuning circuit). Tuned characteristic value representing good quality). Specifically, if all frequency bands are a plurality of frequency bands in the range of several kHz to several MHz, and the Q value of the tuning circuit corresponding to the 1 MHz band is 100, for example, the optimum frequency search band in the 1 MHz band The width (= f / Q) is set in the form of 10 kHz, and all of a plurality of frequency bands or a specific frequency band suitable for the workpiece W is selected as the inspection frequency.

次いで、今回の測定結果が許容ノイズレベル判定のための閾値である所定値の電磁ノイズレベル以下となっているか否かが判別され(ステップS8)、所定値以下の磁界ノイズレベルであれば(ステップS8でYESの場合)、今回の検査周波数をそのまま選択して、これを以後の動作中における前記設定周波数およびこれに対応する前記検出動作周波数(図中では、両周波数を総称して動作周波数という)の設定値とする(ステップS11)。   Next, it is determined whether or not the current measurement result is equal to or lower than a predetermined electromagnetic noise level that is a threshold for determining an allowable noise level (step S8). If the magnetic field noise level is equal to or lower than a predetermined value (step S8). In the case of YES in S8, the current inspection frequency is selected as it is, and this is set as the set frequency during the subsequent operation and the corresponding detection operation frequency (in the figure, both frequencies are collectively referred to as the operation frequency). ) (Step S11).

今回の測定結果が所定値以下の磁界ノイズレベルでなければ(ステップS8でNOの場合)、次いで、今回の検査周波数が予め定められた測定順の周波数のうち最後の周波数、例えば周波数fnであったか否かがチェックされ(ステップS9)、最後の周波数でなければ(ステップS9でNOの場合)、ステップS5に戻って次の検査周波数の設定を行ない、その検査周波数で再度、検査領域12中への外来電磁ノイズのノイズレベルが測定され(ステップS6)、その測定結果が記憶手段34に一時的に記憶される(ステップS7)。   If the current measurement result is not a magnetic field noise level equal to or less than a predetermined value (NO in step S8), then whether the current inspection frequency was the last frequency in the predetermined measurement order, for example, frequency fn If not (step S9) and if it is not the last frequency (NO in step S9), the process returns to step S5 to set the next inspection frequency, and again enters the inspection region 12 at the inspection frequency. The noise level of the external electromagnetic noise is measured (step S6), and the measurement result is temporarily stored in the storage means 34 (step S7).

このような処理が、検査周波数が予め定められた測定順の周波数のうち最後の周波数になるか、測定結果が所定値の電磁ノイズレベル以下となるまで、所定回数内で繰り返し実行され、所定回数内に測定結果が所定値の電磁ノイズレベル以下とならなければ(ステップS9でYESの場合)、電磁ノイズ異常であることを表示、プリント又は音声その他の出力形式で報知し(ステップS10)、次いで、前回の動作周波数設定処理で設定された設定周波数および検出動作周波数、若しくは測定結果のうち電磁ノイズレベルが最も低い検査周波数を、磁界発生部22の設定周波数およびこれに対応する磁界検出部23の検出動作周波数の設定値とする(ステップS11)。   Such a process is repeatedly executed within a predetermined number of times until the inspection frequency becomes the last frequency in the predetermined order of measurement or the measurement result is equal to or lower than a predetermined electromagnetic noise level. If the measurement result does not fall below the predetermined electromagnetic noise level (YES in step S9), the fact that the electromagnetic noise is abnormal is displayed, notified by print, voice or other output format (step S10), and then The inspection frequency with the lowest electromagnetic noise level among the set frequency and detection operation frequency set in the previous operation frequency setting process or the measurement result is set to the set frequency of the magnetic field generation unit 22 and the magnetic field detection unit 23 corresponding thereto. The detection operating frequency is set to a set value (step S11).

このような動作周波数の設定が済むと、次いで、磁界発生部22の発生磁界強度が通常の検出動作時の出力レベルである第1のレベルに設定され(ステップS12)、ワークWについての金属検出が可能な状態となる。なお、電磁ノイズ異常の場合に、ユーザが何らかの操作入力を行なうまで、待機状態とすることもできる。   After such setting of the operating frequency, the magnetic field intensity generated by the magnetic field generator 22 is then set to the first level that is the output level during the normal detection operation (step S12), and metal detection for the workpiece W is performed. Is possible. In the case of electromagnetic noise abnormality, it is possible to enter a standby state until the user inputs some operation.

上述の設定が完了すると、外来ノイズの影響を抑えた検出条件下で、通常の金属検出が行なわれる。   When the above setting is completed, normal metal detection is performed under detection conditions in which the influence of external noise is suppressed.

本実施の形態においては、ワークWに対する使用磁界の好ましい周波数帯域内で、前記設定周波数および検出動作周波数が測定結果を基に微調整されたものとなっているから、例えば同じ周波数帯域を使用した複数の金属検出装置が近接配置されるような場合でも、相互の干渉を抑えるべく、それら複数の金属検出装置の使用磁界周波数を少しずつ異ならせるような微調整が自動的に可能となる。   In the present embodiment, the set frequency and the detection operating frequency are finely adjusted based on the measurement result within the preferable frequency band of the magnetic field used for the workpiece W. For example, the same frequency band is used. Even when a plurality of metal detection devices are arranged close to each other, fine adjustment can be automatically performed so that the magnetic field frequencies of the plurality of metal detection devices are gradually changed in order to suppress mutual interference.

さらに、次のような点で、外来電磁ノイズによる金属検出装置の性能低下を防止することができる。   Furthermore, the performance degradation of the metal detection apparatus due to external electromagnetic noise can be prevented in the following points.

図3は、本実施形態の磁界検出部23における検出信号の出力例を示す図であり、同図中の(a)は磁界検出部回路の電気ノイズ、(b)はワークWによる磁界変動検出時の出力、(c)はワークWに金属が混入しているときの磁界変動検出時の出力、(d−1)は電磁ノイズの影響、例えば他の金属検出装置等と多少干渉しているときの出力、(d−2)は近接はしていないが他の金属検出装置からの電磁ノイズが干渉しているときの出力、(d−3)は近接する他の金属検出装置からの電磁ノイズが強く干渉しているときの出力をそれぞれ示しており、更にそれぞれの信号を直交検波した出力から得られるリサージュ波形を下方側に対応付けて図示している。   3A and 3B are diagrams showing an example of detection signal output in the magnetic field detection unit 23 of the present embodiment, in which FIG. 3A shows electric noise of the magnetic field detection unit circuit, and FIG. 3B shows magnetic field fluctuation detection by the workpiece W. (C) is an output when a magnetic field fluctuation is detected when metal is mixed in the workpiece W, and (d-1) is an influence of electromagnetic noise, for example, somewhat interferes with other metal detection devices. (D-2) is output when the electromagnetic noise from other metal detection devices is interfering, and (d-3) is electromagnetic from other metal detection devices in proximity. The output when noise is strongly interfering is shown, respectively, and the Lissajous waveform obtained from the output obtained by quadrature detection of each signal is shown in association with the lower side.

本実施の形態においては、同図(d−1)に示すような電磁ノイズの影響をも考慮して、検出動作周波数が選択設定されるから、そのような影響をも除去して、同図(b)、(c)に示すようなワークWによる磁界変動検出時の出力を良好なS/N比で検出することができる。同図(d−2)、(d−3)に示すような場合であって、検出動作周波数の選択だけではノイズの影響を抑えられないようなときには、ノイズ異常を報知することができる。   In the present embodiment, the detection operating frequency is selected and set in consideration of the influence of electromagnetic noise as shown in FIG. As shown in (b) and (c), it is possible to detect the output at the time of detecting the magnetic field fluctuation by the work W with a good S / N ratio. In the cases as shown in FIGS. 2D-2 and 3D-3, when the influence of noise cannot be suppressed only by selecting the detection operation frequency, it is possible to notify the noise abnormality.

なお、図5(a)〜(c)、図5(d−1)〜(d−3)に示す各リサージュ波形は、ハッチングを付けた円形が電磁ノイズの影響によるもの、楕円形が被検査体による磁界変動によるものであり、図5(a)〜(c)は理想的な状態を示しているということができる。同図(b)と(d−1)に示す状態では、金属異物の検出信号についてのS/N比は同等であるが、同図(b)に示す状態では、ノイズレベルが被検査体の物品影響より小さく、物品の位相特性が精度良く安定的に算出可能であるのに対して、同図(d−1)に示す状態では、物品の位相特性がノイズの影響で精度良く算出できず、金属検出の安定性に欠けることとなる。同図(d−2)に示す状態では、ノイズの影響が大きくなり、金属検出性能が低下している。同図(d−3)に示す状態では、ノイズの影響が非常に大きくなり、金属検出信号がノイズ影響下(円形中)に埋もれてしまって金属検出ができない。   Each of the Lissajous waveforms shown in FIGS. 5 (a) to 5 (c) and FIGS. 5 (d-1) to (d-3) has a hatched circle due to the influence of electromagnetic noise and an elliptical shape to be inspected. This is due to magnetic field fluctuations caused by the body, and it can be said that FIGS. 5A to 5C show an ideal state. In the states shown in (b) and (d-1), the S / N ratio for the detection signal of the metallic foreign object is the same, but in the state shown in (b), the noise level is that of the object to be inspected. Whereas the influence of the article is smaller and the phase characteristic of the article can be calculated accurately and stably, the phase characteristic of the article cannot be accurately calculated due to the influence of noise in the state shown in FIG. Therefore, the metal detection lacks stability. In the state shown in (d-2) of the figure, the influence of noise is increased, and the metal detection performance is degraded. In the state shown in FIG. 6D-3, the influence of noise becomes very large, and the metal detection signal is buried under the influence of noise (in the circle), so that the metal cannot be detected.

図4は検出動作周波数を微調整したときの、それぞれの検出動作周波数についての磁界検出部23の検出信号出力例を示しており、図中の(i)〜(v)の横に記載された周波数の値が検査周波数として使用した周波数、その下の波形が測定されたノイズ検出信号の出力波形である。同図からノイズレベルが最も低いのは(ii)の999.8kHzのときであり、従来なら図中の(i)、(ii)、(iv)、(v)のような場合は識別できず、ある程度の外来電磁ノイズの影響を容認せざるを得なかったが、本実施形態では、測定結果に基づく検出動作周波数の選択とそれに対応する設定周波数の設定により、好適な検出条件の自動的な選択設定が可能となる。   FIG. 4 shows an example of detection signal output of the magnetic field detection unit 23 for each detection operation frequency when the detection operation frequency is finely adjusted, and is described beside (i) to (v) in the figure. The frequency value is the frequency used as the inspection frequency, and the waveform below it is the output waveform of the measured noise detection signal. From the figure, the noise level is lowest at (ii) of 999.8 kHz. Conventionally, cases such as (i), (ii), (iv), and (v) in the figure cannot be identified. However, in this embodiment, suitable detection conditions are automatically detected by selecting the detection operation frequency based on the measurement result and setting the corresponding set frequency. Selection setting is possible.

このように、本実施形態の金属検出装置では、外来電磁ノイズの影響を複数の異なる検出動作周波数について測定し、外来電磁ノイズの影響が小さくなる周波数を選択して信号発生部21および磁界発生部22の設定周波数とするので、使用環境の変化等による外来電磁ノイズの変化に関わりなく、外来電磁ノイズの影響を抑えるよう検出条件の設定を自動的に好適条件に調整することができる。   As described above, in the metal detection device of the present embodiment, the influence of the external electromagnetic noise is measured for a plurality of different detection operation frequencies, and the signal generation unit 21 and the magnetic field generation unit are selected by selecting a frequency at which the influence of the external electromagnetic noise is reduced. Since the set frequency is set to 22, the detection condition setting can be automatically adjusted to a suitable condition so as to suppress the influence of the external electromagnetic noise regardless of the change of the external electromagnetic noise due to a change in use environment or the like.

また、専用の磁界検出手段を設けることも可能であるが、本実施形態では、そのような構成でなく、通常の金属検出に用いる磁界検出部23および信号レベル測定部24等を利用して検査領域12中の電磁ノイズを測定するようにしているので、外来電磁ノイズの測定手段を低コストでかつ簡素な構成で容易に付加できることになる。   In addition, it is possible to provide a dedicated magnetic field detection means, but in this embodiment, the inspection is not made using such a configuration but using the magnetic field detection unit 23 and the signal level measurement unit 24 used for normal metal detection. Since the electromagnetic noise in the region 12 is measured, the external electromagnetic noise measuring means can be easily added at a low cost and with a simple configuration.

しかも、本実施形態の金属検出装置では、検出周波数選択手段35が、複数の異なる検査周波数を、ワークWの品種毎に定めた周波数範囲内で決定することから、ワークWの品種に好適な動作周波数の帯域を予め特定しておき、その周波数帯域で外来電磁ノイズの測定を行なうことで、起動時等における動作周波数設定処理を迅速に行なうことが可能になる。   In addition, in the metal detection apparatus of the present embodiment, the detection frequency selection unit 35 determines a plurality of different inspection frequencies within a frequency range determined for each type of workpiece W, and thus an operation suitable for the type of workpiece W. By specifying the frequency band in advance and measuring the external electromagnetic noise in the frequency band, it becomes possible to quickly perform the operation frequency setting process at the time of startup or the like.

さらに、検出周波数選択手段35が、複数の異なる検査周波数(検出動作周波数)のうち磁界検出部23および信号レベル測定部24で測定された電磁ノイズレベルが前記所定値、すなわち予め定めた許容ノイズレベル以下となる周波数を選択し、この周波数を発生磁界の設定周波数として設定するので、外来電磁ノイズの影響による金属検出性能の低下を確実に抑えることが可能となる。   Further, the detection frequency selection means 35 has the electromagnetic noise level measured by the magnetic field detection unit 23 and the signal level measurement unit 24 among a plurality of different inspection frequencies (detection operation frequencies) as the predetermined value, that is, a predetermined allowable noise level. Since the following frequency is selected and this frequency is set as the set frequency of the generated magnetic field, it is possible to surely suppress the deterioration of the metal detection performance due to the influence of external electromagnetic noise.

また、上述のような設定条件の変更処理が、金属検出装置の起動時若しくは金属検出装置の動作のリセット時に行なわれるので、初期化処理の一部と並行して外来電磁ノイズの影響測定および好適な動作周波数を選択設定することができる。   In addition, since the setting condition changing process as described above is performed at the time of starting the metal detection device or resetting the operation of the metal detection device, the influence measurement of the external electromagnetic noise and the suitable operation are performed in parallel with a part of the initialization process. Various operating frequencies can be selected and set.

さらに、第2の強度レベルを第1の強度レベルの1/5以下の適当なレベルに設定することで、例えば近接して配置されている金属検出機が同一周波数帯で動作していても、互いに干渉し影響を及ぼし合ったりすることなく、最適な検出動作周波数を選択・設定することができる。第2の強度レベルを実質的にゼロとすれば、金属検出装置が隣接して配置されたときでも、影響を及ぼし合うことを防止することができる。   Furthermore, by setting the second intensity level to an appropriate level that is 1/5 or less of the first intensity level, for example, even if the metal detectors arranged close to each other operate in the same frequency band, The optimal detection operating frequency can be selected and set without interfering and affecting each other. When the second intensity level is substantially zero, even when the metal detection devices are arranged adjacent to each other, they can be prevented from affecting each other.

[第2の実施の形態]
図5は、本発明の第2の実施の形態に係る金属検出装置の動作周波数設定処理の概略手順を示すフローチャートである。なお、本実施形態の金属検出装置の構成は上述の実施の形態とほぼ同様であるので、上述と同様な構成要素および処理については上述と同一の符号を用いて説明する。
[Second Embodiment]
FIG. 5 is a flowchart showing a schematic procedure of the operating frequency setting process of the metal detector according to the second embodiment of the present invention. In addition, since the structure of the metal detection apparatus of this embodiment is as substantially the same as the above-mentioned embodiment, the component and process similar to the above are demonstrated using the same code | symbol as the above.

図5において、まず、最初に金属検出機の動作状態が、起動ボタンが押された直後の初期設定中であるか又はリセットボタンが操作された後の再設定中であるかがチェックされ(ステップS1)、そのいずれかの場合であれば(ステップS1でYESの場合)、次いで、今回の動作周波数設定処理の後で検査されるワークW(被検査物)の種別情報がユーザーによる設定入力又は既設定データ(予定情報を含む)から把握されて取得され(ステップS2)、そのワークWに関連する各種設定パラメータ等が記憶手段34その他のメモリデバイスから読み込まれる(ステップS3)。次いで、磁界発生部22の磁界発生強度が第2の強度レベル(通常動作レベルの1/5以下、例えば出力ゼロのレベル)に設定される(ステップS4)。これにより、検査領域12中への磁界発生部22からの磁界の影響が十分に弱く、検査領域12中への外来電磁ノイズの影響測定が可能な状態となる。   In FIG. 5, first, it is checked whether the operation state of the metal detector is initially set immediately after the start button is pressed or reset after the reset button is operated (step S1) If it is one of those cases (YES in step S1), then the type information of the workpiece W (inspected object) to be inspected after the current operating frequency setting process is set by the user or It is grasped and acquired from already set data (including schedule information) (step S2), and various setting parameters and the like related to the work W are read from the storage means 34 and other memory devices (step S3). Next, the magnetic field generation intensity of the magnetic field generator 22 is set to a second intensity level (1/5 or less of the normal operation level, for example, a level of zero output) (step S4). As a result, the influence of the magnetic field from the magnetic field generator 22 on the inspection area 12 is sufficiently weak, and the measurement of the influence of external electromagnetic noise on the inspection area 12 is possible.

次いで、ワークW(被検査物)の種別情報に基づいて、ワークW中の金属検出に適した磁界周波数の範囲が設定されるとともに、その範囲中で複数の検査周波数、例えばf1〜fn(nは1以上の整数)が設定される(ステップS5)。そして、その検査周波数のうち予め定められた測定順の周波数を用いて、例えば周波数の高い順に検査周波数が選択されて、その検査周波数で検査領域12中への外来電磁ノイズのノイズレベルが測定され(ステップS6)、測定結果が記憶手段34に一時的に記憶される(ステップS7)。   Next, a magnetic field frequency range suitable for metal detection in the workpiece W is set based on the type information of the workpiece W (inspection object), and a plurality of inspection frequencies, for example, f1 to fn (n) are set in the range. Is an integer greater than or equal to 1) (step S5). Then, using the frequency in the predetermined measurement order among the inspection frequencies, for example, the inspection frequencies are selected in descending order of the frequency, and the noise level of the external electromagnetic noise into the inspection region 12 is measured at the inspection frequency. (Step S6), the measurement result is temporarily stored in the storage means 34 (Step S7).

次いで、今回の検査周波数が予め定められた測定順の周波数のうち最後の周波数、例えば周波数fnであったか否かがチェックされ(ステップS9)、最後の周波数でなければ(ステップS9でNOの場合)、ステップS5に戻って次の検査周波数の設定を行ない、その検査周波数で再度、検査領域12中への外来電磁ノイズのノイズレベルが測定され(ステップS6)、その測定結果が記憶手段34に一時的に記憶される(ステップS7)。   Next, it is checked whether or not the current test frequency is the last frequency in the predetermined measurement order, for example, the frequency fn (step S9), and if not the last frequency (NO in step S9). Returning to step S5, the next inspection frequency is set, and the noise level of the external electromagnetic noise into the inspection region 12 is measured again at the inspection frequency (step S6), and the measurement result is temporarily stored in the storage means 34. (Step S7).

このような処理が、検査周波数が予め定められた測定順の周波数のうち最後の周波数になるまで所定回数繰り返し実行され、最後の周波数になると(ステップS9でYESの場合)測定結果のうち電磁ノイズレベルが最も低くなる検査周波数を選択して、その周波数を以後の動作周波数、すなわち発生磁界の設定周波数および検出動作周波数の設定値とする(ステップS21)。   Such processing is repeatedly executed a predetermined number of times until the inspection frequency reaches the last frequency in the predetermined measurement order frequency, and when it reaches the last frequency (YES in step S9), electromagnetic noise in the measurement result. The inspection frequency with the lowest level is selected, and that frequency is set as the subsequent operating frequency, that is, the set frequency of the generated magnetic field and the set value of the detected operating frequency (step S21).

具体的には、例えば1MHz帯が1つ好ましい検査周波数の周波数帯として選択され、信号レベル測定部24が16bitのA/D変換器を用いて検出レベル値を出力する場合に、検査周波数1000.4kHzで検出レベルが632、検査周波数1000.2kHzで検出レベルが532、検査周波数1000.0kHzで検出レベルが658、検査周波数999.8kHzで検出レベルが587、検査周波数999.6kHzで検出レベルが655といった測定結果が得られたとすると、最適な周波数はノイズ検出レベルが最低となった1000.2kHzであり、これが以後の動作周波数の設定値となる。   Specifically, for example, when the 1 MHz band is selected as the frequency band of one preferable inspection frequency, and the signal level measurement unit 24 outputs the detection level value using a 16-bit A / D converter, the inspection frequency 1000. The detection level is 632 at 4 kHz, the detection level is 532 at the inspection frequency of 1000.2 kHz, the detection level is 658 at the inspection frequency of 1000.0 kHz, the detection level is 587 at the inspection frequency of 999.8 kHz, and the detection level is 655 at the inspection frequency of 999.6 kHz. If the measurement result is obtained, the optimum frequency is 1000.2 kHz at which the noise detection level is the lowest, and this is the set value of the subsequent operating frequency.

動作周波数の設定が済むと、次いで、磁界発生部22の発生磁界強度が通常の検出動作時の出力レベルである第1の強度レベルに設定され(ステップS12)、ワークWについての金属検出が可能な状態となる。   After the operation frequency is set, the magnetic field intensity generated by the magnetic field generator 22 is then set to the first intensity level that is the output level during the normal detection operation (step S12), and metal detection for the workpiece W is possible. It becomes a state.

このように、本実施形態の金属検出装置も、外来電磁ノイズの影響を複数の異なる検査周波数(検出動作周波数)について測定し、外来電磁ノイズの影響が小さくなる周波数を選択し発生磁界の設定周波数として金属検出の設定条件を変更するので、上述の実施の形態と同様の効果を得ることができ、外来電磁ノイズの影響による金属検出性能の低下を確実に抑えることが可能な金属検出機を提供することができる。   As described above, the metal detection apparatus of this embodiment also measures the influence of external electromagnetic noise on a plurality of different inspection frequencies (detection operation frequencies), selects a frequency at which the influence of external electromagnetic noise is reduced, and sets the generated magnetic field setting frequency. Since the setting conditions for metal detection are changed as described above, it is possible to obtain a metal detector that can obtain the same effects as those of the above-described embodiment and can reliably suppress the deterioration of the metal detection performance due to the influence of external electromagnetic noise. can do.

しかも、本実施形態の金属検出装置では、検出周波数選択手段35が、複数の異なる検査周波数のうち最低ノイズレベルとなる周波数を選択し、設定周波数および検出動作周波数として設定するので、起動時等における動作周波数設定処理をより迅速に行なうことができる。   Moreover, in the metal detection apparatus of the present embodiment, the detection frequency selection means 35 selects a frequency that has the lowest noise level among a plurality of different inspection frequencies and sets it as the set frequency and the detection operation frequency. The operating frequency setting process can be performed more quickly.

なお、上述した動作周波数設定処理における測定結果を記憶手段34に一時的に記憶した測定結果データを蓄積しておき、外来電磁ノイズの変化を経時的に比較可能な情報としたり、検出動作中における検出動作周波数および発生磁界周波数の切り替え処理のために使用したりすることができるのはいうまでもない。   Measurement result data temporarily storing the measurement result in the operation frequency setting process described above is stored in the storage unit 34, so that the change in the external electromagnetic noise can be used as information that can be compared with time, or during the detection operation. Needless to say, it can be used for switching the detection operating frequency and the generated magnetic field frequency.

以上説明したように、本発明は、外来電磁ノイズの影響を複数の異なる検査周波数について測定し、外来電磁ノイズの影響が小さくなる周波数を検出動作周波数として選択するので、使用環境の変化等による外来電磁ノイズの変化に関わりなく、外来電磁ノイズの影響を少なくするよう金属検出の条件設定を自動的に好適条件に調整可能な金属検出装置を提供することができるという効果を奏するものであり、交番磁界を用いて被検査体中の金属を検出する金属検出装置、特に搬送されあるいは自重で移動する製品中への金属異物の混入検出等に好適であり、外来電磁ノイズによる影響の少ない検出動作条件を定期的に設定する必要のある金属検出型の検査装置あるいは検査方法およびプログラムにも有用である。   As described above, the present invention measures the influence of external electromagnetic noise on a plurality of different inspection frequencies, and selects a frequency that reduces the influence of external electromagnetic noise as the detection operation frequency. Regardless of changes in electromagnetic noise, it is possible to provide a metal detection device that can automatically adjust metal detection conditions to suitable conditions so as to reduce the influence of external electromagnetic noise. Metal detection device that detects the metal in the object to be inspected using a magnetic field, especially suitable for detecting foreign metal contamination in products that are transported or moved under its own weight, etc., and detection operating conditions that are less affected by external electromagnetic noise It is also useful for a metal detection type inspection apparatus or inspection method and program that need to be set periodically.

本発明の第1の実施の形態に係る金属検出装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the metal detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る金属検出装置の動作周波数設定処理の概略手順を示すフローチャートである。It is a flowchart which shows the schematic procedure of the operating frequency setting process of the metal detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る金属検出装置の磁界検出部におけるノイズやワークによる磁界変動時、金属検出機同士の干渉時等の検出信号を例示する検出信号波形図である。It is a detection signal waveform diagram which illustrates a detection signal at the time of the magnetic field change by noise in a magnetic field detection part of a metal detection device concerning a 1st embodiment of the present invention by a work, interference between metal detectors, etc. 本発明の第1の実施の形態に係る金属検出装置の磁界検出部における複数の異なる検出動作周波数とその周波数でのノイズ検出信号を例示する検出信号波形図である。FIG. 5 is a detection signal waveform diagram illustrating a plurality of different detection operation frequencies and noise detection signals at the frequencies in the magnetic field detection unit of the metal detection device according to the first exemplary embodiment of the present invention. 本発明の第2の実施の形態に係る金属検出装置の動作周波数設定処理の概略手順を示すフローチャートである。It is a flowchart which shows the schematic procedure of the operating frequency setting process of the metal detection apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

12 検査領域
13 ワーク検知センサ
20 検出部
21 信号発生部
22 磁界発生部(磁界発生手段)
23 磁界検出部(磁界検出手段)
24 信号レベル測定部
26 金属有無判定部(判定手段)
27 表示部
28 選別部
30 検出条件制御回路
31 振幅設定手段(磁界制御手段)
32 検出周波数設定手段(周波数選択設定手段)
33 磁界検出部制御手段
34 記憶手段
35 検出周波数選択手段(周波数選択設定手段)
40 測定手段
12 Inspection Area 13 Work Detection Sensor 20 Detection Unit 21 Signal Generation Unit 22 Magnetic Field Generation Unit (Magnetic Field Generation Unit)
23 Magnetic field detection part (magnetic field detection means)
24 signal level measurement unit 26 metal presence / absence determination unit (determination means)
27 Display unit 28 Sorting unit 30 Detection condition control circuit 31 Amplitude setting means (magnetic field control means)
32 Detection frequency setting means (frequency selection setting means)
33 Magnetic field detector control means 34 Storage means 35 Detection frequency selection means (frequency selection setting means)
40 Measuring means

Claims (4)

被検査体の物品影響に対応して予め定められた周波数範囲に含まれる設定周波数の交番磁界を被検査体の検査領域(12)に発生させる磁界発生手段(22)と、
前記被検査体が前記交番磁界中を通過することに起因する前記交番磁界の変動を前記設定周波数に対応する検出動作周波数で検出する磁界検出手段(23)と、
該磁界検出手段の検出信号に基づいて前記被検査体中における金属物又は金属成分の有無を判定する判定手段(26)とを備えた金属検出装置において、
前記磁界発生手段の前記設定周波数を前記周波数範囲内で変化させ、該設定周波数のそれぞれに対応する複数の異なる前記検出動作周波数について前記磁界検出手段を用いて前記検査領域中の電磁ノイズを測定する測定手段(40)と、
前記複数の異なる検出動作周波数のうち前記測定手段で測定された電磁ノイズレベルが所定値以下となるいずれかの周波数を選択し前記磁界発生手段の前記設定周波数として設定する周波数選択設定手段(32、35)と、を設けたことを特徴とする金属検出装置。
Magnetic field generating means (22) for generating an alternating magnetic field of a set frequency included in a predetermined frequency range corresponding to the article influence of the object to be inspected in the inspection region (12) of the object to be inspected;
Magnetic field detection means (23) for detecting a change in the alternating magnetic field caused by the inspection object passing through the alternating magnetic field at a detection operation frequency corresponding to the set frequency;
In a metal detection apparatus comprising a determination means (26) for determining the presence or absence of a metal object or a metal component in the inspection object based on a detection signal of the magnetic field detection means,
The set frequency of the magnetic field generation means is changed within the frequency range, and electromagnetic noise in the inspection region is measured using the magnetic field detection means for a plurality of different detection operation frequencies corresponding to the set frequencies. Measuring means (40);
A frequency selection setting means (32, 32) for selecting any one of the plurality of different detection operation frequencies at which the electromagnetic noise level measured by the measurement means is a predetermined value or less and setting the selected frequency as the set frequency of the magnetic field generation means 35).
前記周波数選択設定手段が、前記複数の異なる検出動作周波数のうち前記測定手段で測定された電磁ノイズレベルが最低値となる周波数を選択し前記磁界発生手段の前記設定周波数として設定することを特徴とする請求項1に記載の金属検出装置。   The frequency selection setting means selects a frequency at which the electromagnetic noise level measured by the measurement means becomes the lowest value from the plurality of different detection operation frequencies, and sets the selected frequency as the setting frequency of the magnetic field generation means. The metal detection device according to claim 1. 前記周波数選択設定手段が、前記複数の異なる検出動作周波数のうち前記測定手段で測定された電磁ノイズレベルが予め定めた許容ノイズレベル以下となる周波数を選択し前記磁界発生手段の前記設定周波数として設定することを特徴とする請求項1に記載の金属検出装置。   The frequency selection setting unit selects a frequency at which the electromagnetic noise level measured by the measurement unit is equal to or lower than a predetermined allowable noise level from the plurality of different detection operation frequencies, and sets the selected frequency as the setting frequency of the magnetic field generation unit. The metal detection device according to claim 1, wherein: 前記磁界制御手段、前記測定手段および前記周波数選択設定手段が、装置の起動時若しくは動作リセット時に作動することを特徴とする請求項1〜3のいずれかに記載の金属検出装置。   The metal detection apparatus according to claim 1, wherein the magnetic field control unit, the measurement unit, and the frequency selection setting unit operate when the apparatus is started or when the operation is reset.
JP2008192122A 2004-08-30 2008-07-25 Metal detector Active JP4633830B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004250245A JP4173470B2 (en) 2004-08-30 2004-08-30 Metal detector
JP2008192122A JP4633830B2 (en) 2004-08-30 2008-07-25 Metal detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004250245A JP4173470B2 (en) 2004-08-30 2004-08-30 Metal detector
JP2008192122A JP4633830B2 (en) 2004-08-30 2008-07-25 Metal detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004250245A Division JP4173470B2 (en) 2004-08-30 2004-08-30 Metal detector

Publications (2)

Publication Number Publication Date
JP2008256718A true JP2008256718A (en) 2008-10-23
JP4633830B2 JP4633830B2 (en) 2011-02-16

Family

ID=61024007

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004250245A Active JP4173470B2 (en) 2004-08-30 2004-08-30 Metal detector
JP2008192122A Active JP4633830B2 (en) 2004-08-30 2008-07-25 Metal detector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004250245A Active JP4173470B2 (en) 2004-08-30 2004-08-30 Metal detector

Country Status (1)

Country Link
JP (2) JP4173470B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001970A1 (en) * 2011-06-29 2013-01-03 オプテックス株式会社 Metal detection sensor
JP2018518300A (en) * 2015-06-26 2018-07-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and detection unit for detecting a metal implant and selecting a magnetic resonance pulse sequence for an efficient MRI workflow
JP2018141683A (en) * 2017-02-27 2018-09-13 アンリツインフィビス株式会社 Metal Detector
JP2018141682A (en) * 2017-02-27 2018-09-13 アンリツインフィビス株式会社 Metal Detector
CN109387665A (en) * 2017-08-07 2019-02-26 纳博特斯克有限公司 Speed detector and speed detection method
JP2019032215A (en) * 2017-08-07 2019-02-28 ナブテスコ株式会社 Speed detector and method for suppressing floating magnetic field
JP2019530867A (en) * 2016-09-27 2019-10-24 キャメロン テクノロジーズ リミテッド Flow meter with rotor assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557700B2 (en) * 2017-04-27 2019-08-07 アンリツインフィビス株式会社 Metal detector
JP7343262B2 (en) 2019-09-04 2023-09-12 株式会社エー・アンド・デイ metal detector
JP6978637B2 (en) * 2019-11-20 2021-12-08 株式会社エー・アンド・デイ Metal detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100047A (en) * 1991-10-10 1993-04-23 Anritsu Corp Metal detector
JPH05142204A (en) * 1991-11-21 1993-06-08 Kaisei Enjinia Kk Electromagnetic-induction type inspecting apparatus
JPH05232248A (en) * 1992-02-24 1993-09-07 Anritsu Corp Metal detector
JP2002168834A (en) * 2000-12-05 2002-06-14 Anritsu Corp Metal detector
JP2003167064A (en) * 2001-12-04 2003-06-13 Anritsu Sanki System Co Ltd Metal detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100047A (en) * 1991-10-10 1993-04-23 Anritsu Corp Metal detector
JPH05142204A (en) * 1991-11-21 1993-06-08 Kaisei Enjinia Kk Electromagnetic-induction type inspecting apparatus
JPH05232248A (en) * 1992-02-24 1993-09-07 Anritsu Corp Metal detector
JP2002168834A (en) * 2000-12-05 2002-06-14 Anritsu Corp Metal detector
JP2003167064A (en) * 2001-12-04 2003-06-13 Anritsu Sanki System Co Ltd Metal detector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001970A1 (en) * 2011-06-29 2013-01-03 オプテックス株式会社 Metal detection sensor
JP2018518300A (en) * 2015-06-26 2018-07-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and detection unit for detecting a metal implant and selecting a magnetic resonance pulse sequence for an efficient MRI workflow
JP2019530867A (en) * 2016-09-27 2019-10-24 キャメロン テクノロジーズ リミテッド Flow meter with rotor assembly
JP2018141683A (en) * 2017-02-27 2018-09-13 アンリツインフィビス株式会社 Metal Detector
JP2018141682A (en) * 2017-02-27 2018-09-13 アンリツインフィビス株式会社 Metal Detector
CN109387665A (en) * 2017-08-07 2019-02-26 纳博特斯克有限公司 Speed detector and speed detection method
JP2019032215A (en) * 2017-08-07 2019-02-28 ナブテスコ株式会社 Speed detector and method for suppressing floating magnetic field
EP3450988A3 (en) * 2017-08-07 2019-06-12 Nabtesco Corporation Speed detecting device and method
JP7001385B2 (en) 2017-08-07 2022-01-19 ナブテスコ株式会社 Speed detection device and speed detection method
CN109387665B (en) * 2017-08-07 2022-09-09 纳博特斯克有限公司 Speed detection device and speed detection method

Also Published As

Publication number Publication date
JP4173470B2 (en) 2008-10-29
JP2006064642A (en) 2006-03-09
JP4633830B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4633830B2 (en) Metal detector
EP1275016B1 (en) Device and method for metal detection
US9964520B2 (en) Surface property inspection device and method
JP4137893B2 (en) Metal detector
JP4141987B2 (en) Metal detector
JP6412688B2 (en) Metal detector diagnostic device and metal detector
JP5498115B2 (en) Inspection equipment
JP2009109346A (en) Weight screening apparatus with metal detector
JP4087361B2 (en) Metal detector
JP4145883B2 (en) Metal detector
JP4657154B2 (en) Electromagnetic induction type inspection method and electromagnetic induction type inspection device
JP4087362B2 (en) Metal detector
JP6557700B2 (en) Metal detector
JP3658523B2 (en) Metal detector
JP2007315837A (en) Metal detecting apparatus and method thereof
JPH10111363A (en) Metal detector
JP4138179B2 (en) Metal detector
JP4002034B2 (en) Foreign object detector
JP4202344B2 (en) Metal detector
JP5174507B2 (en) Metal detector
US6479993B1 (en) Method of detecting foreign matter and apparatus therefor
JP7340858B2 (en) metal detection device
JP4202345B2 (en) Metal detector
JP4705431B2 (en) Bimetal coin identification method and coin sensor
JPH01254857A (en) Eddy current flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250