JP2008254933A - Reinforced concrete member using foamed resin fine aggregate and receiving bending stress - Google Patents
Reinforced concrete member using foamed resin fine aggregate and receiving bending stress Download PDFInfo
- Publication number
- JP2008254933A JP2008254933A JP2007070872A JP2007070872A JP2008254933A JP 2008254933 A JP2008254933 A JP 2008254933A JP 2007070872 A JP2007070872 A JP 2007070872A JP 2007070872 A JP2007070872 A JP 2007070872A JP 2008254933 A JP2008254933 A JP 2008254933A
- Authority
- JP
- Japan
- Prior art keywords
- reinforced concrete
- foamed resin
- fine aggregate
- resin fine
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Reinforcement Elements For Buildings (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は,発泡スチロール等の発泡樹脂を細骨材として利用して軽量化を図った鉄筋コンクリート部材に関する。 The present invention relates to a reinforced concrete member that is reduced in weight by using a foamed resin such as polystyrene foam as a fine aggregate.
鉄筋コンクリート構造は,必要とする強度を安価に得られるので多く使用されているが,重量が大きいという欠点を有しており,軽量化の方策が探索されており,構造部材内部に空洞部を設けたり,さらに大幅な軽量化を図る場合には軽量な骨材として発泡樹脂細骨材を使用することが提案されている。 Reinforced concrete structures are often used because they provide the required strength at a low cost. However, they have the disadvantage of being heavy, and are looking for ways to reduce their weight. In order to further reduce the weight, it has been proposed to use a foamed resin fine aggregate as a lightweight aggregate.
従来の発泡樹脂を骨材とした軽量コンクリートは,発泡樹脂を一様に混入するか,発泡樹脂を混入した層と,混入しない層の積層体とすることがおこなわれている。積層体を力学的に一体化するためにはずれ止めを設けたり,強力な接着剤を使用するなど,コンクリート打設して成形した後に追加作業が必要であった。 Conventional lightweight concrete using foam resin as an aggregate is mixed with foam resin uniformly or made into a laminate of a layer containing foam resin and a layer without mixture. In order to integrate the laminate dynamically, additional work was required after casting and forming concrete, such as by providing a stopper or using a strong adhesive.
また,特許文献1は,基礎の土台に適用するものであり,支圧力に対抗するものである。また,発泡樹脂を混入した層と混入しない層を単純に積み重ねたものであり,圧縮応力のみに対応するものであり,曲げ応力については検討されていない。 Moreover, patent document 1 is applied to the foundation of a foundation, and opposes a supporting pressure. Moreover, the layer in which the foamed resin is mixed and the layer in which the mixed resin is not mixed are simply stacked, and only the compressive stress is dealt with, and the bending stress has not been studied.
発泡樹脂を細骨材として混入すると,強度が低下するので,軽量化が達成できても強度が不十分ということがある。
本発明は,部材に作用する,曲げ応力の特質に着目し,曲げ応力を受ける鉄筋コンクリート部材の必要強度を維持しつつ発泡樹脂を使用して軽量化を図るものである。
When foamed resin is mixed as fine aggregate, the strength decreases, so the strength may be insufficient even if weight reduction can be achieved.
The present invention pays attention to the characteristic of bending stress acting on the member and aims to reduce the weight by using a foamed resin while maintaining the necessary strength of the reinforced concrete member that receives the bending stress.
曲げ応力を受ける部材は,図2に示すように,矩形断面及びI型断面の部材の中立軸を中心にして一方には圧縮応力が,他方には引張応力が作用し,中立軸から離れるほど応力が大きくなっていることに着目し,曲げ応力を受ける鉄筋コンクリート部材において,部材の中立軸近傍の発泡樹脂細骨材の混入率を部材の縁辺よりも大きくすることによって,軽量化と強度のバランスをとったものである。 As shown in FIG. 2, the member subjected to the bending stress is compressed stress on one side and tensile stress on the other, centering on the neutral axis of the rectangular cross section and I-shaped cross section. Focusing on the fact that the stress is increasing, in a reinforced concrete member subjected to bending stress, the mixing ratio of the foamed resin fine aggregate near the neutral axis of the member is made larger than the edge of the member, thereby reducing the balance between weight reduction and strength. Is taken.
本発明の鉄筋コンクリート部材は,発泡樹脂細骨材を使用することによって軽量化を図ると共に,必要強度が得られるようにしたものである。曲げ応力が直線分布する特質を利用して部材の領域に応じて発泡樹脂細骨材の混入割合を変化させるので,軽量化を合理的に図ることができ,現場施工であっても容易に対応することができる。また,従来のように積層のためのずれ止めが不要となるとともに,断熱性能の高い部材が得られる。 In the reinforced concrete member of the present invention, the use of the foamed resin fine aggregate makes it possible to reduce the weight and obtain the required strength. Utilizing the characteristic that the bending stress is linearly distributed, the mixing ratio of the foamed resin fine aggregate is changed according to the region of the member, so it is possible to rationalize the weight and easily handle even on-site construction. can do. In addition, it is not necessary to prevent misalignment for lamination as in the prior art, and a member having high heat insulation performance can be obtained.
本発明は図1に示すように,鉄筋2が配筋してある曲げを受ける鉄筋コンクリート部材1に,発泡樹脂細骨材を使用したものである。
部材の中立軸の領域11は,発泡樹脂細骨材の混入率が高くしてあり,部材の縁辺の領域12に行くにしたがって混入率を下げてある。
In the present invention, as shown in FIG. 1, a foamed resin fine aggregate is used for a reinforced concrete member 1 subjected to bending with reinforcing
In the
層状に混入率の異なるコンクリートを順に打設する。まず,混入率がゼロまたは小さなコンクリートを打設し,中立軸に近づくにしたがって混入率が大きなコンクリートを打設する。中立軸を越えたら,逆に混入率をさげてコンクリートを打設し,最後に混入率ゼロとする。 Laminate concrete with different mixing rates in order. First, concrete with a low or low mixing rate is cast, and concrete with a high mixing rate is placed as it approaches the neutral axis. When the neutral axis is exceeded, the mixing rate is reduced and concrete is placed, and finally the mixing rate is zero.
層状にコンクリートを打設するだけでなく,混合割合を変更できるようにしたコンクリート打設機によって混入率を連続的に変更して打設してもよい。 In addition to placing concrete in layers, it may be placed by continuously changing the mixing rate with a concrete placing machine capable of changing the mixing ratio.
実験例
使用した発泡樹脂細骨材は,表1に示す物性の廃発泡スチロールを粗破砕した後,遠赤外線の照射により約20分の1に減容処理し,更に粉砕して粒径を4mm以下としたものである。熱による減容処理により低強度・低弾性の発泡スチロールは,大幅に硬質なものとなった。
Experimental Example The foamed resin fine aggregate used was roughly crushed from the waste foam polystyrene with the physical properties shown in Table 1, then reduced to about 1/20 by irradiation with far-infrared rays, and further pulverized to a particle size of 4 mm or less. It is what. Low-strength and low-elasticity foamed polystyrene has become extremely hard due to heat reduction.
細骨材に発泡ポリスチロール廃材,セメントには,早強ポルトランドセメントを使用し,モルタルミキサーを用いてセメントと水を投入後60秒間練り混ぜ,粉砕した発泡ポリスチロール廃材を投入し120秒間練混ぜをおこなった。
配合を表2に示す。水セメント比を30〜60%と変化させ,各々について発泡ポリスチロール混入率(モルタル中に占めるEPS廃材の体積比:EPS混入率またはVEPSと表示)を0〜60%に変化させた。
Foamed polystyrene waste material for fine aggregates, and early-strength Portland cement for cement, mortar mixer is used to mix cement and water, knead for 60 seconds, pulverized foamed polystyrene waste material is added and kneaded for 120 seconds I did it.
The formulation is shown in Table 2. The water-cement ratio is changed from 30% to 60%, foam polystyrene mixing ratio for each (volume ratio of EPS waste material occupied in the mortar: EPS mixing ratio, or V EPS display) was changed to 0-60%.
強度試験用の供試体(40×40×160mm)を作製し,振動台およびハンドバイブレーターで締め固めた。翌日脱型後,標準養生(20±2℃)をおこない,材齢7日で強度試験(JIS A 1108)をおこなった。
EPS混入率と密度の関係を図3に示す。EPS混入率の増加に伴って密度は直線的に減少し,EPS混入率60%程度でモルタルの密度は約1.0g/cm3となる。
A specimen (40 × 40 × 160mm) for strength test was prepared and compacted with a shaking table and a hand vibrator. After demolding the next day, standard curing (20 ± 2 ° C) was performed, and a strength test (JIS A 1108) was performed at a material age of 7 days.
The relationship between the EPS contamination rate and density is shown in FIG. As the EPS contamination rate increases, the density decreases linearly, and when the EPS contamination rate is around 60%, the density of the mortar is approximately 1.0 g / cm 3 .
図4にEPS混入率と圧縮強度の関係を,図5にEPS混入率と曲げ強度の関係を示す。図4及び図5から,EPS混入率の増加に伴い圧縮強度,曲げ強度ともに低下する傾向にあることがわかる。 FIG. 4 shows the relationship between the EPS mixing rate and compressive strength, and FIG. 5 shows the relationship between the EPS mixing rate and bending strength. 4 and 5, it can be seen that both the compressive strength and the bending strength tend to decrease with the increase of the EPS mixing rate.
図6にモルタルの密度と圧縮強度の関係を示す。図には,対比のためEPS廃材の熱による減容処理を施していないものについても示している。
図6から,同密度での強度発現は,減容処理を施したEPS廃材を使用したモルタルの方が大きいことがわかる。これは熱による減容処理によってEPS廃材のヤング係数が増加することに起因すると考えられ,熱による減容処理したEPSを使用したコンクリートにおいては,初期微細ひび割れの発生が従来よりも遅くなることによると推察される。
FIG. 6 shows the relationship between mortar density and compressive strength. For comparison, the figure also shows that the volume of waste EPS is not reduced.
From FIG. 6, it can be seen that the strength development at the same density is larger in the mortar using the EPS waste material subjected to volume reduction treatment. This is thought to be due to the increase in Young's modulus of EPS waste due to heat volume reduction treatment. In concrete using heat-reduced EPS, the initial microcracking occurs later than before. It is guessed.
強度試験結果をBacheの式(1)を使用して見かけのEPS廃材強度を計算した。
EPS混入率と見かけのEPS骨材強度の関係を図7に示す。水セメント比を小さく,すなわちマトリックス強度を大きくすることでEPSの見かけの強度は総じて増加した。また,マトリックス強度ごとに見かけのEPS強度が最大値となるEPS混入率が存在し,それを最適混入率と考えると,マトリックス強度を高めると最適混入率は小さくなった。 FIG. 7 shows the relationship between the EPS contamination rate and the apparent EPS aggregate strength. The apparent strength of EPS was generally increased by decreasing the water-cement ratio, that is, increasing the matrix strength. In addition, there is an EPS mixing rate where the apparent EPS intensity becomes the maximum value for each matrix strength. Considering this as the optimal mixing rate, the optimal mixing rate decreases with increasing matrix strength.
以上のことから,水セメント比を30%,EPS混入率を40%とすると最も高い見かけのEPS骨材強度が得られた。
実際にはEPS廃材の強度は変化しないので,見かけの強度が大きいことが,配合的にEPS強度を有効に発揮できる条件であると判断した。
From the above, the highest apparent EPS aggregate strength was obtained when the water-cement ratio was 30% and the EPS contamination rate was 40%.
Actually, the strength of the EPS waste material does not change, so it was judged that the apparent strength was a condition that the EPS strength could be effectively exhibited in a compounded manner.
1 鉄筋コンクリート部材
2 鉄筋
11 EPSの混入率が大きい領域
12 EPSの混入率が小さい領域
1 Reinforced
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007070872A JP4830113B2 (en) | 2007-03-15 | 2007-03-19 | Reinforced concrete members subjected to bending stress using foamed fine resin aggregate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007066310 | 2007-03-15 | ||
JP2007066310 | 2007-03-15 | ||
JP2007070872A JP4830113B2 (en) | 2007-03-15 | 2007-03-19 | Reinforced concrete members subjected to bending stress using foamed fine resin aggregate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008254933A true JP2008254933A (en) | 2008-10-23 |
JP4830113B2 JP4830113B2 (en) | 2011-12-07 |
Family
ID=39978890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007070872A Active JP4830113B2 (en) | 2007-03-15 | 2007-03-19 | Reinforced concrete members subjected to bending stress using foamed fine resin aggregate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4830113B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345847U (en) * | 1989-09-11 | 1991-04-26 | ||
JPH05309631A (en) * | 1992-05-12 | 1993-11-22 | Kanegafuchi Chem Ind Co Ltd | Concrete panel served as concrete shuttering |
JP2004058307A (en) * | 2002-07-25 | 2004-02-26 | Taiheiyo Precast Concrete Industry Co Ltd | Method for manufacturing light-weight foam block |
-
2007
- 2007-03-19 JP JP2007070872A patent/JP4830113B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345847U (en) * | 1989-09-11 | 1991-04-26 | ||
JPH05309631A (en) * | 1992-05-12 | 1993-11-22 | Kanegafuchi Chem Ind Co Ltd | Concrete panel served as concrete shuttering |
JP2004058307A (en) * | 2002-07-25 | 2004-02-26 | Taiheiyo Precast Concrete Industry Co Ltd | Method for manufacturing light-weight foam block |
Also Published As
Publication number | Publication date |
---|---|
JP4830113B2 (en) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Foti | Preliminary analysis of concrete reinforced with waste bottles PET fibers | |
Chen et al. | Properties of lightweight expanded polystyrene concrete reinforced with steel fiber | |
JP2002348166A (en) | Hydraulic composition | |
JP4830113B2 (en) | Reinforced concrete members subjected to bending stress using foamed fine resin aggregate | |
Hardjasaputra et al. | Performance of lightweight natural-fiber reinforced concrete | |
JP2010275124A (en) | Ultrahigh early strength cement composition and method for producing the same | |
CN106278051A (en) | A kind of shock resistance composite board and preparation method thereof | |
Faiq | Study of the mechanical properties of jute fiber reinforced cement composites | |
KR101314799B1 (en) | Management Method of Ultra High Strength Concrete for Maximizing Strength Properties | |
Nataraja et al. | A simple mix proportioning method to produce SCC based on compressive strength requirement by modification to IS 10262: 2009 | |
JP2004300001A (en) | Organic fiber-containing high strength concrete thin sheet reinforced by high strength mesh | |
Rehman | Some properties of fiber reinforced no fine concrete | |
JP6195890B2 (en) | Method for producing early strength lightweight concrete | |
Mohamadien | The impact of the time when casting the second layer of concrete on its mechanical properties | |
JPS632867A (en) | Hybrid type fiber reinforced lightweight concrete structure | |
Musau et al. | Use of polyethylene terephthalate (PET) flakes as coarse aggregates replacement in concrete paving blocks | |
JP3242623B2 (en) | Wall structure | |
JP2010047446A (en) | Concrete structure | |
JP2000128595A (en) | Recycling method of concrete based construction material and method for manufacturing concrete using regenerated aggregate | |
JP2000034155A (en) | Concrete product, and composite concrete product using the same | |
JP2002037657A (en) | Super-durable concrete structure | |
Viet et al. | Experimental evaluation on engineering properties and microstructure of the high-performance fiber-reinforced mortar with low polypropylene fiber content | |
Azizan et al. | The sustainability of recycled concrete as green material solution | |
US20240083812A1 (en) | Building materials and methods of manufacturing same | |
KR20120020385A (en) | A high strength concrete pier construction method and the pier thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |