JP2008254352A - Resin composite copper foil - Google Patents

Resin composite copper foil Download PDF

Info

Publication number
JP2008254352A
JP2008254352A JP2007099970A JP2007099970A JP2008254352A JP 2008254352 A JP2008254352 A JP 2008254352A JP 2007099970 A JP2007099970 A JP 2007099970A JP 2007099970 A JP2007099970 A JP 2007099970A JP 2008254352 A JP2008254352 A JP 2008254352A
Authority
JP
Japan
Prior art keywords
copper foil
resin
resin composite
copper
composite copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007099970A
Other languages
Japanese (ja)
Other versions
JP5253754B2 (en
Inventor
Mitsuru Nozaki
充 野崎
Morio Take
杜夫 岳
Hidefumi Nagata
英史 永田
Shinji Yano
真司 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI R&D Co Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
PI R&D Co Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI R&D Co Ltd, Mitsubishi Gas Chemical Co Inc filed Critical PI R&D Co Ltd
Priority to JP2007099970A priority Critical patent/JP5253754B2/en
Publication of JP2008254352A publication Critical patent/JP2008254352A/en
Application granted granted Critical
Publication of JP5253754B2 publication Critical patent/JP5253754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composite copper foil which is excellent in adhesive force with a resin composition of a copper-clad laminated sheet, to which a copper foil with a copper foil matting face with an extremely small unevenness can be applied, and which is suitable for mass production, and to provide the copper clad-laminated sheet and a printed wiring board using this resin composite copper foil and having good heat resistance and good moisture absorbing heat resistance. <P>SOLUTION: The resin composite copper foil formed with a resin layer comprising a block copolymer polyimide resin (a) and 2,2-bis[4-(4-maleimidephenoxy)phenyl]propane (b) on one face of the copper foil, the copper-clad laminated sheet in which the resin composite copper foil and a B-stage resin composition layer are laminated and molded, and the printed wiring board using this, are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プリント配線板の製造に使用される樹脂複合銅箔、該樹脂複合銅箔を使用した銅張積層板、及び該銅張積層板を使用したプリント配線板に関する。さらに詳しくは、連続生産しても接着層成分の変動が実質的になく耐熱性等の性能を維持し、かつ銅箔との接着力に優れているため、銅箔(マット)面の凹凸の極めて小さい銅箔が適用可能な樹脂銅箔、該樹脂複合銅箔を用いた銅張積層板、該銅張積層板を用いた細密回路の形成に適した高密度プリント配線板に関する。   The present invention relates to a resin composite copper foil used for manufacturing a printed wiring board, a copper-clad laminate using the resin composite copper foil, and a printed wiring board using the copper-clad laminate. More specifically, since the adhesive layer component does not vary substantially even after continuous production and maintains performance such as heat resistance and excellent adhesion to copper foil, the unevenness of the copper foil (mat) surface The present invention relates to a resin copper foil to which an extremely small copper foil can be applied, a copper clad laminate using the resin composite copper foil, and a high-density printed wiring board suitable for forming a fine circuit using the copper clad laminate.

近年、電子機器に用いられる半導体部品等の電子部品を実装するプリント配線板は半導体回路の超高密度化と相まって、その回路導体幅と回路間絶縁スペースは、より極細線化することが要求されている。従来、プリント配線板に使用する銅張積層板の銅箔としては、銅箔接着力が良好な、銅箔マット面の凹凸が大きい電解銅箔が使用されている。これらの電解銅箔は、接着力は良好であるが、エッチング法により細密回路を形成する際に、銅箔マット面の凹凸の影響により、銅箔の凹凸の一部が、絶縁用樹脂表面に残り易い。これを完全に除去するため、エッチング時間を伸ばすと回路がオーバーエッチングされ、回路の位置精度や接着力が低下する等の問題があった。これらの改善手段として、銅箔面の凹凸を抑えた所謂ロープロファイル銅箔が実用化されている。 In recent years, printed wiring boards for mounting electronic components such as semiconductor components used in electronic devices have been required to be further thinned in circuit conductor width and inter-circuit insulating space, coupled with the ultra-high density of semiconductor circuits. ing. Conventionally, as a copper foil of a copper clad laminate used for a printed wiring board, an electrolytic copper foil having a good copper foil adhesive force and a large unevenness on a copper foil mat surface has been used. These electrolytic copper foils have good adhesive strength, but when forming a fine circuit by etching, due to the influence of the unevenness of the copper foil mat surface, some of the unevenness of the copper foil is on the insulating resin surface. It is easy to remain. In order to remove this completely, if the etching time is extended, the circuit is over-etched, and there is a problem that the positional accuracy of the circuit and the adhesive force are lowered. As these improvement means, what is called a low profile copper foil which suppressed the unevenness | corrugation of the copper foil surface is put into practical use.

しかしながら、この銅箔を元来接着力が弱い高耐熱の熱硬化性樹脂等を積層した銅張積層板として使用すると、細密回路では接着力の不足が問題となり、極細線化に向け大きな障害となっている。また古くから、銅箔と絶縁用樹脂との密着力を向上するために、銅箔に絶縁性の接着層を形成する方法が実用化されている。例えば、紙フェノール樹脂銅張積層板の場合には、フェノール・ブチラール樹脂の接着層を銅箔に形成する手法や、ガラスエポキシ樹脂銅張積層板の場合では、エポキシ樹脂接着剤を銅箔に形成するものなどが知られている。これら接着剤付き銅箔の具体例としては、薄い接着剤層を形成した銅箔を使用する銅張積層板(例えば特許文献1参照)や半硬化樹脂フィルムを張りつけた銅箔を使用する銅張積層板(例えば特許文献2参照)なども提案されている。   However, if this copper foil is used as a copper-clad laminate that is laminated with a heat-resistant thermosetting resin that has a low adhesive strength, it will cause a problem of insufficient adhesive strength in a fine circuit, which is a major obstacle to ultra-thin wires. It has become. Also, since long ago, in order to improve the adhesion between the copper foil and the insulating resin, a method of forming an insulating adhesive layer on the copper foil has been put into practical use. For example, in the case of paper phenolic resin copper-clad laminates, a phenol-butyral resin adhesive layer is formed on the copper foil, and in the case of glass epoxy resin copper-clad laminates, epoxy resin adhesive is formed on the copper foil. Things to do are known. As specific examples of these copper foils with adhesive, copper-clad laminates using a copper-clad laminate using a copper foil with a thin adhesive layer (for example, see Patent Document 1) and copper-clad using a semi-cured resin film are used. A laminated plate (see, for example, Patent Document 2) has also been proposed.

しかしながら、半硬化樹脂フィルムを張付けた銅張積層板では、耐熱性、接着性、吸湿耐熱性の点で問題があり、さらなる改善が必要であった。それらの問題点を解決するため、ポリイミド接着組成物(例えば特許文献3参照)が提案されている。しかしながら、希釈溶剤が残存すると本来の特性が得られないので、希釈溶剤の沸点以上の温度での乾燥処理が必要とされる。しかしながら、高温加熱乾燥処理を連続的に施すと、成分のマレイミド化合物〔例えば(ビス(4-マレイミドフェニル)メタン)が飛散し、その結果、特性が低下し、また、量産性に難点があり、改善する必要があった。   However, the copper-clad laminate with the semi-cured resin film attached has problems in terms of heat resistance, adhesiveness, and moisture absorption heat resistance, and further improvement is necessary. In order to solve these problems, a polyimide adhesive composition (see, for example, Patent Document 3) has been proposed. However, since the original characteristics cannot be obtained if the diluted solvent remains, a drying treatment at a temperature higher than the boiling point of the diluted solvent is required. However, when the high-temperature heat drying treatment is continuously performed, the component maleimide compound [for example, (bis (4-maleimidophenyl) methane) is scattered, as a result, the characteristics are deteriorated, and there is a problem in mass productivity. There was a need to improve.

特開平8-216340 号公報JP-A-8-216340 特開平9-011397号公報Japanese Patent Laid-Open No. 9-011397 特開平9-011397号公報Japanese Patent Laid-Open No. 9-011397

本発明は、連続的に加熱乾燥処理しても成分の飛散がなく、その結果、接着力、耐熱性、吸湿耐熱特性等の優れた性能が維持される樹脂の使用により、銅箔(マット)面の凹凸の極めて小さい銅箔を適用した樹脂複合銅箔を量産性良く提供すること、並びにこの樹脂複合銅箔の使用により耐熱性や吸湿耐熱性が良好な銅張積層板および細密回路の形成に適したプリント配線板の提供を目的とする。   The present invention is a copper foil (mat) by using a resin that does not scatter components even when continuously heated and dried, and as a result, maintains excellent performance such as adhesive strength, heat resistance, moisture absorption heat resistance, etc. Providing mass-productive resin composite copper foil using copper foil with extremely small surface irregularities, and forming copper-clad laminates and fine circuits with good heat resistance and moisture absorption heat resistance by using this resin composite copper foil It aims at providing the printed wiring board suitable for.

本発明者は、上記課題を解決すべき鋭意検討した結果、銅箔の片面にブロック共重合ポリイミド樹脂(a)と2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)からなる樹脂層を形成した樹脂複合銅箔を用いることにより、量産性に適し、接着力や耐熱性に優れる銅張積層板が得られることを見出し、本発明に到達した。即ち、本発明は、銅箔の片面にブロック共重合ポリイミド樹脂(a)と2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)からなる樹脂層を形成した樹脂複合銅箔であり、好ましくは、該ブロック共重合ポリイミド樹脂(a)が、一般式(1)及び一般式(2)で表される構造単位を有するブロック共重合ポリイミド樹脂である樹脂複合銅箔であり、該樹脂複合銅箔とBステージ樹脂組成物層を積層成形した銅張積層板及び、これを用いたプリント配線板である。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a block copolymerized polyimide resin (a) and 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) are formed on one surface of a copper foil. The present inventors have found that a copper clad laminate suitable for mass production and excellent in adhesive strength and heat resistance can be obtained by using a resin composite copper foil having a resin layer formed of That is, the present invention provides a resin composite copper in which a resin layer comprising a block copolymerized polyimide resin (a) and 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) is formed on one surface of a copper foil. A resin composite copper foil in which the block copolymerized polyimide resin (a) is a block copolymerized polyimide resin having structural units represented by the general formulas (1) and (2). A copper-clad laminate obtained by laminating the resin composite copper foil and the B-stage resin composition layer, and a printed wiring board using the same.

Figure 2008254352
Figure 2008254352


・・・(1)

... (1)

Figure 2008254352
Figure 2008254352


・・・(2)
(式中のm,nは、m:n=1:9〜3:1)

... (2)
(M and n in the formula are m: n = 1: 9 to 3: 1)

本発明で得られた樹脂複合銅箔は生産性に優れ、連続的に生産しても樹脂複合銅箔の樹脂層の成分の変動が実質的に無く、その結果、接着力、耐熱性、吸湿耐熱性等の優れた性能が維持されることで、銅箔(マット)面の凹凸の極めて小さい銅箔の適用が可能であり、この樹脂複合銅箔を使用することにより、経済性、耐熱性や吸湿耐熱性が良好な銅張積層板が得られる。銅箔のマット面凹凸が極めて小さくできるため、この銅張積層板は、細密回路を有する高密度プリント配線板として好適に使用できることから、本発明の樹脂複合銅箔の工業的な実用性は極めて高い。   The resin composite copper foil obtained in the present invention is excellent in productivity, and even when continuously produced, there is substantially no variation in the components of the resin layer of the resin composite copper foil, resulting in adhesive strength, heat resistance, moisture absorption. By maintaining excellent performance such as heat resistance, it is possible to apply copper foil with extremely small unevenness on the copper foil (mat) surface, and by using this resin composite copper foil, economic efficiency, heat resistance And a copper clad laminate having good moisture absorption and heat resistance. Since the mat surface unevenness of the copper foil can be made extremely small, this copper-clad laminate can be suitably used as a high-density printed wiring board having a fine circuit, so the industrial utility of the resin composite copper foil of the present invention is extremely high.

本発明の樹脂複合銅箔に使用するブロック共重合ポリイミド樹脂(a)とは、第一の構造単位よりなるイミドオリゴマーの末端に、第二の構造単位よりなるイミドオリゴマーが結合している構造を有する共重合ポリイミド樹脂であれば、特に限定されない。これらのブロック共重合ポリイミド樹脂は、極性溶媒中で、テトラカルボン酸二無水物とジアミンを反応させイミドオリゴマーとした後、更にテトラカルボン酸二無水物と別のジアミン、もしくは別のテトラカルボン酸二無水物とジアミンを加え、イミド化する逐次重合反応によって合成される。 The block copolymerized polyimide resin (a) used in the resin composite copper foil of the present invention has a structure in which an imide oligomer composed of the second structural unit is bonded to the terminal of the imide oligomer composed of the first structural unit. If it is the copolymerization polyimide resin which has, it will not specifically limit. These block copolymerized polyimide resins are prepared by reacting a tetracarboxylic dianhydride and a diamine in a polar solvent to form an imide oligomer, and then further using a tetracarboxylic dianhydride and another diamine or another tetracarboxylic acid dianhydride. It is synthesized by a sequential polymerization reaction in which an anhydride and a diamine are added and imidized.

使用する極性溶媒はN−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、テトラメチル尿素等、ポリイミドを溶解する極性溶媒が挙げられる。また、ケトン系又はエーテル系の溶媒を混合して使用する事も可能であり、ケトン系溶媒としては、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジイソプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、アセチルアセトン、ジアセトンアルコール、シクロヘキセン−n−オンが、エーテル系溶媒としてはジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、エチルイソアミルアルコール、エチル-t-ブチルエーテル、エチルベンジルエーテル、ジエチレングリコールジメチルエーテル、クエジルメチルエーテル、アニソール、フェネトールが使用可能である。また、イミド化反応時に生成する水を除去するために、トルエンやキシレン等の水と共沸する溶媒を添加する。また、反応を促進するために、ピリジン等のアミン系触媒や、ピリジンとγ-バレロラクトンの様な塩基と環状エステルの二成分系触媒が好適に用いられる。反応温度は 120〜200℃で、トルエンやキシレン等の水と共沸する溶媒や、ピリジン等の触媒は、最終的に系外に留去させる事により、ブロック共重合ポリイミド樹脂のみの極性溶媒溶液を得ることが可能である。   Examples of the polar solvent to be used include polar solvents that dissolve polyimide, such as N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, sulfolane, and tetramethylurea. It is also possible to use a mixture of a ketone or ether solvent. Examples of the ketone solvent include methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, and methyl-n-hexyl. Ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, acetylacetone, diacetone alcohol, cyclohexene-n-one are ether solvents such as dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, Tetrahydropyran, ethyl isoamyl alcohol, ethyl t-butyl ether, ethyl benzyl ether, diethylene glycol dimethyl ether, quedyl methyl Ether, anisole and phenetole can be used. Moreover, in order to remove the water produced | generated at the time of imidation reaction, the solvent azeotropically distilled with water, such as toluene and xylene, is added. In order to accelerate the reaction, an amine catalyst such as pyridine or a two-component catalyst of a base and a cyclic ester such as pyridine and γ-valerolactone is preferably used. The reaction temperature is 120-200 ° C. Solvents that azeotrope with water such as toluene and xylene, and catalysts such as pyridine are finally distilled out of the system, so that the polar solvent solution contains only block copolymerized polyimide resin. It is possible to obtain

本発明で使用するブロック共重合ポリイミド樹脂(a)としては、一般式(1)及び一般式(2)で表される構造単位を有するブロック共重合ポリイミド樹脂が好適である。このブロック共重合ポリイミド樹脂に使用されるテトラカルボン酸二無水物は3,4、3',4'-ビフェニルテトラカルボン酸二無水物であり、ジアミンは1,3-ビス(3-アミノフェノキシ)ベンゼン及び2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパンである。また、分子量を制御する為に、一段目の反応時にテトラカルボン酸二無水物とジアミンのモル比を等モルからずらし、末端を酸無水物またはアミンとし、二段目の反応ではテトラカルボン酸二無水物とジアミンのモル比を一段目と逆にする事などで、充分な分子量のブロック共重合ポリイミドを得ることが可能である。   As the block copolymerized polyimide resin (a) used in the present invention, block copolymerized polyimide resins having structural units represented by the general formulas (1) and (2) are suitable. The tetracarboxylic dianhydride used in this block copolymerized polyimide resin is 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride, and the diamine is 1,3-bis (3-aminophenoxy) Benzene and 2,2-bis {4- (4-aminophenoxy) phenyl} propane. Also, in order to control the molecular weight, the molar ratio of tetracarboxylic dianhydride and diamine is shifted from equimolar during the first stage reaction, and the terminal is acid anhydride or amine. A block copolymerized polyimide having a sufficient molecular weight can be obtained, for example, by reversing the molar ratio of anhydride to diamine to that of the first step.

本発明で使用するブロック共重合ポリイミド樹脂(a)の重量平均分子量(Mw)は50,000〜300,000が望ましい。より好適には80,000〜200,000である。Mwが上記範囲の下限未満であるとポリイミド樹脂層が脆くなりやすく、一方、Mwが上限より大きいと溶液粘度が高くなりすぎ塗工が困難となる。また、最終的な分子量を制御する為に、使用するテトラカルボン酸二無水物とジアミンとのモル比をずらして合成することも可能である。一般式(1)と一般式(2)の各々の単位重縮合物のモル比は、一般式(1):一般式(2)=1:9〜3:1である。より好適には、一般式(1):一般式(2)=1:3〜3:1である。一般式(1)の構造の比率が 10モル%未満になると接着力の低下が問題となり、一般式(2)の構造の比率が 25モル%未満になるとはんだ耐熱性の低下が問題となる。本発明に使用する2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)は、式(3)で表される。   The weight average molecular weight (Mw) of the block copolymerized polyimide resin (a) used in the present invention is preferably 50,000 to 300,000. More preferably, it is 80,000-200,000. If the Mw is less than the lower limit of the above range, the polyimide resin layer tends to be brittle. On the other hand, if the Mw is higher than the upper limit, the solution viscosity becomes too high and coating becomes difficult. Moreover, in order to control the final molecular weight, it is also possible to synthesize by shifting the molar ratio of the tetracarboxylic dianhydride to be used and the diamine. The molar ratio of each unit polycondensate of general formula (1) and general formula (2) is general formula (1): general formula (2) = 1: 9-3: 1. More preferably, general formula (1): general formula (2) = 1: 3 to 3: 1. When the ratio of the structure of the general formula (1) is less than 10 mol%, a decrease in adhesive strength becomes a problem. When the ratio of the structure of the general formula (2) is less than 25 mol%, a decrease in solder heat resistance becomes a problem. 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) used in the present invention is represented by the formula (3).

Figure 2008254352

・・・(3)

本発明の樹脂複合銅箔の樹脂層に使用するブロック共重合ポリイミド樹脂(a)と2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)の重量配合比率は好ましくは90:10 〜 10:90であり、より好ましくは60:40 〜 40:60である。
Figure 2008254352

... (3)

The weight blending ratio of the block copolymerized polyimide resin (a) and 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) used in the resin layer of the resin composite copper foil of the present invention is preferably 90. : 10 to 10:90, more preferably 60:40 to 40:60.

本発明の樹脂複合銅箔に使用する銅箔は、プリント配線板に使用される公知の銅箔であれば、特に限定されないが、好適には電解銅箔、圧延銅箔、これらの銅合金等が使用される。これらの銅箔に、例えばニッケル、コバルト処理等、公知の表面処理が施されたものも使用可能である。銅箔の厚さは特に限定されないが、好適には35μm以下である。樹脂層を形成する銅箔面の表面粗さ(Rz)は、4μm以下が好適であり、2μm以下がより好適である(Rzとは、JIS B0601で規定される十点平均粗さである。)。   The copper foil used for the resin composite copper foil of the present invention is not particularly limited as long as it is a known copper foil used for a printed wiring board, but is preferably an electrolytic copper foil, a rolled copper foil, and a copper alloy thereof. Is used. These copper foils that have been subjected to a known surface treatment such as nickel or cobalt treatment can also be used. The thickness of the copper foil is not particularly limited, but is preferably 35 μm or less. The surface roughness (Rz) of the copper foil surface forming the resin layer is preferably 4 μm or less, and more preferably 2 μm or less (Rz is the ten-point average roughness defined by JIS B0601. ).

本発明の樹脂複合銅箔の樹脂層の厚さは、銅箔の表面粗さレベルに応じて厚さを調整することが可能であるが、厚くなると、銅箔塗工後の加熱工程での乾燥が不十分となり易く、使用した銅張積層板の耐熱性が低下する場合があることから、1μm〜10μmが好ましく、2〜7μmがより好ましい。   The thickness of the resin layer of the resin composite copper foil of the present invention can be adjusted according to the surface roughness level of the copper foil. Since drying tends to be insufficient and the heat resistance of the copper clad laminate used may be reduced, 1 μm to 10 μm is preferable, and 2 to 7 μm is more preferable.

本発明の樹脂複合銅箔は、前述の合成方法で得られたブロック共重合ポリイミド樹脂(a)の極性溶媒溶液中に2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)を配合し、室温又は加温しながら攪拌溶解させて得た溶液を、銅箔の片面に直接塗工し、乾燥することにより作製する。塗工方式としては、リバースロール、ロッド(バー)、ブレード、ナイフ、ダイ、グラビア、ロータリースクリーン等の種々の方式が可能である。乾燥には、熱風乾燥機や赤外線乾燥機等、使用溶媒の除去に充分な温度をかける事が出来る装置であれば特に限定されるものではない。また、銅箔の酸化を防止するため 200℃以下で長時間乾燥する方法や真空中又は窒素等の不活性雰囲気中で更に高温で乾燥することも可能である。   The resin composite copper foil of the present invention comprises 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) in a polar solvent solution of the block copolymerized polyimide resin (a) obtained by the synthesis method described above. ), And a solution obtained by stirring and dissolving at room temperature or while heating is directly applied to one side of the copper foil and dried. As a coating method, various methods such as a reverse roll, a rod (bar), a blade, a knife, a die, a gravure, and a rotary screen are possible. The drying is not particularly limited as long as it is a device capable of applying a temperature sufficient to remove the solvent used, such as a hot air dryer or an infrared dryer. In addition, in order to prevent oxidation of the copper foil, it is possible to dry at a temperature of 200 ° C. or lower for a long time, or to dry at a higher temperature in a vacuum or an inert atmosphere such as nitrogen.

本発明の樹脂複合銅箔と積層成形するBステージ樹脂組成物層に使用する樹脂組成物は、プリント配線板に使用される公知の熱硬化性樹脂組成物であれば、特に限定されない。これらの樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、シアン酸エステル樹脂、マレイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、これらの樹脂の臭素やリン含有化合物等の樹脂組成物などが挙げられ、1種或いは2種以上が組み合わせて使用される。耐マイグレーション性等の信頼性、耐熱性等の点から、シアン酸エステル樹脂を必須成分とする樹脂組成物、例えばエポキシ樹脂等との併用が好適である。これら熱硬化性樹脂には、必要に応じて、公知の触媒、硬化剤、硬化促進剤を使用することが可能である。   The resin composition used for the B-stage resin composition layer laminated with the resin composite copper foil of the present invention is not particularly limited as long as it is a known thermosetting resin composition used for printed wiring boards. Examples of these resins include epoxy resins, polyimide resins, cyanate ester resins, maleimide resins, double bond-added polyphenylene ether resins, and resin compositions such as bromine and phosphorus-containing compounds of these resins. Species or two or more are used in combination. From the viewpoint of reliability such as migration resistance and heat resistance, it is preferable to use a resin composition containing a cyanate ester resin as an essential component, for example, an epoxy resin. For these thermosetting resins, known catalysts, curing agents, and curing accelerators can be used as necessary.

Bステージ樹脂組成物層に使用する樹脂組成物に好適に使用されるシアン酸エステル樹脂とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類等である。   The cyanate ester resin suitably used for the resin composition used for the B-stage resin composition layer is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac and cyanogen halide.

これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149等に記載のフェノールノボラック型シアン酸エステル化合物類等も用い得る。又、ナフタレン型シアン酸エステル化合物類も用いられ得る。更に、これらシアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量 400〜6,000 のプレポリマーが使用され得る。このプレポリマーは、上記のシアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。この樹脂中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。更にはシアナト化ポリフェニレンエーテル樹脂も使用できる。これらに1官能のシアン酸エステル化合物も特性に大きく影響しない量を添加できる。好適には1〜10重量%である。これらのシアン酸エステル樹脂は上記のものに限定されず、公知のものが使用可能である。これらは1種或いは2種以上が適宜組み合わせて使用される。   In addition to these, phenol novolac type cyanic acid described in JP-B-41-1928, 43-18468, 44-4791, 45-11712, 46-41112, 47-26853 and JP-A-51-63149, etc. Ester compounds and the like can also be used. Naphthalene-type cyanate ester compounds can also be used. Furthermore, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these cyanate ester compounds can be used. This prepolymer is obtained by polymerizing the above-mentioned cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. It is done. This resin also contains a partially unreacted monomer and is in the form of a mixture of a monomer and a prepolymer, and such a raw material is suitably used for the application of the present invention. Furthermore, cyanated polyphenylene ether resin can also be used. A monofunctional cyanate ester compound can also be added to these in an amount that does not significantly affect the properties. Preferably it is 1 to 10% by weight. These cyanate ester resins are not limited to those described above, and known ones can be used. These may be used alone or in combination of two or more.

シアン酸エステル樹脂に好適に併用されるエポキシ樹脂としては、公知のものが使用できる。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、エポキシ化ポリフェニレンエーテル樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。又、これらの公知の臭素付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が適宜組み合わせて使用される。   As an epoxy resin suitably used in combination with a cyanate ester resin, known resins can be used. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, resorcin type epoxy resin, Naphthalene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, epoxidized polyphenylene ether resin; polyepoxy compounds with epoxidized double bonds such as butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether; polyol, hydroxyl group Examples thereof include polyglycidyl compounds obtained by the reaction of containing silicon resins with epichlorohydrin. Moreover, these well-known bromine addition resin, phosphorus containing epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.

Bステージ樹脂組成物層に使用する樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。   In the resin composition used for the B-stage resin composition layer, various additives can be blended as desired within a range that does not impair the original characteristics of the composition. These additives include unsaturated double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, poly Low molecular weight liquid to high molecular weight elastic rubber such as isoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin, styrene-isoprene Rubber, acrylic rubber, these core-shell rubbers, polyethylene-propylene copolymers, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepolymers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide Properly oligomer; are exemplified polyurethane, etc., it is suitably used.

また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。特に炭酸ガスレーザーで孔あけする場合、孔形状を良好にするためは無機の充填剤が好適に添加される。例えば、シリカ、球状シリカ、アルミナ、タルク、焼成タルク、ウォラストナイト、合成雲母、酸化チタン、水酸化アルミニウム等の一般に公知のものが使用される。更に、これらの針状のもの等、公知の形状のものも使用できる。   In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic properties Various additives such as an imparting agent are used in appropriate combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst. In particular, when drilling with a carbon dioxide laser, an inorganic filler is suitably added to improve the hole shape. For example, generally known materials such as silica, spherical silica, alumina, talc, calcined talc, wollastonite, synthetic mica, titanium oxide, and aluminum hydroxide are used. Furthermore, those having a known shape such as these needle-like ones can also be used.

本発明で使用するBステージ樹脂組成物層の作製方法は特に限定されないが、例えば、熱硬化性樹脂組成物を溶剤に溶解・分散させるか無溶剤でワニスとし、離型フィルムの片面に塗布、乾燥してBステージ樹脂組成物シートとする方法、基材に塗布、乾燥してBステージ化しプリプレグとする方法、導体回路を形成した基板の上に、直接塗布、乾燥してBステージ樹脂組成物層を形成する方法等、公知の方法で作製する。このBステージ樹脂組成物層の厚さは特に限定されないが、シートの場合は、好適には 4〜150μmであり、塗布する場合も同様である。プリプレグの場合は、好適には、厚さ 10〜200μmとする。   The production method of the B-stage resin composition layer used in the present invention is not particularly limited. For example, the thermosetting resin composition is dissolved / dispersed in a solvent or a varnish without a solvent, and applied to one side of a release film, A method of drying to form a B-stage resin composition sheet, a method of applying to a base material, a method of drying to form a B-stage to form a prepreg, a B-stage resin composition by directly applying and drying on a substrate on which a conductor circuit is formed It is produced by a known method such as a method of forming a layer. The thickness of the B-stage resin composition layer is not particularly limited, but in the case of a sheet, it is preferably 4 to 150 μm, and the same applies when applied. In the case of a prepreg, the thickness is preferably 10 to 200 μm.

本発明で使用するBステージ樹脂組成物層には、得られる銅張積層板の特性から、基材を使用することが好ましい。使用される基材としては、プリント配線板に使用される公知の基材であれば、特に限定されない。具体的には、E、NE、D、S、Tガラス等の一般に公知のガラス繊維の不織布、織布等が挙げられる。これらの基材は、樹脂組成物との密着性を向上させるため、その基材に公知の表面処理を施すことが好ましい。   In the B stage resin composition layer used in the present invention, it is preferable to use a base material from the characteristics of the obtained copper-clad laminate. As a base material to be used, if it is a well-known base material used for a printed wiring board, it will not specifically limit. Specific examples include generally known nonwoven fabrics and woven fabrics of glass fibers such as E, NE, D, S, and T glass. In order for these base materials to improve adhesiveness with a resin composition, it is preferable to perform well-known surface treatment to the base material.

本発明における銅張積層板の製造方法は、前記樹脂複合銅箔の樹脂層面を、上記Bステージ樹脂組成物層に対向させて配置し、積層成形するものである。具体的には、Bステージ樹脂組成物層、もしくは内装回路形成した積層板の両面にBステージ樹脂組成物層を配置又は形成したものの、少なくとも片面に、前記樹脂複合銅箔の樹脂層面を対向させて配置し、加熱、加圧、好ましくは真空下で積層成形して銅張積層板とする。又、多層板を作製する場合は、導体回路を形成した内層基板の両面にBステージ樹脂組成物層を配置又は形成し、このBステージ樹脂組成物層面に、前記樹脂複合銅箔の樹脂層面を対向させて配置し、加熱、加圧、好ましくは真空下で積層成形して多層銅張積層板とする。これらの銅張積層板や多層銅張積層板に、公知の方法で導体回路を形成後、メッキ処理等を経て、本発明のプリント配線板とする。   The manufacturing method of the copper clad laminated board in this invention arrange | positions the resin layer surface of the said resin composite copper foil facing the said B stage resin composition layer, and carries out lamination molding. Specifically, although the B stage resin composition layer is disposed or formed on both surfaces of the B stage resin composition layer or the laminated board on which the internal circuit is formed, the resin layer surface of the resin composite copper foil is opposed to at least one surface. And are laminated by heating and pressurizing, preferably under vacuum, to form a copper-clad laminate. In the case of producing a multilayer board, a B-stage resin composition layer is disposed or formed on both surfaces of the inner substrate on which the conductor circuit is formed, and the resin layer surface of the resin composite copper foil is disposed on the B-stage resin composition layer surface. It arrange | positions so that it may oppose, and it laminates and forms by heating, pressurization, preferably a vacuum, and it is set as a multilayer copper clad laminated board. A conductor circuit is formed on these copper-clad laminates and multilayer copper-clad laminates by a known method, followed by plating and the like to obtain the printed wiring board of the present invention.

これらに使用する内層回路形成した積層板の種類は、特に限定されず、プリント配線板材料用の公知の積層板、金属箔張板、好適には銅張板が使用できる。具体的には、熱硬化性樹脂組成物及び/又は熱可塑性樹脂組成物などを使用した、無機繊維及び/又は有機繊維基材銅張積層板、耐熱性フィルム基材銅張板、更にはこれらの基材を組み合わせた複合基材銅張積層板及びこれらの多層銅張板、アディティブ法等で作製した多層銅張板等、公知のものが使用できる。内層回路基板の導体厚さは特に限定されないが、好適には 3〜35μmである。この導体回路上は、Bステージ樹脂組成物層の樹脂との密着性を高める公知の処理、例えば黒色酸化銅処理、薬液処理(例えばメック社のCZ処理)等を施すのが好ましい。   The kind of the laminated board formed with the inner layer circuit used for these is not particularly limited, and a known laminated board, a metal foil-clad board, preferably a copper-clad board for printed wiring board materials can be used. Specifically, inorganic fiber and / or organic fiber-based copper-clad laminates, heat-resistant film-based copper-clad plates using thermosetting resin compositions and / or thermoplastic resin compositions, and further these Known materials such as composite base material copper clad laminates combining these base materials, multilayer copper clad plates, multilayer copper clad plates prepared by the additive method, and the like can be used. The conductor thickness of the inner layer circuit board is not particularly limited, but is preferably 3 to 35 μm. On this conductor circuit, it is preferable to perform a known process for improving the adhesion of the B-stage resin composition layer to the resin, for example, a black copper oxide process, a chemical solution process (for example, CZ process of MEC).

本発明の積層条件は特に限定されないが、好ましくは、温度 100〜250℃、圧力 5〜40kgf/cm2、真空度 30mmHg以下で 30分〜5時間積層成形する。積層は、最初から最後までこの条件でも良いが、Bステージ樹脂組成物層のゲル化までは積層成形し、その後、取り出して加熱炉で後硬化することも可能である。   The lamination conditions of the present invention are not particularly limited. Preferably, the lamination is carried out at a temperature of 100 to 250 ° C., a pressure of 5 to 40 kgf / cm 2, and a degree of vacuum of 30 mmHg or less for 30 minutes to 5 hours. Lamination may be performed under these conditions from the beginning to the end, but it is also possible to laminate and form until the B-stage resin composition layer is gelled, and then take out and post-cure in a heating furnace.

以下に合成例、比較合成例、実施例、比較例で本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to synthesis examples, comparative synthesis examples, examples, and comparative examples.

合成例
ステンレス製の碇型攪拌棒、窒素導入管とストップコックのついたトラップ上に、玉付冷却管を取り付けた還流冷却器を取り付けた20リットルの三つ口フラスコに、3,4、3',4'-ビフェニルテトラカルボン酸二無水物 1765.32g(6mol)、1,3-ビス(3-アミノフェノキシ)ベンゼン 1315.49g(4.5mol)、γ-バレロラクトン 60.07g(0.6mol)、ピリジン 71.19g(0.9mol)、N-メチル-2-ピロリドン(以下NMPと記す) 4389g、トルエン 293gを加え、180℃で1時間加熱した後室温付近まで冷却した後、3,4、3',4'-ビフェニルテトラカルボン酸二無水物 441.33g(1.5mol)、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン 1231.53g(3mol)、NMP 2926g、トルエン 585gを加え、室温で1時間混合後、180℃で4時間加熱して、固形分 38%のブロック共重合ポリイミド樹脂A成分を得た。このブロック共重合ポリイミド樹脂は、一般式(1):一般式(2)=3:2であり、数平均分子量:70000、重量平均分子量:150000であった。
Synthesis Example A stainless steel vertical stirring bar, a trap with a nitrogen inlet tube and a stopcock, and a 20-liter three-necked flask equipped with a reflux condenser with a ball-mounted condenser tube were placed in 3, 4, 3 ', 4'-biphenyltetracarboxylic dianhydride 1765.32 g (6 mol), 1,3-bis (3-aminophenoxy) benzene 1315.49 g (4.5 mol), γ-valerolactone 60.07 g (0.6 mol), pyridine 71.19 g (0.9 mol), 4389 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and 293 g of toluene, heated at 180 ° C. for 1 hour, cooled to near room temperature, then 3, 4, 3 ′, 4 ′ -Biphenyltetracarboxylic dianhydride 441.33 g (1.5 mol), 2,2-bis {4- (4-aminophenoxy) phenyl} propane 1231.53 g (3 mol), NMP 2926 g, toluene 585 g were added, and 1 hour at room temperature. After mixing, the mixture was heated at 180 ° C. for 4 hours to obtain a block copolymerized polyimide resin A component having a solid content of 38%. The block copolymerized polyimide resin had a general formula (1): general formula (2) = 3: 2, a number average molecular weight: 70000, and a weight average molecular weight: 150,000.

実施例1〜4
合成例で得られたブロック共重合ポリイミド樹脂溶液をNMPで更に希釈し、固形分 10%のブロック共重合ポリイミド樹脂溶液とし、これに2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパンB成分(BMI-80、ケイ・アイ化成)を表1に記載した固形分重量比率で60℃、20分間溶融混合して樹脂溶液とした。得られた樹脂溶液を、厚み 12μmの電解銅箔(F0-WS箔 Rz=1.5μm、古河サーキットフォイル製)のマット面に、リバースロール塗工機を用いて、120℃で3分間、160℃で3分間の乾燥条件下にて連続3000mの塗布次乾燥を実施(1次乾燥処理)した後、2次乾燥処理として、連続乾燥炉を用い窒素雰囲気下で300℃、3分間の乾燥条件にて連続3000mの加熱処理を実施し、樹脂複合銅箔を作製した。一方、2,2-ビス(4-シアナトフェニル)プロパン 400gを 150℃に溶融させ、撹拌しながら4時間反応させ、これをメチルエチルケトンで溶解し、更にブロム化ビスフェノールA型エポキシ樹脂(エピクロン1123P、大日本インキ製)600g、オクチル酸亜鉛 0.1部を加えワニスとした。このワニスを、厚さ 100μmのガラス織布基材に含浸させ、150℃で 6分間乾燥し、樹脂量 45%、厚さ 105μm、ゲル化時間(at170℃) 120秒のBステージ樹脂組成物層(プリプレグ)を作製した。このプリプレグを4枚重ね合わせた上下面に、上記の樹脂複合銅箔の樹脂層面を対向させて配置し、温度 220℃、圧力 40kgf/cm2、真空度 30mmHg以下で1時間積層成形して、厚さ 0.4mmの銅張積層板を作製した。評価結果を表1に示す。
Examples 1-4
The block copolymerized polyimide resin solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide resin solution having a solid content of 10%, and 2,2-bis [4- (4-maleimidophenoxy) phenyl] was added thereto. Propane B component (BMI-80, Kei Ii Kasei) was melt-mixed at a solid weight ratio shown in Table 1 at 60 ° C. for 20 minutes to obtain a resin solution. The obtained resin solution was applied to a mat surface of 12 μm thick electrolytic copper foil (F0-WS foil Rz = 1.5 μm, manufactured by Furukawa Circuit Foil) at 120 ° C. for 3 minutes at 160 ° C. using a reverse roll coating machine. After the continuous drying of 3000m under the dry condition for 3 minutes (primary drying process), the secondary drying process is performed at 300 ° C for 3 minutes in a nitrogen atmosphere using a continuous drying furnace. Then, a continuous heat treatment of 3000 m was performed to prepare a resin composite copper foil. On the other hand, 400 g of 2,2-bis (4-cyanatophenyl) propane was melted at 150 ° C., reacted for 4 hours with stirring, dissolved in methyl ethyl ketone, and further brominated bisphenol A type epoxy resin (Epicron 1123P, Dainippon Ink) (600 g) and zinc octylate (0.1 part) were added to make a varnish. This varnish is impregnated into a glass woven fabric substrate with a thickness of 100 μm, dried at 150 ° C. for 6 minutes, a B-stage resin composition layer having a resin amount of 45%, a thickness of 105 μm, and a gelation time (at 170 ° C.) of 120 seconds. A (prepreg) was prepared. The resin layer surface of the above resin composite copper foil is placed facing the top and bottom surfaces of the four prepregs that are stacked, and laminated and molded for 1 hour at a temperature of 220 ° C, a pressure of 40 kgf / cm2, and a vacuum of 30 mmHg or less. A 0.4 mm thick copper clad laminate was produced. The evaluation results are shown in Table 1.

Figure 2008254352
Figure 2008254352

比較例1
実施例において、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパンの代わりにビス(4-マレイミドフェニル)メタンC成分(BMI-H、ケイ・アイ化成)を使用する以下は実施例と同様に行い、厚さ 0.4mmの銅張積層板を作製した。評価結果を表2に示す。














Comparative Example 1
In the examples, bis (4-maleimidophenyl) methane C component (BMI-H, Kay Kasei) is used in place of 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane. In the same manner as in the example, a copper clad laminate having a thickness of 0.4 mm was produced. The evaluation results are shown in Table 2.














Figure 2008254352
Figure 2008254352

測定方法
1)2次乾燥時の揮発成分量(g)
連続乾燥炉に排気ファン(風量13m3/L)を設け、その配管径200mmの配管に金属メッシュ(200メッシュ)を被せて、300℃、3分間の乾燥条件で所定の数量を処理した後、メッシュに凝固した成分を採取し、その重量を測定。
2)全体厚み:
JIS C6481に準じて、マイクロメータにて5点の厚み測定を行った平均値。
3)銅箔接着力:
JIS C6481に準じて、3回測定した平均値。
4)気中耐熱性:
JIS C6481に準じて、熱風乾燥機中で 240℃及び280℃にて、30分間加熱処理後の外観変化の異常の有無を目視にて観察した。(○:異常なし、×:膨れ、剥がれが発生)
5)吸湿耐熱性:
50mm×50mm角のサンプルの片面の半分以外の全銅箔をエッチング除去し、プレシッヤークッカー試験機(平山製作所製PC-3型)で121℃、2気圧で所定時間処理後、260℃の半田槽に60秒間フロートさせて、外観変化の異常の有無を目視にて観察した。(○:異常なし、×:膨れ、剥がれが発生)
6)分子量測定
前記数平均分子量及び重量平均分子量測定は、ゲルパーミエイションクロマトグラフィー(TOSOH HLC-8220型装置)を用いポリスチレン換算で測定。
Measurement method 1) Amount of volatile components during secondary drying (g)
An exhaust fan (air flow 13m3 / L) is installed in the continuous drying furnace, and a pipe with a pipe diameter of 200mm is covered with a metal mesh (200 mesh), and after processing a predetermined quantity under a drying condition of 300 ° C for 3 minutes, the mesh Collect the solidified component and measure its weight.
2) Overall thickness:
Average value of thickness measured at 5 points with a micrometer according to JIS C6481.
3) Copper foil adhesive strength:
Average value measured three times according to JIS C6481.
4) Heat resistance in air:
According to JIS C6481, the presence or absence of abnormal appearance change after 30 minutes of heat treatment was visually observed in a hot air dryer at 240 ° C. and 280 ° C. (○: No abnormality, ×: Swelling and peeling occurred)
5) Hygroscopic heat resistance:
All copper foil other than half of one side of a 50mm x 50mm square sample was removed by etching, treated at 121 ° C and 2 atm for a specified time with a pressurer cooker tester (Hirayama Seisakusho PC-3 type), then 260 ° C The solder bath was floated for 60 seconds, and the presence or absence of abnormal appearance change was visually observed. (○: No abnormality, ×: Swelling and peeling occurred)
6) Molecular weight measurement The number average molecular weight and the weight average molecular weight are measured in terms of polystyrene using gel permeation chromatography (TOSOH HLC-8220 type apparatus).

Claims (7)

銅箔の片面にブロック共重合ポリイミド樹脂(a)と2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)からなる樹脂層を形成した樹脂複合銅箔。 A resin composite copper foil in which a resin layer comprising a block copolymerized polyimide resin (a) and 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) is formed on one surface of a copper foil. ブロック共重合ポリイミド(a)が、一般式(1)及び一般式(2)で表される構造単位を有する請求項1記載の樹脂複合銅箔。
Figure 2008254352
・・・(1)


Figure 2008254352


・・・(2)
(式中のm,nは、m:n=1:9〜3:1)
The resin composite copper foil according to claim 1, wherein the block copolymerized polyimide (a) has a structural unit represented by the general formula (1) and the general formula (2).
Figure 2008254352
... (1)


Figure 2008254352


... (2)
(M and n in the formula are m: n = 1: 9 to 3: 1)
樹脂層を形成するブロック共重合ポリイミド樹脂(a)と2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン(b)との割合が、重量比で10:90から90:10である請求項1又は2記載の樹脂複合銅箔。 The ratio of the block copolymerized polyimide resin (a) forming the resin layer to 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (b) is from 10:90 to 90:10 by weight. The resin composite copper foil according to claim 1 or 2. 樹脂層の厚みが、0.1μm〜10μmである請求項1〜3のいずれかに記載の樹脂複合銅箔。 The resin composite copper foil according to claim 1, wherein the resin layer has a thickness of 0.1 μm to 10 μm. 樹脂層を形成する側の銅箔面の表面粗さ(Rz)が、4μm以下である請求項1〜4のいずれかに記載の樹脂複合銅箔。 5. The resin composite copper foil according to claim 1, wherein the surface roughness (Rz) of the copper foil surface on the side on which the resin layer is formed is 4 μm or less. 請求項1〜5のいずれかに記載の樹脂複合銅箔とBステージ樹脂組成物層とを積層成形した銅張積層板。 The copper clad laminated board which laminated-molded the resin composite copper foil in any one of Claims 1-5, and a B stage resin composition layer. 請求項6記載の銅張積層板を用いたプリント配線板。 A printed wiring board using the copper clad laminate according to claim 6.
JP2007099970A 2007-04-06 2007-04-06 Resin composite copper foil Active JP5253754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099970A JP5253754B2 (en) 2007-04-06 2007-04-06 Resin composite copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099970A JP5253754B2 (en) 2007-04-06 2007-04-06 Resin composite copper foil

Publications (2)

Publication Number Publication Date
JP2008254352A true JP2008254352A (en) 2008-10-23
JP5253754B2 JP5253754B2 (en) 2013-07-31

Family

ID=39978422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099970A Active JP5253754B2 (en) 2007-04-06 2007-04-06 Resin composite copper foil

Country Status (1)

Country Link
JP (1) JP5253754B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073952A1 (en) * 2008-12-26 2010-07-01 三菱瓦斯化学株式会社 Copper foil with resin
WO2011010540A1 (en) 2009-07-24 2011-01-27 三菱瓦斯化学株式会社 Resin composite electrolytic copper foil, copper-clad laminate, and printed wiring board
WO2012121164A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition for printed circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171106A (en) * 2003-12-12 2005-06-30 Mitsui Chemicals Inc Resin composition and metal laminate
JP2006082228A (en) * 2004-09-14 2006-03-30 Mitsubishi Gas Chem Co Inc Resin composite copper foil and copper clad laminated sheet using it and printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171106A (en) * 2003-12-12 2005-06-30 Mitsui Chemicals Inc Resin composition and metal laminate
JP2006082228A (en) * 2004-09-14 2006-03-30 Mitsubishi Gas Chem Co Inc Resin composite copper foil and copper clad laminated sheet using it and printed wiring board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073952A1 (en) * 2008-12-26 2010-07-01 三菱瓦斯化学株式会社 Copper foil with resin
JP5641942B2 (en) * 2008-12-26 2014-12-17 三菱瓦斯化学株式会社 Resin composite copper foil
WO2011010540A1 (en) 2009-07-24 2011-01-27 三菱瓦斯化学株式会社 Resin composite electrolytic copper foil, copper-clad laminate, and printed wiring board
KR20120068834A (en) * 2009-07-24 2012-06-27 피아이 알 앤 디 컴파니, 리미티드 Regin composite electrolytic copper foil, copper clad laminate and printed wiring board
CN102574365A (en) * 2009-07-24 2012-07-11 三菱瓦斯化学株式会社 Resin composite electrolytic copper foil, copper-clad laminate, and printed wiring board
JP5636367B2 (en) * 2009-07-24 2014-12-03 三菱瓦斯化学株式会社 Resin composite electrolytic copper foil, copper-clad laminate and printed wiring board
TWI501865B (en) * 2009-07-24 2015-10-01 Mitsubishi Gas Chemical Co Resin composite electrolyzed copper foil, copper clad laminate and print wiring board
KR101722430B1 (en) 2009-07-24 2017-04-03 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Regin composite electrolytic copper foil, copper clad laminate and printed wiring board
US9949371B2 (en) 2009-07-24 2018-04-17 Mitsubishi Gas Chemical Company, Inc. Resin composite electrolytic copper foil, copper clad laminate and printed wiring board
WO2012121164A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition for printed circuit board
EP2942190A1 (en) 2011-03-07 2015-11-11 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed-wiring board

Also Published As

Publication number Publication date
JP5253754B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US9949371B2 (en) Resin composite electrolytic copper foil, copper clad laminate and printed wiring board
KR101289043B1 (en) Resin Composite Metal Foil, Laminate and Process for the Production of Printed Wiring Board Using the Laminate
KR101308119B1 (en) Resin composite copper foil, printed wiring board, and production process thereof
JP4740692B2 (en) Manufacturing method of printed wiring board
CN108690194B (en) Polyimide, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
JP4896533B2 (en) Resin composite copper foil and method for producing the same
JP5641942B2 (en) Resin composite copper foil
TWI571492B (en) Resin composition for printed circuit boards
WO2006118230A1 (en) Material for plating and use thereof
JP4829647B2 (en) Printed wiring board and manufacturing method thereof
JP4145640B2 (en) Heat resistant adhesive film for printed circuit board and method for producing the same
JP4767517B2 (en) Resin composite copper foil, copper-clad laminate and printed wiring board using the same
JP5253754B2 (en) Resin composite copper foil
JP4390056B2 (en) B-stage resin composition sheet and method for producing copper-clad laminate using the same
JP4390055B2 (en) Method for producing copper clad laminate
JP2003012923A (en) Thermosetting resin composition and b-stage resin composition sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110907

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120713

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Ref document number: 5253754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3