JP2008253164A - Method for evaluating antimicrobial performance of photocatalytic material for general environmental microorganism - Google Patents

Method for evaluating antimicrobial performance of photocatalytic material for general environmental microorganism Download PDF

Info

Publication number
JP2008253164A
JP2008253164A JP2007096657A JP2007096657A JP2008253164A JP 2008253164 A JP2008253164 A JP 2008253164A JP 2007096657 A JP2007096657 A JP 2007096657A JP 2007096657 A JP2007096657 A JP 2007096657A JP 2008253164 A JP2008253164 A JP 2008253164A
Authority
JP
Japan
Prior art keywords
liquid
antibacterial
antibacterial performance
evaluating
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007096657A
Other languages
Japanese (ja)
Other versions
JP4953071B2 (en
Inventor
Yoshihisa Oko
善久 大古
Satoshi Hanada
智 花田
Mio Takeuchi
美緒 竹内
Shuri Fukuda
朱里 福田
Hisako Sugino
久子 杉野
Emiko Sakai
恵美子 酒井
Sadao Matsuzawa
貞夫 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007096657A priority Critical patent/JP4953071B2/en
Publication of JP2008253164A publication Critical patent/JP2008253164A/en
Application granted granted Critical
Publication of JP4953071B2 publication Critical patent/JP4953071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Catalysts (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply, rapidly and quantitatively evaluating antimicrobial performance. <P>SOLUTION: The method for evaluating antimicrobial performance comprises using a liquid containing bacterium, such as, Synechocystis sp. PCC 6803, having pigment synthetic ability and a liquid containing further an antimicrobial material, such as, a photocatalyst in the liquid, and using changes in pigment, in both the liquids as an index for evaluating antimicrobial performance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光触媒材料の抗菌性能を評価する方法に関するものである。   The present invention relates to a method for evaluating the antibacterial performance of a photocatalytic material.

光触媒の中で、酸化チタンは化学的に安定で、紫外光照射によって強い酸化力を生じる。この酸化力によって、有機物を酸化分解したり、微生物を殺菌したりすることができる。近年、光触媒技術の研究開発が活発に行われ、抗菌タイルなど、一部実用化されている。その一方で、十分な効果がない製品、いわゆるまがいものが市場に多く流通しないように、光触媒技術の信頼の確立が求められている。   Among photocatalysts, titanium oxide is chemically stable and generates strong oxidizing power when irradiated with ultraviolet light. With this oxidizing power, organic substances can be oxidatively decomposed and microorganisms can be sterilized. In recent years, research and development of photocatalytic technology has been actively conducted, and some antibacterial tiles have been put into practical use. On the other hand, establishment of trust in photocatalytic technology is demanded so that products that do not have sufficient effects, so-called false things, do not circulate in the market.

こうした状況下において、使用する光触媒の性能を正しく評価する必要がある。例えば抗菌性能評価の場合、従来の方法は、大腸菌、黄色ブドウ球菌などの菌を用いて、培地に出現する細菌コロニーの数から抗菌性能を評価するものであり(特許文献1〜3等)、光触媒の場合も、同様の細菌コロニーをカウントする方法が用いられている。
例えば、特許文献1に記載された方法は、光触媒粉末の懸濁液に、大腸菌懸濁液を添加し、これに紫外線を照射して光触媒反応を開始させ、該反応液を経時的にサンプリングして、希釈液を作成し、それぞれの希釈液を用いて培地上で培養し、形成されたコロニーをカウントして生菌数を測定するというものである。
しかしながら、従来の方法は、特定の細菌以外の雑菌の影響を排除するための設備を必要とした。そして主な用途としては、医療現場や公衆衛生の場で用いられるものに限られていた。また、培地上での再培養に約1日、コロニーのカウントに数十分と、その評価結果が得られるまでに長い時間を要するものであった。さらに、光触媒の抗菌性能を評価する場合には、紫外線照射による光触媒反応をさせる必要があるが、供試菌自体が、紫外線照射に対して耐性が弱いという欠点を有している。
特開2001−286757号公報 特開2003−274995号公報 特開平11−192号公報
Under such circumstances, it is necessary to correctly evaluate the performance of the photocatalyst used. For example, in the case of antibacterial performance evaluation, the conventional method is to evaluate the antibacterial performance from the number of bacterial colonies appearing in the culture medium using bacteria such as Escherichia coli and Staphylococcus aureus (Patent Documents 1 to 3, etc.) In the case of a photocatalyst, a similar method of counting bacterial colonies is used.
For example, in the method described in Patent Document 1, an E. coli suspension is added to a suspension of photocatalyst powder, and this is irradiated with ultraviolet rays to initiate a photocatalytic reaction, and the reaction solution is sampled over time. Then, a diluted solution is prepared, cultured on the medium using each diluted solution, the formed colonies are counted, and the number of viable bacteria is measured.
However, the conventional method requires equipment for eliminating the influence of various bacteria other than the specific bacteria. And the main uses were limited to those used in the medical field and public health field. Moreover, it took about a day for the re-culture on the medium, several tens of minutes for the count of colonies, and it took a long time to obtain the evaluation result. Furthermore, when the antibacterial performance of the photocatalyst is evaluated, it is necessary to carry out a photocatalytic reaction by ultraviolet irradiation, but the test bacteria themselves have a drawback that they are weakly resistant to ultraviolet irradiation.
JP 2001-286757 A JP 2003-274959 A Japanese Patent Laid-Open No. 11-192

本発明は、以上のような事情に鑑みてなされたものであって、雑菌排除などの特別な設備を必要とせず、簡便で迅速かつ定量性のある抗菌性能評価方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and does not require special equipment such as elimination of germs, and aims to provide a simple, rapid and quantitative antibacterial performance evaluation method. To do.

発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、以下の知見を得た。すなわち、酸化チタン光触媒反応は、紫外光照射により誘起され、抗菌性能を発現するが、この光触媒の抗菌性能を環境分野や産業用途に応用する場合には、周囲の光が強いことを考慮して、従来民生用途で試供菌とされてきた大腸菌や黄色ブドウ球菌より一般性があって紫外光に強い菌を使う方が良い。また、生死の判別を簡便に評価できるように、例えば細胞内の色素や化学発光機能が死滅に伴い変化する菌を探索することは重要である。
そこで、我々はまず、微細藻類のシアノバクテリアが持つクロロフィル色素の酸化分解反応に注目した。シアノバクテリアは、海水・淡水・陸上において広く生息しており、日光がよく当たる自然環境の細菌として代表種となり得る。また、クロロフィルをもつことから緑色を呈しており、死ぬとまもなくクロロフィルが分解され色変化が起こることから、死亡判定を吸光度変化や蛍光強度変化で評価することができる可能性がある。
As a result of intensive studies to achieve the above object, the inventors have obtained the following knowledge. In other words, the titanium oxide photocatalytic reaction is induced by ultraviolet light irradiation and exhibits antibacterial performance. However, when the antibacterial performance of this photocatalyst is applied to the environmental field and industrial applications, it is considered that ambient light is strong. It is better to use bacteria that are more general and resistant to ultraviolet light than Escherichia coli and Staphylococcus aureus that have been used as samples for conventional consumer use. In addition, it is important to search for bacteria whose intracellular pigment or chemiluminescence function changes with death so that life / death discrimination can be easily evaluated.
Therefore, we first focused on the oxidative degradation reaction of chlorophyll pigments possessed by microalgae cyanobacteria. Cyanobacteria are widely inhabited in seawater, freshwater, and land, and can be representative species of bacteria in the natural environment where they are exposed to sunlight. Moreover, since it has chlorophyll, it has a green color, and as soon as it dies, chlorophyll is decomposed and a color change occurs. Therefore, there is a possibility that the death determination can be evaluated by a change in absorbance or a change in fluorescence intensity.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)抗菌性材料の抗菌性能を評価する方法であって、色素合成能を有する細菌を含有する液と該液中にさらに抗菌性材料を含有する液との、液中の色素変化を指標として用いることを特徴とする抗菌性能評価方法。
(2)前記抗菌性材料が光触媒であって、該光触媒を含有する液に紫外線を照射することを特徴とする上記(1)の抗菌性能評価方法。
(3)前記細菌が、シアノバクテリアである上記(1)又は(2)の抗菌性能評価方法。
(4)色素合成能を有する細菌を含有する液からなる抗菌性能評価用試薬。
(5)前記細菌が、シアノバクテリアである上記(4)の抗菌性能評価用試薬。
The present invention has been completed based on these findings, and is as follows.
(1) A method for evaluating the antibacterial performance of an antibacterial material, which is an indicator of pigment change in a liquid between a liquid containing a bacterium capable of synthesizing a dye and a liquid further containing an antibacterial material in the liquid An antibacterial performance evaluation method characterized by being used as:
(2) The antibacterial performance evaluation method according to (1) above, wherein the antibacterial material is a photocatalyst, and the liquid containing the photocatalyst is irradiated with ultraviolet rays.
(3) The antibacterial performance evaluation method according to (1) or (2) above, wherein the bacterium is cyanobacteria.
(4) A reagent for evaluating antibacterial performance comprising a liquid containing bacteria having pigment synthesis ability.
(5) The reagent for evaluating antibacterial performance according to (4), wherein the bacterium is cyanobacteria.

本発明の方法は、再培養操作が不要で、試験中も無菌操作が全く不要で、簡便なリアルタイム計測が可能であり、クロロフィルの吸収スペクトルや蛍光スペクトルを測定することにより、呈色反応でありながら定量性のある、有益な抗菌性能評価法を可能とするものである。また、シアノバクテリアを用いた場合には、紫外線照射に耐性があるという優れた利点がある。本発明の方法によれば、医療現場や公衆衛生の場に限られず、広く環境全般について実施することが可能となる。   The method of the present invention does not require re-culture operation, does not require aseptic operation even during the test, allows simple real-time measurement, and is a color reaction by measuring the absorption spectrum and fluorescence spectrum of chlorophyll. However, it enables quantitative and useful antibacterial performance evaluation methods. Further, when cyanobacteria are used, there is an excellent advantage that they are resistant to ultraviolet irradiation. According to the method of the present invention, the present invention is not limited to medical sites and public health sites, and can be widely implemented for the entire environment.

本発明の抗菌性能評価方法は、色素合成能を有する細菌を含有する液と該液中にさらに抗菌性材料を含有する液との、液中の色素変化を指標として用いることを特徴とする。
第1図は、本発明の評価方法の概要を示す図である。
The antibacterial performance evaluation method of the present invention is characterized in that a change in pigment in a liquid between a liquid containing bacteria having pigment synthesis ability and a liquid further containing an antibacterial material is used as an index.
FIG. 1 is a diagram showing an outline of the evaluation method of the present invention.

シアノバクテリア(Synechocystis sp. PCC 6803)は、酸素発生型光合成を行う菌であり、増殖培地BG11で増殖し、クロロフィルa、β−カロテン、フィコエリスリンなどの色素を合成するが、死滅すると、まもなく細胞内部の色素が分解される。
Cyanobacteria (Synechocystis sp. PCC 6803) is a bacterium that performs oxygen-generating photosynthesis. It grows on the growth medium BG11 and synthesizes pigments such as chlorophyll a, β-carotene, and phycoerythrin. The pigment inside the cell is broken down.

本発明では、この色素の分解反応に伴って、色素がもつ自家蛍光特性或いは吸光特性の減少を指標として抗菌性材料の抗菌性能を評価するものである。
本発明においては、色素がもつ自家蛍光特性或いは吸光特性の減少を汎用な分光器で計測することで、定量的に殺菌率の判定をすることが可能となる。
本発明の評価方法は、上記シアノバクテリア以外に、緑藻(淡水・海水)、紅藻(海水)、褐藻(淡水)にも広く適用できる。
In the present invention, the antibacterial performance of the antibacterial material is evaluated by using, as an index, a decrease in the autofluorescence characteristic or light absorption characteristic of the dye accompanying the decomposition reaction of the dye.
In the present invention, it is possible to quantitatively determine the sterilization rate by measuring the decrease in autofluorescence characteristics or light absorption characteristics of the dye with a general-purpose spectrometer.
The evaluation method of the present invention can be widely applied to green algae (freshwater / seawater), red algae (seawater), and brown algae (freshwater) in addition to the cyanobacteria.

本発明において、こうした液中の色素変化を指標として抗菌性能を評価する場合、その液は、色素合成能を有する細菌及び/又は抗菌性材料を含有する液そのものであっても、或いは、これらの液体から前記細菌及び/又は前記抗菌性材料をフィルタによる除去等の公知の方法を用いて除去した後の液体であってもよい。   In the present invention, when the antibacterial performance is evaluated using the pigment change in such a liquid as an index, the liquid may be a liquid itself containing a bacterium capable of synthesizing a dye and / or an antibacterial material, or these liquids may be used. The liquid after removing the bacteria and / or the antibacterial material from the liquid by a known method such as removal by a filter may be used.

また、本発明の方法に用いる抗菌性能評価用試薬は、色素合成能を有する細菌を含有する液であればよく、該細菌の培養液そのものであっても、或いは、該培養液を希釈したものであってもよい。
本発明の抗菌性能評価用試薬を用いて抗菌性材料の抗菌性能を評価するには、該試薬中に抗菌性材料を添加し、或いは、抗菌性材料を含有する液中に該試薬を添加し、添加前後の色素変化を指標として用いる。
In addition, the antibacterial performance evaluation reagent used in the method of the present invention may be a liquid containing a bacterium capable of synthesizing pigments, and may be a culture solution of the bacterium itself or a dilution of the culture solution. It may be.
In order to evaluate the antibacterial performance of an antibacterial material using the antibacterial performance evaluation reagent of the present invention, an antibacterial material is added to the reagent, or the reagent is added to a liquid containing the antibacterial material. The pigment change before and after the addition is used as an index.

以下、以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
(サンプルの調整)
BG11液体培地で28℃で通気培養を行った1週間以内のシアノバクテリア(倍化時間約1日)の培養液を、10,000rpmで5分間遠心をかけ、上清を捨て超純粋による洗浄作業を2回行った。次に、吸光度(波長730nm)が0.2になるように超純水菌液を調整した。
光触媒として、市販のアナターゼ酸化チタンゾル(石原産業製 STS−21、40wt%スラリー液)用い、これに前記菌液と攪拌子をいれて、攪拌を行いながらキセノン灯からの紫外線(波長400nm以下、0.5mW/cm)を照射した。
同様にして、酸化チタンを添加しない菌液、紫外線照射を行わない菌液、酸化チタン添加も紫外線照射も行わない菌液を調整して、全部で4つの条件のサンプルを用い、生菌数の経時変化を調べた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely below, this invention is not limited at all by these Examples.
(Sample adjustment)
A culture solution of cyanobacteria (doubling time of about 1 day) aerated in a BG11 liquid medium at 28 ° C. for 1 week is centrifuged at 10,000 rpm for 5 minutes, and the supernatant is discarded and washing with ultrapure Was performed twice. Next, the ultrapure water bacterial solution was adjusted so that the absorbance (wavelength 730 nm) was 0.2.
As a photocatalyst, a commercially available anatase titanium oxide sol (STS-21, manufactured by Ishihara Sangyo Co., Ltd., 40 wt% slurry liquid) was used. .5 mW / cm 2 ).
In the same manner, a bacterial solution not added with titanium oxide, a bacterial solution not subjected to ultraviolet irradiation, and a bacterial solution not subjected to addition of titanium oxide or ultraviolet irradiation were prepared, and samples of four conditions were used in total. The change with time was examined.

(シアノバクテリア(Synechocystis sp. PCC 6803)に対する酸化チタン光触媒の抗菌効果の確認)
菌の生死の判定を、LIVE/DEAD BacLight Bacterial Viability Kit(Invitrogen社)を用いた生死判定で行なった。
図2はその結果を示す写真であり、左側が生きている細菌のもので、緑色に発光しているが、右側の死んだ細菌のものは、赤く発光している。
図3は、光触媒反応後のサンプルについて、LIVE/DEAD BacLight Bacterial Viability Kit(invitrogen)を用いた生死判定を示すものであって、6時間の紫外線照射により、光触媒反応が進行すると、90%以上の死滅率が得られた。
(Confirmation of antibacterial effect of titanium oxide photocatalyst against cyanobacteria (Synechocystis sp. PCC 6803))
The determination of viability of the fungus was performed by viability determination using a LIVE / DEAD BacLight Bacterial Viability Kit (Invitrogen).
FIG. 2 is a photograph showing the results. The left side is for living bacteria and emits green light, while the right side for dead bacteria is red.
FIG. 3 shows a life / death determination using the LIVE / DEAD BacLight Bacterial Viability Kit (invitrogen) for the sample after the photocatalytic reaction. When the photocatalytic reaction proceeds by UV irradiation for 6 hours, 90% or more The death rate was obtained.

(シアノバクテリアの死滅に伴う菌液の色変化の確認)
図4は、光触媒反応によるクロロフィルの退色を確認した結果を示すものである。
図に示すとおり、酸化チタンを添加して6時間の紫外線照射を行った菌液(TiO2+、UV6hr)のみ、クロロフィルの退色が進み、緑色から青色に変化したが、酸化チタンを添加しなかった菌液(TiO2−、UV6hr)、紫外線照射を行わなかった菌液(TiO2+、UV−)、及び酸化チタンの添加も紫外線照射も行わなかった菌液(TiO2−、UV−)は、いずれも緑色のままであった。
酸化チタンを添加して6時間の紫外線照射を行った菌液(TiO2+、UV6hr)について、紫外線照射前後の色素スペクトルの変化を測定した。
図5は、吸収スペクトル測定の結果を示す図である。該図に示されているとおり、クロロフィル色素の吸収ピークが消失し、クロロフィルが分解されたことが明らかとなった。
この結果は、前記のLIVE/DEADassayによる評価と対応しており、殺菌率を呈色反応で定量的に評価できることを示すものである。
(Confirmation of color change of bacterial liquid accompanying the death of cyanobacteria)
FIG. 4 shows the result of confirming chlorophyll fading due to the photocatalytic reaction.
As shown in the figure, only the bacterial solution (TiO2 +, UV6hr) that was irradiated with ultraviolet rays for 6 hours after adding titanium oxide, the chlorophyll faded and changed from green to blue, but no titanium oxide was added. The liquid (TiO2-, UV6hr), the bacterial liquid that was not irradiated with ultraviolet light (TiO2 +, UV-), and the bacterial liquid (TiO2-, UV-) that was neither added with titanium oxide nor irradiated with ultraviolet light were all green. It remained.
For a bacterial solution (TiO2 +, UV6hr) which was irradiated with ultraviolet rays for 6 hours after adding titanium oxide, the change in the dye spectrum before and after the ultraviolet irradiation was measured.
FIG. 5 is a diagram showing the results of absorption spectrum measurement. As shown in the figure, the absorption peak of the chlorophyll pigment disappeared, and it was revealed that chlorophyll was decomposed.
This result corresponds to the evaluation by the above-mentioned LIVE / DEADassay, and shows that the bactericidal rate can be quantitatively evaluated by a color reaction.

(シアノバクテリアの液体培養液中における光触媒効果)
BG11液体培地を1/10に希釈して、28℃で通気培養を行った。酸化チタンは石原産業製のSTS−21液を水で希釈して用いた。
20mlのサンプル液に対して、キセノン灯からの紫外線(波長400nm以下、0.5mW/cm)を照射して、酸化チタンの有無による違いを調べた。
その結果を図6に示す。
図6に示すとおり、光触媒の入ったサンプルでは、1日経過後、ガラス容器の壁面や通気用のチューブに細菌が付着する現象が確認されたが、3日後には、すべて剥がれ落ちて、沈殿となった。
この結果は次のように解釈できる。すなわち、シアノバクテリアは、まず紫外光による酸化ストレスから身を守るため、酸化チタンやガラス容器などの無機物を核に付着・凝集して、バイオフィルム化することで、外的要因の強度を軽減しようとするが、その後、光触媒酸化反応により、バイオフィルムが分解されることを示している。
(Photocatalytic effect of cyanobacteria in liquid culture)
BG11 liquid medium was diluted to 1/10 and aerated culture was performed at 28 ° C. Titanium oxide was prepared by diluting STS-21 solution manufactured by Ishihara Sangyo with water.
A 20 ml sample solution was irradiated with ultraviolet rays (wavelength 400 nm or less, 0.5 mW / cm 2 ) from a xenon lamp, and the difference due to the presence or absence of titanium oxide was examined.
The result is shown in FIG.
As shown in FIG. 6, in the sample containing the photocatalyst, after 1 day, it was confirmed that bacteria adhered to the wall surface of the glass container and the ventilation tube. became.
This result can be interpreted as follows. In other words, cyanobacteria will reduce the strength of external factors by first attaching and aggregating inorganic substances such as titanium oxide and glass containers to the core to form a biofilm in order to protect themselves from oxidative stress caused by ultraviolet light. However, it is shown that the biofilm is then decomposed by the photocatalytic oxidation reaction.

本発明の方法及び試薬を用いることにより、光触媒製品の防藻効果やバイオフィルム形成阻害効果などの評価法の確立が期待される。   By using the method and reagent of the present invention, it is expected to establish an evaluation method for the anti-algae effect and biofilm formation inhibition effect of the photocatalyst product.

本発明の評価方法の概要を示す図The figure which shows the outline | summary of the evaluation method of this invention LIVE/DEADassayによる菌の生死判定を示す写真Photograph showing life / death determination of bacteria by LIVE / DEADassay LIVE/DEADassayにより評価した紫外線暴露時間に伴う生存率の変化をしめす図Figure showing change in survival rate with UV exposure time evaluated by LIVE / DEADassay 光触媒反応によるクロロフィルの退色を確認した結果を示す図The figure which shows the result which confirmed the discoloration of the chlorophyll by the photocatalytic reaction 紫外線照射前後の吸収スペクトルの変化を示す図Diagram showing changes in absorption spectrum before and after UV irradiation 酸化チタン粉末を用いたバイオフィルム形成阻害・分解効果を示す図Diagram showing biofilm formation inhibition and decomposition effects using titanium oxide powder

Claims (5)

抗菌性材料の抗菌性能を評価する方法であって、色素合成能を有する細菌を含有する液と該液中にさらに抗菌性材料を含有する液との、液中の色素変化を指標として用いることを特徴とする抗菌性能評価方法。   A method for evaluating the antibacterial performance of an antibacterial material, using as an index a change in pigment in the liquid between a liquid containing bacteria having pigment synthesis ability and a liquid containing an antibacterial material in the liquid Antibacterial performance evaluation method characterized by 前記抗菌性材料が光触媒であって、該光触媒を含有する液に紫外線を照射することを特徴とする請求項1に記載の抗菌性能評価方法。   The antibacterial performance evaluation method according to claim 1, wherein the antibacterial material is a photocatalyst, and the liquid containing the photocatalyst is irradiated with ultraviolet rays. 前記細菌が、シアノバクテリアである請求項1又は2に記載の抗菌性能評価方法。   The antibacterial performance evaluation method according to claim 1 or 2, wherein the bacteria are cyanobacteria. 色素合成能を有する細菌を含有する液からなることを特徴とする抗菌性能評価用試薬。   A reagent for evaluating antibacterial performance, comprising a liquid containing a bacterium having pigment synthesis ability. 前記細菌が、シアノバクテリアである請求項4に記載の抗菌性能評価用試薬。   The reagent for evaluating antibacterial performance according to claim 4, wherein the bacterium is cyanobacteria.
JP2007096657A 2007-04-02 2007-04-02 Method for evaluating antibacterial performance of photocatalytic materials against general environmental microorganisms Expired - Fee Related JP4953071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096657A JP4953071B2 (en) 2007-04-02 2007-04-02 Method for evaluating antibacterial performance of photocatalytic materials against general environmental microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096657A JP4953071B2 (en) 2007-04-02 2007-04-02 Method for evaluating antibacterial performance of photocatalytic materials against general environmental microorganisms

Publications (2)

Publication Number Publication Date
JP2008253164A true JP2008253164A (en) 2008-10-23
JP4953071B2 JP4953071B2 (en) 2012-06-13

Family

ID=39977453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096657A Expired - Fee Related JP4953071B2 (en) 2007-04-02 2007-04-02 Method for evaluating antibacterial performance of photocatalytic materials against general environmental microorganisms

Country Status (1)

Country Link
JP (1) JP4953071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271590A (en) * 2017-05-11 2017-10-20 华南理工大学 A kind of method of headspace gas chromatography quick detection anti-bacteria paper biocidal property

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286757A (en) * 2000-04-05 2001-10-16 Sumitomo Electric Ind Ltd Photocatalyst powder and photocatalyst carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286757A (en) * 2000-04-05 2001-10-16 Sumitomo Electric Ind Ltd Photocatalyst powder and photocatalyst carrier

Also Published As

Publication number Publication date
JP4953071B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Tong et al. Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors
Haynes et al. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—Current knowledge and suggestions for future research
Gao et al. Inactivation of bacteria and yeast using high-frequency ultrasound treatment
Chen et al. Microcystis aeruginosa removal by peroxides of hydrogen peroxide, peroxymonosulfate and peroxydisulfate without additional activators
Josset et al. Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms
Dong et al. Antibacterial study of Mg (OH) 2 nanoplatelets
Binh et al. Common freshwater bacteria vary in their responses to short‐term exposure to nano‐TiO2
Booshehri et al. Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents
Yamada et al. Differences in elimination efficiencies of Escherichia coli in freshwater and seawater as a result of TiO2 photocatalysis
Qiu et al. A novel application of In2S3 for visible-light-driven photocatalytic inactivation of bacteria: Kinetics, stability, toxicity and mechanism
Thiyagarajan et al. Reusable sunlight activated photocatalyst Ag3PO4 and its significant antibacterial activity
Wang et al. Photocatalytic inactivation and destruction of harmful microalgae Karenia mikimotoi under visible-light irradiation: Insights into physiological response and toxicity assessment
Sanmartín et al. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination
Barreto et al. Environmentally relevant concentrations of TiO 2 nanoparticles affected cell viability and photosynthetic yield in the Chlorophyceae Scenedesmus bijugus
Imase et al. Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis
Chen et al. Transparent exopolymer particle production and aggregation by a marine planktonic diatom (Thalassiosira weissflogii) at different growth rates
Binh et al. Comparing acute effects of a nano-TiO2 pigment on cosmopolitan freshwater phototrophic microbes using high-throughput screening
Zhang et al. Visible-light-driven photocatalytic disinfection of Aspergillus fumigatus under germinative biomorph: Efficiency and mechanism
Chandaravithoon et al. Oxygenic and anoxygenic photosynthesis in a sewage pond
Koklic et al. Surface deposited one-dimensional copper-doped TiO2 nanomaterials for prevention of health care acquired infections
JP4953071B2 (en) Method for evaluating antibacterial performance of photocatalytic materials against general environmental microorganisms
CN112375804B (en) Au/g-C 3 N 4 All-weather photocatalytic antibacterial material and light-dark dual-mode antibacterial mechanism thereof
Weng et al. Characterization of antimicrobial efficacy of photocatalytic polymers against food-borne biofilms
Carré et al. On the use of capillary cytometry for assessing the bactericidal effect of TiO 2. Identification and involvement of reactive oxygen species
Buck et al. Influence of bacterial, environmental and physical factors in design of photocatalytic reactors for water disinfection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees