JP2008256434A - Device for unsealing hermetically sealed enclosure containing radioactive gas - Google Patents
Device for unsealing hermetically sealed enclosure containing radioactive gas Download PDFInfo
- Publication number
- JP2008256434A JP2008256434A JP2007097162A JP2007097162A JP2008256434A JP 2008256434 A JP2008256434 A JP 2008256434A JP 2007097162 A JP2007097162 A JP 2007097162A JP 2007097162 A JP2007097162 A JP 2007097162A JP 2008256434 A JP2008256434 A JP 2008256434A
- Authority
- JP
- Japan
- Prior art keywords
- sealed container
- opening
- radioactive gas
- radioactive
- unsealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、例えば原子炉等で照射された高度に放射化したあるいは高レベル放射能を含む密封容器をマニプレータ等で遠隔操作で開封する際に同密封容器から放出される放射性ガスを捕集・回収しながら同密封容器を開封することが出来る密封容器からの放射性ガスを含む密封容器の開封装置に関する。 The present invention collects radioactive gas released from a sealed container that has been irradiated by a nuclear reactor or the like when it is opened remotely by a manipulator or the like. The present invention relates to a device for opening a sealed container containing radioactive gas from a sealed container that can be opened while being collected.
照射試験用原子炉等を利用した構造材料の試験片の照射試験では、一般的に構造材料の試験片を密封容器に封入して実施している。原子炉での照射試験を行った後、ホットセルに密封容器を収納し、同ホットセル内で遠隔操作により密封容器を切断し、放射性を帯びた照射試験片を取り出している。 In an irradiation test of a structural material specimen using an irradiation test reactor or the like, the structural material specimen is generally enclosed in a sealed container. After performing an irradiation test in a nuclear reactor, a sealed container is housed in a hot cell, the sealed container is cut by remote control in the hot cell, and a radioactive irradiation test piece is taken out.
このような放射性を帯びた照射試験片の取り出しのために行われている従来の密封容器の切断は、ステンレス鋼などの低レベル放射能を含む密封容器の解体であるため、既存の旋盤等をホットセル内で遠隔で操作できるように改造した装置を用いて密封容器から照射試験片を取り出していた。 The conventional cutting of sealed containers, which is performed for taking out radioactive test pieces with radioactive materials, is the dismantling of sealed containers containing low-level radioactivity such as stainless steel. The irradiated specimen was removed from the sealed container using a device modified for remote operation within the hot cell.
従来の原子力発電用燃料等の放射性ガスを発生する密封容器の切断は、密封容器全体を包み込むような大きな容器を製作し、その中で切断を行っていた。しかしながら、大きな容器を使用するため、装置が大型かつ複雑な構造となり、その中での密封容器の切断操作も煩雑で困難であった。 In the conventional cutting of a sealed container that generates a radioactive gas such as a fuel for nuclear power generation, a large container that wraps the entire sealed container is manufactured, and the cutting is performed therein. However, since a large container is used, the apparatus has a large and complicated structure, and the operation of cutting the sealed container therein is complicated and difficult.
さらに、ウランやMOX(ウランやプルトニウムの混合)などの原子力発電用燃料や核融合炉用燃料材料(リチウムを含んだ化合物であるトリチウム増殖材や中性子を増倍させるベリリウムを含んだ化合物である中性子増倍材料)の照射試験では、中性子照射により高レベル放射能を含む放射性ガスを生成するため、密封容器を解体する際に放射性ガスがホットセル内に放出し、セル内を汚染させるという問題があった。 In addition, nuclear power fuels such as uranium and MOX (mixed uranium and plutonium) and nuclear fusion fuel materials (lithium-containing tritium breeding materials and neutrons containing beryllium compounds that multiply neutrons) In the irradiation test of the multiplying material), radioactive gas containing high-level radioactivity is generated by neutron irradiation. Therefore, when the sealed container is dismantled, there is a problem that the radioactive gas is released into the hot cell and contaminates the inside of the cell. It was.
本発明は、従来の密封容器の切断方法における前述の課題に鑑み、原子炉等で中性子照射により放射化した密封容器を開封する時に発生する放射性ガスを開封室の中に閉じこめ、この放射性ガスを簡素な方法で効率よく捕集し、回収することにより、密封容器の解体を安全且つ効率的に行えるようにすることを目的とする。 In view of the above-described problems in the conventional method of cutting a sealed container, the present invention confines the radioactive gas generated when opening the sealed container activated by neutron irradiation in a nuclear reactor or the like in an opening chamber, An object is to enable safe and efficient dismantling of a sealed container by efficiently collecting and collecting by a simple method.
本発明では、放射性ガスを含む密封容器1の一部を開封室12に気密に挿入し、この開封室12の中で前記密封容器1を開封すると共に、この開封室12からは、前記密封容器1から放出された放射性ガスを回収する機能を持たせるものである。
In the present invention, a part of the sealed
すなわち、本発明による放射性ガスを含む密封容器の開封装置は、外部に対して気密にシールされ、密封容器1の一部が気密に挿入される開封室12と、この開封室12に気密に挿入され、前記密封容器1の一部を開封する開封工具3と、この開封工具3による密封容器1の開封により、同密封容器1から開封室12内に放出される放射性ガスを回収する放射性ガス回収手段とを有するものである。
That is, the opening device for a sealed container containing a radioactive gas according to the present invention is hermetically sealed with respect to the outside, and an opening chamber 12 into which a part of the sealed
このような本発明による放射性ガスを含む密封容器の開封装置では、外部に対して気密にシールされた開封室12に気密に挿入された密封容器1の一部が開封工具3により開封される。このとき、前記密封容器1から放出された放射性ガスは、開封室12内に閉じこめられる。そして、開封室12内に閉じこめられた放射性ガスは、放射性ガス回収手段により回収されるため、大気には放出されない。
In such an opening device for a sealed container containing a radioactive gas according to the present invention, a part of the sealed
前記密封容器1の一部を切削・開口した時に同密封容器1から前記開封室12内に放出される放射性ガスを回収する放射性ガス回収手段は、放射性物質形態変換器8と放射性ガス回収器9を備えるガス循環系からなる。これにより、開封室12から回収した放射性ガスに含まれる放射性物質の形態を変換しながら回収することが出来る。
The radioactive gas recovery means for recovering the radioactive gas released from the sealed
また、前記開封室12の中には、前記密封容器1の一部を切削・開口した時に同密封容器1から生じる放射性を帯びた切屑の飛散を防止する切屑飛散防止手段を設けると、前記放射性ガス回収手段は、放射性ガスのみを回収すればよく、固体である放射性を帯びた切屑は開封室12から完全に放射性ガスを回収した後、別途回収することが出来る。
Further, in the opening chamber 12, if the chip scattering prevention means for preventing the scattering of radioactive chips generated from the sealed
前記開封室12が異なる寸法の密封容器1の一部を気密に挿入出来る気密容器シール機構部2を有すると、異なる寸法の複数種類の密封容器1に対応出来るので、放射性ガスを含む密封容器の開封装置の汎用性を高くすることが出来ると共に、様々な寸法の密封容器を順次開封処理することが可能となる。
If the opening chamber 12 has the hermetic
以上説明した通り本発明によれば、原子炉等で中性子照射により放射化した密封容器1を開封する時に発生する放射性ガスを開封室12の中に閉じこめ、この放射性ガスを放射性ガス回収手段により回収することにより、密封容器の解体を安全且つ効率的に行えるようになる。
As described above, according to the present invention, the radioactive gas generated when opening the sealed
本発明では、放射性ガスを含む密封容器1の一部を開封室12に気密に挿入し、この開封室12の中で前記密封容器1を開封すると共に、この開封室12からは、前記密封容器1から放出された放射性ガスを回収する機能を持たせることにより、所期の目的を達成するものである。
以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, a part of the sealed
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.
本発明による放射性ガスを含む密封容器の開封装置は、放射性物質を扱うホットセル内において、ウランやMOXなどの原子力発電用燃料や核融合炉用燃料材料の照射試験後の密封容器を解体するときなどに適用可能である。以下の例においては、核融合炉用燃料材料の内、中性子増倍材料である金属ベリリウムの照射試験後の密封容器の解体を例にとって図面で詳しく説明する。 The device for opening a sealed container containing a radioactive gas according to the present invention is used for disassembling a sealed container after an irradiation test of a nuclear power generation fuel such as uranium or MOX or a fuel material for a fusion reactor in a hot cell that handles radioactive substances. It is applicable to. In the following example, the disassembly of the sealed container after the irradiation test of metal beryllium, which is a neutron multiplication material among the fuel materials for fusion reactors, will be described in detail with reference to the drawings.
図1に本発明による放射性ガスを含む密封容器の開封装置の一実施例の概略構成図を示し、図2にこの開封装置をホットセル内に設置したときの図を示す。
照射済みの密封容器1は、密封容器固定台11に載せられ、この密封容器1の一端が気密シール機構部12を通して開封室12の中に挿入される。この状態で密封容器1の他端に固定機構部7が当てられる。
FIG. 1 shows a schematic configuration diagram of an embodiment of an opening device for a sealed container containing a radioactive gas according to the present invention, and FIG. 2 shows a view when the opening device is installed in a hot cell.
The sealed
他方、開封室12の他端には、モータ5のスピンドルに取り付けた開封工具3が気密シール軸受4を通して前記開封室12に挿入されている。前記気密シール軸受は開封工具3の軸を円周方向及び中心軸方向にスライド自在に支持するラジアル・スラスト両用形であると共に、開封工具3の軸を気密にシールしている。開封工具3は、開封する密封容器1の材料、形状等で適宜のものが採用されるが、図1の例ではドリル(錐)が使用されてる。この開封工具3は前記モータ5により回転されると共に、送り機構6のよりその軸方向に移動される。
On the other hand, the opening tool 3 attached to the spindle of the
さらに、開封室12には、密封容器1からその中に放出される放射性ガスを回収するための放射性ガス回収手段として、放射性物質形態変換器8、放射性ガス回収器9及び循環ポンプ10を備えるガス循環系が接続されている。金属ベリリウムの照射試験後の密封容器1を開封する場合、放射性物質形態変換器8は例えばトリチウム形態変換器であり、放射性ガス回収器9はトリチウム回収器である。
Further, the unsealed chamber 12 includes a radioactive
開封室を含む装置全体Bは、図2に示すように放射性物質を取り扱うホットセルA内に設置し、ホットセルAの外側の操作室において、電源投入によるモータの駆動、放射性ガスの回収に用いるキャリアガスの供給、密封容器1をシールするためのガスの供給、マニプレータDによる開封工具の移動操作を遠隔にて操作できる構造となっている。
The entire apparatus B including the unsealing chamber is installed in a hot cell A that handles radioactive substances as shown in FIG. 2, and in an operation chamber outside the hot cell A, a carrier gas used for driving a motor by turning on power and collecting radioactive gas. , Supply of gas for sealing the sealed
このホットセルA内には、密封容器を固定し、支持する密封容器固定台Bが幾つか装備され、様々な形状の密封容器1に対応できる構造となっている。また、固定機構部もスライド方式により、長さの異なった密封容器1を固定できる。これらは、ホットセルA内に設けたマニプレータDで容易に遠隔操作ができる機構を有している。また、開封室には、放射性ガスの回収に用いるキャリアガスを供給するキャリアガス供給源Eと、密封容器を再封止するのに用いるガスの封止ガス供給源Fとが接続されている。
The hot cell A is equipped with several sealed container fixing bases B for fixing and supporting the sealed container, and has a structure that can accommodate various shapes of the sealed
図3に図1により前述した開封室12の詳細を示している。図1により前述したの密封容器1は図3では符合aで、この密封容器aをシールする開封室12の気密シール機構部2は、図3に符合bで示している。この気密シール機構部bにはガスを供給する構造とし、直径の異なる密封容器aにも対応できるようになっている。なお、この気密シール機構部bは、ガスのような機構に限らず、場合によっては、油圧方式によるシール方式とすることも可能である。
FIG. 3 shows details of the opening chamber 12 described above with reference to FIG. The sealed
開封室の側面部には、同開封室内での気密容器aの穿孔の様子が観察できるように観察窓fを取り付け、開封工具cが密封容器aの所定の位置を加工出来ることを確認できるようになっている。電源を投入後、送り機構をマニプレータにより操作し、密封容器aに放射性ガスを放出させるための穴を開ける。 An observation window f is attached to the side surface of the opening chamber so that the state of perforation of the airtight container a in the opening chamber can be observed, and it can be confirmed that the opening tool c can process a predetermined position of the sealing container a. It has become. After the power is turned on, the feed mechanism is operated by a manipulator to open a hole for releasing the radioactive gas into the sealed container a.
ドリルによる穴開け操作で生じる放射性の切屑は、図3に示すようなシール機構部bの隙間に散乱・残存しないようにシール機構部bの近傍に切屑落とし穴eを備えた密封容器押dを設けることにより、開封室内への切屑の飛散防止が可能となり、数個の密封容器を連続して解体が可能となる。 A radioactive container chip d provided with a chip drop hole e is provided in the vicinity of the seal mechanism part b so that radioactive chips generated by the drilling operation by the drill are not scattered and remain in the gap of the seal mechanism part b as shown in FIG. As a result, it is possible to prevent chips from scattering into the open chamber, and several sealed containers can be disassembled continuously.
開封工具による密封容器の開封が終了した後、放射性ガスの回収に用いるキャリアガスを開封室内に供給し、循環ポンプにて開封室内のガスを循環させる。循環するガスは、図1により前述した放射性物質形態変換器及び放射性ガス回収器を通過することにより、開封室内のトリチウム濃度を低下できる機構となっている。なお、この放射性物質形態変換器及び射性ガス回収器を核分裂性ガスを回収する装置等に変更することにより、原子力発電用燃料の密封容器の解体にも使用可能である。 After the opening of the sealed container by the opening tool is completed, a carrier gas used for collecting the radioactive gas is supplied into the opening chamber, and the gas in the opening chamber is circulated by a circulation pump. The circulating gas has a mechanism capable of reducing the tritium concentration in the unsealed chamber by passing through the radioactive substance form converter and the radioactive gas recovery unit described above with reference to FIG. In addition, it can be used also for the dismantling of the sealed container of nuclear power generation fuel by changing this radioactive substance form converter and the projectile gas recovery device to a device for recovering fissile gas.
実際に図4に示すような長さ及び直径が異なる3種類の形状の密封容器A〜Cを用いた開封処理試験を行ったところ、シール機構部に導入するガス圧を約0.2MPaにすることにより、0.12MPaの加圧状態においても解体装置内の圧力降下は0.01MPa以下であり、かつ真空ポンプで0.01Torr以下の真空状態においても圧力の上昇はなく十分な密閉性を有していた。また、開封工具であるドリルによる穴開けが終了した後、酸素と水素が含まれるキャリアガスを導入し、解体装置内のガスを循環させ、水素転換効率を測定した結果、99.5%以上が水分に転換することができた。 When an opening treatment test was actually performed using three types of sealed containers A to C having different lengths and diameters as shown in FIG. 4, the gas pressure introduced into the seal mechanism was about 0.2 MPa. Therefore, the pressure drop in the dismantling apparatus is 0.01 MPa or less even in a pressurized state of 0.12 MPa, and there is no increase in pressure even in a vacuum state of 0.01 Torr or less by a vacuum pump, and there is sufficient sealing performance. Was. In addition, after drilling with a drill as an opening tool was completed, a carrier gas containing oxygen and hydrogen was introduced, the gas in the dismantling device was circulated, and the hydrogen conversion efficiency was measured. As a result, more than 99.5% It was possible to convert to moisture.
以上のように、本発明では、原子炉等で照射された密封容器をマニュピレータ等で遠隔操作で解体する際に放出される放射性ガスを捕集しながら密封容器を解体できる機能を有する遠隔操作型解体装置の開発を確立することができ、その後の放射性ガスを含む照射された密封容器の解体作業を容易にすることができる。 As described above, in the present invention, a remote operation type having a function of disassembling a sealed container while collecting radioactive gas emitted when the sealed container irradiated by a nuclear reactor or the like is dismantled by a remote control using a manipulator or the like. Development of the demolition device can be established, and the subsequent demolition work of the irradiated sealed container containing the radioactive gas can be facilitated.
1 照射済みの密封容器
2 気密シール機構部
3 開封工具
8 放射性物質形態変換器
9 放射性ガス回収器
10 循環ポンプ
e 切屑落とし穴付密封容器押さえ
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007097162A JP4751849B2 (en) | 2007-04-03 | 2007-04-03 | Opening device for sealed container containing radioactive gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007097162A JP4751849B2 (en) | 2007-04-03 | 2007-04-03 | Opening device for sealed container containing radioactive gas |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008256434A true JP2008256434A (en) | 2008-10-23 |
JP2008256434A5 JP2008256434A5 (en) | 2008-12-04 |
JP4751849B2 JP4751849B2 (en) | 2011-08-17 |
Family
ID=39980150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007097162A Expired - Fee Related JP4751849B2 (en) | 2007-04-03 | 2007-04-03 | Opening device for sealed container containing radioactive gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4751849B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101355391B1 (en) * | 2012-03-14 | 2014-01-28 | 한국원자력연구원 | Gas sampling device for high-pressure gas in quartz ampul |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111499A (en) * | 1980-02-06 | 1981-09-03 | Kobe Steel Ltd | Method of processing spent fuel insertion for pwr type reactor |
JPS61134697A (en) * | 1984-12-05 | 1986-06-21 | 動力炉・核燃料開発事業団 | Pre-treatment method of spent nuclear fuel |
JP2001259590A (en) * | 2000-03-23 | 2001-09-25 | Daikin Ind Ltd | Device of dismantling machine |
JP2005292063A (en) * | 2004-04-05 | 2005-10-20 | Able:Kk | Decontaminating and disassembling method for cylindrical structure |
JP2006162622A (en) * | 2004-12-09 | 2006-06-22 | Framatome Anp Gmbh | Dismantling system of radioactive contamination facility component |
JP2006207275A (en) * | 2005-01-28 | 2006-08-10 | Chugoku Electric Power Co Inc:The | Partition room for dismantlement, and dismantling method |
-
2007
- 2007-04-03 JP JP2007097162A patent/JP4751849B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111499A (en) * | 1980-02-06 | 1981-09-03 | Kobe Steel Ltd | Method of processing spent fuel insertion for pwr type reactor |
JPS61134697A (en) * | 1984-12-05 | 1986-06-21 | 動力炉・核燃料開発事業団 | Pre-treatment method of spent nuclear fuel |
JP2001259590A (en) * | 2000-03-23 | 2001-09-25 | Daikin Ind Ltd | Device of dismantling machine |
JP2005292063A (en) * | 2004-04-05 | 2005-10-20 | Able:Kk | Decontaminating and disassembling method for cylindrical structure |
JP2006162622A (en) * | 2004-12-09 | 2006-06-22 | Framatome Anp Gmbh | Dismantling system of radioactive contamination facility component |
JP2006207275A (en) * | 2005-01-28 | 2006-08-10 | Chugoku Electric Power Co Inc:The | Partition room for dismantlement, and dismantling method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101355391B1 (en) * | 2012-03-14 | 2014-01-28 | 한국원자력연구원 | Gas sampling device for high-pressure gas in quartz ampul |
Also Published As
Publication number | Publication date |
---|---|
JP4751849B2 (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4811951B2 (en) | Cutting and opening device for sealed container containing activated metal material and radioactive gas | |
JP5798305B2 (en) | Irradiation target holding system and method for producing isotopes | |
CN103038831A (en) | Isotope production target | |
JP2009271064A (en) | Irradiation target retention system, fuel assembly having the same, and method of using the same | |
JP2009204428A (en) | Target recovery system | |
JP4751849B2 (en) | Opening device for sealed container containing radioactive gas | |
EP2769384A1 (en) | Graphite thermal decontamination with reducing gases | |
JP6129646B2 (en) | Method for carrying out fuel debris in boiling water nuclear power plant | |
US9040014B2 (en) | Graphite thermal decontamination with reducing gases | |
KR102244627B1 (en) | Method for dismantling reactor vessel | |
Volkov et al. | Preparations for decommissioning the MR research reactor at the Russian Science Center Kurchatov institute | |
JP6498701B2 (en) | Apparatus and method for purifying contaminated water from radioactive materials | |
JP6446370B2 (en) | System and method for disposing of one or more radioactive parts from a nuclear power plant reactor | |
Ishikawa et al. | JPDR decommissioning program—plan and experience | |
KR20080101011A (en) | Pressure device for automation separation spent fuel and rod | |
KR100627161B1 (en) | Method for treating a nuclear hull | |
RU107708U1 (en) | DRUM MILL FOR PROCESSING IRRADIATED OR REJECTED NUCLEAR FUEL | |
Castanho et al. | Design and development of a device for the opening of irradiated aluminum capsules in the IPEN IEA-R1 nuclear reactor | |
Bader et al. | A Study of Transfer of UNF from Non-Disposable Canisters–15388 | |
Li | Treatment and Disposal of the Radioactive Graphite Waste of High-Temperature Gas-Cooled Reactor Spent Fuel | |
Woolstenhulme | The Transient Reactor Test Facility (TREAT) | |
JP4129310B2 (en) | Cutting method for residual ducts of radioactive contaminants | |
JP2011075473A (en) | Method for disposing of radioactive waste | |
Ravisankar et al. | An Indian perspective of the development of fast reactor fuel reprocessing technology | |
McEnaney et al. | Planning for disposal of irradiated graphite: Issues for the new generation of HTRs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080926 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110325 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110509 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110523 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |