JP2008253201A - Pipeline structure and complex thereof - Google Patents

Pipeline structure and complex thereof Download PDF

Info

Publication number
JP2008253201A
JP2008253201A JP2007099692A JP2007099692A JP2008253201A JP 2008253201 A JP2008253201 A JP 2008253201A JP 2007099692 A JP2007099692 A JP 2007099692A JP 2007099692 A JP2007099692 A JP 2007099692A JP 2008253201 A JP2008253201 A JP 2008253201A
Authority
JP
Japan
Prior art keywords
granular material
pipe
water level
material storage
pipe structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007099692A
Other languages
Japanese (ja)
Other versions
JP4885783B2 (en
Inventor
Yoshiisa Koshikawa
義功 越川
Hanako Nakamura
華子 中村
Buun Ken Rin
ブーン ケン リン
Katsunori Yamaki
克則 山木
Masahiro Tanaka
昌宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007099692A priority Critical patent/JP4885783B2/en
Publication of JP2008253201A publication Critical patent/JP2008253201A/en
Application granted granted Critical
Publication of JP4885783B2 publication Critical patent/JP4885783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipeline structure stably keeping the environment suitable for propagation of benthic organisms and heightening the variety of species living in a coastal zone, and to provide a complex thereof. <P>SOLUTION: The pipeline structure 10 is installed in the coastal zone, having a water area in which the water level changes vertically and forms a habitat for the benthic organisms by utilizing the water level change, and is equipped with a granule-storing part 1 which is equipped with a pipe line, having one terminal that communicates with an upper opening 10a, positioned in between the maximum water level and the minimum water level of the coastal zone, and having a shape directed downward from the one terminal to a prescribed position, and thereafter, being directed upward from the position; and a communicating pipeline 8 for communicating the other terminal of the granule-storing part 1 with a lower-side opening 10b formed at a position lower than the upper-side opening. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水位が上下に変動する水域を有する沿岸域に設置されて、当該水位変動を利用して底生生物の生息場を形成するための管路構造物及びその複合体に関する。   The present invention relates to a pipeline structure and a complex thereof, which are installed in a coastal area having a water area where the water level fluctuates up and down to form a benthic habitat using the water level fluctuation.

海や川などの沿岸には波浪による浸食の防止や防災のために護岸が建設されている箇所がある。護岸は一般にコンクリートなどの人工構造物によって構築される。護岸を構成している人工構造物に生物を生息させる手段について、これまでに種々の提案がなされている。   Some coastal areas such as seas and rivers have revetments built to prevent erosion by waves and to prevent disasters. The revetment is generally constructed by artificial structures such as concrete. Various proposals have been made so far about means for inhabiting living things in the artificial structures constituting the revetment.

例えば、特許文献1には魚巣のための穴が設けられたブロックで護岸を構築する方法が記載されている。また、特許文献2には石や土砂を収容可能で生物の生息場となる凹部が設けられたブロック壁構造を用いて護岸を構築する方法が記載されている。更に、特許文献3には小動物が出入り可能な孔を有する護岸パネル材を用いて護岸を構築する方法が記載されている。   For example, Patent Document 1 describes a method of building a revetment with a block provided with a hole for a fish nest. Patent Document 2 describes a method of building a revetment using a block wall structure that can accommodate stones and earth and is provided with a concave portion that becomes a habitat for living organisms. Furthermore, Patent Document 3 describes a method of building a revetment using a revetment panel material having holes through which small animals can go in and out.

特許文献1〜3に記載の護岸は、水域に生息する生物のなかでも、主に魚類、甲殻類、両生類などを対象とするものである。すなわち、上記文献に記載の護岸は、これらの生物が生息できる空隙を人工的に形成して当該生物を定着せしめることを目的としたものである。   The revetments described in Patent Documents 1 to 3 are mainly intended for fish, crustaceans, amphibians, etc. among living organisms inhabiting waters. In other words, the revetment described in the above document is intended to artificially form a void in which these organisms can inhabit and to fix the organisms.

ところで、干潟や砂浜などの沿岸域には上記生物以外にも多様な生物が生息している。例えば、潮汐に伴う海面の変動によって冠水と干出とを繰り返す干潟には底生生物と呼ばれる種々の生物が生息している。底生生物は、沿岸域の砂泥に生息する生物であって、砂泥の上を這い回ったり砂泥に穴を開けて巣穴を形成する生物である。底生生物の具体例としては、ゴカイ、アサリ、カニなどが挙げられる。特に、近年、ゴカイやアサリは干潟の砂泥や海水を浄化する性質を有することで注目されている。   By the way, various creatures inhabit coastal areas such as tidal flats and sandy beaches. For example, various organisms called benthic organisms live in tidal flats that repeat flooding and drying due to sea level changes caused by tides. The benthic organisms inhabit the sandy mud in the coastal area, and are organisms that crawl on the sandy mud or make holes in the sandy mud to form burrows. Specific examples of benthic organisms include sea bream, clams and crabs. In particular, in recent years, gokai and clams are attracting attention for their ability to purify mud and seawater in tidal flats.

このような底生生物が生息する環境の条件の一つとして、潮位の変動による砂泥の飽和度の変化が重要であることが知られている。飽和度とは、土の固体以外の部分(間隙)に占める液体部分の体積百分率であり、生息場の含水比ということもできる。例えば、非特許文献1には、コメツキガニが巣穴を形成するためには潮位の変動によって砂泥に生じるサクションが必要不可欠あることが記載されている。コメツキガニは砂泥を団子状に形成してこれを外に排出して巣穴を形成する性質を有している。飽和度が100%の砂泥や乾燥した砂泥では砂泥の粒子同士が結合せず、砂団子を形成できないため、コメツキガニにとっては砂団子を形成するのに適した飽和度の砂泥が出現し得る環境が望ましいといえる。
特開平10−25727号公報 特開2004−324373号公報 特開平11−293646号公報 佐々真志、渡部要一、「干潟底生生物の住活動における臨界現象と適合土砂環境場の解明」、海岸工学論文集、土木学会、2006年、第53巻、p.1061−1065
As one of the environmental conditions inhabited by such benthic organisms, it is known that the change in the degree of saturation of sand and mud due to changes in tide level is important. The degree of saturation is the volume percentage of the liquid part occupying the part (gap) other than the solid of the soil, and can also be referred to as the water content of the habitat. For example, Non-Patent Document 1 describes that suction that occurs in sand mud due to fluctuations in the tide level is indispensable for the click crabs to form burrows. Rice crabs have the property of forming sand mud in the form of dumplings and discharging them to form nest holes. In sand mud with 100% saturation or dry sand mud, the particles of sand mud do not bind together to form sand dumplings, so for sand crabs, saturated sand mud suitable for forming sand dumplings appears. An environment that can be said to be desirable.
Japanese Patent Laid-Open No. 10-25727 JP 2004-324373 A Japanese Patent Laid-Open No. 11-293646 Masashi Sasa and Yoichi Watanabe, “Elucidation of Critical Phenomena and Living Environment of Sediment Environment in Living Activity of Tidal Flats”, Journal of Coastal Engineering, Japan Society of Civil Engineers, 2006, Vol. 53, p. 1061-1065

実際の干潟や砂浜では、潮汐によって砂泥の移動及び補給が繰り返される。そのため、砂泥は底生生物の生息場として良好な状態に維持される。これに対し、上述の特許文献1〜3に係る従来の護岸では、底生生物の生息場を持続的に良好な状態に維持することは困難であるといえる。これらの護岸には、魚類などの生物を定着せしめるための空隙が設けられているが、底生生物の生息場となる砂泥を保持すると共にこれを良好な状態に維持する機能を有していないためである。   In actual tidal flats and sandy beaches, the movement and replenishment of sand and mud is repeated by tides. Therefore, sand mud is maintained in good condition as a habitat for benthic organisms. On the other hand, it can be said that it is difficult to maintain the habitat of benthic organisms in a good state continuously with the conventional revetments according to Patent Documents 1 to 3 described above. These revetments are provided with voids to allow fish and other organisms to settle, but they have the function of retaining sand mud, which is a habitat for benthic organisms, and maintaining it in good condition. This is because there is not.

例えば、従来の護岸に凹部を設けてこれに砂泥を充填したとしても、凹部の深さが浅い場合には水の流れによって砂泥が流失しやすく、底生生物の生息場が失われてしまうおそれがある。他方、凹部の深さが深いと砂泥内部の通水性が不十分となりやすい。通水性が不十分であると溶存酸素を含む新鮮な水が内部にまで供給されず、砂泥が腐敗して底生生物が生息できない環境となってしまう。   For example, even if a recess is provided on a conventional revetment and it is filled with sand mud, if the depth of the recess is shallow, sand mud is likely to be washed away by the flow of water, and the habitat for benthic organisms is lost. There is a risk that. On the other hand, if the depth of the recess is deep, water permeability inside the sand mud tends to be insufficient. If the water permeability is insufficient, fresh water containing dissolved oxygen will not be supplied to the inside, and the mud will rot and the environment will not allow benthic organisms to live.

このように従来の護岸では、生息できる生物種が限定的であり、砂泥を生息場とする底生生物を安定的に生息させることができなかった。   Thus, in the conventional revetment, living organism species are limited, and benthic organisms that use sand and mud as their habitat cannot be stably inhabited.

本発明は、このような実情に鑑みてなされたものであり、底生生物の生息に適した環境を安定的に維持することが可能であり、沿岸域に生息する生物種の多様性を高めることができる管路構造物及びその複合体を提供することを目的とする。   The present invention has been made in view of such circumstances, can stably maintain an environment suitable for benthic habitat, and enhances the diversity of species living in the coastal area. An object of the present invention is to provide a pipe structure and a composite thereof.

本発明は、水位が上下に変動する水域を有する沿岸域に設置されて、当該水位変動を利用して底生生物の生息場を形成するためのものであって、当該沿岸域の最高水位と最低水位との間に位置する上側開口に一端が連通すると共に、この一端から下方に向かいその後上方に向かうような形状の管路を有する第1の粒状物貯留部と、第1の粒状物貯留部の他端と上側開口よりも低い位置に設けられている下側開口とを連通する連通管路と、を備えることを特徴とする管路構造物を提供する。   The present invention is installed in a coastal area having a water area where the water level fluctuates up and down, and uses the water level fluctuation to form a habitat for benthic organisms. A first granular material storage section having one end communicating with the upper opening located between the lowest water level and a pipe line shaped downward from this one end and then upward; and a first granular material storage And a communication conduit that communicates the other end of the portion with a lower opening provided at a position lower than the upper opening.

沿岸域の水位が上昇する場合、本発明に係る管路構造物の連通管路内の空気が圧縮されてその圧力が上昇する。連通管路内の空気の圧力が上昇する機構は次の通りである。すなわち、沿岸域の水位が上昇すると、連通管路内においても下側開口を通じて導入される水の水位が上昇する。そうすると、連通管路内の空気は水面によって上側開口に向けて押されることになるが、粒状物貯留部に充填される粒状物によって空気の流れが妨げられる。その結果、連通管路内の空気の圧力が上昇する。ただし、粒状物が充填された粒状物貯留部の両端に生じる差圧が大きくなると空気が粒状物内を流通する。この場合、粒状物貯留部内の圧力分布は下側開口側が高く上側開口側が低くなっている。   When the water level in the coastal area rises, the air in the communication pipe of the pipe structure according to the present invention is compressed and the pressure rises. The mechanism by which the pressure of air in the communication pipe rises is as follows. That is, when the water level in the coastal area rises, the water level introduced through the lower opening also rises in the communication pipeline. Then, the air in the communication conduit is pushed toward the upper opening by the water surface, but the flow of air is hindered by the particulate matter filled in the particulate matter reservoir. As a result, the pressure of the air in the communication pipe increases. However, when the differential pressure generated at both ends of the granular material storage section filled with the granular material increases, air flows through the granular material. In this case, the pressure distribution in the granular material reservoir is high on the lower opening side and low on the upper opening side.

沿岸域の水位が更に上昇して上側開口の位置まで到達すると、上側開口から管路内へと水が流入し、粒状物貯留部に外部の新鮮な水が供給される。これにより、粒状物貯留部内の粒状物の腐敗が抑制される。   When the water level in the coastal area further rises and reaches the position of the upper opening, water flows from the upper opening into the pipeline, and fresh fresh water is supplied to the granular material reservoir. Thereby, the decay of the granular material in a granular material storage part is suppressed.

一方、沿岸域の水位が下降する場合、上述の水位が上昇する場合とは逆に連通管路内には負圧が生じる。沿岸域の水位が下降すると、連通管路内においても下側開口を通じて導入される水の水位が下降する。しかし、粒状物貯留部に充填される粒状物によって、上側開口から管路内への空気の流入が妨げられる。その結果、管路内に負圧が生じる。ただし、粒状物が充填された粒状物貯留部の両端に生じる差圧が大きくなると空気が粒状物内を流通する。この場合、粒状物貯留部内の圧力分布は上側開口側が高く下側開口側が低くなっている。   On the other hand, when the water level in the coastal area is lowered, negative pressure is generated in the communication pipe, contrary to the case where the water level is raised. When the water level in the coastal area falls, the water level introduced through the lower opening also falls in the communication pipe. However, the inflow of air from the upper opening into the pipe line is prevented by the granular material filled in the granular material storage unit. As a result, negative pressure is generated in the pipeline. However, when the differential pressure generated at both ends of the granular material storage section filled with the granular material increases, air flows through the granular material. In this case, the pressure distribution in the granular material reservoir is high on the upper opening side and low on the lower opening side.

本発明の管路構造物では、沿岸域の水位変動に伴って上記のように粒状物貯留部の両端に空気の圧力差が生じる。この圧力差によって粒状物貯留部の間隙水の一部が空気に置換されるため、粒状物の飽和度(粒状物貯留部の含水比)を経時変化させることができる。すなわち、本発明の管路構造物によれば、飽和度が経時変化するという点において実際の干潟や砂浜の環境を再現できる。また、空気が粒状物貯留部内を流通することで、粒状物貯留部内の粒状物の腐敗を十分に抑制することができる。このように本発明によれば、底生生物の生息場として好適な環境を粒状物貯留部内に貯留された粒状物に形成することができると共に、この環境を十分安定的に維持することができる。   In the pipe structure according to the present invention, an air pressure difference is generated at both ends of the granular material storage portion as described above in accordance with the fluctuation of the water level in the coastal area. Due to this pressure difference, a part of the pore water in the granular material reservoir is replaced with air, so that the saturation of the granular material (water content ratio of the granular material reservoir) can be changed over time. That is, according to the pipe structure of the present invention, an actual tidal flat or sandy beach environment can be reproduced in that the degree of saturation changes with time. Moreover, the decay of the granular material in a granular material storage part can fully be suppressed because air distribute | circulates the inside of a granular material storage part. As described above, according to the present invention, an environment suitable as a habitat for benthic organisms can be formed in the granular material stored in the granular material storage unit, and this environment can be maintained sufficiently stably. .

本発明において連通管路は、第1の粒状物貯留部の他端から上方に向かいその後下方に向かうような形状の管路を有することが好ましい。連通管路がこのような形状であると、管路構造物全体をコンパクトなサイズとしながらも管路内の空間の容積を十分に確保することができる。   In the present invention, it is preferable that the communication pipe has a pipe having a shape that extends upward from the other end of the first granular material reservoir and then downward. When the communication pipe has such a shape, the volume of the space in the pipe can be sufficiently secured while the entire pipe structure is made compact.

また、本発明において下側開口は、当該沿岸域の最低水位よりも高い位置に設けられていることが好ましい。沿岸域の水位が下側開口よりも低い位置まで下降すると、下側開口を通じて連通管路内の空間が大気に開放されるため、その中の空気が外部の新鮮な空気と置換される。したがって、水位が再び上昇した時に粒状物貯留部内の粒状物に対して新鮮な空気が供給されるため、粒状物貯留部内の粒状物の腐敗がより一層効果的に抑制される。   In the present invention, the lower opening is preferably provided at a position higher than the lowest water level in the coastal area. When the water level in the coastal region is lowered to a position lower than the lower opening, the space in the communication pipe line is released to the atmosphere through the lower opening, so that the air therein is replaced with fresh fresh air. Therefore, when the water level rises again, fresh air is supplied to the particulate matter in the particulate matter storage unit, so that the decay of the particulate matter in the particulate matter storage unit is further effectively suppressed.

本発明においては、当該沿岸域の水位が最低水位から最高水位まで上昇する際、第1の粒状物貯留部の方向へと押し上げられる連通管路内の空気の容積は、第1の粒状物貯留部の容積よりも大きいことが好ましい。このような構成の管路構造物によれば、水域の水位変動によって十分な量の空気を粒状物貯留部内の粒状物に供給可能である。   In the present invention, when the water level in the coastal area rises from the lowest water level to the highest water level, the volume of air in the communication pipe that is pushed up toward the first granular material storage part is the first granular material storage. It is preferably larger than the volume of the part. According to the pipe structure having such a configuration, a sufficient amount of air can be supplied to the particulate matter in the particulate matter storage unit due to the fluctuation of the water level in the water area.

本発明においては、第1の粒状物貯留部に充填する粒状物は、平均粒径0.01〜20mmの砂泥であることが好ましい。なお、粒状物貯留部に充填された粒状物内に底生生物が生息している場合には、粒状物(砂泥)として上記範囲の下限側の平均粒径のもの(例えば、平均粒径が0.01〜0.05mmの砂泥)を使用したとしても粒状物貯留部内の通気性及び通水性が確保されやすい。粒状物内に底生生物が生息していると、底生生物の巣穴や移動によって形成される穴が空気又は水の流路となり得るためである。   In this invention, it is preferable that the granular material with which a 1st granular material storage part is filled is sand mud with an average particle diameter of 0.01-20 mm. In addition, when benthic organisms live in the granular material filled in the granular material reservoir, the granular material (sand mud) has an average particle size on the lower limit side of the above range (for example, average particle size) However, it is easy to ensure air permeability and water permeability in the granular material reservoir. This is because when benthic organisms inhabit in the granular material, nest holes and holes formed by movement of the benthic organisms can become air or water flow paths.

また、本発明は、上記構成の管路構造物を沿岸域に複数並列に設けてなる管路構造物の複合体であって、隣接する管路構造物の第1の粒状物貯留部同士を連通する管路を有する第2の粒状物貯留部を備えることを特徴とする複合体を提供する。   Further, the present invention is a composite of pipeline structures in which a plurality of pipeline structures having the above-described configuration are provided in parallel in the coastal area, and the first granular material storage portions of adjacent pipeline structures are connected to each other. Provided is a composite comprising a second granular material reservoir having a communicating pipe line.

かかる構成の管路構造物の複合体によれば、水域の水位変動に伴って、第2の粒状物貯留部に充填される粒状物にも空気及び水が供給され、その内部に局所的なサクションが生じる。そのため、第1の粒状物貯留部内に好気性の領域が形成される一方、第2の粒状物貯留部内には微好気性の領域が形成される。すなわち、第1及び第2の粒状物貯留部内に多様な好気的条件をモザイク状に存在せしめることができる。その結果、生物種の多様化、生息量の向上及び生息範囲の拡大を一層促進することが可能であり、生物による浄化作用の更なる向上といった効果も期待できる。   According to the composite of the pipe structure having such a configuration, air and water are supplied to the granular material filled in the second granular material storage unit as the water level in the water area fluctuates. Suction occurs. Therefore, an aerobic region is formed in the first granular material storage unit, while a microaerobic region is formed in the second granular material storage unit. That is, various aerobic conditions can exist in a mosaic pattern in the first and second granular material reservoirs. As a result, it is possible to further promote the diversification of biological species, the improvement of the abundance and the expansion of the habitat, and the effect of further improving the purification action by the organism can be expected.

本発明によれば、底生生物の生息に適した環境を安定的に維持することができ、沿岸域に生息する生物種の多様性を高めることができる管路構造物及びその複合体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pipe line structure which can maintain the environment suitable for habitat of benthic organisms stably, and can raise the diversity of the species inhabiting a coastal area, and its composite_body | complex are provided. can do.

以下、図面を参照しつつ本発明に係る管路構造物の好適な実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a pipe structure according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は、本実施形態に係る管路構造物を示す斜視図である。同図に示す管路構造物10は、第1のU字管1、第2のU字管2及びL字管3がこの順序で接続されてなるものである。本実施形態では第2のU字管2とL字管3とによってその内部に連通管路8が形成されている。また、第1のU字管1が第1の粒状物貯留部をなしており、第1のU字管1内には粒状物5が充填されている。
(First embodiment)
FIG. 1 is a perspective view showing a pipeline structure according to this embodiment. A conduit structure 10 shown in the figure is formed by connecting a first U-shaped tube 1, a second U-shaped tube 2 and an L-shaped tube 3 in this order. In the present embodiment, the second U-shaped tube 2 and the L-shaped tube 3 form a communication conduit 8 therein. Further, the first U-shaped tube 1 forms a first granular material reservoir, and the first U-shaped tube 1 is filled with the granular material 5.

第1のU字管1は、その一端1aに上側開口10aが形成されており、一端1aから下方に向かいその後上方に向かうような形状を有している。第1のU字管1の他端1bと第2のU字管2の一端2aとが接続されている。第2のU字管2はその一端2aから上方に向かいその後下方に向かうような形状を有している。なお、第1のU字管1と第2のU字管2とによってS字状の管路が形成されている。   An upper opening 10a is formed at one end 1a of the first U-shaped tube 1, and the first U-shaped tube 1 has a shape that extends downward from the one end 1a and then upwards. The other end 1b of the first U-shaped tube 1 and one end 2a of the second U-shaped tube 2 are connected. The second U-shaped tube 2 has such a shape that it goes upward from one end 2a and then goes downward. The first U-shaped tube 1 and the second U-shaped tube 2 form an S-shaped conduit.

第2のU字管2の他端2bとL字管3の一端3aとが接続されている。L字管3は、その一端3aから下方に向かいその後水平方向に直角に折れ曲った形状を有している。L字管3の水平方向に延在する管路の端部はL字管3の他端3bをなすものであり、他端3bに下側開口10bが形成されている。L字管3の水平方向の管路は、第1のU字管1の下方を通過し、上側開口10aの下方位置にまで延在している。   The other end 2b of the second U-shaped tube 2 and one end 3a of the L-shaped tube 3 are connected. The L-shaped tube 3 has a shape that is bent downward from one end 3a thereof and then bent at a right angle in the horizontal direction. The end of the pipe line extending in the horizontal direction of the L-shaped tube 3 forms the other end 3b of the L-shaped tube 3, and a lower opening 10b is formed at the other end 3b. The horizontal pipe line of the L-shaped tube 3 passes below the first U-shaped tube 1 and extends to a position below the upper opening 10a.

上記構成の管路構造物10にあっては、第1のU字管1の内部に充填される粒状物5が底生生物の生息場となる。底生生物の生息場のための粒状物としては、砂泥を主成分とするものが好ましい。砂泥を使用する場合、生息させる生物種にもよるが、平均粒径が0.01〜20mmのものを使用することができる。通気性及び通水性を確保する観点から、砂泥の平均粒径の下限は0.05mmであることがより好ましく、0.1mmであることが更に好ましい。また、砂泥の平均粒径の上限は、15mmであることがより好ましく、10mmであることが更に好ましい。   In the pipe structure 10 having the above-described configuration, the granular material 5 filled in the first U-shaped tube 1 serves as a habitat for benthic organisms. As the granular material for the habitat of benthic organisms, those mainly composed of sand and mud are preferable. When sand mud is used, depending on the species to be inhabited, those having an average particle diameter of 0.01 to 20 mm can be used. From the viewpoint of ensuring air permeability and water permeability, the lower limit of the average particle size of the sand mud is more preferably 0.05 mm, and still more preferably 0.1 mm. Further, the upper limit of the average particle size of the sand mud is more preferably 15 mm, and still more preferably 10 mm.

ただし、第1のU字管1内に底生生物を予め生息させた状態で管路構造物10を沿岸域に設置した場合、平均粒径が上記範囲の下限側の砂泥(例えば、平均粒径が0.01〜0.05mmの砂泥)を使用したとしても粒状物5が充填されている部分の通気性及び通水性が確保されやすい。当該部分に底生生物が生息していると、底生生物の巣穴や移動によって形成される穴が空気又は水の流路となり得るためである。   However, when the pipeline structure 10 is installed in a coastal region in a state where benthic organisms are pre-inhabited in the first U-shaped tube 1, sand mud (for example, an average particle size) whose average particle diameter is lower than the above range. Even if sand mud having a particle size of 0.01 to 0.05 mm is used, air permeability and water permeability of the portion filled with the granular material 5 are easily secured. This is because when benthic organisms inhabit the part, a nest hole or a hole formed by movement of the benthic organism can be a flow path of air or water.

なお、第1のU字管1内に充填する粒状物5として、平均粒径が異なる砂泥を複数組み合わせて使用してもよい。また、砂泥に礫や栄養分を添加して底質を調製し、これを第1のU字管1内に充填してもよい。   Note that a plurality of sand muds having different average particle diameters may be used in combination as the granular material 5 filled in the first U-shaped tube 1. Moreover, gravel and nutrients may be added to sand mud to prepare a bottom sediment, which may be filled in the first U-shaped tube 1.

図2(a)〜図2(d)は、上記構成の管路構造物10を内部に備える護岸構造物の断面図である。同図に示す護岸構造物15は海岸に構築されたものであり、護岸構造物15の内部には複数の管路構造物10が海岸線に沿って並列に設置されている。図2(a)〜図2(d)は最低水位の状態から最高水位の状態を経て再び最低水位の状態となるまでの様子を連続的に示したものである。   FIG. 2A to FIG. 2D are cross-sectional views of a revetment structure including the pipe structure 10 having the above-described configuration. The revetment structure 15 shown in the figure is constructed on the coast, and a plurality of pipeline structures 10 are installed in parallel along the coastline inside the revetment structure 15. FIG. 2A to FIG. 2D continuously show the state from the lowest water level state through the highest water level state to the lowest water level state again.

ここでいう「最高水位」は平均高潮位(MHW:Mean High Water)を意味し、「最低水位」は平均低潮位(MLW:Mean Low Water)を意味する。ただし、以下、最高水位及びその時間帯を、単に高潮位及び満潮時とそれぞれ称し、また、最低水位及びその時間帯を、単に低潮位及び干潮時とそれぞれ称する。図2(a)は干潮時の状態を、図2(b)は上げ潮時の状態を、図2(c)は満潮時の状態を、図2(d)は下げ潮時の状態をそれぞれ示す図である。   The “highest water level” here means an average high water level (MHW), and the “lowest water level” means an average low water level (MLW). However, hereinafter, the highest water level and its time zone are simply referred to as high tide level and high tide, respectively, and the lowest water level and its time zone are simply referred to as low tide level and low tide time, respectively. 2A shows a state at low tide, FIG. 2B shows a state at high tide, FIG. 2C shows a state at high tide, and FIG. 2D shows a state at low tide. It is.

まず、図2を参照しながら、管路構造物10の上側開口10a及び下側開口10bの位置と潮位との関係について説明する。図2(a)に示すように、下側開口10bは低潮位よりも高い位置に設けられている。下側開口10bをこのような位置に設けることで、干潮時には下側開口10bが海面上に露出し、下側開口10bを通じて第2のU字管2及びL字管3の内部に外部の空気が供給される。   First, the relationship between the positions of the upper opening 10a and the lower opening 10b of the pipe structure 10 and the tide level will be described with reference to FIG. As shown in FIG. 2A, the lower opening 10b is provided at a position higher than the low tide level. By providing the lower opening 10b in such a position, the lower opening 10b is exposed on the sea surface at low tide, and external air is introduced into the second U-shaped tube 2 and the L-shaped tube 3 through the lower opening 10b. Is supplied.

他方、図2(c)に示すように、上側開口10aは高潮位よりも低い位置に設けられている。上側開口10aをこのような位置に設けることで、満潮時には上側開口10aが海中に水没し、上側開口10aを通じて粒状物5に外部の海水が供給される。したがって、例えば、潮位が図2(a)に示される状態にあるときは、同図に示す通り、満潮時に供給された海水によって粒状物5は冠水した状態となっている。つまり、この状態では第1のU字管1内は粒状物5とその間隙水とによって充満されている。   On the other hand, as shown in FIG.2 (c), the upper side opening 10a is provided in the position lower than a high tide level. By providing the upper opening 10a at such a position, the upper opening 10a is submerged in the sea at high tide, and external seawater is supplied to the granular material 5 through the upper opening 10a. Therefore, for example, when the tide level is in the state shown in FIG. 2A, the granular material 5 is in a state of being submerged by seawater supplied at high tide, as shown in FIG. That is, in this state, the inside of the first U-shaped tube 1 is filled with the granular material 5 and the pore water.

なお、粒状物5を冠水する海水の量を少なく設定したい場合には、第1のU字管1の上側開口10a側(一端1a側)の粒状物5が充填されていない空間を少なくすればよい。すなわち、粒状物5を上側開口10aの周縁部の近傍、更には一端1aの高さにまで充填すればよい。   In addition, when it is desired to set a small amount of seawater that floods the granular material 5, if the space on the upper opening 10a side (the one end 1a side) of the first U-shaped tube 1 that is not filled with the granular material 5 is decreased. Good. That is, the granular material 5 may be filled in the vicinity of the peripheral edge of the upper opening 10a and further to the height of one end 1a.

また、第1のU字管1の他端1b側の粒状物5の高さは、一端1a側と必ずしも同じ高さである必要はない。例えば、他端1b側に一端1a側よりも高い位置まで粒状物5を充填してもよい。そうすることによって、他端1b側の粒状物5が冠水しないようにすることができる。このように粒状物5を充填する高さを適宜設定することで、一端1a側と他端1b側に含水比や好気状態が互いに異なる環境を形成でき、生物種の多様化の更なる向上に寄与し得る。   Moreover, the height of the granular material 5 on the other end 1b side of the first U-shaped tube 1 is not necessarily the same height as the one end 1a side. For example, the granular material 5 may be filled on the other end 1b side up to a position higher than the one end 1a side. By doing so, the granular material 5 on the other end 1b side can be prevented from being submerged. In this way, by appropriately setting the height at which the granular material 5 is filled, it is possible to form environments with different water content ratios and aerobic conditions on the one end 1a side and the other end 1b side, and further improve the diversification of biological species. Can contribute.

次に、図2及び図3を参照しながら、潮位の変動に伴って管路構造物10内の状態がどのように変化するかについて説明する。図3(A)は潮位の変動を、図3(B)は潮位の変動に伴う連通管路8内の空気の圧力変化を、それぞれ模式的に示すグラフである。   Next, with reference to FIG. 2 and FIG. 3, how the state in the pipe structure 10 changes in accordance with the fluctuation of the tide level will be described. FIG. 3 (A) is a graph schematically showing a change in tide level, and FIG. 3 (B) is a graph schematically showing a change in air pressure in the communication pipe line 8 accompanying a change in tide level.

図2(a)に示す干潮時の状態から徐々に潮位が上昇し、潮位が図2に示す潮位L1に到達すると、図3(B)に示すように連通管路8内の圧力が上昇し始める。潮位L1は下側開口10bが完全に水没し、連通管路8内と外部との空気の導通が遮断される潮位である。   When the tide level gradually rises from the low tide state shown in FIG. 2 (a) and the tide level reaches the tide level L1 shown in FIG. 2, the pressure in the communication line 8 increases as shown in FIG. 3 (B). start. The tide level L1 is a tide level in which the lower opening 10b is completely submerged and air conduction between the communication pipe 8 and the outside is interrupted.

潮位が更に上昇し、連通管路8内の空気の圧力がある程度上昇すると、第1のU字管1内の粒状物5の間隙に第2のU字管2側から空気が入り、間隙水が空気に置換される。そのため、第2のU字管2側の粒状物5の飽和度が部分的に低下する一方、上側開口10a側は冠水した状態となる(図2(b)参照)。連通管路8内の圧力が更に上昇して空気が上側開口10a側に抜けるようになると、図3(B)に示すように圧力が小刻み変動する。   When the tide level further rises and the pressure of air in the communication pipe 8 rises to some extent, air enters the gap between the granular materials 5 in the first U-shaped pipe 1 from the second U-shaped pipe 2 side, and the pore water Is replaced by air. Therefore, while the degree of saturation of the granular material 5 on the second U-shaped tube 2 side is partially lowered, the upper opening 10a side is in a flooded state (see FIG. 2B). When the pressure in the communication pipe 8 further rises and the air comes out to the upper opening 10a side, the pressure fluctuates little by little as shown in FIG.

その後、潮位が図2に示す潮位L2に到達すると、図3(B)に示すように連通管路8内の圧力は再び上昇する。潮位L2は上側開口10aが完全に水没し、U字管1内と外部との空気の導通が遮断される潮位である。   Thereafter, when the tide level reaches the tide level L2 shown in FIG. 2, the pressure in the communication pipe 8 rises again as shown in FIG. 3 (B). The tide level L2 is a tide level in which the upper opening 10a is completely submerged and air conduction between the U-tube 1 and the outside is interrupted.

満潮時を経て潮位が下降に転じると、それに伴って連通管路8内の空気の圧力も下がり始める。連通管路8内の圧力がある程度の負圧にまで下がると、第1のU字管1内の粒状物5の間隙に上側開口10a側から空気が入り、間隙水が空気に置換される。そのため、上側開口10a側の粒状物5の飽和度が部分的に低下する一方、第2のU字管2側は冠水した状態となる(図2(d)参照)。連通管路8内の空気の圧力が更に下降して上側開口10a側からの空気が第2のU字管2側に抜けるようになると、図3(B)に示すように圧力が小刻み変動する。その後、潮位L1よりも低くなると、下側開口10bを通じて連通管路8が大気開放されるため、連通管路8内の空気の圧力は大気圧となる。   When the tide level starts to decrease after the high tide, the pressure of the air in the communication line 8 starts to decrease accordingly. When the pressure in the communication pipe line 8 decreases to a certain negative pressure, air enters the gap between the granular materials 5 in the first U-shaped pipe 1 from the upper opening 10a side, and the gap water is replaced with air. Therefore, while the degree of saturation of the granular material 5 on the upper opening 10a side is partially reduced, the second U-shaped tube 2 side is submerged (see FIG. 2D). When the pressure of the air in the communication pipe 8 further decreases and the air from the upper opening 10a side comes out to the second U-shaped pipe 2 side, the pressure fluctuates little by little as shown in FIG. . Thereafter, when the level becomes lower than the tide level L1, the communication line 8 is opened to the atmosphere through the lower opening 10b, so that the pressure of the air in the communication line 8 becomes atmospheric pressure.

上記の一連の潮位変動を利用して粒状物5に十分な量の空気を通気させる観点から、管路構造物10の内部の空間は次のような構造になっていることが好ましい。すなわち、潮位が低潮位から高潮位へと上昇する間に、第1のU字管1の方向へと押し上げられる連通管路8の容積は、第1のU字管1の内容積よりも大きいことが好ましい。より具体的には、連通管路8のうち、潮位L1と潮位L2との間にある空間の容積は、第1のU字管1の内容積よりも大きいことが好ましい。   From the viewpoint of allowing a sufficient amount of air to flow through the granular material 5 using the above-described series of tide level fluctuations, it is preferable that the space inside the pipe structure 10 has the following structure. That is, while the tide level rises from the low tide level to the high tide level, the volume of the communication pipe 8 pushed up in the direction of the first U-shaped pipe 1 is larger than the internal volume of the first U-shaped pipe 1. It is preferable. More specifically, the volume of the space between the tide level L1 and the tide level L2 in the communication conduit 8 is preferably larger than the internal volume of the first U-shaped tube 1.

本実施形態の管路構造物によれば、上記のように潮位の変動によって第1のU字管1内の粒状物5に対して上側開口10aから定期的に海水が供給されると共に、その両端に生じる差圧によって粒状物5に空気が供給される。これにより、粒状物5の腐敗を十分に抑制することができる。また、粒状物5の間隙水が定期的に空気に置換されてその都度サクションが生じる。このように底生生物にとって好適な環境を第1のU字管内の粒状物5が充填された部分に形成可能であり且つその環境を安定的に維持可能である。   According to the pipe structure of the present embodiment, seawater is periodically supplied from the upper opening 10a to the granular material 5 in the first U-shaped pipe 1 due to the fluctuation of the tide level as described above, Air is supplied to the granular material 5 by the differential pressure generated at both ends. Thereby, the decay of the granular material 5 can fully be suppressed. Further, the pore water of the granular material 5 is periodically replaced with air, and suction is generated each time. Thus, a suitable environment for benthic organisms can be formed in the portion filled with the granular material 5 in the first U-shaped tube, and the environment can be stably maintained.

(第2実施形態)
図4は、本発明の第2実施形態を示す断面図である。同図に示す護岸構造物25は、第2のU字管2に接続されている管路の形状がL字管3と相違する点以外は、第1の実施形態に係る護岸構造物15と同一の構成である。護岸構造物25が備える管路構造物20では、第2のU字管2に以下のような形状の屈曲管23が接続されている。屈曲管23は、第2のU字管2との接続部分から下方に向かいその後斜め下の方向に折れ曲ったような形状を有している。屈曲管23の斜め下の方向に延在する管路の端部は屈曲管23の他端23bをなすものであり、下側開口10bが形成されている。屈曲管23の斜め下の方向の管路は、第1のU字管1の下方を通過し、上側開口10aの下方位置にまで延在している。本実施形態においては、第2のU字管2と屈曲管23とによってその内部に連通管路28が形成されている。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing a second embodiment of the present invention. The revetment structure 25 shown in the figure is the same as the revetment structure 15 according to the first embodiment except that the shape of the pipe connected to the second U-shaped pipe 2 is different from that of the L-shaped pipe 3. It is the same composition. In the pipe structure 20 provided in the revetment structure 25, a bent pipe 23 having the following shape is connected to the second U-shaped pipe 2. The bent tube 23 has a shape that is bent downward from the connecting portion with the second U-shaped tube 2 and then bent obliquely downward. The end of the pipe line extending in the obliquely downward direction of the bent tube 23 forms the other end 23b of the bent tube 23, and a lower opening 10b is formed. The conduit in the direction obliquely below the bent tube 23 passes below the first U-shaped tube 1 and extends to a position below the upper opening 10a. In the present embodiment, a communication pipe 28 is formed inside the second U-shaped pipe 2 and the bent pipe 23.

上記構成の連通管路28によれば、潮位が低潮位から高潮位へと変化する間に粒状物5により十分な量の空気を通気させることができるという利点がある。すなわち、第1実施形態の管路構造物10では、L字管3の水平方向の管路内の空気は潮位が潮位L1に到達するまでに外部へと抜けてしまうところ、本実施形態の管路構造物20によれば、屈曲管23の斜め下の方向の管路内の空気も粒状物5側へと押し上げられる空気として有効に利用することができる。なお、図4は、潮位が潮位L1まで上昇して下側開口10bが水没した状態を示している。   The communication conduit 28 having the above configuration has an advantage that a sufficient amount of air can be ventilated by the granular material 5 while the tide level changes from the low tide level to the high tide level. That is, in the pipe structure 10 of the first embodiment, the air in the horizontal pipe line of the L-shaped pipe 3 escapes to the outside before the tide level reaches the tide level L1. According to the road structure 20, the air in the pipe line obliquely below the bent pipe 23 can also be effectively used as the air pushed up to the granular material 5 side. FIG. 4 shows a state where the tide level rises to the tide level L1 and the lower opening 10b is submerged.

(第3実施形態)
図5は、本発明の第3実施形態を示す断面図である。同図に示す護岸構造物35は、L字管3の代わりに以下の形状を有するL字管33を有する点以外は、第1の実施形態に係る護岸構造物15と同一の構成である。このL字管33は鉛直方向に延在する管路の径が部分的に広くなった形状を有している。本実施形態においては、第2のU字管2とL字管33とによってその内部に連通管路38が構成されている。
(Third embodiment)
FIG. 5 is a cross-sectional view showing a third embodiment of the present invention. The revetment structure 35 shown in the figure has the same configuration as the revetment structure 15 according to the first embodiment, except that it has an L-shaped tube 33 having the following shape instead of the L-shaped tube 3. The L-shaped pipe 33 has a shape in which the diameter of a pipe line extending in the vertical direction is partially enlarged. In the present embodiment, the second U-shaped tube 2 and the L-shaped tube 33 constitute a communication conduit 38 therein.

上記構成の連通管路38によれば、潮位が低潮位から高潮位へと変化する間に粒状物5により十分な量の空気を通気させることができるという利点がある。なお、図5は、潮位が潮位L1まで上昇し、L字管33の他端33bに形成された下側開口10bが水没した状態を示している。   According to the communication pipe line 38 having the above configuration, there is an advantage that a sufficient amount of air can be ventilated by the particulate matter 5 while the tide level changes from the low tide level to the high tide level. FIG. 5 shows a state where the tide level rises to the tide level L1 and the lower opening 10b formed at the other end 33b of the L-shaped tube 33 is submerged.

(第4実施形態)
上記の第1〜3実施形態では、U字管やL字管などといった管で管路が形成された管路構造物を例示したが、本実施形態に係る管路構造物は、所定の形状を有する複数のコンクリートブロックやプレートを組み合わせて設置して、これらの対向面によって管路が形成されるものである。
(Fourth embodiment)
In said 1st-3rd embodiment, although the pipe line structure in which the pipe line was formed with pipes, such as a U-shaped pipe and an L-shaped pipe, was illustrated, the pipe line structure concerning this embodiment is a predetermined shape. A plurality of concrete blocks and plates having a combination are installed and a pipe line is formed by these facing surfaces.

図6及び図7は、本実施形態に係る管路構造物40を複数のコンクリートブロックとコンクリートパネルとで構築する過程を示す分解斜視図である。まず、図6に示すように略Y字状のブロック41と、略コ字状のブロック42とをそれぞれ作製する。ブロック41は上面に溝部41aが形成されている。また、ブロック42と対向するブロック41の立設面41b及び底面41cはそれぞれ平坦面となっている。   6 and 7 are exploded perspective views showing a process of constructing the pipeline structure 40 according to the present embodiment with a plurality of concrete blocks and concrete panels. First, as shown in FIG. 6, a substantially Y-shaped block 41 and a substantially U-shaped block 42 are respectively produced. The block 41 has a groove 41a formed on the upper surface. Further, the standing surface 41b and the bottom surface 41c of the block 41 facing the block 42 are flat surfaces.

ブロック42は略コ字状の形状を有しており、ブロック42の凹部43はブロック41をその内部に離間した状態で設置するためのものである。ブロック42の上部42dの先端側には下方に延在する凸部42aが設けられている。また、ブロック41と対向するブロック42の立設面42b及び凹部43の底面42cはそれぞれ直交する平坦面となっている。図7に示すように、ブロック42の凸部42aはブロック41の溝部41a内に入り込み、粒状物貯留部45を構成する。ブロック42の立設面42b及び底面42cと、ブロック41の立設面41b及び底面41cとの協働により連通管路48を構成する。   The block 42 has a substantially U-shape, and the concave portion 43 of the block 42 is for installing the block 41 in a state of being separated from the inside thereof. A convex portion 42 a extending downward is provided on the tip side of the upper portion 42 d of the block 42. Further, the standing surface 42b of the block 42 facing the block 41 and the bottom surface 42c of the recess 43 are flat surfaces that are orthogonal to each other. As shown in FIG. 7, the convex portion 42 a of the block 42 enters into the groove portion 41 a of the block 41 and constitutes the granular material storage portion 45. The communication pipe 48 is configured by cooperation of the standing surface 42b and the bottom surface 42c of the block 42 and the standing surface 41b and the bottom surface 41c of the block 41.

ブロック41とブロック42とをパネル46,47で両側から挟み込むことで、管路構造体40が構築される。パネル46,47には、図7に示すように、ブロック41とブロック42との間に形成された隙間と同一の形状をなす凸部46a,47aがそれぞれ設けられている。これらの凸部46a,47aはブロック41とブロック42との間に形成される隙間と嵌合して、管路の側壁面をなし、パネル46,47はブロック41,42に対してコンクリートなどの固化材で固定される。本実施形態に係る管路構造物40を護岸構造物として使用した場合、現地での組み立てを可能にし、ブロック41,42としてサイズの大きいものを使用することで粒状物貯留部45に大量の粒状物5を充填することができ、そこに生息させる生物の生息量・種類を格段に向上させることができる。   The block structure 40 is constructed by sandwiching the block 41 and the block 42 from both sides with the panels 46 and 47. As shown in FIG. 7, the panels 46 and 47 are provided with convex portions 46a and 47a having the same shape as the gap formed between the block 41 and the block 42, respectively. These convex portions 46a and 47a are fitted into a gap formed between the block 41 and the block 42 to form a side wall surface of the pipe line, and the panels 46 and 47 are made of concrete or the like with respect to the blocks 41 and 42. Fixed with solidification material. When the pipeline structure 40 according to the present embodiment is used as a revetment structure, it is possible to assemble in the field, and a large amount of particles are used in the granular material storage unit 45 by using large blocks 41 and 42. The object 5 can be filled, and the abundance and type of the organisms that inhabit the object 5 can be remarkably improved.

(第5実施形態)
上記の第1〜4実施形態では、上下方向に一つの管路構造物を設置しているが、上下方向に複数の管路構造物を設置してもよい。例えば、図8は、第1実施形態に係る管路構造物10を上下に複数備える護岸構造物の断面図である。このように管路構造物10を配置することによって生物の生息量・種類の向上と環境条件の多様化を図ることができる。
(Fifth embodiment)
In said 1st-4th embodiment, although one pipe line structure is installed in the up-down direction, you may install a several pipe structure in the up-down direction. For example, FIG. 8 is a cross-sectional view of a revetment structure including a plurality of pipeline structures 10 according to the first embodiment. By arranging the conduit structure 10 in this way, it is possible to improve the abundance and type of living organisms and diversify environmental conditions.

(第6実施形態)
また、本発明の管路構造物は護岸構造物内に設置する場合に限られず、例えば、桟橋の支柱に設置してもよい。図9は、複数の管路構造物10が桟橋の支柱60に設置された状態を示す斜視図である。
(Sixth embodiment)
Further, the pipe structure of the present invention is not limited to being installed in a revetment structure, and may be installed, for example, on a pier column. FIG. 9 is a perspective view showing a state in which a plurality of pipeline structures 10 are installed on a pier post 60.

(第7実施形態)
複数の管路構造物を海岸線に沿って並列に設置する場合には、隣接する管路構造物の粒状物貯留部同士を管路で連結して管路構造物の複合体とすると共に、その粒状物貯留部同士を連通する管路に粒状物を充填してもよい。例えば、図10に示す管路構造物の複合体100は、桟橋の支柱60に設置された複数の管路構造物10の第1のU字管1同士が連結管50で連結されている。本実施形態では連結管50が第2の粒状物貯留部を構成し、連結管50内にも粒状物5が充填されている。なお、本実施形態では隣接する管路構造物10の第1のU字管1同士を連結しやすくするため、第1のU字管1が第2のU字管2との接続部分において90°回転して接続された管路構造物10を桟橋の支柱60に設置している。
(Seventh embodiment)
When installing a plurality of pipeline structures in parallel along the coastline, the granular material reservoirs of adjacent pipeline structures are connected by a pipeline to form a composite of pipeline structures, You may fill a granular material into the pipe line which connects a granular material storage part. For example, in the composite structure 100 of the pipe structure shown in FIG. 10, the first U-shaped pipes 1 of the plurality of pipe structures 10 installed on the pier post 60 are connected by the connecting pipe 50. In the present embodiment, the connecting pipe 50 constitutes a second granular material reservoir, and the connecting pipe 50 is also filled with the granular material 5. In the present embodiment, the first U-shaped tube 1 is connected to the second U-shaped tube 2 at 90 in order to facilitate the connection of the first U-shaped tubes 1 of the adjacent pipe structure 10. The pipe structure 10 connected by rotating is installed on the post 60 of the jetty.

管路構造物の複合体100にあっては、潮位の変動に伴い連結管50内の粒状物5に対しても空気が供給されると共に海水も供給される。そのため、管路構造物10の第1のU字管1内の粒状物5内に好気性の領域が形成される一方、連結管50内の粒状物5内には局所的なサクションが生じて微好気性の領域が形成される。すなわち、管路構造物の複合体100に多様な好気的条件をモザイク状に存在せしめることができる。その結果、生物種の多様化、生息量の向上及び生息範囲の拡大を一層促進することが可能であり、生物による浄化作用の更なる向上といった効果も期待できる。なお、管路構造物の複合体100は、上記の第1〜5実施形態と同様、護岸構造物内に設置する態様としてもよい。   In the pipe structure composite 100, air and seawater are supplied to the granular material 5 in the connecting pipe 50 as the tide level fluctuates. Therefore, an aerobic region is formed in the granular material 5 in the first U-shaped tube 1 of the pipe structure 10, while local suction occurs in the granular material 5 in the connecting pipe 50. A microaerobic region is formed. That is, various aerobic conditions can exist in a mosaic pattern in the composite 100 of pipe structures. As a result, it is possible to further promote the diversification of biological species, the improvement of the abundance and the expansion of the habitat, and the effect of further improving the purification action by the organism can be expected. In addition, the composite body 100 of a pipe line structure is good also as an aspect installed in a seawall structure similarly to said 1-5 embodiment.

以上、本発明に係る管路構造物及びその複合体の実施形態について詳しく説明したが、本発明は更に下記のような形態であってもよい。   As mentioned above, although embodiment of the pipe line structure and its composite_body | complex concerning this invention was described in detail, the following forms may be sufficient as this invention.

例えば、第1〜3の実施形態では管路の断面の形状が円形であるものを例示したが、その形状は楕円形や矩形であってもよい。また、下側開口10bは低潮位よりも高い位置に設けられている場合について例示したが、下側開口10bが低潮位よりも低い位置に設けられていても粒状物貯留部内の粒状物5に対して海水及び空気を供給することによる効果を得ることができる。   For example, in the first to third embodiments, the pipe has a circular cross-sectional shape, but the shape may be an ellipse or a rectangle. Moreover, although illustrated about the case where the lower side opening 10b is provided in a position higher than the low tide level, even if the lower side opening 10b is provided in a position lower than the low tide level, the granular material 5 in the granular material storage unit On the other hand, the effect by supplying seawater and air can be acquired.

更に、本発明に係る管路構造物10,20,30,40及びその複合体100は、水位が適度な頻度及び高低差で上下に変動する水域の沿岸域であれば、海岸に限られず、適用可能である。このような場所としては、河川や湖沼の沿岸などが挙げられる。   Furthermore, the pipe structure 10, 20, 30, 40 and the complex 100 thereof according to the present invention are not limited to the coast as long as the water level is a coastal area where the water level fluctuates up and down with a moderate frequency and height difference, Applicable. Such places include rivers and lakes.

<評価実験>
(実験例1)
本発明に係る管路構造物の性能を評価するため、図11に示す形状の管路構造物及びそれを収容する容器を準備し、容器内への注水と減水とを繰り返す水位変動実験を行った。本実験例の条件を表1にまとめた。

Figure 2008253201
<Evaluation experiment>
(Experimental example 1)
In order to evaluate the performance of the pipe structure according to the present invention, a pipe structure having the shape shown in FIG. 11 and a container that accommodates the pipe structure are prepared, and a water level fluctuation experiment in which water is poured into the container and water is reduced is repeated. It was. The conditions of this experimental example are summarized in Table 1.
Figure 2008253201

干潟から採取した砂泥100質量部に対して有機物(ペプトン)を0.5質量部添加して底質を調製し、この底質を管路内(図11に示す管路構造物の斜線部分)に充填した。表1に示す条件で容器内の水位を変動させて28日間にわたり実験を行った。実験開始前、実験開始から7日後、14日後及び28日後の底質の酸化還元電位及び硫化物量を測定した。酸化還元電位はORP計(東亜ディーケーケー(株)社製、商品名:RM−20P)を用いて測定した。硫化物量は硫化物用検知管((株)ガステック社製)を用いて測定した。   The bottom sediment is prepared by adding 0.5 part by mass of organic matter (peptone) to 100 parts by mass of sand mud collected from the tidal flat, and this sediment is placed in the pipeline (the hatched portion of the pipeline structure shown in FIG. 11). ). The experiment was conducted for 28 days while changing the water level in the container under the conditions shown in Table 1. Prior to the start of the experiment, 7 days, 14 days and 28 days after the start of the experiment, the redox potential of the sediment and the amount of sulfide were measured. The oxidation-reduction potential was measured using an ORP meter (manufactured by Toa DKK Corporation, trade name: RM-20P). The amount of sulfide was measured using a sulfide detector tube (manufactured by Gastec Co., Ltd.).

(実験例2)
下方に延在する管路が短い管路構造物(表2参照)を用いたことの他は実験例1と同様にして水位変動実験を行った。また、酸化還元電位及び硫化物量の測定についても実験例1と同様に行った。

Figure 2008253201
(Experimental example 2)
A water level fluctuation experiment was conducted in the same manner as in Experimental Example 1 except that a pipe structure (see Table 2) having a short pipe line extending downward was used. Further, the redox potential and the amount of sulfide were also measured in the same manner as in Experimental Example 1.
Figure 2008253201

(比較例1)
管路構造物の頭頂部に貫通孔を有しており水位が変動してもその孔から管路内の空気が抜けて空気が管路内の底質に供給されない構成の管路構造物を準備した。この管路構造物を用いたことの他は実験例1と同様にして水位変動実験を行った。また、酸化還元電位及び硫化物量の測定についても実験例1と同様に行った。
(Comparative Example 1)
A pipe structure that has a through hole at the top of the pipe structure and that does not supply air to the bottom sediment in the pipe even if the water level fluctuates. Got ready. A water level fluctuation experiment was conducted in the same manner as in Experimental Example 1 except that this pipe structure was used. Further, the redox potential and the amount of sulfide were also measured in the same manner as in Experimental Example 1.

実験例1,2及び比較例1の結果を表3及び図12,13に示す。

Figure 2008253201
The results of Experimental Examples 1 and 2 and Comparative Example 1 are shown in Table 3 and FIGS.
Figure 2008253201

(実験例3)
実験例1で使用したものと同一の管路構造物及び容器を準備し、その管路内に平均粒径0.05mmのシェルモールド硅砂(8号硅砂)を所定の部分に充填した後、上側開口から4匹のゴカイを投入した。このような管路構造物を容器内に設置して表1に示す条件で容器内の水位を変動させた。図14に満水時から次の満水時までの期間における管路内(頭頂部)の圧力の変動を示す。
(Experimental example 3)
After preparing the same pipe structure and container as used in Experimental Example 1 and filling a predetermined portion with shell mold dredged sand (No. 8 dredged sand) having an average particle size of 0.05 mm in the duct, Four gokais were introduced from the opening. Such a pipe structure was installed in the container, and the water level in the container was changed under the conditions shown in Table 1. FIG. 14 shows fluctuations in pressure in the pipe line (top) during a period from when the water is full to the next full time.

本実験例の注水開始前(図14の時間6:00ごろ)にあっては、硅砂が充填されている部分にゴカイの移動に伴う穴や巣穴が形成されていると考えられる。そのため、注水を開始してもしばらくの間は管路内の圧力は小刻みに変動するに留まり上昇しなかったと推察される。したがって、粒状物である硅砂内にゴカイなどの底生生物が生息していることで、ゴカイなどが生息していない場合と比較し、硅砂が充填されている管路(粒状物貯留部)内の通気性が確保されやすくなると考えられる。   Prior to the start of water injection in this experimental example (around 6:00 in FIG. 14), it is considered that holes and burrows associated with the movement of sandworms are formed in portions filled with dredged sand. For this reason, it is assumed that the pressure in the pipeline fluctuated little by little and did not rise for a while even after water injection was started. Therefore, inhabiting benthic organisms such as sandworms in the sand, which is granular, compared to the case where sandworms do not inhabit, it is in the pipeline (particulate matter storage) filled with sand. It is considered that the air permeability of the air is easily secured.

本発明に係る管路構造物の形状を示す斜視図である。It is a perspective view which shows the shape of the pipe line structure which concerns on this invention. (a)〜(d)は水位変動に伴う管路構造物内の状態をそれぞれ示す断面図である。(A)-(d) is sectional drawing which each shows the state in the pipe structure accompanying a water level fluctuation | variation. (A)及び(B)は、潮位の変動及びそれに伴う管路内の圧力の変化をそれぞれ模式的に示すグラフである。(A) And (B) is a graph which shows typically the change of the tidal level and the change of the pressure in a pipe line accompanying it, respectively. 本発明に係る管路構造物の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the pipe line structure which concerns on this invention. 本発明に係る管路構造物の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the pipe line structure which concerns on this invention. 本発明の第4実施形態に係る構造物を構築する過程を示す分解斜視図である。It is a disassembled perspective view which shows the process of constructing the structure based on 4th Embodiment of this invention. 本発明の第4実施形態に係る構造物を構築する過程を示す分解斜視図である。It is a disassembled perspective view which shows the process of constructing the structure based on 4th Embodiment of this invention. 本発明に係る管路構造物の第5実施形態を示す断面図である。It is sectional drawing which shows 5th Embodiment of the pipe structure based on this invention. 本発明に係る管路構造物の第6実施形態を示す断面図である。It is sectional drawing which shows 6th Embodiment of the pipe line structure which concerns on this invention. 本発明に係る管路構造物の第7実施形態を示す断面図である。It is sectional drawing which shows 7th Embodiment of the pipe line structure which concerns on this invention. 水位変動実験に使用した管路構造物及び容器を示す断面図である。It is sectional drawing which shows the pipe line structure and container used for the water level fluctuation | variation experiment. 粒状物貯留部の酸化還元電位を示すグラフである。It is a graph which shows the oxidation reduction potential of a granular material storage part. 粒状物貯留部の硫黄物量を示すグラフである。It is a graph which shows the amount of sulfur substances of a granular material storage part. 水位変動実験中の管路内の圧力変動を示すグラフである。It is a graph which shows the pressure fluctuation in the pipe line during a water level fluctuation | variation experiment.

符号の説明Explanation of symbols

10,20,30,40…管路構造物、100…複合体、1…第1のU字管(第1の粒状物貯留部)、45…第1の粒状物貯留部、8,28,38,48…連通管路、5…粒状物、10a…上側開口、10b…下側開口、50…連結管(第2の粒状物貯留部)、MHW…高潮位(最高水位)、MLW…低潮位(最低水位)。 DESCRIPTION OF SYMBOLS 10, 20, 30, 40 ... Pipe structure, 100 ... Composite, 1 ... 1st U-shaped pipe (1st granular material storage part), 45 ... 1st granular material storage part, 8, 28, 38, 48 ... communication pipe line, 5 ... granular material, 10a ... upper opening, 10b ... lower opening, 50 ... connection pipe (second granular material storage part), MHW ... high tide level (highest water level), MLW ... low tide Rank (lowest water level).

Claims (7)

水位が上下に変動する水域を有する沿岸域に設置されて、当該水位変動を利用して底生生物の生息場を形成するための管路構造物であって、
当該沿岸域の最高水位と最低水位との間に位置する上側開口に一端が連通すると共に、前記一端から下方に向かいその後上方に向かうような形状の管路を有する第1の粒状物貯留部と、
前記第1の粒状物貯留部の他端と、前記上側開口よりも低い位置に設けられている下側開口とを連通する連通管路と、
を備えることを特徴とする管路構造物。
A pipe structure that is installed in a coastal area having a water area where the water level fluctuates up and down, and forms a benthic habitat using the water level fluctuation,
A first granular material storage section having one end communicating with the upper opening located between the highest water level and the lowest water level of the coastal area, and having a pipe line shaped to go downward from the one end and then upward ,
A communication conduit that communicates the other end of the first granular material reservoir and a lower opening provided at a position lower than the upper opening;
A conduit structure characterized by comprising:
前記連通管路は、前記第1の粒状物貯留部の前記他端から上方に向かいその後下方に向かうような形状の管路を有することを特徴とする、請求項1に記載の管路構造物。   2. The pipe structure according to claim 1, wherein the communication pipe has a pipe having a shape that extends upward from the other end of the first granular material storage unit and then downwards. . 前記下側開口は、当該沿岸域の最低水位よりも高い位置に設けられていることを特徴とする、請求項1又は2に記載の管路構造物。   The pipe structure according to claim 1 or 2, wherein the lower opening is provided at a position higher than the lowest water level in the coastal area. 当該沿岸域の水位が最低水位から最高水位まで上昇する際に、前記第1の粒状物貯留部の方向へと押し上げられる前記連通管路内の空気の容積は、前記第1の粒状物貯留部の容積よりも大きいことを特徴とする、請求項1〜3のいずれか一項に記載の管路構造物。   When the water level in the coastal area rises from the lowest water level to the highest water level, the volume of air in the communication pipe that is pushed up in the direction of the first granular material reservoir is the first granular material reservoir. The pipe structure according to any one of claims 1 to 3, wherein the pipe structure is larger than the volume of the pipe structure. 前記第1の粒状物貯留部に充填する粒状物は、平均粒径0.01〜20mmの砂泥であることを特徴とする、請求項1〜4のいずれか一項に記載の管路構造物。   The pipeline structure according to any one of claims 1 to 4, wherein the granular material filled in the first granular material storage part is sand mud having an average particle diameter of 0.01 to 20 mm. object. 前記第1の粒状物貯留部に充填された粒状物内に底生生物が生息していることを特徴とする、請求項1〜5のいずれか一項に記載の管路構造物。   The conduit structure according to any one of claims 1 to 5, wherein benthic organisms inhabit the granular material filled in the first granular material storage unit. 請求項1〜6のいずれか一項に記載の管路構造物を前記沿岸域に複数並列に設けてなる管路構造物の複合体であって、
隣接する前記管路構造物の前記第1の粒状物貯留部同士を連通する管路を有する第2の粒状物貯留部を備えることを特徴とする複合体。
A composite pipe structure comprising a plurality of the pipe structures according to any one of claims 1 to 6 provided in parallel in the coastal area,
A composite comprising a second granular material storage part having a pipe line communicating the first granular material storage parts of the adjacent pipe structure.
JP2007099692A 2007-04-05 2007-04-05 Pipe structure and its composite Active JP4885783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099692A JP4885783B2 (en) 2007-04-05 2007-04-05 Pipe structure and its composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099692A JP4885783B2 (en) 2007-04-05 2007-04-05 Pipe structure and its composite

Publications (2)

Publication Number Publication Date
JP2008253201A true JP2008253201A (en) 2008-10-23
JP4885783B2 JP4885783B2 (en) 2012-02-29

Family

ID=39977489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099692A Active JP4885783B2 (en) 2007-04-05 2007-04-05 Pipe structure and its composite

Country Status (1)

Country Link
JP (1) JP4885783B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043007B1 (en) 2009-08-03 2011-06-21 주식회사 씨에버 Shellfish farming system
JP2013147835A (en) * 2012-01-18 2013-08-01 Kajima Corp Air supply system in water stay area and bottom sediment improvement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429545A (en) * 1977-08-09 1979-03-05 Hokoku Kogyo Rice center business processing system
JPS54110632A (en) * 1978-02-20 1979-08-30 Kyowa Konkuriito Kougiyou Kk Construction method of shore protection
JPH0266208A (en) * 1988-09-01 1990-03-06 Gantan Funaki Structure for protection of biological environment in protective wall for river, sand, or mountain area
JPH09187190A (en) * 1996-01-10 1997-07-22 Nippon Solid Co Ltd Substance for promoting inhabitation of aquatic life
JP2000212936A (en) * 1999-01-21 2000-08-02 Fukuda Corp Aquatic life-living revetment structure
JP2004084360A (en) * 2002-08-28 2004-03-18 Takuo Yukimoto Consolidation block for maintaining ecosystem and its manufacturing method
JP2005256308A (en) * 2004-03-09 2005-09-22 Jfe Steel Kk Structure arranged on revetment, and revetment structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429545A (en) * 1977-08-09 1979-03-05 Hokoku Kogyo Rice center business processing system
JPS54110632A (en) * 1978-02-20 1979-08-30 Kyowa Konkuriito Kougiyou Kk Construction method of shore protection
JPH0266208A (en) * 1988-09-01 1990-03-06 Gantan Funaki Structure for protection of biological environment in protective wall for river, sand, or mountain area
JPH09187190A (en) * 1996-01-10 1997-07-22 Nippon Solid Co Ltd Substance for promoting inhabitation of aquatic life
JP2000212936A (en) * 1999-01-21 2000-08-02 Fukuda Corp Aquatic life-living revetment structure
JP2004084360A (en) * 2002-08-28 2004-03-18 Takuo Yukimoto Consolidation block for maintaining ecosystem and its manufacturing method
JP2005256308A (en) * 2004-03-09 2005-09-22 Jfe Steel Kk Structure arranged on revetment, and revetment structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043007B1 (en) 2009-08-03 2011-06-21 주식회사 씨에버 Shellfish farming system
JP2013147835A (en) * 2012-01-18 2013-08-01 Kajima Corp Air supply system in water stay area and bottom sediment improvement method

Also Published As

Publication number Publication date
JP4885783B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
CN113557334A (en) Lake restoration system and method
KR101360240B1 (en) Eco-friendly storage type agricultural channel
JP5377593B2 (en) Artificial Yoshihara
CN209816775U (en) Ecological revetment for providing living and inhabiting environment for fishes
JP4885783B2 (en) Pipe structure and its composite
JP2016202109A (en) Sphagnum bog regeneration method and regeneration substrate
JP4360645B2 (en) How to create an artificial tidal flat
US20230203771A1 (en) Lake restoration systems and processes
KR100746245B1 (en) Sustainable structured wetland media and constructed wetland system having the same
CN113216073B (en) Coastal wetland construction and reclamation method for ecological reclamation of enclosed sea
KR20120000137A (en) Environmental-friendly structure of the seawall for ecological river
JP5876301B2 (en) Water structure
KR200432566Y1 (en) Sustainable structured wetland media
US11795646B2 (en) System for reducing contaminants in a body of water
JP3739498B2 (en) Revetment structure
JP4962736B2 (en) Protective structure for bivalve shell and its construction method
JP3290166B2 (en) How to build a fish reef
KR20100013894A (en) Permeable steel sheet pile
CN215252660U (en) Water purification type revetment for hard embankment reconstruction
JP2007029933A (en) Sediment improving material and sediment improving method
JP2000254696A (en) Method for reforming bottom mud and system therefor
KR200377254Y1 (en) Versatile ecological frame that combines fishery and water purification
JP6499562B2 (en) Method and system for detoxifying hydrogen sulfide generated at the bottom of a lake or bay
JP2004068272A (en) Cribbed symbiotic revetment
JP3991324B2 (en) How to control leaching in tidal flats

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250