JP2008255478A - ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM - Google Patents

ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM Download PDF

Info

Publication number
JP2008255478A
JP2008255478A JP2008048901A JP2008048901A JP2008255478A JP 2008255478 A JP2008255478 A JP 2008255478A JP 2008048901 A JP2008048901 A JP 2008048901A JP 2008048901 A JP2008048901 A JP 2008048901A JP 2008255478 A JP2008255478 A JP 2008255478A
Authority
JP
Japan
Prior art keywords
zno
vapor deposition
powder
deposition material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008048901A
Other languages
Japanese (ja)
Other versions
JP4962356B2 (en
Inventor
Yoshiyuki Mayuzumi
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008048901A priority Critical patent/JP4962356B2/en
Publication of JP2008255478A publication Critical patent/JP2008255478A/en
Application granted granted Critical
Publication of JP4962356B2 publication Critical patent/JP4962356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ZnO vapor deposition material to be used for forming a film having high electroconductivity close to that of an ITO film at a high speed. <P>SOLUTION: The ZnO vapor deposition material to be used for forming a transparent electroconductive film is formed of a pellet which contains ZnO as a main component, La and one or more elements selected from the group consisting of B, Al, Ga and Sc. The content proportion of La is higher than that of the one or more elements selected from the group consisting of B, Al, Ga and Sc. The content proportion of La is in a range of 0.1 to 14.9 mass%, and the content proportion of the one or more elements selected from the group consisting of B, Al, Ga and Sc is in a range of 0.1 to 10 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば太陽電池などに用いられる透明導電膜や、液晶表示装置、エレクトロルミネッセンス表示装置、タッチパネル装置の透明圧電センサーの透明電極、また表示装置を構成するアクティブマトリクス駆動装置、帯電防止導電膜コーティング、ガスセンサー、電磁遮蔽パネル、圧電デバイス、光電変換装置、発光装置、薄膜型二次電池などに用いられる膜を成膜するために用いられるZnO蒸着材及びそれにより形成されたZnO膜に関するものである。   The present invention relates to a transparent conductive film used in, for example, a solar cell, a liquid crystal display device, an electroluminescence display device, a transparent electrode of a transparent piezoelectric sensor of a touch panel device, an active matrix driving device constituting the display device, and an antistatic conductive film Related to ZnO vapor deposition materials used for forming films used in coatings, gas sensors, electromagnetic shielding panels, piezoelectric devices, photoelectric conversion devices, light-emitting devices, thin-film secondary batteries, and ZnO films formed thereby It is.

近年、太陽電池などの光電変換装置などを製造する場合には、透明導電膜が不可欠である。従来の透明導電膜としては、ITO膜(錫をドープしたインジウム酸化物膜)が知られている。ITO膜は、透明性に優れ、低抵抗であるという利点を有する。   In recent years, a transparent conductive film is indispensable when manufacturing photoelectric conversion devices such as solar cells. As a conventional transparent conductive film, an ITO film (indium oxide film doped with tin) is known. The ITO film has the advantages of excellent transparency and low resistance.

一方、太陽電池や液晶表示装置等にあっては、その低コスト化が求められている。しかし、インジウムが高価なことから、ITO膜を透明導電膜として用いると、その太陽電池も必然的に高価なものになってしまう難点があった。また、太陽電池などを製造する場合などには、透明導電膜上にアモルファスシリコンをプラズマCVD法により成膜することになるが、その際に、透明導電膜がITO膜であると、プラズマCVD時の水素プラズマにより、ITO膜が劣化するという問題点もあった。   On the other hand, cost reduction is required for solar cells, liquid crystal display devices, and the like. However, since indium is expensive, when an ITO film is used as the transparent conductive film, the solar cell inevitably becomes expensive. In addition, when manufacturing solar cells or the like, amorphous silicon is deposited on the transparent conductive film by plasma CVD. At that time, if the transparent conductive film is an ITO film, There was also a problem that the ITO film deteriorated by the hydrogen plasma.

これらの点を解消するために、一層安価に作製することのできるAl、B、Siなどの導電活性元素をドープした酸化亜鉛系膜を太陽電池等の透明導電膜として使用することが提案され、この酸化亜鉛系膜をスパッタリングにより形成するための酸化亜鉛系スパッタリング用ターゲットが提案されている(例えば、特許文献1参照。)。この酸化亜鉛系スパッタリング用ターゲットによると、上記導電活性元素を亜鉛に対して所定量含有させることにより極めて低抵抗な酸化亜鉛系焼結体が得られ、この焼結体は、原料粉末が微細で高分散性を有するほど焼結密度が向上し導電性が向上するとされている。
特開平6−2130号公報(特許請求の範囲の請求項2,請求項3及び請求項4)
In order to eliminate these points, it has been proposed to use a zinc oxide-based film doped with a conductive active element such as Al, B, and Si that can be produced at a lower cost as a transparent conductive film such as a solar cell, A zinc oxide-based sputtering target for forming this zinc oxide-based film by sputtering has been proposed (for example, see Patent Document 1). According to this zinc oxide-based sputtering target, an extremely low resistance zinc oxide-based sintered body can be obtained by containing a predetermined amount of the conductive active element with respect to zinc. It is said that the higher the dispersibility, the higher the sintered density and the higher the conductivity.
JP-A-6-2130 (Claims 2, 3 and 4 of Claims)

しかし、上記従来の酸化亜鉛系スパッタリング用ターゲットを用いて高速成膜するために高電圧をかけながらスパッタリングを行うと、異常放電が発生しやすく、放電状態が不安定でターゲットが不均一に消耗し、得られた膜に組成ずれが生じて低抵抗の膜を得ることが困難となる不具合があった。一方、投入電力を小さくして電圧を低くすると成膜速度が遅くなり、酸化亜鉛系膜の成膜効率は大幅に低下する不具合があった。
本発明の目的は、ITO膜に迫る高い導電率の膜を高速成膜することのできるZnO蒸着材及びこれを用いたZnO膜を提供することにある。
However, if sputtering is performed while applying a high voltage to form a high-speed film using the conventional zinc oxide sputtering target, abnormal discharge is likely to occur, the discharge state is unstable, and the target is consumed unevenly. However, there was a problem that it was difficult to obtain a low-resistance film due to composition deviation in the obtained film. On the other hand, when the input power is reduced and the voltage is lowered, the film formation rate is slowed down, and the film formation efficiency of the zinc oxide film is greatly reduced.
An object of the present invention is to provide a ZnO vapor deposition material capable of forming a film having a high conductivity approaching that of an ITO film at high speed, and a ZnO film using the same.

請求項1に係る発明は、透明導電膜を成膜するために用いられるZnO蒸着材である。
その特徴ある構成は、ZnOを主成分としたペレットからなり、ペレットがLaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を含み、LaがB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素よりも含有割合が高く、Laの含有割合が0.1〜14.9質量%、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の含有割合が0.1〜10質量%の範囲内であるところにある。
請求項1に係る発明では、ZnOを主成分としたペレットに、LaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素が上記含有割合で含むので、このZnO蒸着材を用いると、ITO膜に迫る高い導電性を有するZnO膜を成膜できる。
The invention according to claim 1 is a ZnO vapor deposition material used for forming a transparent conductive film.
The characteristic structure is composed of pellets mainly composed of ZnO, and the pellets contain one or more elements selected from the group consisting of La and B, Al, Ga and Sc, and La is B, Al. The content ratio is higher than that of one or more elements selected from the group consisting of Ga, and Sc, and the content ratio of La is 0.1 to 14.9% by mass, consisting of B, Al, Ga, and Sc. The content ratio of one or more elements selected from the group is in the range of 0.1 to 10% by mass.
In the invention according to claim 1, since one or two or more elements selected from the group consisting of La and B, Al, Ga and Sc are contained in the pellet containing ZnO as a main component in the above content ratio, When a ZnO vapor deposition material is used, a ZnO film having high conductivity approaching that of an ITO film can be formed.

請求項2に係る発明は、LaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の合計の含有割合が0.2〜15質量%の範囲内であるZnO蒸着材である。
請求項2に係る発明では、ZnO蒸着材中のLaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の合計の含有割合が0.2〜15質量%の範囲内であることにより、導電特性及び分光特性において優れた効果が得られる。
In the invention according to claim 2, the total content ratio of one or more elements selected from the group consisting of La and B, Al, Ga and Sc is in the range of 0.2 to 15% by mass. ZnO vapor deposition material.
In the invention which concerns on Claim 2, the total content rate of the 1 type (s) or 2 or more types of element chosen from the group which consists of La, B, Al, Ga, and Sc in a ZnO vapor deposition material is 0.2-15 mass%. By being within the range, excellent effects in the conductive characteristics and spectral characteristics can be obtained.

請求項3に係る発明は、請求項1に係る発明であって、ZnOのペレットが多結晶体又は単結晶体であるZnO蒸着材である。
請求項3に係る発明では、ZnOのペレットが多結晶体か或いは単結晶体であるかの組織の相違ではなく、組成の相違によって効果が著しく変化するため、ZnOのペレットが多結晶である場合だけでなく、単結晶であっても請求項1に記載された範囲内の組成を有すれば、そのZnO蒸着材を用いてZnO膜を成膜すると、そのZnO膜は広い温度範囲にわたってITO膜に迫る高い導電性が得られる。
The invention according to claim 3 is the invention according to claim 1, wherein the ZnO pellet is a polycrystalline or single crystal ZnO vapor deposition material.
In the invention according to claim 3, when the ZnO pellet is polycrystalline because the effect changes notably depending on the composition but not the difference in the structure of whether the ZnO pellet is polycrystalline or single crystal. In addition, if a ZnO film is formed using the ZnO vapor deposition material as long as it has a composition within the range described in claim 1 even if it is a single crystal, the ZnO film becomes an ITO film over a wide temperature range. High conductivity close to

請求項4に係る発明は、請求項1ないし3いずれか1項に記載のZnO蒸着材をターゲット材とする真空成膜法により形成されたZnO膜である。
請求項4に係る発明では、上記請求項1ないし3いずれか1項に記載のZnO蒸着材を用いてZnO膜を成膜するため、このZnO膜は、ITO膜に迫る高い導電性が得られる。
The invention according to claim 4 is a ZnO film formed by a vacuum film formation method using the ZnO vapor deposition material according to any one of claims 1 to 3 as a target material.
In the invention according to claim 4, since the ZnO film is formed using the ZnO vapor deposition material according to any one of claims 1 to 3, the ZnO film has high conductivity approaching that of the ITO film. .

請求項5に係る発明は、請求項4に係る発明であって、真空成膜法が電子ビーム蒸着法、イオンプレーティング法、スパッタリング法又はプラズマ蒸着法であるZnO膜である。   The invention according to claim 5 is the invention according to claim 4, wherein the vacuum film-forming method is a ZnO film which is an electron beam evaporation method, an ion plating method, a sputtering method or a plasma evaporation method.

以上述べたように、本発明の透明導電膜を成膜するために用いられるZnO蒸着材によれば、ZnOを主成分としたペレットからなり、ペレットがLaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を含み、LaがB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素よりも含有割合が高く、Laの含有割合が0.1〜14.9質量%、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の含有割合が0.1〜10質量%の範囲内であるので、このZnO蒸着材を用いると、ITO膜に迫る高い導電性を有するZnO膜を成膜できる。本発明のZnO蒸着材は、添加元素として、LaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を含むため、イオン半径がZnより大きいLaにより歪んだ結晶を、B、Al又はGaといったイオン半径の小さい元素を添加して回復整合させることにより、或いは反応性の高いScの添加により結晶構造の整った膜へ回復させることにより、透過率の高いZnO膜が成膜でき、更に、緻密性に優れた膜を得られることにより、耐久性が高いZnO膜が成膜できる。
また、本発明に係るZnO膜は、本発明に係るZnO蒸着材を用いて成膜されるため、
高い導電率、高い透過率が得られ、更に、膜の耐久性が向上する。
As described above, according to the ZnO vapor deposition material used for forming the transparent conductive film of the present invention, it consists of pellets mainly composed of ZnO, and the pellets consist of La, B, Al, Ga and Sc. Contains one or more elements selected from the group, La is higher in content than one or more elements selected from the group consisting of B, Al, Ga and Sc, and contains La The content ratio of one or more elements selected from the group consisting of 0.1 to 14.9 mass%, B, Al, Ga and Sc is in the range of 0.1 to 10 mass%. Therefore, when this ZnO vapor deposition material is used, a ZnO film having high conductivity approaching that of the ITO film can be formed. Since the ZnO vapor deposition material of the present invention contains one or more elements selected from the group consisting of La and B, Al, Ga and Sc as additive elements, the ionic radius is distorted by La which is larger than Zn. By adding an element having a small ionic radius, such as B, Al, or Ga, to recover and match the crystal, or by adding a highly reactive Sc to recover a film having a well-structured crystal structure, ZnO having a high transmittance can be obtained. Since a film can be formed and a film having excellent denseness can be obtained, a highly durable ZnO film can be formed.
Further, since the ZnO film according to the present invention is formed using the ZnO vapor deposition material according to the present invention,
High conductivity and high transmittance are obtained, and the durability of the film is improved.

次に本発明を実施するための最良の形態を説明する。
本発明者は、ZnO蒸着材及びこの蒸着材を用いて成膜されたZnO膜中の添加物種及びその含有量における導電性への影響を詳細に調査したところ、ZnOのペレット中に添加元素として含まれるLaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素のそれぞれの含有割合が大きく影響していることが確認された。ZnOのペレット中において、このLaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の含有割合が増加するほど概して導電性は良好となるが、更に増加すると逆に劣化することから、製品への適用を考えた場合、これら2元素の最適な含有割合の範囲が存在することが判った。
Next, the best mode for carrying out the present invention will be described.
The present inventor has investigated in detail the effect of conductivity on the ZnO vapor deposition material and the additive species in the ZnO film formed using this vapor deposition material and its content. As an additive element in the ZnO pellet, It was confirmed that the content ratios of one or two or more elements selected from the group consisting of La and B, Al, Ga, and Sc contained had a great influence. In the ZnO pellet, the conductivity generally becomes better as the content ratio of one or more elements selected from the group consisting of La and B, Al, Ga and Sc increases, but further increases. On the other hand, since it deteriorates, it was found that there is an optimal content ratio range of these two elements when considering application to products.

本発明に係るZnO蒸着材は、ZnOを主成分とし、LaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を含有する。イオン半径が小さいB、Al又はGa、或いは反応性の高いScを使用することで膜の整合性を向上させることができる。添加元素としてLaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を含むため、導電に寄与する過電子を大量に発現させ維持することにより、高い導電率を有するZnO膜を成膜できる。本発明に係るZnO蒸着材中のLaは0.1〜14.9質量%の範囲内とする。Laが下限値である0.1質量%未満になると、導電性が著しく低下し、上限値である14.9質量%を越えると、透過率が著しく低下するからである。また、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素は0.1〜10質量%の範囲内とする。B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素が下限値である0.1質量%未満になると、導電性が著しく低下し、上限値である10質量%を越えると、蒸着時の組成ずれを生じさせるからである。このうち、La元素は3〜6質量%の範囲内が好ましく、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素は1〜3質量%の範囲内であることが好ましい。なお、緻密な結晶構造を維持するために、Laの含有割合は、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の含有割合よりも高くする。一方、Laの含有割合がB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の含有割合よりも低くなると、導電性及び透過率が悪化する。また、LaとB、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の合計の含有割合は0.2〜15質量%の範囲内であることが好ましい。これらの添加元素は、ZnO蒸着材中に微量に含まれる場合には、ZnOマトリックスの粒界や粒内に粒状の析出物として存在するのではなく、ZnO蒸着材中に均一に分散している。また、ZnO蒸着材中では、これらの添加元素はそれぞれの酸化物として存在するものと考えられる。   The ZnO vapor deposition material according to the present invention contains ZnO as a main component, and contains one or more elements selected from the group consisting of La, B, Al, Ga, and Sc. By using B, Al or Ga having a small ion radius, or highly reactive Sc, the film consistency can be improved. Since one or more elements selected from the group consisting of La and B, Al, Ga and Sc are included as additive elements, high conductivity can be achieved by expressing and maintaining a large amount of overelectrons contributing to conduction. ZnO film can be formed. La in the ZnO vapor deposition material which concerns on this invention shall be in the range of 0.1-14.9 mass%. This is because when La is less than the lower limit of 0.1% by mass, the conductivity is remarkably lowered, and when La exceeds the upper limit of 14.9% by mass, the transmittance is significantly lowered. Moreover, the 1 type (s) or 2 or more types of element chosen from the group which consists of B, Al, Ga, and Sc shall be in the range of 0.1-10 mass%. When one or more elements selected from the group consisting of B, Al, Ga and Sc are less than 0.1% by mass which is the lower limit, the conductivity is remarkably lowered, and 10% by mass which is the upper limit. This is because a compositional deviation at the time of vapor deposition occurs when the ratio exceeds. Among these, the La element is preferably in the range of 3 to 6% by mass, and one or more elements selected from the group consisting of B, Al, Ga and Sc are in the range of 1 to 3% by mass. It is preferable. In order to maintain a dense crystal structure, the content ratio of La is higher than the content ratio of one or more elements selected from the group consisting of B, Al, Ga, and Sc. On the other hand, when the content ratio of La is lower than the content ratio of one or more elements selected from the group consisting of B, Al, Ga, and Sc, conductivity and transmittance deteriorate. Moreover, it is preferable that the total content rate of the 1 type (s) or 2 or more types of element chosen from the group which consists of La, B, Al, Ga, and Sc exists in the range of 0.2-15 mass%. When these additive elements are contained in a trace amount in the ZnO vapor deposition material, they do not exist as granular precipitates in the grain boundaries and grains of the ZnO matrix, but are uniformly dispersed in the ZnO vapor deposition material. . In addition, in the ZnO vapor deposition material, these additive elements are considered to exist as respective oxides.

本発明に係るZnO蒸着材は、ZnOを主成分としたペレットからなる。このペレットは直径が5〜50mmであって、厚さが2〜30mmであることが好ましい。このペレットの直径を5〜50mmとするのは安定かつ高速な成膜の実施のためであり、その直径が5mm未満ではスプラッシュ等が発生する不具合があり、50mmを越えるとハース(蒸着材溜)への充填率が低下することに起因する蒸着における膜の不均一及び成膜速度の低下をもたらす不具合がある。また、その厚さを2〜30mmとするのは安定かつ高速な成膜の実施のためであり、その厚さが2mm未満ではスプラッシュ等が発生する不具合があり、30mmを越えるとハース(蒸着材溜)への充填率が低下することに起因する蒸着における膜の不均一及び成膜速度の低下をもたらす不具合がある。また、このZnOのペレットは、多結晶体又は単結晶体であることが好ましい。   The ZnO vapor deposition material according to the present invention is composed of pellets mainly composed of ZnO. This pellet is preferably 5 to 50 mm in diameter and 2 to 30 mm in thickness. The diameter of the pellet is set to 5 to 50 mm for the purpose of stable and high-speed film formation. If the diameter is less than 5 mm, there is a problem that splash or the like occurs. If the diameter exceeds 50 mm, the hearth (deposition material reservoir) There is a defect that causes non-uniformity of the film in vapor deposition and a decrease in the film formation rate due to a decrease in filling rate. Further, the thickness is set to 2 to 30 mm for the purpose of stable and high-speed film formation. If the thickness is less than 2 mm, there is a problem that splash or the like occurs. There is a defect that causes non-uniformity of the film in vapor deposition and a decrease in the film formation rate due to a decrease in the filling rate into the reservoir. The ZnO pellets are preferably a polycrystal or a single crystal.

このように構成された本発明のZnO蒸着材では、3価の希土類元素であるLaを添加元素として含むため、2価であるZnに対して過剰のキャリア電子を発生させることにより、高い導電率を確保できる。また、希土類はZnO蒸着材に添加した場合、蒸着時の組成ずれを起こしにくい材料であり、膜で所望の組成比率を維持することができる。また、導電の機構としては、キャリア電子の強制投入以外に酸素欠損によるものがある。通常蒸着法では酸素ガスを導入するが、一般的には膜組成において酸素が不足状態となる。透明導電膜形成において酸素欠損を生成させ抵抗を下げる手法が採られるけれども、希土類元素を添加する場合、蒸発性能に優れるため制御しやすいといった特徴がある。本発明では、この特徴に加え、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を添加元素として含むことで、ITOに迫る高い導電率を得ることができるものである。   Since the ZnO vapor deposition material of the present invention configured as described above contains La, which is a trivalent rare earth element, as an additive element, it generates high carrier conductivity by generating excess carrier electrons with respect to Zn, which is divalent. Can be secured. Further, when rare earth is added to the ZnO vapor deposition material, it is a material that hardly causes a composition shift during vapor deposition, and a desired composition ratio can be maintained in the film. In addition to the forced injection of carrier electrons, the conduction mechanism includes oxygen vacancies. In general vapor deposition, oxygen gas is introduced, but in general, oxygen is insufficient in the film composition. Although a technique of generating oxygen vacancies and lowering resistance in forming a transparent conductive film is employed, when a rare earth element is added, there is a feature that it is easy to control because of its excellent evaporation performance. In the present invention, in addition to this feature, by including one or more elements selected from the group consisting of B, Al, Ga and Sc as additive elements, high conductivity approaching that of ITO can be obtained. Is.

次に、ZnO蒸着材の製造方法を、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素がBである場合で、焼結法により作製する場合を代表して説明する。
先ず、高純度ZnO粉末と、ZnO蒸着材中のLaの含有割合が0.1〜14.9質量%の範囲となる量のLa23粉末と、ZnO蒸着材中のBの含有割合が0.1〜10質量%の範囲となる量のB23粉末と、バインダと、有機溶媒とを混合して、濃度が30〜75質量%、好ましくは40〜65質量%のスラリーを調製する。高純度ZnO粉末は、純度が98%以上であることが好ましく、98.4%以上であることが更に好ましい。ZnO粉末の純度が98%以上であれば、不純物の影響による導電率の低下を抑えることができるからである。スラリーの濃度を30〜75質量%に限定したのは、75質量%を越えると上記スラリーが非水系であるため、安定した混合造粒が難しく、30質量%未満では均一な組織を有する緻密なZnO焼結体が得られ難いからである。ZnO粉末の平均粒径は0.1〜5.0μmの範囲内にあることが好ましい。0.1μm未満では、粉末が細かすぎて凝集するため、粉末のハンドリングが悪くなり、高濃度スラリーを調製し難い傾向があり、5.0μmを越えると、微細構造の制御が難しく、緻密なペレットが得られ難い傾向があるからである。
Next, the production method of the ZnO vapor deposition material is represented by the case where one or two or more elements selected from the group consisting of B, Al, Ga and Sc are B, and produced by a sintering method. I will explain.
First, the high-purity ZnO powder, the La 2 O 3 powder in an amount such that the La content in the ZnO vapor deposition material is in the range of 0.1 to 14.9% by mass, and the B content in the ZnO vapor deposition material are the amount of B 2 O 3 powder in the range of 0.1 to 10 mass%, and a binder, by mixing the organic solvent, the concentration is 30 to 75 wt%, preferably 40 to 65 wt% of the slurry preparation To do. The high purity ZnO powder preferably has a purity of 98% or more, more preferably 98.4% or more. This is because if the purity of the ZnO powder is 98% or more, a decrease in conductivity due to the influence of impurities can be suppressed. The concentration of the slurry is limited to 30 to 75% by mass. If the slurry exceeds 75% by mass, the slurry is non-aqueous, so that stable mixing granulation is difficult, and if it is less than 30% by mass, a dense structure having a uniform structure is obtained. This is because it is difficult to obtain a ZnO sintered body. The average particle size of the ZnO powder is preferably in the range of 0.1 to 5.0 μm. If it is less than 0.1 μm, the powder is too fine and agglomerates, so that the handling of the powder tends to be poor, and it tends to be difficult to prepare a high-concentration slurry. This is because it tends to be difficult to obtain.

La23粉末はLa存在量の偏在の防止とZnOマトリックスとの反応性及びLa化合物の純度を考慮した場合、1次粒子径がナノスケールの酸化ランタン粒子を添加することが好ましい。B23粉末は平均粒径が0.01〜1μmの範囲内のものを使用することが好ましい。0.01〜1μmの範囲内のものを使用すれば、B23粉末を均一に分散するのに好適であるからである。このうち、0.05〜0.5μmの範囲のものが特に好ましい。 In consideration of prevention of uneven distribution of La abundance, reactivity with the ZnO matrix and purity of the La compound, La 2 O 3 powder is preferably added with lanthanum oxide particles having a primary particle size of nanoscale. It is preferable to use a B 2 O 3 powder having an average particle diameter in the range of 0.01 to 1 μm. This is because the use of a powder having a diameter within the range of 0.01 to 1 μm is suitable for uniformly dispersing the B 2 O 3 powder. Among these, the thing of the range of 0.05-0.5 micrometer is especially preferable.

バインダとしてはポリエチレングリコールやポリビニールブチラール等を、有機溶媒としてはエタノールやプロパノール等を用いることが好ましい。バインダは0.2〜5.0質量%添加することが好ましい。   It is preferable to use polyethylene glycol or polyvinyl butyral as the binder, and ethanol or propanol as the organic solvent. The binder is preferably added in an amount of 0.2 to 5.0% by mass.

また高純度粉末とバインダと有機溶媒との湿式混合、特に高純度粉末と分散媒である有機溶媒との湿式混合は、湿式ボールミル又は撹拌ミルにより行われる。湿式ボールミルでは、ZrO2製ボールを用いる場合には、直径5〜10mmの多数のZrO2製ボールを用いて8〜24時間、好ましくは20〜24時間湿式混合される。ZrO2製ボールの直径を5〜10mmと限定したのは、5mm未満では混合が不十分となることからであり、10mmを越えると不純物が増える不具合があるからである。また混合時間が最長24時間と長いのは、長時間連続混合しても不純物の発生が少ないからである。 The wet mixing of the high purity powder, the binder, and the organic solvent, particularly the wet mixing of the high purity powder and the organic solvent that is the dispersion medium is performed by a wet ball mill or a stirring mill. In the wet ball mill, when ZrO 2 balls are used, wet mixing is performed for 8 to 24 hours, preferably 20 to 24 hours, using a large number of ZrO 2 balls having a diameter of 5 to 10 mm. The reason why the diameter of the ZrO 2 balls is limited to 5 to 10 mm is that mixing is insufficient when the diameter is less than 5 mm, and there is a problem that impurities increase when the diameter exceeds 10 mm. The reason why the mixing time is as long as 24 hours is that the generation of impurities is small even if the mixing is continued for a long time.

次に、上記スラリーを噴霧乾燥して平均粒径が50〜250μm、好ましくは50〜200μmの混合造粒粉末を得る。この造粒粉末を所定の型に入れて所定の圧力で成形する。上記噴霧乾燥はスプレードライヤを用いて行われることが好ましく、所定の型は一軸プレス装置又は冷間静水圧成形装置(CIP(Cold Isostatic Press)成形装置)が用いられる。一軸プレス装置では、造粒粉末を750〜2000kg/cm2(735.5〜1961.3MPa)、好ましくは1000〜1500kg/cm2(980.7〜1471.0MPa)の圧力で一軸加圧成形し、CIP成形装置では、造粒粉末を1000〜3000kg/cm2(980.7〜2942.0MPa)、好ましくは1500〜2000kg/cm2(1471.0〜1961.3MPa)の圧力でCIP成形する。圧力を上記範囲に限定したのは、成形体の密度を高めるとともに焼結後の変形を防止し、後加工を不要にするためである。 Next, the slurry is spray-dried to obtain a mixed granulated powder having an average particle size of 50 to 250 μm, preferably 50 to 200 μm. This granulated powder is put into a predetermined mold and molded at a predetermined pressure. The spray drying is preferably performed using a spray dryer, and the predetermined die is a uniaxial press device or a cold isostatic press (CIP (Cold Isostatic Press) molding device). In uniaxial pressing apparatus, granulated powder 750~2000kg / cm 2 (735.5~1961.3MPa), preferably uniaxial pressing at a pressure of 1000~1500kg / cm 2 (980.7~1471.0MPa) In the CIP molding apparatus, the granulated powder is CIP molded at a pressure of 1000 to 3000 kg / cm 2 (980.7 to 2942.0 MPa), preferably 1500 to 2000 kg / cm 2 (1471.0 to 1961.3 MPa). The reason why the pressure is limited to the above range is to increase the density of the molded body, prevent deformation after sintering, and eliminate the need for post-processing.

更に、成形体を所定の温度で焼結する。焼結は大気、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上、好ましくは1200〜1400℃の温度で1〜10時間、好ましくは2〜5時間行う。これにより所望のZnOを主成分とするペレットが得られる。ペレットの相対密度は90%以上であることが好ましく、95%以上であることが更に好ましい。相対密度が90%以上であれば、成膜時のスプラッシュを低減できるからである。上記焼結は大気圧下で行うが、ホットプレス(HP)焼結や熱間静水圧プレス(HIP、Hot Isostatic Press)焼結のように加圧焼結を行う場合には、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上の温度で1〜5時間行うことが好ましい。   Further, the molded body is sintered at a predetermined temperature. Sintering is carried out at a temperature of 1000 ° C. or higher, preferably 1200 to 1400 ° C. for 1 to 10 hours, preferably 2 to 5 hours in the atmosphere, inert gas, vacuum or reducing gas atmosphere. Thereby, the pellet which has desired ZnO as a main component is obtained. The relative density of the pellets is preferably 90% or more, and more preferably 95% or more. This is because if the relative density is 90% or more, splash during film formation can be reduced. The above sintering is performed under atmospheric pressure, but when performing pressure sintering such as hot pressing (HP) sintering or hot isostatic pressing (HIP) sintering, an inert gas, It is preferable to carry out at a temperature of 1000 ° C. or higher for 1 to 5 hours in a vacuum or a reducing gas atmosphere.

次いで、得られたペレットの多結晶ZnO蒸着材をターゲット材として、真空成膜法により基板表面にZnO膜を形成する。本発明のZnO蒸着材を用いて成膜するのに適する真空成膜法としては、電子ビーム蒸着法、イオンプレーティング法、スパッタリング法及びプラズマ蒸着法が挙げられる。これらの成膜方法により成膜される本発明のZnO膜は、本発明のZnO蒸着材を使用しているため、ITOに迫るような、比抵抗が3〜5×10-4Ω・cmの高い導電率、可視光透過率が90%以上の高い透過率が得られる。更に、イオン半径がZnより大きいLaにより歪んだ結晶を、B、Al又はGaといったイオン半径の小さい元素を添加して回復整合させ、或いは反応性の高いScの添加により結晶構造の整った膜へ回復させることで、緻密な膜を形成することにより、膜の耐久性も向上する。 Next, a ZnO film is formed on the substrate surface by a vacuum film-forming method using the obtained polycrystalline ZnO vapor deposition material in pellets as a target material. Examples of the vacuum film formation method suitable for forming a film using the ZnO vapor deposition material of the present invention include an electron beam vapor deposition method, an ion plating method, a sputtering method, and a plasma vapor deposition method. Since the ZnO film of the present invention formed by these film forming methods uses the ZnO vapor deposition material of the present invention, the specific resistance approaching that of ITO is 3 to 5 × 10 −4 Ω · cm. High conductivity and high transmittance with a visible light transmittance of 90% or more can be obtained. Further, a crystal distorted by La having an ionic radius larger than Zn is recovered and matched by adding an element having a small ionic radius such as B, Al or Ga, or a film having a well-structured crystal structure by adding highly reactive Sc. By recovering, by forming a dense film, the durability of the film is also improved.

なお、BをLaとともに含むZnO蒸着材の製造方法について述べたが、B以外の他の元素であるAl、Ga及びScを含むZnO蒸着材を製造する場合のAl23粉末、Ga23粉末及びSc23粉末の各平均粒径の好ましい範囲は、0.01〜1μmであり、このうち、特に好ましくは0.05〜0.5μmの範囲のものである。 Although described method for manufacturing a ZnO deposition material containing B with La, Al, which is another element other than B, Al 2 O 3 powder in the case of producing a ZnO deposition material containing Ga and Sc, Ga 2 O The preferable range of each average particle size of the 3 powder and the Sc 2 O 3 powder is 0.01 to 1 μm, and among these, the range of 0.05 to 0.5 μm is particularly preferable.

また本発明で使用されるZnO粉末、B23粉末、Al23粉末、Ga23粉末、Sc23粉末及び混合造粒粉末の平均粒径の値はレーザー回折法により算出又は測定される値である。 The average particle size of ZnO powder, B 2 O 3 powder, Al 2 O 3 powder, Ga 2 O 3 powder, Sc 2 O 3 powder and mixed granulated powder used in the present invention is calculated by a laser diffraction method. Or a measured value.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、ZnO粉末994.48gと、La23粉末2.30gと、B23粉末3.22gと、バインダと、有機溶媒とを湿式ボールミルを用い、湿式混合してスラリーを調製した。調製したスラリーを噴霧乾燥し、得られた混合造粒粉末を1000MPaの圧力で加圧成形した後、1300℃の温度で焼結し、ZnO蒸着材を作製した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 994.48 g of ZnO powder, 2.30 g of La 2 O 3 powder, 3.22 g of B 2 O 3 powder, a binder, and an organic solvent were wet mixed using a wet ball mill to prepare a slurry. The prepared slurry was spray-dried, and the obtained mixed granulated powder was pressure-molded at a pressure of 1000 MPa, and then sintered at a temperature of 1300 ° C. to produce a ZnO vapor deposition material.

得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が0.2質量%、B濃度が0.1質量%である多結晶ZnOのペレットであった。またペレットの直径及び厚さはそれぞれ5mm及び1.6mmであった。   The obtained ZnO vapor deposition material has a relative density of 95% and, as shown in Table 1 below, a polycrystalline ZnO pellet having a La concentration of 0.2% by mass and a B concentration of 0.1% by mass. Met. The diameter and thickness of the pellets were 5 mm and 1.6 mm, respectively.

次に、ガラス基板(無アルカリガラス)上に、上記ZnO蒸着材を用いて電子ビーム蒸着法により、膜厚200nmのZnO膜を成膜した。具体的には、直径50mm、深さ25mmの電子ビーム蒸着装置のハースに仕込まれた上記ZnO蒸着材に、到達真空度2.66×10-4Pa、酸素分圧1.33×10-2の雰囲気において、加速電圧10kV、ビームスキャンエリア約40mmφの電子ビームを照射、加熱することにより行った。 Next, a 200 nm-thick ZnO film was formed on a glass substrate (non-alkali glass) by the electron beam evaporation method using the ZnO evaporation material. Specifically, the ultimate vacuum degree is 2.66 × 10 −4 Pa and the partial pressure of oxygen is 1.33 × 10 −2 on the ZnO vapor deposition material charged in the hearth of the electron beam vapor deposition apparatus having a diameter of 50 mm and a depth of 25 mm. In this atmosphere, an electron beam having an acceleration voltage of 10 kV and a beam scan area of about 40 mmφ was irradiated and heated.

<実施例2>
ZnO粉末を932.6g、La23粉末を35.2g、B23粉末を32.2gとしたこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が3質量%、B濃度が1質量%であった。
<Example 2>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that 932.6 g of ZnO powder, 35.2 g of La 2 O 3 powder, and 32.2 g of B 2 O 3 powder were prepared, and the resultant was placed on a glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the La concentration was 3 mass% and the B concentration was 1 mass%.

<実施例3>
ZnO粉末を833.0g、La23粉末を70.4g、B23粉末を96.6gとしたこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が6質量%、B濃度が3質量%であった。
<Example 3>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that 833.0 g of ZnO powder, 70.4 g of La 2 O 3 powder, and 96.6 g of B 2 O 3 powder were formed on a glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the La concentration was 6% by mass and the B concentration was 3% by mass.

<実施例4>
ZnO粉末を503.28g、La23粉末を174.70g、B23粉末を322.02gとしたこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が14.9質量%、B濃度が10質量%であった。
<Example 4>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that 503.28 g of ZnO powder, 174.70 g of La 2 O 3 powder, and 322.02 g of B 2 O 3 powder were formed on a glass substrate. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the La concentration was 14.9% by mass and the B concentration was 10% by mass.

<比較例1>
ZnO粉末を999.45g、La23粉末を0.23g、B23粉末を0.32gとしたこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が0.02質量%、B濃度が0.01質量%であった。
<Comparative Example 1>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that the ZnO powder was 999.45 g, the La 2 O 3 powder was 0.23 g, and the B 2 O 3 powder was 0.32 g. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the La concentration was 0.02 mass% and the B concentration was 0.01 mass%.

<比較例2>
ZnO粉末を765.4g、La23粉末を234.6gとし、B23粉末は添加しなかったこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が20質量%であった。即ち、得られたZnO蒸着材はBを含まない。
<Comparative example 2>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that the ZnO powder was 765.4 g, the La 2 O 3 powder was 234.6 g, and the B 2 O 3 powder was not added. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the La concentration was 20% by mass. That is, the obtained ZnO vapor deposition material does not contain B.

<比較例3>
ZnO粉末を282.38g、La23粉末を234.60g、B23粉末を483.02gとしたこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、La濃度が20質量%、B濃度が15質量%であった。
<Comparative Example 3>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that 282.38 g of the ZnO powder, 234.60 g of the La 2 O 3 powder, and 483.02 g of the B 2 O 3 powder were formed on the glass substrate. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the La concentration was 20 mass% and the B concentration was 15 mass%.

<比較例4>
ZnO粉末を516.98g、B23粉末を483.02gとし、La23粉末は添加しなかったこと以外は、実施例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、B濃度が15質量%であった。即ち、得られたZnO蒸着材は、Laを含まない。
<Comparative Example 4>
A ZnO vapor deposition material was prepared in the same manner as in Example 1 except that the ZnO powder was 516.98 g, the B 2 O 3 powder was 483.02 g, and the La 2 O 3 powder was not added. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95% and a B concentration of 15% by mass as shown in Table 1 below. That is, the obtained ZnO vapor deposition material does not contain La.

<比較試験及び評価1>
実施例1〜4及び比較例1〜4で成膜したZnO膜について、比抵抗及び透過率を測定した。その結果を以下の表1に示す。比抵抗は測定器(三菱化学株式会社 商品名:ロレスタ HP型、MCP−T410、プローブ:直列1.5mmピッチ)を用い、雰囲気が25℃において定電流印加による4端子4探針法により測定した。また透過率は分光光度計(株式会社日立製作所製 U−4000)を用い、可視光波長域(380〜780mm)について、成膜後の基板を測定光に対して垂直に設置して測定した。
<Comparison test and evaluation 1>
For the ZnO films formed in Examples 1 to 4 and Comparative Examples 1 to 4, specific resistance and transmittance were measured. The results are shown in Table 1 below. The specific resistance was measured by a 4-terminal 4-probe method by applying a constant current at 25 ° C. using a measuring instrument (Mitsubishi Chemical Corporation, trade name: Loresta HP type, MCP-T410, probe: series 1.5 mm pitch). . The transmittance was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) in the visible light wavelength range (380 to 780 mm) by placing the substrate after film formation perpendicular to the measurement light.

Figure 2008255478
Figure 2008255478

<実施例5>
先ず、ZnO粉末995.81gと、La23粉末2.30gと、Al23粉末1.89gと、バインダと、有機溶媒とを湿式ボールミルを用い、湿式混合してスラリーを調製した。調製したスラリーを噴霧乾燥し、得られた混合造粒粉末を1000MPaの圧力で加圧成形した後、1300℃の温度で焼結し、ZnO蒸着材を作製した。
<Example 5>
First, a slurry was prepared by wet-mixing 995.81 g of ZnO powder, 2.30 g of La 2 O 3 powder, 1.89 g of Al 2 O 3 powder, a binder, and an organic solvent using a wet ball mill. The prepared slurry was spray-dried, and the obtained mixed granulated powder was pressure-molded at a pressure of 1000 MPa, and then sintered at a temperature of 1300 ° C. to produce a ZnO vapor deposition material.

得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が0.2質量%、Al濃度が0.1質量%である多結晶ZnOのペレットであった。またペレットの直径及び厚さはそれぞれ5mm及び1.6mmであった。   The obtained ZnO vapor deposition material has a relative density of 95% and, as shown in Table 2 below, a polycrystalline ZnO pellet having a La concentration of 0.2% by mass and an Al concentration of 0.1% by mass. Met. The diameter and thickness of the pellets were 5 mm and 1.6 mm, respectively.

次に、ガラス基板(無アルカリガラス)上に、上記ZnO蒸着材を用いて電子ビーム蒸着法により、膜厚200nmのZnO膜を成膜した。具体的には、直径50mm、深さ25mmの電子ビーム蒸着装置のハースに仕込まれた上記ZnO蒸着材に、到達真空度2.66×10-4Pa、酸素分圧1.33×10-2の雰囲気において、加速電圧10kV、ビームスキャンエリア約40mmφの電子ビームを照射、加熱することにより行った。 Next, a 200 nm-thick ZnO film was formed on a glass substrate (non-alkali glass) by the electron beam evaporation method using the ZnO evaporation material. Specifically, the ultimate vacuum degree is 2.66 × 10 −4 Pa and the partial pressure of oxygen is 1.33 × 10 −2 on the ZnO vapor deposition material charged in the hearth of the electron beam vapor deposition apparatus having a diameter of 50 mm and a depth of 25 mm. In this atmosphere, an electron beam having an acceleration voltage of 10 kV and a beam scan area of about 40 mmφ was irradiated and heated.

<実施例6>
ZnO粉末を945.9g、La23粉末を35.2g、Al23粉末を18.9gとしたこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が3質量%、Al濃度が1質量%であった。
<Example 6>
A ZnO vapor deposition material was prepared in the same manner as in Example 5 except that 945.9 g of ZnO powder, 35.2 g of La 2 O 3 powder, and 18.9 g of Al 2 O 3 powder were formed on the glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 2 below, the La concentration was 3% by mass and the Al concentration was 1% by mass.

<実施例7>
ZnO粉末を872.91g、La23粉末を70.40g、Al23粉末を56.69gとしたこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が6質量%、Al濃度が3質量%であった。
<Example 7>
A ZnO vapor deposition material was prepared in the same manner as in Example 5 except that 872.91 g of ZnO powder, 70.40 g of La 2 O 3 powder, and 56.69 g of Al 2 O 3 powder were formed on the glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 2 below, the La concentration was 6% by mass and the Al concentration was 3% by mass.

<実施例8>
ZnO粉末を636.35g、La23粉末を174.70g、Al23粉末を188.95gとしたこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が14.9質量%、Al濃度が10質量%であった。
<Example 8>
A ZnO vapor deposition material was prepared in the same manner as in Example 5 except that the ZnO powder was 636.35 g, the La 2 O 3 powder was 174.70 g, and the Al 2 O 3 powder was 188.95 g. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 2 below, the La concentration was 14.9% by mass and the Al concentration was 10% by mass.

<比較例5>
ZnO粉末を999.58g、La23粉末を0.23g、Al23粉末を0.19gとしたこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が0.02質量%、Al濃度が0.01質量%であった。
<Comparative Example 5>
A ZnO vapor deposition material was prepared in the same manner as in Example 5 except that 999.58 g of ZnO powder, 0.23 g of La 2 O 3 powder, and 0.19 g of Al 2 O 3 powder were used, and a glass substrate was prepared. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 2 below, the La concentration was 0.02 mass% and the Al concentration was 0.01 mass%.

<比較例6>
ZnO粉末を765.4g、La23粉末を234.6gとし、Al23粉末は添加しなかったこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が20質量%であった。即ち、得られたZnO蒸着材はAlを含まない。
<Comparative Example 6>
A ZnO vapor deposition material was produced in the same manner as in Example 5 except that 765.4 g of ZnO powder, 234.6 g of La 2 O 3 powder, and Al 2 O 3 powder were not added. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95% and a La concentration of 20% by mass as shown in Table 2 below. That is, the obtained ZnO vapor deposition material does not contain Al.

<比較例7>
ZnO粉末を481.97g、La23粉末を234.60g、Al23粉末を283.43gとしたこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、La濃度が20質量%、Al濃度が15質量%であった。
<Comparative Example 7>
A ZnO vapor deposition material was prepared in the same manner as in Example 5 except that 481.97 g of ZnO powder, 234.60 g of La 2 O 3 powder, and 283.43 g of Al 2 O 3 powder were formed on a glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 2 below, the La concentration was 20 mass% and the Al concentration was 15 mass%.

<比較例8>
ZnO粉末を716.57g、Al23粉末を283.43gとし、La23粉末は添加しなかったこと以外は、実施例5と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表2に示すように、Al濃度が15質量%であった。即ち、得られたZnO蒸着材は、Laを含まない。
<Comparative Example 8>
A ZnO vapor deposition material was prepared in the same manner as in Example 5 except that the ZnO powder was 716.57 g, the Al 2 O 3 powder was 283.43 g, and the La 2 O 3 powder was not added. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95% and an Al concentration of 15% by mass as shown in Table 2 below. That is, the obtained ZnO vapor deposition material does not contain La.

<比較試験及び評価2>
実施例5〜8及び比較例5〜8で成膜したZnO膜について、上記比較試験及び評価1と同様の方法により、比抵抗及び透過率を測定した。その結果を以下の表2に示す。
<Comparison test and evaluation 2>
With respect to the ZnO films formed in Examples 5 to 8 and Comparative Examples 5 to 8, the specific resistance and the transmittance were measured by the same method as in the above comparative test and evaluation 1. The results are shown in Table 2 below.

Figure 2008255478
Figure 2008255478

<実施例9>
先ず、ZnO粉末996.36gと、La23粉末2.30gと、Ga23粉末1.34gと、バインダと、有機溶媒とを湿式ボールミルを用い、湿式混合してスラリーを調製した。調製したスラリーを噴霧乾燥し、得られた混合造粒粉末を1000MPaの圧力で加圧成形した後、1300℃の温度で焼結し、ZnO蒸着材を作製した。
<Example 9>
First, 996.36 g of ZnO powder, 2.30 g of La 2 O 3 powder, 1.34 g of Ga 2 O 3 powder, a binder, and an organic solvent were wet mixed using a wet ball mill to prepare a slurry. The prepared slurry was spray-dried, and the obtained mixed granulated powder was pressure-molded at a pressure of 1000 MPa, and then sintered at a temperature of 1300 ° C. to produce a ZnO vapor deposition material.

得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が0.2質量%、Ga濃度が0.1質量%である多結晶ZnOのペレットであった。またペレットの直径及び厚さはそれぞれ5mm及び1.6mmであった。   The obtained ZnO vapor deposition material has a relative density of 95% and, as shown in Table 3 below, a polycrystalline ZnO pellet having a La concentration of 0.2% by mass and a Ga concentration of 0.1% by mass. Met. The diameter and thickness of the pellets were 5 mm and 1.6 mm, respectively.

次に、ガラス基板(無アルカリガラス)上に、上記ZnO蒸着材を用いて電子ビーム蒸着法により、膜厚200nmのZnO膜を成膜した。具体的には、直径50mm、深さ25mmの電子ビーム蒸着装置のハースに仕込まれた上記ZnO蒸着材に、到達真空度2.66×10-4Pa、酸素分圧1.33×10-2の雰囲気において、加速電圧10kV、ビームスキャンエリア約40mmφの電子ビームを照射、加熱することにより行った。 Next, a 200 nm-thick ZnO film was formed on a glass substrate (non-alkali glass) by the electron beam evaporation method using the ZnO evaporation material. Specifically, the ultimate vacuum degree is 2.66 × 10 −4 Pa and the partial pressure of oxygen is 1.33 × 10 −2 on the ZnO vapor deposition material charged in the hearth of the electron beam vapor deposition apparatus having a diameter of 50 mm and a depth of 25 mm. In this atmosphere, an electron beam having an acceleration voltage of 10 kV and a beam scan area of about 40 mmφ was irradiated and heated.

<実施例10>
ZnO粉末を951.36g、La23粉末を35.20g、Ga23粉末を13.44gとしたこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が3質量%、Ga濃度が1質量%であった。
<Example 10>
A ZnO vapor deposition material was prepared in the same manner as in Example 9 except that 951.36 g of ZnO powder, 35.20 g of La 2 O 3 powder, and 13.44 g of Ga 2 O 3 powder were used, and a glass substrate was prepared. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 3 below, the La concentration was 3 mass% and the Ga concentration was 1 mass%.

<実施例11>
ZnO粉末を889.27g、La23粉末を70.40g、Ga23粉末を40.33gとしたこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が6質量%、Ga濃度が3質量%であった。
<Example 11>
A ZnO vapor deposition material was produced in the same manner as in Example 9 except that 889.27 g of ZnO powder, 70.40 g of La 2 O 3 powder, and 40.33 g of Ga 2 O 3 powder were prepared, A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 3 below, the La concentration was 6 mass% and the Ga concentration was 3 mass%.

<実施例12>
ZnO粉末を690.87g、La23粉末を174.70g、Ga23粉末を134.43gとしたこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が14.9質量%、Ga濃度が10質量%であった。
<Example 12>
A ZnO vapor deposition material was prepared in the same manner as in Example 9 except that the ZnO powder was 690.87 g, the La 2 O 3 powder was 174.70 g, and the Ga 2 O 3 powder was 134.43 g. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 3 below, the La concentration was 14.9% by mass and the Ga concentration was 10% by mass.

<比較例9>
ZnO粉末を999.64g、La23粉末を0.23g、Ga23粉末を0.13gとしたこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が0.02質量%、Ga濃度が0.01質量%であった。
<Comparative Example 9>
A ZnO vapor deposition material was prepared in the same manner as in Example 9 except that 999.64 g of ZnO powder, 0.23 g of La 2 O 3 powder, and 0.13 g of Ga 2 O 3 powder were used, and a glass substrate was prepared. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 3 below, the La concentration was 0.02 mass% and the Ga concentration was 0.01 mass%.

<比較例10>
ZnO粉末を765.4g、La23粉末を234.6gとし、Ga23粉末は添加しなかったこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が20質量%であった。即ち、得られたZnO蒸着材はGaを含まない。
<Comparative Example 10>
A ZnO vapor deposition material was prepared in the same manner as in Example 9 except that the ZnO powder was 765.4 g, the La 2 O 3 powder was 234.6 g, and the Ga 2 O 3 powder was not added. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95% and a La concentration of 20% by mass as shown in Table 3 below. That is, the obtained ZnO vapor deposition material does not contain Ga.

<比較例11>
ZnO粉末を563.75g、La23粉末を234.60g、Ga23粉末を201.65gとしたこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、La濃度が20質量%、Ga濃度が15質量%であった。
<Comparative Example 11>
A ZnO vapor deposition material was produced in the same manner as in Example 9 except that 563.75 g of ZnO powder, 234.60 g of La 2 O 3 powder, and 201.65 g of Ga 2 O 3 powder were prepared, A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 3 below, the La concentration was 20 mass% and the Ga concentration was 15 mass%.

<比較例12>
ZnO粉末を798.35g、Ga23粉末を201.65gとし、La23粉末は添加しなかったこと以外は、実施例9と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表3に示すように、Ga濃度が15質量%であった。即ち、得られたZnO蒸着材は、Laを含まない。
<Comparative Example 12>
A ZnO vapor deposition material was prepared in the same manner as in Example 9 except that the ZnO powder was 798.35 g, the Ga 2 O 3 powder was 201.65 g, and the La 2 O 3 powder was not added. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95% and a Ga concentration of 15% by mass as shown in Table 3 below. That is, the obtained ZnO vapor deposition material does not contain La.

<比較試験及び評価3>
実施例9〜12及び比較例9〜12で成膜したZnO膜について、上記比較試験及び評価1と同様の方法により、比抵抗及び透過率を測定した。その結果を以下の表3に示す。
<Comparative test and evaluation 3>
With respect to the ZnO films formed in Examples 9 to 12 and Comparative Examples 9 to 12, specific resistance and transmittance were measured by the same method as in the above comparative test and evaluation 1. The results are shown in Table 3 below.

Figure 2008255478
Figure 2008255478

<実施例13>
先ず、ZnO粉末996.17gと、La23粉末2.30gと、Sc23粉末1.53gと、バインダと、有機溶媒とを湿式ボールミルを用い、湿式混合してスラリーを調製した。調製したスラリーを噴霧乾燥し、得られた混合造粒粉末を1000MPaの圧力で加圧成形した後、1300℃の温度で焼結し、ZnO蒸着材を作製した。
<Example 13>
First, 996.17 g of ZnO powder, 2.30 g of La 2 O 3 powder, 1.53 g of Sc 2 O 3 powder, a binder, and an organic solvent were wet mixed using a wet ball mill to prepare a slurry. The prepared slurry was spray-dried, and the obtained mixed granulated powder was pressure-molded at a pressure of 1000 MPa, and then sintered at a temperature of 1300 ° C. to produce a ZnO vapor deposition material.

得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が0.2質量%、Sc濃度が0.1質量%である多結晶ZnOのペレットであった。またペレットの直径及び厚さはそれぞれ5mm及び1.6mmであった。   The obtained ZnO vapor deposition material has a relative density of 95% and, as shown in Table 4 below, a polycrystalline ZnO pellet having a La concentration of 0.2% by mass and an Sc concentration of 0.1% by mass. Met. The diameter and thickness of the pellets were 5 mm and 1.6 mm, respectively.

次に、ガラス基板(無アルカリガラス)上に、上記ZnO蒸着材を用いて電子ビーム蒸着法により、膜厚200nmのZnO膜を成膜した。具体的には、直径50mm、深さ25mmの電子ビーム蒸着装置のハースに仕込まれた上記ZnO蒸着材に、到達真空度2.66×10-4Pa、酸素分圧1.33×10-2の雰囲気において、加速電圧10kV、ビームスキャンエリア約40mmφの電子ビームを照射、加熱することにより行った。 Next, a 200 nm-thick ZnO film was formed on a glass substrate (non-alkali glass) by the electron beam evaporation method using the ZnO evaporation material. Specifically, the ultimate vacuum degree is 2.66 × 10 −4 Pa and the partial pressure of oxygen is 1.33 × 10 −2 on the ZnO vapor deposition material charged in the hearth of the electron beam vapor deposition apparatus having a diameter of 50 mm and a depth of 25 mm. In this atmosphere, an electron beam having an acceleration voltage of 10 kV and a beam scan area of about 40 mmφ was irradiated and heated.

<実施例14>
ZnO粉末を949.46g、La23粉末を35.20g、Sc23粉末を15.34gとしたこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が3質量%、Sc濃度が1質量%であった。
<Example 14>
A ZnO vapor deposition material was prepared in the same manner as in Example 13 except that 949.46 g of ZnO powder, 35.20 g of La 2 O 3 powder, and 15.34 g of Sc 2 O 3 powder were formed on a glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 4 below, the La concentration was 3% by mass and the Sc concentration was 1% by mass.

<実施例15>
ZnO粉末を883.59g、La23粉末を70.40g、Sc23粉末を46.01gとしたこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が6質量%、Sc濃度が3質量%であった。
<Example 15>
A ZnO vapor deposition material was prepared in the same manner as in Example 13 except that 883.59 g of ZnO powder, 70.40 g of La 2 O 3 powder, and 46.01 g of Sc 2 O 3 powder were formed on the glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 4 below, the La concentration was 6% by mass and the Sc concentration was 3% by mass.

<実施例16>
ZnO粉末を671.92g、La23粉末を174.70g、Sc23粉末を153.38gとしたこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が14.9質量%、Sc濃度が10質量%であった。
<Example 16>
A ZnO vapor deposition material was prepared in the same manner as in Example 13 except that the ZnO powder was 671.92 g, the La 2 O 3 powder was 174.70 g, and the Sc 2 O 3 powder was 153.38 g. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 4 below, the La concentration was 14.9% by mass and the Sc concentration was 10% by mass.

<比較例13>
ZnO粉末を999.62g、La23粉末を0.23g、Sc23粉末を0.15gとしたこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が0.02質量%、Sc濃度が0.01質量%であった。
<Comparative Example 13>
A ZnO vapor deposition material was prepared in the same manner as in Example 13 except that 99.62 g of ZnO powder, 0.23 g of La 2 O 3 powder, and 0.15 g of Sc 2 O 3 powder were prepared, and the resultant was placed on a glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 4 below, the La concentration was 0.02 mass% and the Sc concentration was 0.01 mass%.

<比較例14>
ZnO粉末を765.4g、La23粉末を234.6gとし、Sc23粉末は添加しなかったこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が20質量%であった。即ち、得られたZnO蒸着材はScを含まない。
<Comparative example 14>
A ZnO vapor deposition material was prepared in the same manner as in Example 13 except that the ZnO powder was 765.4 g, the La 2 O 3 powder was 234.6 g, and the Sc 2 O 3 powder was not added. A ZnO film was formed. The obtained ZnO vapor deposition material had a relative density of 95% and a La concentration of 20% by mass as shown in Table 4 below. That is, the obtained ZnO vapor deposition material does not contain Sc.

<比較例15>
ZnO粉末を535.33g、La23粉末を234.60g、Sc23粉末を230.07gとしたこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、La濃度が20質量%、Sc濃度が15質量%であった。
<Comparative Example 15>
A ZnO vapor deposition material was prepared in the same manner as in Example 13 except that 535.33 g of ZnO powder, 234.60 g of La 2 O 3 powder, and 230.07 g of Sc 2 O 3 powder were prepared, and the resultant was formed on a glass substrate. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 4 below, the La concentration was 20 mass% and the Sc concentration was 15 mass%.

<比較例16>
ZnO粉末を769.93g、Sc23粉末を230.07gとし、La23粉末は添加しなかったこと以外は、実施例13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表4に示すように、Sc濃度が15質量%であった。即ち、得られたZnO蒸着材は、Laを含まない。
<Comparative Example 16>
A ZnO vapor deposition material was produced in the same manner as in Example 13 except that 769.93 g of ZnO powder, 230.07 g of Sc 2 O 3 powder, and La 2 O 3 powder were not added. A ZnO film was formed. In addition, the obtained ZnO vapor deposition material had a relative density of 95% and, as shown in Table 4 below, the Sc concentration was 15% by mass. That is, the obtained ZnO vapor deposition material does not contain La.

<比較例17>
ZnO粉末を1000gとし、La23粉末、B23粉末、Al23粉末、Ga23粉末又はSc23粉末を添加しなかったこと以外は、実施例1、5、9又は13と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、La、B、Al、Ga又はScのいずれをも含まないZnO蒸着材であった。
<Comparative Example 17>
Examples 1 and 5 except that the ZnO powder was 1000 g and no La 2 O 3 powder, B 2 O 3 powder, Al 2 O 3 powder, Ga 2 O 3 powder or Sc 2 O 3 powder was added. Similarly to 9 or 13, a ZnO vapor deposition material was produced, and a ZnO film was formed on a glass substrate. In addition, the obtained ZnO vapor deposition material was a ZnO vapor deposition material which has a relative density of 95% and does not contain any of La, B, Al, Ga, or Sc.

<比較試験及び評価4>
実施例13〜16及び比較例13〜17で成膜したZnO膜について、上記比較試験及び評価1と同様の方法により、比抵抗及び透過率を測定した。その結果を以下の表4に示す。
<Comparative test and evaluation 4>
With respect to the ZnO films formed in Examples 13 to 16 and Comparative Examples 13 to 17, specific resistance and transmittance were measured by the same method as in the above comparative test and evaluation 1. The results are shown in Table 4 below.

Figure 2008255478
Figure 2008255478

表1〜4から明らかなように、実施例1〜16と比較例1〜17を比較すると、実施例1〜16のZnO膜が有する比抵抗はいずれも比較例1〜17よりも低い結果となった。また透過率については、実施例1〜16のZnO膜が、比較例1、5、9、13又は17と同等或いは若干低かったものの、比較例2〜4、6〜8、10〜12又は14〜16と比較すれば、十分に高い透過率が得られたと言える。このことから、本発明のZnO蒸着材が効果的であることが確認された。   As is clear from Tables 1 to 4, when Examples 1 to 16 and Comparative Examples 1 to 17 are compared, the specific resistances of the ZnO films of Examples 1 to 16 are lower than those of Comparative Examples 1 to 17. became. Moreover, about the transmittance | permeability, although the ZnO film | membrane of Examples 1-16 was equivalent to the comparative example 1, 5, 9, 13 or 17, or slightly low, it was comparative examples 2-4, 6-8, 10-12 or 14 Compared to ˜16, it can be said that a sufficiently high transmittance was obtained. From this, it was confirmed that the ZnO vapor deposition material of the present invention is effective.

Claims (5)

透明導電膜を成膜するために用いられるZnO蒸着材において、
ZnOを主成分としたペレットからなり、
前記ペレットがLaと、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素を含み、
前記Laが前記B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素よりも含有割合が高く、
前記Laの含有割合が0.1〜14.9質量%、前記B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の含有割合が0.1〜10質量%の範囲内である
ことを特徴とするZnO蒸着材。
In a ZnO vapor deposition material used for forming a transparent conductive film,
Consisting of pellets based on ZnO,
The pellet contains La and one or more elements selected from the group consisting of B, Al, Ga and Sc;
The La content is higher than one or more elements selected from the group consisting of B, Al, Ga and Sc,
The content of La is 0.1 to 14.9% by mass, and the content of one or more elements selected from the group consisting of B, Al, Ga and Sc is 0.1 to 10% by mass. The ZnO vapor deposition material characterized by being in the range.
Laと、B、Al、Ga及びScからなる群より選ばれた1種又は2種以上の元素の合計の含有割合が0.2〜15質量%の範囲内である請求項1記載のZnO蒸着材。   The ZnO vapor deposition according to claim 1, wherein the total content of La and one or more elements selected from the group consisting of B, Al, Ga and Sc is in the range of 0.2 to 15% by mass. Wood. ZnOのペレットが多結晶体又は単結晶体である請求項1記載のZnO蒸着材。   The ZnO vapor deposition material according to claim 1, wherein the ZnO pellet is a polycrystal or a single crystal. 請求項1ないし3いずれか1項に記載のZnO蒸着材をターゲット材とする真空成膜法により形成されたZnO膜。   A ZnO film formed by a vacuum film-forming method using the ZnO vapor deposition material according to claim 1 as a target material. 真空成膜法が電子ビーム蒸着法、イオンプレーティング法、スパッタリング法又はプラズマ蒸着法である請求項4記載のZnO膜。   The ZnO film according to claim 4, wherein the vacuum film forming method is an electron beam evaporation method, an ion plating method, a sputtering method or a plasma evaporation method.
JP2008048901A 2007-03-09 2008-02-29 ZnO vapor deposition material and ZnO film formed thereby Active JP4962356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048901A JP4962356B2 (en) 2007-03-09 2008-02-29 ZnO vapor deposition material and ZnO film formed thereby

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007060176 2007-03-09
JP2007060176 2007-03-09
JP2008048901A JP4962356B2 (en) 2007-03-09 2008-02-29 ZnO vapor deposition material and ZnO film formed thereby

Publications (2)

Publication Number Publication Date
JP2008255478A true JP2008255478A (en) 2008-10-23
JP4962356B2 JP4962356B2 (en) 2012-06-27

Family

ID=39979351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048901A Active JP4962356B2 (en) 2007-03-09 2008-02-29 ZnO vapor deposition material and ZnO film formed thereby

Country Status (1)

Country Link
JP (1) JP4962356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132535A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF MANUFACTURING ZnO DEPOSITION MATERIAL
JP2010150093A (en) * 2008-12-25 2010-07-08 Tosoh Corp Method for producing sintered compact for transparent electroconductive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342721B1 (en) 2007-09-27 2013-12-18 미쓰비시 마테리알 가부시키가이샤 ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH0316954A (en) * 1989-06-14 1991-01-24 Tosoh Corp Oxide sintered product and preparation and use thereof
JPH0350148A (en) * 1989-07-19 1991-03-04 Tosoh Corp Zinc oxide sintered compact, production and its application
JPH04104937A (en) * 1990-08-22 1992-04-07 Tosoh Corp Conductive zinc oxide sinter, production and use thereof
JPH04219359A (en) * 1990-12-19 1992-08-10 Tosoh Corp Electrically conductive zinc oxide sintered compact
JPH06340468A (en) * 1991-06-06 1994-12-13 Tosoh Corp Crystal-oriented zinc oxide sintered compact
JP2000040429A (en) * 1998-07-24 2000-02-08 Sumitomo Metal Mining Co Ltd Manufacturing of zinc oxide transparent conductive film
JP2009097088A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH0316954A (en) * 1989-06-14 1991-01-24 Tosoh Corp Oxide sintered product and preparation and use thereof
JPH0350148A (en) * 1989-07-19 1991-03-04 Tosoh Corp Zinc oxide sintered compact, production and its application
JPH04104937A (en) * 1990-08-22 1992-04-07 Tosoh Corp Conductive zinc oxide sinter, production and use thereof
JPH04219359A (en) * 1990-12-19 1992-08-10 Tosoh Corp Electrically conductive zinc oxide sintered compact
JPH06340468A (en) * 1991-06-06 1994-12-13 Tosoh Corp Crystal-oriented zinc oxide sintered compact
JP2000040429A (en) * 1998-07-24 2000-02-08 Sumitomo Metal Mining Co Ltd Manufacturing of zinc oxide transparent conductive film
JP2009097088A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132535A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF MANUFACTURING ZnO DEPOSITION MATERIAL
JP2010150093A (en) * 2008-12-25 2010-07-08 Tosoh Corp Method for producing sintered compact for transparent electroconductive film

Also Published As

Publication number Publication date
JP4962356B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
JP2008088544A5 (en)
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP4962355B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5418751B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
JP5418752B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5418747B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP4962356B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5499453B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418748B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5381725B2 (en) Method for producing ZnO vapor deposition material
JP5381724B2 (en) Method for producing ZnO vapor deposition material
JP5568946B2 (en) Method for producing ZnO vapor deposition material
JP5402520B2 (en) Method for producing ZnO vapor deposition material
KR20120104642A (en) Zno vapor deposition material, process for producing the same, and zno film
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5428872B2 (en) Method for producing ZnO vapor deposition material
JP2009096714A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP5428873B2 (en) Method for producing ZnO vapor deposition material
JP5428871B2 (en) Method for producing ZnO vapor deposition material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3