JP2008253118A - Power distribution system - Google Patents

Power distribution system Download PDF

Info

Publication number
JP2008253118A
JP2008253118A JP2007095258A JP2007095258A JP2008253118A JP 2008253118 A JP2008253118 A JP 2008253118A JP 2007095258 A JP2007095258 A JP 2007095258A JP 2007095258 A JP2007095258 A JP 2007095258A JP 2008253118 A JP2008253118 A JP 2008253118A
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
lines
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095258A
Other languages
Japanese (ja)
Other versions
JP5086682B2 (en
Inventor
Yuji Fujita
裕司 藤田
Toshiaki Tokizane
敏昭 時実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007095258A priority Critical patent/JP5086682B2/en
Publication of JP2008253118A publication Critical patent/JP2008253118A/en
Application granted granted Critical
Publication of JP5086682B2 publication Critical patent/JP5086682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power distribution system capable of supplying DC power to electric equipment of different actuating voltage with high utilizing efficiency of an electric power. <P>SOLUTION: A DC power is supplied to a DC equipment 20 from a DC power supply 10 through a power supplying line Lp. The power supplying line Lp has two wires, and the DC power supply 10 selects a voltage level applied across the power supplying line Lp in three stages, to apply each of the voltages to the line in circulation. The DC equipment 20 has a voltage detecting means 21 for detecting whether the voltage applied to the power supplying line Lp is suitable to the actuating voltage level of its own. The DC power supplied from the power supplying line Lp in an adjusted period of time when the voltage suitable to its own is applied is stored in a power supplying means 22, and supplied to an internal circuit 23 at a constant voltage level. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力供給線路に直流電源から直流電力を供給し、電力供給線路に接続された直流機器を直流電力により駆動する配電システムに関するものである。   The present invention relates to a power distribution system that supplies DC power to a power supply line from a DC power source and drives a DC device connected to the power supply line with DC power.

従来から、AC/DCコンバータを電気機器に内蔵したり電源アダプタとして電気機器に接続することに代えて、AC/DCコンバータを屋内に1台だけ設けることにより、屋内で直流電力を配電することが提案されている(たとえば、特許文献1参照)。   Conventionally, it is possible to distribute DC power indoors by providing only one AC / DC converter indoors instead of incorporating the AC / DC converter into an electrical device or connecting it to the electrical device as a power adapter. It has been proposed (see, for example, Patent Document 1).

このような配電システムを採用すると、従来は、内蔵するか外付するかにかかわらず、電気機器ごとに必要であったAC/DCコンバータを電気機器に付属させる必要がなくなるから、電気機器の製造が容易になり、効率や力率の改善にもつながると考えられる。
特開2004−112920号公報
By adopting such a power distribution system, it is no longer necessary to attach an AC / DC converter, which is conventionally required for each electric device, regardless of whether it is built-in or externally attached. It will be easier and will lead to improvements in efficiency and power factor.
JP 2004-112920 A

しかしながら、マイクロコンピュータを代表例とする情報系あるいは通信系の電気機器と、リレーやモータを代表例とする電力系あるいは駆動系の電気機器とでは、駆動電圧が異なっており、前者では3Vあるいは5Vが多く用いられ、後者では12Vあるいは24Vが多く用いられている。   However, the drive voltage is different between the information system or communication system electrical equipment represented by the microcomputer and the power system or drive system electrical equipment represented by the relay or motor, and the former is 3V or 5V. Is often used, and in the latter case, 12V or 24V is often used.

このような駆動電圧の相違に対応するには、AC/DCコンバータから供給する電圧を、接続する電気機器に対応した駆動電圧のうちもっとも高い電圧とし、電気機器において必要に応じて降圧することが考えられるが、駆動電圧がもっとも低い電気機器では供給電圧と駆動電圧との差が大きくなるから、降圧時の損失が大きくなり、電力の利用効率の低下につながるという問題がある。   In order to cope with such a difference in driving voltage, the voltage supplied from the AC / DC converter is set to the highest voltage among the driving voltages corresponding to the electrical equipment to be connected, and the electrical equipment may step down as necessary. It is conceivable that there is a problem that an electric device having the lowest drive voltage has a large difference between the supply voltage and the drive voltage, and thus a loss at the time of step-down increases, leading to a reduction in power utilization efficiency.

本発明は上記事由に鑑みて為されたものであり、その目的は、駆動電圧の異なる電気機器への直流電力の供給を可能にするとともに電力の利用効率が高い配電システムを提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a power distribution system that enables supply of DC power to electric devices having different driving voltages and high power use efficiency. .

請求項1の発明は、直流電力を供給する直流電源と、電力供給線路を通して直流電源から供給される直流電力により駆動される直流機器とを有し、直流電源は、複数種の直流電圧を電力供給線路に供給し、直流機器は、前記複数種の直流電圧から自己に対応した電圧の直流電力を受電し動作することを特徴とする。なお、直流機器は直流電力を受けて動作する電気機器を意味している。   The invention of claim 1 has a DC power supply for supplying DC power and a DC device driven by DC power supplied from the DC power supply through a power supply line, and the DC power supply uses a plurality of types of DC voltages as power. The DC device is supplied to the supply line and operates by receiving DC power of a voltage corresponding to itself from the plurality of types of DC voltages. The DC device means an electric device that operates by receiving DC power.

請求項2の発明では、請求項1の発明において、前記電力供給線路は2本の電線からなり、前記直流電源は電力供給線路の線間に印加する電圧を複数段階に可変であり、前記直流機器は、線間に印加されている電圧が自己に対応しているか否かを判断する電圧検出手段と、電圧検出手段により自己に対応した電圧が線間に印加されていることが検出される適合期間に電力供給線路から直流電力を受電する電源手段とを備えることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the power supply line is composed of two electric wires, and the DC power source is capable of varying the voltage applied between the power supply lines in a plurality of stages. The device detects whether the voltage applied between the lines corresponds to itself or not, and the voltage detection means detects that the voltage corresponding to itself is applied between the lines. Power supply means for receiving DC power from the power supply line during the adaptation period.

請求項3の発明では、請求項1の発明において、前記電力供給線路は3本以上の電線からなり、前記直流電源は、電力供給線路の異なる2本の電線間に印加する電圧が2種類以上に設定されていることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the power supply line is composed of three or more electric wires, and the DC power supply has two or more types of voltages applied between two electric wires with different power supply lines. It is characterized by being set to.

請求項4の発明では、請求項3の発明において、前記直流電源は、前記電力供給線路を構成する1本の電線を基準電位の基準線として基準線と他の各電線との間にそれぞれ異なる電圧を印加し、前記直流機器は基準線と他の1本の電線とから直流電力を受電することを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the DC power source is different between a reference line and each of the other electric wires, with one electric wire constituting the power supply line as a reference line for a reference potential. A voltage is applied, and the DC device receives DC power from a reference line and another electric wire.

請求項5の発明では、請求項4の発明において、前記直流電源は前記電力供給線路のうち前記基準線となる電線と他の少なくとも1本の電線との間に印加する電圧を複数段階に可変であり、前記直流機器のうち基準線に対する電圧が可変である電線から直流電力を受電する直流機器は、線間に印加されている電圧が自己に対応しているか否かを判断する電圧検出手段と、電圧検出手段により自己に対応した電圧が線間に印加されていることが検出される適合期間に前記電力供給線路から直流電力を受電する電源手段とを備えることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the DC power source can vary the voltage applied between the electric wire serving as the reference line and at least one other electric wire in the power supply line in a plurality of stages. The DC detecting device for receiving DC power from the electric wire whose voltage with respect to the reference line is variable among the DC devices is a voltage detecting means for judging whether or not the voltage applied between the wires corresponds to itself. And a power supply means for receiving DC power from the power supply line during an adaptation period in which it is detected by the voltage detection means that a voltage corresponding to itself is applied between the lines.

請求項6の発明では、請求項2または請求項5の発明において、前記電源手段は、前記適合期間の直流電力を蓄電して内部電源に用いることを特徴とする。   According to a sixth aspect of the present invention, in the second or fifth aspect of the present invention, the power supply means stores DC power during the adaptation period and uses it for an internal power supply.

請求項7の発明では、請求項2または請求項5または請求項6の発明において、前記直流電源は、電圧が可変である前記電力供給線路の線間に印加する電圧を一定時間ごとに変化させる電圧選択手段を備えることを特徴とする。   In the invention of claim 7, in the invention of claim 2, claim 5 or claim 6, the DC power supply changes the voltage applied between the power supply lines whose voltage is variable at regular intervals. Voltage selection means is provided.

請求項8の発明では、請求項7の発明において、前記電圧選択手段は、電圧が可変である前記電力供給線路の線間に印加する電圧を一定時間ごとにかつ循環的に変化させることを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein the voltage selection means changes the voltage applied between the lines of the power supply line whose voltage is variable periodically and periodically. And

請求項9の発明では、請求項2または請求項6の発明において、前記直流電源と前記直流機器とは通信可能であって、直流機器は自己に対応した電圧を直流電源に通知し、直流電源は、前記電力供給線路に接続されたすべての直流機器から通知された電圧の種類に応じた電圧を選択して前記電力供給線路の線間に印加する電圧選択手段を備えることを特徴とする。   According to a ninth aspect of the invention, in the second or sixth aspect of the invention, the DC power supply and the DC device can communicate with each other, and the DC device notifies the DC power supply of a voltage corresponding to the DC power supply. Comprises voltage selection means for selecting a voltage corresponding to the type of voltage notified from all the DC devices connected to the power supply line and applying the voltage between the lines of the power supply line.

請求項10の発明では、請求項2または請求項5または請求項6の発明において、前記直流電源と前記直流機器とは通信可能であって、直流電源は、常時は通信に要する電圧を前記電力供給線路の線間に印加し、通信により直流機器の動作開始が通知されると直流機器の動作に必要な常時より高い電圧を規定した時間だけ線間に印加する電圧選択手段を備えることを特徴とする。   In the invention of claim 10, in the invention of claim 2, claim 5 or claim 6, the DC power supply and the DC device are communicable, and the DC power supply always supplies a voltage required for communication to the power. It is provided with voltage selection means for applying between the lines of the supply line and applying the voltage higher than the time required for the operation of the DC device for a predetermined time when the operation start of the DC device is notified by communication. And

請求項11の発明では、請求項2または請求項5または請求項6の発明において、前記直流電源と前記直流機器とは通信可能であって、直流電源は、常時は通信に要する電圧を前記電力供給線路の線間に印加し、通信により直流機器の動作開始が通知されると直流機器の動作に必要な常時より高い電圧を直流機器の動作期間中に間欠的に線間に印加する電圧選択手段を備えることを特徴とする。   According to an eleventh aspect of the invention, in the invention of the second, fifth, or sixth aspect, the DC power supply and the DC device are communicable, and the DC power supply always supplies a voltage required for communication to the power. Voltage selection that is applied between the lines of the supply line, and when a DC device operation start is notified by communication, a voltage higher than the normal voltage required for the operation of the DC device is applied intermittently during the operation period of the DC device. Means are provided.

請求項12の発明では、請求項2または請求項5または請求項6の発明において、前記直流電源と前記直流機器とは通信可能であって、前記直流電源と前記直流機器との間の情報は、前記電力供給線路のうち直流機器に直流電力を供給している特定の2線間の電圧変化を用いて伝送することを特徴とする。   In the invention of claim 12, in the invention of claim 2, claim 5 or claim 6, the DC power supply and the DC device can communicate, and information between the DC power supply and the DC device is In the power supply line, transmission is performed using a voltage change between two specific lines supplying DC power to a DC device.

請求項1の発明の構成によれば、直流電源から電力供給線路に複数種の直流電圧を供給しておき、直流機器では自己に対応した電圧の直流電力を受電して動作するから、直流機器の駆動電圧と電力供給線路からの供給電圧との差を小さくするかあるいはゼロにすることができる。その結果、電力供給線路からの供給電圧を直流機器の駆動電圧に降圧する場合であっても供給電圧と駆動電圧との差が小さいことにより降圧に伴う電力の損失が少なくなり、電力の利用効率が高くなる。しかも、電力供給線路からは複数種の直流電圧を供給しているから、駆動電圧の異なる直流機器のいずれにおいても降圧に伴う電力の損失を低減することができる。   According to the configuration of the first aspect of the invention, a plurality of types of DC voltages are supplied from the DC power source to the power supply line, and the DC device operates by receiving DC power of a voltage corresponding to itself. The difference between the drive voltage and the supply voltage from the power supply line can be reduced or made zero. As a result, even when the supply voltage from the power supply line is stepped down to the drive voltage of the DC device, the difference between the supply voltage and the drive voltage is small, so the power loss due to the step-down is reduced, and the power utilization efficiency Becomes higher. In addition, since a plurality of types of DC voltages are supplied from the power supply line, it is possible to reduce power loss due to step-down in any DC device having a different driving voltage.

請求項2の発明の構成によれば、2本の電線の線間の電圧を複数段階に可変にし、かつ直流機器では線間の電圧を検出して自己に対応した電圧であるときに直流電力を受電するから、2本の電線を用いるだけで複数種類の電圧を直流機器に供給することが可能になる。つまり、複数種類の電圧を供給しながらも配線資材が少なく、配線施工が容易であるとともに低コストで配線することができる。   According to the configuration of the invention of claim 2, when the voltage between the lines of the two electric wires is variable in a plurality of stages, and the DC device detects the voltage between the lines and is a voltage corresponding to itself, the DC power Therefore, it is possible to supply a plurality of types of voltages to the DC device by using only two electric wires. That is, while supplying a plurality of types of voltages, there are few wiring materials, wiring is easy, and wiring can be performed at low cost.

請求項3の発明の構成によれば、3本以上の電線を用いて複数種類の電圧を供給するから、電力供給線路を先行配線しておき、各直流機器において所要の電圧が得られる電線を選択するだけで、各直流機器に必要な駆動電圧を得ることができる。   According to the configuration of the invention of claim 3, since a plurality of types of voltages are supplied using three or more electric wires, the electric power supply line is pre-wired, and the electric wires that can obtain a required voltage in each DC device are provided. A drive voltage required for each DC device can be obtained simply by selecting.

請求項4の発明の構成によれば、電力供給線路のうちの1本の電線を基準電位の基準線とし他の電線との間の電圧を直流機器で利用するから、直流電力を供給するにあたって基準線以外の電線に印加する電圧を基準電位に対して同じ極性にしておけば、いずれかの直流機器において短絡が生じても、他の直流機器に異常な過大電圧が印加されることが防止される。また、基準電位に対して他の電線に極性の異なる電圧を印加しておけば、基準線と各電線との線間の電位差よりも大きい電圧を直流機器に印加することが可能になる。   According to the configuration of the fourth aspect of the present invention, since one electric wire in the power supply line is used as a reference line for the reference potential and the voltage between the other electric wires is used in the DC device, the DC power is supplied. By setting the voltage applied to the wires other than the reference line to the same polarity with respect to the reference potential, even if a short circuit occurs in any DC device, abnormal overvoltage is prevented from being applied to other DC devices. Is done. In addition, if voltages having different polarities are applied to the other electric wires with respect to the reference potential, a voltage larger than the potential difference between the reference line and each electric wire can be applied to the DC device.

請求項5の発明の構成によれば、少なくとも1本の電線と基準線との間の電圧を複数段階に可変にし、かつ直流機器では線間の電圧を検出して自己に対応した電圧であるときに直流電力を受電するから、2本の電線を用いるだけで複数種類の電圧を直流機器に供給することが可能になる。   According to the configuration of the fifth aspect of the invention, the voltage between at least one electric wire and the reference line is variable in a plurality of stages, and in the DC device, the voltage between the lines is detected by detecting the voltage between the lines. Since DC power is sometimes received, a plurality of types of voltages can be supplied to the DC equipment by using only two electric wires.

たとえば、マイクロコンピュータなどの情報系や通信系の集積回路では、駆動電圧が3.3Vのものと5Vのものとが主流であるから、両駆動電圧に対応可能となるように2段階の電圧を電力供給線路に印加し、直流機器において適合する電圧を選択すれば、駆動電圧の異なる直流機器に対して2本の電線のみで対応することが可能になる。また、残りの電線にはリレーやモータを駆動するための電圧を印加しておけば、リレーやモータの動作時に生じる電圧変動がマイクロコンピュータなどの情報系や通信系の回路の動作に影響を与えることがなく、動作の信頼性が高くなる。さらに、リレーやモータでは要求される電圧の安定度が情報系や通信系の集積回路に比較すると低いから、情報系や通信系の集積回路に供給する電圧については直流機器の内部回路で安定化することができるように1〜2Vの余裕を持たせて給電し(たとえば、5Vと7Vとし)、リレーやモータに供給する電圧については直流電源から供給された電圧をそのまま用いるように使い分けることが可能である。   For example, in information system and communication system integrated circuits such as microcomputers, driving voltages of 3.3V and 5V are mainstream, so two levels of voltage are used so that both driving voltages can be supported. If the voltage applied to the power supply line is selected and the voltage suitable for the DC device is selected, it becomes possible to deal with DC devices having different driving voltages with only two electric wires. In addition, if the voltage for driving the relay and motor is applied to the remaining wires, voltage fluctuations that occur during operation of the relay and motor will affect the operation of information and communication circuits such as microcomputers. And the reliability of the operation is increased. Furthermore, since the voltage stability required for relays and motors is lower than that for information and communication integrated circuits, the voltage supplied to information and communication integrated circuits is stabilized by the internal circuit of the DC device. Power can be supplied with a margin of 1 to 2 V (for example, 5 V and 7 V) so that the voltage supplied to the relay and motor can be used as it is. Is possible.

請求項6の発明の構成によれば、適合期間に電力供給線路から受電した直流電力を蓄電して内部電源に利用するから、電力供給線路に印加される電圧が時間経過に伴って変化する場合でも直流機器の内部回路に電力を安定供給することができる。また、蓄電する電力を大きくしておけば、電力供給線路から供給される電力が一時的に遮断されても直流機器の機能を維持することが可能になる。   According to the configuration of the invention of claim 6, since the DC power received from the power supply line during the adaptation period is stored and used for the internal power source, the voltage applied to the power supply line changes with time However, power can be stably supplied to the internal circuit of the DC device. Further, if the electric power to be stored is increased, the function of the DC device can be maintained even if the electric power supplied from the electric power supply line is temporarily interrupted.

請求項7の発明の構成によれば、電力供給線路のうち電圧が可変である線間に印加する電圧を一定時間ごとに変化させているから、駆動電圧の異なる直流機器にほぼ均等に直流電力を受電させることができる。   According to the configuration of the seventh aspect of the present invention, the voltage applied between the lines of the power supply line where the voltage is variable is changed at regular intervals. Can receive power.

請求項8の発明の構成によれば、電力供給線路のうち電圧が可変である線間に印加する電圧を一定時間ごとにかつ循環的に変化させているから、駆動電圧の異なる直流機器にほぼ均等に直流電力を受電させることができる。とくに、請求項6の構成のように適合期間に受電した直流電力を蓄電して利用する場合には、各直流機器での蓄電と放電との時間間隔がほぼ一定になるから、蓄電量の設計が容易になる。   According to the configuration of the eighth aspect of the invention, the voltage applied between the power supply lines whose voltage is variable is changed periodically and cyclically. DC power can be received evenly. In particular, when the DC power received during the adaptation period is stored and used as in the configuration of claim 6, the time interval between storage and discharge in each DC device is substantially constant. Becomes easier.

請求項9の発明の構成によれば、直流機器が直流電源と通信することによって、直流電源は電力供給線路に接続された直流機器の駆動電圧を知ることができるから、接続された直流機器で必要な電圧のみを電力供給線路に印加すればよく、直流電源から利用されない不要な電圧を出力する必要がなく、電力の利用効率が高くなる。とくに、直流電源としてAC/DCコンバータのような電力変換器を用いているときには、電力変換器の無駄な動作を防止して電力の利用効率を高めることができる。   According to the configuration of the ninth aspect of the invention, since the DC power source can know the drive voltage of the DC device connected to the power supply line when the DC device communicates with the DC power source, It is sufficient to apply only the necessary voltage to the power supply line, and it is not necessary to output an unnecessary voltage that is not used from the DC power supply, and the power utilization efficiency is increased. In particular, when a power converter such as an AC / DC converter is used as a direct current power source, useless operation of the power converter can be prevented and power use efficiency can be increased.

請求項10の発明の構成によれば、直流電源は常時は通信に要する電圧を電力供給線路に印加しており、直流機器が通信によって動作開始を直流電源に通知したときにのみ、常時よりも高い電圧が規定した時間だけ線間に印加されるから、直流機器の動作時にのみ高い電圧を出力することで直流電源から無駄な電力供給が行われるのを防止できる。常時よりも高い電圧を印加する時間は、直流機器の動作に必要なエネルギが得られる時間であればよく、たとえば直流機器がラッチングリレーを備える場合には、ラッチングリレーの接点の反転に要する感動時間よりも長ければよい。   According to the configuration of the invention of claim 10, the DC power supply always applies a voltage required for communication to the power supply line, and only when the DC device notifies the DC power supply of the start of operation by communication, Since a high voltage is applied between lines for a specified time, it is possible to prevent unnecessary power supply from the DC power supply by outputting a high voltage only when the DC device is in operation. The time for applying a higher voltage than the normal time may be a time for obtaining energy required for the operation of the DC device. For example, when the DC device includes a latching relay, the moving time required for reversing the contact of the latching relay. Longer than that.

請求項11の発明の構成によれば、直流電源は常時は通信に要する電圧を電力供給線路に印加しており、直流機器が通信によって動作開始を直流電源に通知したときにのみ、常時より高い電圧を直流機器の動作期間中に間欠的に線間に印加するから、直流機器の動作中にのみ高い電圧を供給することで直流電源から無駄な電力供給が行われるのを防止できる。たとえば、直流機器に設けたスイッチのオンからオフまでの間に常時よりも高い電圧を間欠的に印加することにより、液晶表示器のバックライト用として複数個直列接続した発光ダイオードの点灯などに用いることができる。   According to the configuration of the invention of claim 11, the DC power supply always applies a voltage required for communication to the power supply line, and is higher than the normal only when the DC device notifies the DC power supply of the start of operation by communication. Since the voltage is intermittently applied between the lines during the operation period of the DC device, it is possible to prevent unnecessary power supply from the DC power supply by supplying a high voltage only during the operation of the DC device. For example, by intermittently applying a voltage higher than usual between on and off of a switch provided in a DC device, a plurality of LEDs connected in series are used for lighting a liquid crystal display backlight. be able to.

請求項12の発明の構成によれば、直流機器に供給する直流電力の電圧変化を用いて情報を伝送するから、電力供給と情報伝送とに電力供給線路を共用することができ、通信用に別の線路を付設する必要がない。また、有線の伝送路で高周波の搬送波を用いて情報を伝送する場合に比較すると、電力供給線路からの輻射ノイズを低減することができる。なお、電圧変化を用いて情報を伝送するには、変化させる電圧の順序や時間の長さを用いることが可能であり、また電圧値に関係なく電圧の立ち上がりエッジと立ち下がりエッジとの順序やタイミングを利用することが可能である。   According to the configuration of the twelfth aspect of the present invention, since the information is transmitted using the voltage change of the DC power supplied to the DC device, the power supply line can be shared for the power supply and the information transmission. There is no need to add a separate track. Further, compared to the case where information is transmitted using a high-frequency carrier wave on a wired transmission line, radiation noise from the power supply line can be reduced. In order to transmit information using a voltage change, it is possible to use the order of the voltage to be changed and the length of time, and the order of the rising edge and the falling edge of the voltage regardless of the voltage value. Timing can be used.

(実施形態1)
本実施形態は、図1(a)に示すように、基本的には、配電盤1に収納した直流電源10と、直流電力により駆動される直流機器20とを有し、直流電源10に接続した電力供給線路Lpを通して直流機器20に直流電力を供給するものである。配電盤1には、図示しない主幹ブレーカや分岐ブレーカも収納される。
(Embodiment 1)
As shown in FIG. 1A, the present embodiment basically includes a DC power source 10 housed in the switchboard 1 and a DC device 20 driven by DC power, and is connected to the DC power source 10. DC power is supplied to the DC device 20 through the power supply line Lp. The switchboard 1 also stores a trunk breaker and a branch breaker (not shown).

直流電源10は、本実施形態では、商用電源のような交流電源ACからの交流電力を直流電力に変換するAC/DC変換器11と、スイッチング素子を用いて電圧を変換するDC/DC変換器12とを組み合わせて用いている。DC/DC変換器12はチョッパ回路、フォワード型、フライバック型などのどの構成を用いてもよい。DC/DC変換器12の出力電圧は電圧選択手段13により指示される。つまり、電圧選択手段13はマイクロコンピュータ(以下、「マイコン」と略称する)を主構成要素とし、スイッチング素子のオンデューティを変化させる指示を与えることによりDC/DC変換器12の出力電圧を変化させる。   In the present embodiment, the DC power source 10 includes an AC / DC converter 11 that converts AC power from an AC power source AC such as a commercial power source into DC power, and a DC / DC converter that converts voltage using a switching element. 12 is used in combination. The DC / DC converter 12 may use any configuration such as a chopper circuit, a forward type, and a flyback type. The output voltage of the DC / DC converter 12 is instructed by the voltage selection means 13. That is, the voltage selection means 13 has a microcomputer (hereinafter abbreviated as “microcomputer”) as a main component, and changes the output voltage of the DC / DC converter 12 by giving an instruction to change the on-duty of the switching element. .

なお、直流電源10には、太陽光発電装置、風力発電装置、燃料電池、エンジン駆動の発電機などを用いた分散電源(図示せず)を併用することも可能である。ただし、以下では、分散電源についてはとくに言及せず、直流電源10はAC/DC変換器11とDC/DC変換器12とで構成されているものとして説明する。   The DC power source 10 can be used in combination with a distributed power source (not shown) using a solar power generator, a wind power generator, a fuel cell, an engine-driven generator, or the like. However, in the following description, the distributed power source is not particularly described, and the DC power source 10 will be described as being constituted by an AC / DC converter 11 and a DC / DC converter 12.

電力供給線路Lpは2本の電線からなり、通常は屋内に先行配線される。また、2本の電線の線間にはDC/DC変換器12の出力電圧が印加される。電圧選択手段13は、DC/DC変換器12の出力電圧を複数段階に切り換え、図1(b)に示すように、各電圧を一定時間ごとに順に選択する。図示例では、5V、7V、24Vの3段階の電圧が、たとえば数十msずつ循環的に選択される。   The power supply line Lp is made up of two electric wires, and is usually pre-wired indoors. The output voltage of the DC / DC converter 12 is applied between the two electric wires. The voltage selection means 13 switches the output voltage of the DC / DC converter 12 in a plurality of stages, and sequentially selects each voltage at regular intervals as shown in FIG. In the illustrated example, three stages of voltages of 5V, 7V, and 24V are cyclically selected, for example, every several tens of ms.

5Vと7Vとは、マイコンのような情報系や通信系の回路(通常は集積回路)を内蔵する直流機器2に対して与えるために選択された電圧であり、この種の集積回路の主たる駆動電圧は3.3Vと5Vとであるから、直流機器2で降圧することを考慮して、これらの電圧を選択している。また、24Vはラッチングリレーを動作させる電圧として選択している。直流電源1の出力電圧の電圧値や段数については、上述の例に限らず、たとえば12Vも選択可能にして4段階にしてもよい。   5V and 7V are voltages selected to be supplied to the DC device 2 incorporating an information system or communication system circuit (usually an integrated circuit) such as a microcomputer. The main drive of this type of integrated circuit Since the voltages are 3.3 V and 5 V, these voltages are selected in consideration of the step-down by the DC device 2. 24V is selected as a voltage for operating the latching relay. The voltage value and the number of stages of the output voltage of the DC power supply 1 are not limited to the above example, and for example, 12V may be selected and may be set in four stages.

電力供給線路Lpの線間の電圧が上述のように時間経過に伴って変化するから、直流機器20では、自己に対応した電圧を受電する必要がある。つまり、本例では、直流機器20として駆動電圧が5V、7V、24Vの3種類のものがあり、各直流機器20では、電力供給線路Lpの線間電圧が自己の駆動電圧である期間(以下、この期間を「適合期間」と呼ぶ)に受電し、他の期間には適合期間に受電した電力で動作する。   Since the voltage between the power supply lines Lp changes with time as described above, the DC device 20 needs to receive a voltage corresponding to itself. That is, in this example, there are three types of DC devices 20 with drive voltages of 5V, 7V, and 24V. In each DC device 20, the period during which the line voltage of the power supply line Lp is its own drive voltage (hereinafter referred to as the drive voltage). This period is called “adaptation period”), and the other period is operated with the power received during the adaptation period.

したがって、直流機器20は、図1(a)に示すように、電力供給線路Lpの線間に印加されている電圧が自己に対応しているか否かを判断する電圧検出手段21と、適合期間に電力供給線路Lpから直流電力を受電する電源手段22とを備える。ラッチングリレーを動作させる直流機器20であれば、適合期間がラッチングリレーの感動時間よりも長ければ、ラッチングリレーを動作させることが可能であるから、内部回路23は適合期間にのみ動作すればよい。   Accordingly, as shown in FIG. 1A, the DC device 20 includes a voltage detection unit 21 that determines whether or not the voltage applied between the power supply lines Lp corresponds to itself, And power supply means 22 for receiving DC power from the power supply line Lp. In the case of the DC device 20 that operates the latching relay, the latching relay can be operated if the adaptation period is longer than the moving time of the latching relay. Therefore, the internal circuit 23 only needs to operate during the adaptation period.

電圧検出手段21は、たとえば、図1(c)のように、電力供給線路Lpから電源手段22への給電経路に挿入されたスイッチング素子SW1(図示例はトランジスタ)のベースに他のスイッチング素子SW2を接続し、電力供給線路Lpの線間の電圧について駆動電圧の上限と下限とをツェナーダイオードZD1,ZD2で検出し(ZD1が上限、ZD2が下限を規定する)、上限と下限との範囲内の電圧が印加されているときにスイッチング素子SW1をオンにする構成を採用すればよい。   For example, as shown in FIG. 1C, the voltage detection means 21 is connected to another switching element SW2 at the base of a switching element SW1 (transistor in the illustrated example) inserted in a power supply path from the power supply line Lp to the power supply means 22. And the upper and lower limits of the drive voltage for the voltage between the power supply lines Lp are detected by the zener diodes ZD1 and ZD2 (ZD1 defines the upper limit and ZD2 defines the lower limit), and within the range between the upper limit and the lower limit A configuration may be adopted in which the switching element SW1 is turned on when a voltage of 2 is applied.

図示例では、ツェナーダイオードZD1のツェナー電圧(上限)を超えると、スイッチング素子SW2がオンになりスイッチング素子SW1をオフにする。また、ツェナーダイオードZD2のツェナー電圧(下限)を下回ると、スイッチング素子SW1にバイアスがかからずにスイッチング素子SW1がオフになる。上限と下限との間では、スイッチング素子SW2がオフ、スイッチング素子SW1がオンになる。   In the illustrated example, when the Zener voltage (upper limit) of the Zener diode ZD1 is exceeded, the switching element SW2 is turned on and the switching element SW1 is turned off. Further, when the voltage falls below the Zener voltage (lower limit) of the Zener diode ZD2, the switching element SW1 is turned off without being biased. Between the upper limit and the lower limit, the switching element SW2 is turned off and the switching element SW1 is turned on.

コンパレータによる電圧比較では電力供給が必要になるが、上述の構成では、電圧比較によりスイッチング素子SWがオンになるから、電極供給線路Lpの線間に電圧を印加するだけで動作させることができる。   In the voltage comparison by the comparator, power supply is required. However, in the above-described configuration, the switching element SW is turned on by the voltage comparison, so that it can be operated only by applying a voltage between the electrode supply lines Lp.

一方、情報系や通信系の集積回路を備える直流機器20のように、適合期間だけではなく継続的に動作させる必要がある場合には、適合期間に受電した電力を蓄電し、次の適合期間まで内部回路23の動作を維持する必要がある。また、電力供給線路Lpの線間の電圧が時間とともに変動しているから、内部回路23の動作には電圧の安定化が必要である。そこで、電圧手段22には、蓄電のためのコンデンサC(二次電池でもよい)と、3端子レギュレータのような定電圧回路Rgとを設けている。   On the other hand, when it is necessary to operate continuously in addition to the adaptation period, as in the case of the DC device 20 including an information system or communication system integrated circuit, the power received during the adaptation period is stored and the next adaptation period is stored. It is necessary to maintain the operation of the internal circuit 23. Further, since the voltage between the power supply lines Lp varies with time, the operation of the internal circuit 23 needs to be stabilized. Therefore, the voltage means 22 is provided with a capacitor C for storage (which may be a secondary battery) and a constant voltage circuit Rg such as a three-terminal regulator.

この直流機器20では、5Vあるいは7Vの電圧が電力供給線路Lpの線間に印加されたことを電圧検出手段21が検出すると、適合期間にコンデンサCに蓄電し、さらに定電圧回路Rgで電圧を安定化させて内部回路23に供給する。内部回路23の消費電力と適合期間とコンデンサCの容量との関係が適正に設計してあれば、内部回路23に電力を安定供給することができ、適合期間にコンデンサCに蓄電した電荷を用いて次の適合期間まで内部回路23を継続して動作させることができる。また、コンデンサCの容量を大きくしておけば、電力供給線路Lpから供給される直流電力が一時的に遮断されても、コンデンサCの電荷で直流機器20を継続して動作させることができ、交流電源ACの停電時でも直流機器20の機能を維持することが可能になる。   In this DC device 20, when the voltage detection means 21 detects that a voltage of 5V or 7V is applied between the power supply lines Lp, the voltage is stored in the capacitor C during the adaptation period, and further the voltage is supplied by the constant voltage circuit Rg. It is stabilized and supplied to the internal circuit 23. If the relationship between the power consumption of the internal circuit 23, the adaptation period, and the capacity of the capacitor C is appropriately designed, power can be stably supplied to the internal circuit 23, and the charge stored in the capacitor C during the adaptation period can be used. Thus, the internal circuit 23 can be continuously operated until the next adaptation period. Further, if the capacity of the capacitor C is increased, the DC device 20 can be continuously operated with the charge of the capacitor C even when the DC power supplied from the power supply line Lp is temporarily interrupted. The function of the DC device 20 can be maintained even when the AC power supply AC is blacked out.

本実施形態では、電力供給線路Lpの線間に印加する電圧を一定時間ごとに変化させているから、駆動電圧の異なる直流機器20にほぼ均等に直流電力を受電させることができる。また、適合期間が一定であり、コンデンサCに蓄電する時間とコンデンサCから放電する時間とがほぼ一定しているから、コンデンサCを含む電源手段22の設計が容易である。   In the present embodiment, the voltage applied between the power supply lines Lp is changed at regular intervals, so that the DC devices 20 having different drive voltages can receive DC power almost evenly. In addition, since the adaptation period is constant and the time for storing in the capacitor C and the time for discharging from the capacitor C are substantially constant, the power supply means 22 including the capacitor C can be easily designed.

本実施形態では、電力供給線路Lpに印加する電圧を一定時間ごとに循環的に変化させているが、一定時間ごとに循環的に電圧を変化させることは必須ではなく、直流機器20の各駆動電圧ごとの消費電力の合計に応じて、線間に印加する各電圧ごとの時間に長短を付けたり、単位時間において各電圧を電力供給線路Lpの線間に印加する回数を変化させてもよい。   In this embodiment, the voltage applied to the power supply line Lp is cyclically changed every fixed time, but it is not essential to change the voltage cyclically every fixed time, and each drive of the DC device 20 is performed. Depending on the total power consumption for each voltage, the time for each voltage applied between the lines may be lengthened or the number of times each voltage is applied between the power supply lines Lp may be changed in unit time. .

上述したように、電力供給線路Lpの線間に複数段階の電圧を時間をずらして印加し、各直流機器20では自己に対応した電圧が印加されている適合期間に受電するから、受電した供給電圧と内部回路23の駆動電圧との差が小さいかゼロになり、定電圧回路Rgでの降圧に伴う電力の損失を小さく電力の利用効率が高くなる。また、電力供給線路からは複数段階の直流電圧を供給しているから、駆動電圧の異なる直流機器20のいずれにおいても降圧に伴う損失を小さくすることができる。そして、2本の電線のみで駆動電圧の異なる直流機器20に複数段階の電圧を供給するから、複数段階の電圧を供給しながらも配線資材が少なくなる。その結果、配線施工が容易であり、低コストで配線することができる。   As described above, a plurality of stages of voltages are applied between the power supply lines Lp while shifting the time, and each DC device 20 receives power during a compatible period in which a voltage corresponding to itself is applied. The difference between the voltage and the drive voltage of the internal circuit 23 is small or zero, and the power loss associated with the voltage drop in the constant voltage circuit Rg is reduced and the power use efficiency is increased. In addition, since a plurality of stages of DC voltages are supplied from the power supply line, the loss due to step-down can be reduced in any of the DC devices 20 having different drive voltages. Since a plurality of stages of voltage are supplied to the DC device 20 having different drive voltages using only two wires, wiring materials are reduced while supplying a plurality of stages of voltage. As a result, wiring construction is easy and wiring can be performed at low cost.

なお、直流電源10の構成として、スイッチング素子を備えるDC/DC変換器12を用い、電圧選択手段13によりスイッチング素子のオンデューティを制御する指示を与える例を示したが、出力電圧の異なる複数個の定電圧回路を設け、電力供給線路Lpに印加する定電圧回路を選択する構成を採用してもよい。また、スイッチング素子を備えるDC/DC変換器12を用いる場合には、各段階の電圧の境界において急峻に変化させるのではなく、滑らかな電圧変化となるように制御してもよい。この構成を採用すれば、ノイズの発生を抑制することができる。   In addition, although the example which gives the instruction | indication which controls the on-duty of a switching element by the voltage selection means 13 using the DC / DC converter 12 provided with a switching element was shown as a structure of the direct-current power supply 10, multiple different output voltages are shown. A configuration may be adopted in which a constant voltage circuit is provided and a constant voltage circuit to be applied to the power supply line Lp is selected. Further, when the DC / DC converter 12 including the switching element is used, control may be performed so that the voltage is smoothly changed instead of being sharply changed at the voltage boundary of each stage. If this configuration is adopted, the generation of noise can be suppressed.

(実施形態2)
実施形態1は、電力供給線路Lpに印加する電圧を直流電源10が決めているから、電力供給線路Lpに印加される電圧で動作する直流機器20が存在しない場合でも、電力供給線路Lpには当該電圧が印加されることになる。たとえば、駆動電圧が5Vと24Vとの直流機器20が電力供給線路Lpに接続されているが、駆動電圧が7Vである直流機器20が接続されていなくとも、電力供給線路Lpには7Vの電圧を印加する期間が設けられるから、電力の無駄な損失が生じる。電力供給線路Lpに接続する直流機器20の駆動電圧が既知であれば、直流電源10の出力電圧のうち不要な電圧が印加されないように直流電源10の設定を変更することが考えられるが、直流機器20が電力供給線路Lpに対して着脱されるものであると、直流電源10の設定を変更する構成では対応するのが難しい。
(Embodiment 2)
In the first embodiment, since the DC power supply 10 determines the voltage to be applied to the power supply line Lp, even if there is no DC device 20 that operates with the voltage applied to the power supply line Lp, the power supply line Lp has The voltage is applied. For example, although a DC device 20 with a drive voltage of 5V and 24V is connected to the power supply line Lp, a voltage of 7V is applied to the power supply line Lp even if the DC device 20 with a drive voltage of 7V is not connected. Since a period for applying the voltage is provided, useless loss of power occurs. If the drive voltage of the DC device 20 connected to the power supply line Lp is known, the setting of the DC power supply 10 may be changed so that unnecessary voltage is not applied among the output voltages of the DC power supply 10. If the device 20 is detachable from the power supply line Lp, it is difficult to cope with the configuration in which the setting of the DC power supply 10 is changed.

そこで、本実施形態では、図2に示すように、直流電源10に電源通信手段14を設けるとともに、直流機器20に機器通信手段24を設け、直流電源10と直流機器20との間で通信を可能とし、直流機器20が通信によって自己に対応した電圧を直流電源10に通知し、直流電源10の電圧選択手段13では直流機器20から通知された電圧のみを出力するようにしている。つまり、電圧選択手段13は、直流機器20から通知された電圧の種類に応じて電力供給線路Lpに印加する電圧を決める。この動作により、電力供給線路Lpには直流機器20で使用しない電圧は印加されず、電力の無駄な損失を防止することができる。   Therefore, in the present embodiment, as shown in FIG. 2, the power source communication unit 14 is provided in the DC power source 10, the device communication unit 24 is provided in the DC device 20, and communication is performed between the DC power source 10 and the DC device 20. The DC device 20 notifies the DC power supply 10 of a voltage corresponding to itself by communication, and the voltage selection means 13 of the DC power supply 10 outputs only the voltage notified from the DC device 20. That is, the voltage selection unit 13 determines the voltage to be applied to the power supply line Lp according to the type of voltage notified from the DC device 20. By this operation, a voltage not used by the DC device 20 is not applied to the power supply line Lp, and wasteful loss of power can be prevented.

ただし、直流電源10と直流機器20との間で通信を行うから、直流機器20において通信を行うための電力は確保する必要がある。通信には通信系の集積回路を動作させる必要があるから、電力供給線路Lpには、常時は通信系の集積回路の動作を確保するための電圧、たとえば5Vを印加しておき、駆動電圧が電力供給線路Lpに常時印加されている電圧よりも高い駆動電圧(たとえば、24V)の直流機器20が接続され、当該直流機器20から通信により24Vの電圧が要求されると、図3(a)に示すように、一定の時間間隔で間欠的かつ定期的に24Vを印加するのである。もちろん、駆動電圧が24Vである直流機器20が接続されなければ、電力供給線路Lpに24Vの電圧は印加されない。   However, since communication is performed between the DC power supply 10 and the DC device 20, it is necessary to secure power for communication in the DC device 20. Since it is necessary to operate a communication integrated circuit for communication, a voltage for ensuring the operation of the communication integrated circuit, for example, 5 V, is always applied to the power supply line Lp, and the drive voltage is When a DC device 20 having a drive voltage (for example, 24 V) higher than the voltage constantly applied to the power supply line Lp is connected and a voltage of 24 V is requested from the DC device 20 by communication, FIG. As shown in FIG. 4, 24V is applied intermittently and regularly at regular time intervals. Of course, if the DC device 20 having a drive voltage of 24V is not connected, a voltage of 24V is not applied to the power supply line Lp.

この動作は、たとえば、直流機器20において、液晶表示器のバックライト用として直列接続された複数個の発光ダイオードを備えるときに、24Vの電圧を発光ダイオードの直列回路に印加する場合などに適用できる。   This operation can be applied, for example, when the DC device 20 includes a plurality of light emitting diodes connected in series for the backlight of the liquid crystal display, and a voltage of 24 V is applied to the series circuit of the light emitting diodes. .

上述したように、情報系や通信系の集積回路には2種類の駆動電圧があるから、図3(b)のように、電力供給線路Lpの線間に、常時は、5Vと7Vとの電圧を交互に周期的に印加しておき、駆動電圧が24Vである直流機器20の接続が通知されると、定期的に24Vを印加する構成を採用してもよい。   As described above, since there are two types of drive voltages in the information system and communication system integrated circuits, as shown in FIG. 3 (b), there are always 5V and 7V between the power supply lines Lp. A configuration may be adopted in which voltages are applied alternately and periodically, and when connection of the DC device 20 having a drive voltage of 24 V is notified, 24 V is periodically applied.

ところで、直流電源10と直流機器20との間の通信には、電力供給線路Lpとは独立した情報線路を設ける構成を採用してもよいが、2本の電線で施工するために電力供給線路Lpを情報伝送の通信路に兼用するのが望ましい。電力供給線路Lpを通信路に兼用するには、電力供給線路Lpに用いる高周波の搬送波を直流電圧に重畳する。   By the way, for the communication between the DC power supply 10 and the DC device 20, a configuration in which an information line independent from the power supply line Lp may be adopted, but the power supply line is used for construction with two electric wires. It is desirable to use Lp also as a communication path for information transmission. In order to use the power supply line Lp as a communication path, a high-frequency carrier wave used for the power supply line Lp is superimposed on the DC voltage.

また、直流電源10から直流機器20に情報伝送を行うときには、電力供給線路Lpに印加する電圧の変化を利用して情報伝送を行ってもよい。たとえば、変化させる電圧の順序や時間の長さをビット値に割り当てることが可能である。ただし、電力供給線路Lpに印加される電圧値は様々であるから、電圧の高低の変化方向と各電圧を印加する期間の長さとを用いて情報を伝送するのが望ましい。つまり、電圧値に関係なく電圧の立ち上がりエッジと立ち下がりエッジとの順序やタイミングを利用するのが望ましい。   In addition, when information is transmitted from the DC power supply 10 to the DC device 20, the information transmission may be performed using a change in voltage applied to the power supply line Lp. For example, the order of voltage to be changed and the length of time can be assigned to bit values. However, since the voltage value applied to the power supply line Lp varies, it is desirable to transmit information using the direction of voltage change and the length of the period during which each voltage is applied. In other words, it is desirable to use the order and timing of the rising edge and falling edge of the voltage regardless of the voltage value.

このように電力供給線路Lpに印加する電圧を利用して情報伝送を行うと、高周波の搬送波を用いる場合に比較して電力供給線路Lpからの輻射ノイズを低減することができる。他の構成および動作は実施形態1と同様である。   When information transmission is performed using the voltage applied to the power supply line Lp as described above, radiation noise from the power supply line Lp can be reduced as compared with the case of using a high-frequency carrier wave. Other configurations and operations are the same as those of the first embodiment.

(実施形態3)
実施形態2は、電力供給線路Lpに接続される直流機器20の駆動電圧に関する情報を収集した後に、直流機器20の駆動電圧に応じた電圧を電力供給線路Lpに印加しているが、接続されていても動作しないときには動作用の駆動電圧は不要である。本実施形態は、直流機器20から要求されたときにだけ、必要な電圧を電力供給線路Lpに印加することによって、電力の損失をより低減させた例を示す。
(Embodiment 3)
In the second embodiment, after collecting information related to the drive voltage of the DC device 20 connected to the power supply line Lp, a voltage corresponding to the drive voltage of the DC device 20 is applied to the power supply line Lp. However, when it does not operate, a driving voltage for operation is unnecessary. The present embodiment shows an example in which the power loss is further reduced by applying a necessary voltage to the power supply line Lp only when requested by the DC device 20.

ところで、常時よりも高い駆動電圧(たとえば、24V)を要求する直流機器20には、ラッチングリレーを負荷として備える直流機器20のように動作させる電力を単発的に供給すればよいものと、発光ダイオードやモータを負荷として備える直流機器20のように電力を継続的に供給することが必要なものとがある。   By the way, a DC device 20 that requires a higher driving voltage (for example, 24V) than usual may be supplied with electric power to operate like the DC device 20 including a latching relay as a load, and a light emitting diode. Some of them require continuous power supply, such as a DC device 20 having a motor as a load.

いま、スイッチを備える直流機器20と、ラッチングリレーや発光ダイオードのような負荷を備える直流機器20とを電力供給線路Lpに接続し、スイッチの操作により負荷を動作させる場合を想定する。前者のように単発的に電力を供給する場合には、図4(a)のように、スイッチの操作に対して直流機器20では単発的に24Vの電圧を印加するように直流電源10に要求する。この要求に応答して図4(b)のように24Vの電圧が電力供給線路Lpに印加されると、負荷を備える直流機器20に駆動用の直流電力が供給されるから、図4(c)のように、ラッチングリレーなどを駆動することができる。この場合、24Vの電圧を印加する時間はラッチングリレーの感動時間よりも長ければよい。   Now, it is assumed that the DC device 20 having a switch and the DC device 20 having a load such as a latching relay or a light emitting diode are connected to the power supply line Lp and the load is operated by operating the switch. When the power is supplied as in the former case, as shown in FIG. 4A, the DC power supply 10 requires the DC power supply 10 to apply a voltage of 24 V in a single operation in response to the switch operation. To do. In response to this request, when a voltage of 24V is applied to the power supply line Lp as shown in FIG. 4B, the driving DC power is supplied to the DC device 20 having a load. The latching relay or the like can be driven as shown in FIG. In this case, the time for applying the voltage of 24V may be longer than the moving time of the latching relay.

一方、後者のように継続的に電力を供給する場合には、図5(a)のようにスイッチのオン操作に対して直流機器20では継続的に24Vの電圧を印加するように直流電源10に要求する。直流電源10は、この要求に応答して図5(b)のように、間欠的かつ周期的に24Vの電圧を電力供給線路Lpに印加する。この状態は、スイッチがオフ操作されるまで継続する。したがって、スイッチのオン操作からオフ操作までの期間において、負荷を備える直流機器20に対して24Vの電圧を継続して間欠的に供給することができ、負荷の動作を継続することができる。たとえば、負荷として発光ダイオードを複数個直列接続したものを用いる場合には、この動作によって点灯状態を継続することができる。   On the other hand, when the power is continuously supplied as in the latter case, the DC power supply 10 is configured so that the DC device 20 continuously applies a voltage of 24 V in response to the switch ON operation as shown in FIG. To request. In response to this request, the DC power source 10 intermittently and periodically applies a voltage of 24 V to the power supply line Lp as shown in FIG. This state continues until the switch is turned off. Therefore, in the period from the on operation to the off operation of the switch, a voltage of 24 V can be continuously and intermittently supplied to the DC device 20 including the load, and the operation of the load can be continued. For example, when a load in which a plurality of light emitting diodes are connected in series is used as the load, the lighting state can be continued by this operation.

上述の動作では、情報系や通信系の集積回路用に、たとえば5Vを電力供給線路Lpの線間に常時印加しているが、電力供給線路Lpの線間に5Vと7Vとの電圧を交互に周期的に印加してもよい。つまり、実施形態3の動作について図3(b)に示した動作とし、直流機器20からの要求に応じて単発的あるいは間欠的に24Vの電圧を電力供給線路Lpの線間に印加するのである。他の構成および動作は上述した実施形態と同様である。   In the above-described operation, 5 V, for example, is constantly applied between the power supply lines Lp for information system and communication integrated circuits, but 5 V and 7 V are alternately applied between the power supply lines Lp. May be applied periodically. That is, the operation of the third embodiment is the operation shown in FIG. 3B, and a voltage of 24 V is applied between the power supply lines Lp either once or intermittently in response to a request from the DC device 20. . Other configurations and operations are the same as those of the above-described embodiment.

(実施形態4)
上述した各実施形態では電力供給線路Lpが2本の電線からなり、複数段階の電圧を時間をずらして時分割的に電力供給線路Lpの線間に印加する動作について説明したが、本実施形態は、図6に示すように、電力供給線路Lpが3本以上の電線La,Lb,Lcからなる構成例を示す。直流電源10は、電力供給線路Lpの異なる2本の電線La,Lb,Lc間に印加する電圧が2種類以上に設定されている。図示例では、1本の電線Lcを基準電位(接地電位)の基準線とし、他の2本の電線La,Lbには基準線Lcとの間にそれぞれ異なる電圧を印加している。そのため、直流電源10には、出力電圧の異なる2個のDC/DC変換器12a,12bを設け、両DC/DC変換器12a,12bの接地側を共通に接続して3線として出力を取り出している。3本の電線La,Lb,Lcはシースに収納してケーブルを構成するのが施工上は望ましいが、3本の電線La,Lb,Lcが独立していてもよい。
(Embodiment 4)
In each of the above-described embodiments, the power supply line Lp is composed of two electric wires, and the operation of applying a plurality of stages of voltages between the power supply lines Lp in a time-sharing manner with a time shift has been described. 6 shows a configuration example in which the power supply line Lp is composed of three or more electric wires La, Lb, and Lc, as shown in FIG. In the DC power supply 10, two or more types of voltages to be applied between two electric wires La, Lb, and Lc on different power supply lines Lp are set. In the illustrated example, one electric wire Lc is used as a reference line for a reference potential (ground potential), and different voltages are applied to the other two electric wires La and Lb between the reference line Lc. Therefore, the DC power supply 10 is provided with two DC / DC converters 12a and 12b having different output voltages, and the ground side of both the DC / DC converters 12a and 12b is commonly connected to take out the output as three lines. ing. Although it is desirable in terms of construction that the three electric wires La, Lb, and Lc are housed in a sheath to form a cable, the three electric wires La, Lb, and Lc may be independent.

この構成では、たとえば電線Laと基準線Lcとの線間に発光ダイオードのような負荷を駆動する24Vの電圧を印加し、電線Lbと基準線Lcとの線間に情報系や通信系の集積回路用の5Vの電圧を印加する。直流機器20は、自己の駆動電圧に応じて、電線Laと基準線Lcとの2線あるいは電線Lbと基準線Lcとの2線から受電する。また、情報系や通信系の回路と発光ダイオードのような負荷とをともに備える直流機器では、3線La,Lb,Lcから受電し、基準線Lcと他の2本の電線La,Lbとの間の電圧を内部回路23で利用する。   In this configuration, for example, a voltage of 24V for driving a load such as a light emitting diode is applied between the electric wire La and the reference line Lc, and an information system or a communication system is integrated between the electric wire Lb and the reference line Lc. A voltage of 5V for the circuit is applied. The DC device 20 receives power from two wires of the electric wire La and the reference line Lc or two wires of the electric wire Lb and the reference line Lc in accordance with its own driving voltage. In addition, in a DC device having both an information system and a communication system circuit and a load such as a light emitting diode, power is received from the three wires La, Lb, and Lc, and the reference wire Lc and the other two electric wires La and Lb are connected. The voltage between them is used in the internal circuit 23.

本実施形態の構成では、電力供給線路Lpに印加されている電圧が時間変化しないから、直流機器20はどの電線La,Lb,Lcに接続するかを選択するだけで自己に適合する電圧を受電することができ、しかもDC/DC変換器12a,12bにおいて出力電圧が安定化されていれば、直流機器20では電圧の安定化が不要になる。その結果、実施形態1などにおいて必要であった電圧検出手段21や電源手段22を省略することが可能になる。   In the configuration of the present embodiment, since the voltage applied to the power supply line Lp does not change with time, the DC device 20 receives a voltage suitable for itself by simply selecting which of the electric wires La, Lb, and Lc is connected. If the output voltage is stabilized in the DC / DC converters 12a and 12b, the DC device 20 does not need to stabilize the voltage. As a result, it is possible to omit the voltage detection means 21 and the power supply means 22 that are necessary in the first embodiment.

なお、上述の構成例では、電線La,Lbの線間電圧を利用すれば、7Vの電圧を得ることが可能であるが、DC/DC変換器12a,12bの故障などによって、電線La,Lbのいずれかと基準線Lcとの間が短絡すると、駆動電圧が低電圧である直流機器20に高電圧が印加されるなどの問題を生じる可能性があるので、このような構成を採用する場合には、直流電源10の保護回路(図示していないが過負荷に対する保護を行う)においてこの種の事故を考慮する必要がある。これに対して、本実施形態は、基準線Lcを共通にし、基準線Lcの基準電位に対して他の電線La,Lbに印加される電圧の極性を同じにしているので、上述のような問題が生じることはなく、保護回路の構成が簡単になる。他の構成および動作は実施形態1と同様である。   In the above configuration example, it is possible to obtain a voltage of 7V by using the line voltage of the electric wires La and Lb. However, due to a failure of the DC / DC converters 12a and 12b, the electric wires La and Lb If any of the above and the reference line Lc are short-circuited, there is a possibility that a high voltage is applied to the DC device 20 whose drive voltage is a low voltage. Therefore, it is necessary to consider this type of accident in the protection circuit of the DC power supply 10 (not shown but protects against overload). On the other hand, in the present embodiment, the reference line Lc is shared, and the polarity of the voltage applied to the other electric wires La and Lb is the same with respect to the reference potential of the reference line Lc. There is no problem, and the configuration of the protection circuit is simplified. Other configurations and operations are the same as those of the first embodiment.

(実施形態5)
実施形態4は、3本以上(例示は3本)の電線La,Lb,Lcの線間に印加する電圧が時間変化させていないが、本実施形態は、基準線Lcと他の少なくとも1本の電線La,Lbとの間の電圧を実施形態1と同様に時間変化させるものである。たとえば、直流機器20に用いる情報系や通信系の内部回路23の駆動電圧に3.3Vと5Vとの2種類がある場合には、電線Lbと基準線Lcとの間に5Vと7Vとの電圧を交互に周期的に印加しておき、直流機器20には実施形態1と同様に電圧検出手段21と電源手段22とを設けて、自己の駆動電圧に対応する電圧が線間に印加されているときに受電し、電源手段22に蓄電して内部回路23に直流電力を供給する。この構成によって、情報系や通信系の回路の駆動電圧が複数種類であっても、2線で直流電力を供給することができる。
(Embodiment 5)
In the fourth embodiment, the voltage applied between three or more (three is illustrated) wires La, Lb, and Lc is not changed over time, but in this embodiment, the reference line Lc and at least one other wire are used. The voltage between the electric wires La and Lb is changed over time as in the first embodiment. For example, when there are two types of drive voltages 3.3V and 5V for the internal circuit 23 of the information system and communication system used for the DC device 20, there are 5V and 7V between the electric wire Lb and the reference line Lc. The voltage is alternately applied periodically, and the DC device 20 is provided with the voltage detection means 21 and the power supply means 22 as in the first embodiment, and a voltage corresponding to its own drive voltage is applied between the lines. Power is received and stored in the power supply means 22 to supply DC power to the internal circuit 23. With this configuration, it is possible to supply DC power with two lines even when there are a plurality of types of driving voltages for information and communication circuits.

また、他の1本の電線Laと基準線Lcとの線間は、リレーや発光ダイオードやモータなどを負荷に備える直流機器20を駆動するように電圧を設定する。直流機器20に設ける負荷の種類にもよるが、この電圧は必ずしも時間変化させる必要はなく固定でもよい。この電圧を固定している場合の電圧の関係を図7に示す。   Further, a voltage is set between the other electric wire La and the reference line Lc so as to drive the DC device 20 including a relay, a light emitting diode, a motor, or the like as a load. Although depending on the type of load provided in the DC device 20, this voltage does not necessarily have to change with time and may be fixed. FIG. 7 shows the voltage relationship when this voltage is fixed.

この構成では、リレーや発光ダイオードやモータなどのように要求される電圧の安定度が情報系や通信系の回路に比較して低い負荷と、情報系や通信系の回路との給電経路を分離しているから、負荷の動作による電圧変動がマイコンなどの情報系や通信系の回路の動作に影響せず、動作の信頼性が高くなる。また、情報系や通信系の回路を駆動する電圧については直流機器20の内部回路で安定化することができるように1〜2Vの余裕を持たせて給電し(たとえば、5Vと7Vとし)、リレーやモータに供給する電圧については直流電源10から供給された電圧をそのまま用いるように使い分けることが可能である。   In this configuration, the required voltage stability, such as relays, light-emitting diodes, and motors, is lower than that of information and communication circuits, and the power supply path is separated from the information and communication circuits. Therefore, voltage fluctuation due to the operation of the load does not affect the operation of the information system such as the microcomputer and the circuit of the communication system, and the operation reliability is increased. In addition, the voltage for driving the information system or communication circuit is fed with a margin of 1 to 2 V so that it can be stabilized by the internal circuit of the DC device 20 (for example, 5 V and 7 V), The voltage supplied to the relay and the motor can be properly used so that the voltage supplied from the DC power supply 10 is used as it is.

また、基準線Lcの基準電位に対する線間の電圧を時間変化させる電線Lbについては、実施形態2、3などに示したように、接続されている直流機器20と直流電源10との間で通信を可能にし、直流機器20の駆動電圧に応じて直流電源10が印加する電圧を決定する構成を採用してもよい。たとえば、基準線Lcと電線Lbとの間の電圧を上述のように2段階(5Vと7V)から選択可能としておき、接続された直流機器20の駆動電圧が5Vのものだけであれば、5Vを印加してもよい。また、電線Laと基準線Lcとの間には通常は電圧を印加せず、通信によって直流機器20からの要求があるときにのみ、対応する電圧を電線Laと基準線Lcとの間に単発的あるいは連続的あるいは継続して間欠的に印加する構成を採用してもよい。他の構成および動作は上述した各実施形態と同様である。   Further, as shown in the second and third embodiments, the electric wire Lb that changes the voltage between lines with respect to the reference potential of the reference line Lc is communicated between the connected DC device 20 and the DC power source 10. It is also possible to adopt a configuration in which the voltage applied by the DC power supply 10 is determined according to the drive voltage of the DC device 20. For example, if the voltage between the reference line Lc and the electric wire Lb is selectable from two stages (5 V and 7 V) as described above, and the drive voltage of the connected DC device 20 is only 5 V, then 5 V May be applied. Further, normally, no voltage is applied between the electric wire La and the reference line Lc, and only when there is a request from the DC device 20 by communication, a corresponding voltage is generated between the electric wire La and the reference line Lc. It is also possible to adopt a configuration that applies intermittently, continuously or continuously. Other configurations and operations are the same as those of the above-described embodiments.

(a)は実施形態1を示す構成図、(b)は同上の電圧変化を示す動作説明図である。(A) is a block diagram which shows Embodiment 1, (b) is operation | movement explanatory drawing which shows a voltage change same as the above. (a)は実施形態2を示す構成図である。(A) is a block diagram showing a second embodiment. 同上の電圧変化の例を示す動作説明図である。It is operation | movement explanatory drawing which shows the example of a voltage change same as the above. 実施形態3の一つの動作例の動作説明図である。FIG. 10 is an operation explanatory diagram of one operation example of Embodiment 3. 同上の他の動作例の動作説明図図である。It is operation | movement explanatory drawing of the other operation example same as the above. 実施形態4を示す構成図である。FIG. 6 is a configuration diagram illustrating a fourth embodiment. 実施形態5の電圧変化の例を示す動作説明図である。FIG. 10 is an operation explanatory diagram illustrating an example of a voltage change in the fifth embodiment.

符号の説明Explanation of symbols

10 直流電源
11 AC/DC変換器
12 DC/DC変換器
12a,12b DC/DC変換器
13 電圧選択手段
14 電源通信手段
20 直流機器
21 電圧検出手段
22 電源手段
23 内部回路
24 機器通信手段
La,Lb,Lc 電線
Lc 基準線
Lp 電力供給線路
DESCRIPTION OF SYMBOLS 10 DC power supply 11 AC / DC converter 12 DC / DC converter 12a, 12b DC / DC converter 13 Voltage selection means 14 Power supply communication means 20 DC equipment 21 Voltage detection means 22 Power supply means 23 Internal circuit 24 Equipment communication means La, Lb, Lc Electric wire Lc Reference line Lp Power supply line

Claims (12)

直流電力を供給する直流電源と、電力供給線路を通して直流電源から供給される直流電力により駆動される直流機器とを有し、直流電源は、複数種の直流電圧を電力供給線路に供給し、直流機器は、前記複数種の直流電圧から自己に対応した電圧の直流電力を受電し動作することを特徴とする配電システム。   A DC power source that supplies DC power and a DC device that is driven by DC power supplied from the DC power source through the power supply line. The DC power source supplies a plurality of types of DC voltages to the power supply line, and The equipment operates by receiving DC power of a voltage corresponding to itself from the plurality of types of DC voltages. 前記電力供給線路は2本の電線からなり、前記直流電源は電力供給線路の線間に印加する電圧を複数段階に可変であり、前記直流機器は、線間に印加されている電圧が自己に対応しているか否かを判断する電圧検出手段と、電圧検出手段により自己に対応した電圧が線間に印加されていることが検出される適合期間に電力供給線路から直流電力を受電する電源手段とを備えることを特徴とする請求項1記載の配電システム。   The power supply line is composed of two electric wires, the DC power supply is capable of changing the voltage applied between the lines of the power supply line in a plurality of stages, and the DC device is capable of self-applying the voltage applied between the lines. Voltage detecting means for judging whether or not it is compatible, and power supply means for receiving DC power from the power supply line during an adaptation period in which it is detected that a voltage corresponding to itself is applied between the lines by the voltage detecting means The power distribution system according to claim 1, further comprising: 前記電力供給線路は3本以上の電線からなり、前記直流電源は、電力供給線路の異なる2本の電線間に印加する電圧が2種類以上に設定されていることを特徴とする請求項1記載の配電システム。   2. The power supply line is composed of three or more electric wires, and the DC power supply is set to two or more kinds of voltages to be applied between two electric wires having different power supply lines. Power distribution system. 前記直流電源は、前記電力供給線路を構成する1本の電線を基準電位の基準線として基準線と他の各電線との間にそれぞれ異なる電圧を印加し、前記直流機器は基準線と他の1本の電線とから直流電力を受電することを特徴とする請求項3記載の配電システム。   The DC power supply applies a different voltage between the reference line and each of the other electric wires using one electric wire constituting the power supply line as a reference line of a reference potential, and the DC device is connected to the reference line and other electric wires. 4. The power distribution system according to claim 3, wherein DC power is received from a single electric wire. 前記直流電源は前記電力供給線路のうち前記基準線となる電線と他の少なくとも1本の電線との間に印加する電圧を複数段階に可変であり、前記直流機器のうち基準線に対する電圧が可変である電線から直流電力を受電する直流機器は、線間に印加されている電圧が自己に対応しているか否かを判断する電圧検出手段と、電圧検出手段により自己に対応した電圧が線間に印加されていることが検出される適合期間に前記電力供給線路から直流電力を受電する電源手段とを備えることを特徴とする請求項4記載の配電システム。   The DC power supply can vary the voltage applied between the electric wire serving as the reference line in the power supply line and at least one other electric wire in a plurality of stages, and the voltage with respect to the reference line among the DC devices can be varied. A DC device that receives DC power from a wire is a voltage detection means that determines whether or not the voltage applied between the lines corresponds to itself, and a voltage corresponding to itself by the voltage detection means The power distribution system according to claim 4, further comprising power supply means for receiving DC power from the power supply line during an adaptation period in which it is detected that the power is applied to the power supply line. 前記電源手段は、前記適合期間の直流電力を蓄電して内部電源に用いることを特徴とする請求項2または請求項5に記載の配電システム。   6. The power distribution system according to claim 2, wherein the power supply means stores DC power during the adaptation period and uses it for an internal power supply. 前記直流電源は、電圧が可変である前記電力供給線路の線間に印加する電圧を一定時間ごとに変化させる電圧選択手段を備えることを特徴とする請求項2または請求項5または請求項6に記載の配電システム。   The said DC power supply is provided with the voltage selection means which changes the voltage applied between the lines of the said electric power supply line whose voltage is variable for every fixed time, The claim 5 or Claim 6 characterized by the above-mentioned. The described power distribution system. 前記電圧選択手段は、電圧が可変である前記電力供給線路の線間に印加する電圧を一定時間ごとにかつ循環的に変化させることを特徴とする請求項7記載の配電システム。   The power distribution system according to claim 7, wherein the voltage selection unit cyclically changes a voltage applied between the lines of the power supply line whose voltage is variable at regular intervals. 前記直流電源と前記直流機器とは通信可能であって、直流機器は自己に対応した電圧を直流電源に通知し、直流電源は、前記電力供給線路に接続されたすべての直流機器から通知された電圧の種類に応じた電圧を選択して前記電力供給線路の線間に印加する電圧選択手段を備えることを特徴とする請求項2または請求項6記載の配電システム。   The DC power supply and the DC device are communicable, and the DC device notifies the DC power supply of a voltage corresponding to itself, and the DC power supply is notified from all the DC devices connected to the power supply line. The power distribution system according to claim 2, further comprising a voltage selection unit that selects a voltage according to a voltage type and applies the voltage between the power supply lines. 前記直流電源と前記直流機器とは通信可能であって、直流電源は、常時は通信に要する電圧を前記電力供給線路の線間に印加し、通信により直流機器の動作開始が通知されると直流機器の動作に必要な常時より高い電圧を規定した時間だけ線間に印加する電圧選択手段を備えることを特徴とする請求項2または請求項5または請求項6に記載の配電システム。   The DC power source and the DC device are communicable, and the DC power source applies a voltage required for communication between the power supply lines at all times, and directs the operation when the DC device starts operating by communication. The power distribution system according to claim 2, further comprising a voltage selection unit that applies a voltage higher than a normal time necessary for the operation of the device between the lines for a specified time. 前記直流電源と前記直流機器とは通信可能であって、直流電源は、常時は通信に要する電圧を前記電力供給線路の線間に印加し、通信により直流機器の動作開始が通知されると直流機器の動作に必要な常時より高い電圧を直流機器の動作期間中に間欠的に線間に印加する電圧選択手段を備えることを特徴とする請求項2または請求項5または請求項6に記載の配電システム。   The DC power supply and the DC device are communicable, and the DC power supply applies a voltage required for communication between the lines of the power supply line at all times. 7. The voltage selection means for applying a voltage higher than usual necessary for the operation of the device intermittently between the lines during the operation period of the DC device is provided. Power distribution system. 前記直流電源と前記直流機器とは通信可能であって、前記直流電源と前記直流機器との間の情報は、前記電力供給線路のうち直流機器に直流電力を供給している特定の2線間の電圧変化を用いて伝送することを特徴とする請求項2または請求項5または請求項6に記載の配電システム。   The DC power source and the DC device are communicable, and information between the DC power source and the DC device is between specific two lines supplying DC power to the DC device among the power supply lines. The power distribution system according to claim 2, wherein the voltage distribution is transmitted using a voltage change of the power distribution.
JP2007095258A 2007-03-30 2007-03-30 Power distribution system Expired - Fee Related JP5086682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095258A JP5086682B2 (en) 2007-03-30 2007-03-30 Power distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095258A JP5086682B2 (en) 2007-03-30 2007-03-30 Power distribution system

Publications (2)

Publication Number Publication Date
JP2008253118A true JP2008253118A (en) 2008-10-16
JP5086682B2 JP5086682B2 (en) 2012-11-28

Family

ID=39977408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095258A Expired - Fee Related JP5086682B2 (en) 2007-03-30 2007-03-30 Power distribution system

Country Status (1)

Country Link
JP (1) JP5086682B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183680A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Power feed system for vehicle
JP2010262604A (en) * 2009-05-11 2010-11-18 Sony Corp Power supply device, power receiving device, power supply system, and power supply method
JP2011103710A (en) * 2009-11-10 2011-05-26 Nec Access Technica Ltd Electrical load control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122846A (en) * 1991-10-25 1993-05-18 Seikosha Co Ltd Power supply
JP2004328026A (en) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd Signal power transmission circuit
JP2005094909A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Electronic equipment and portable unit using the same
JP2006325391A (en) * 2005-04-22 2006-11-30 Hewlett-Packard Development Co Lp Power management system
JP2006352396A (en) * 2005-06-15 2006-12-28 Sony Corp Communication system and electric apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122846A (en) * 1991-10-25 1993-05-18 Seikosha Co Ltd Power supply
JP2004328026A (en) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd Signal power transmission circuit
JP2005094909A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Electronic equipment and portable unit using the same
JP2006325391A (en) * 2005-04-22 2006-11-30 Hewlett-Packard Development Co Lp Power management system
JP2006352396A (en) * 2005-06-15 2006-12-28 Sony Corp Communication system and electric apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183680A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Power feed system for vehicle
JP2010262604A (en) * 2009-05-11 2010-11-18 Sony Corp Power supply device, power receiving device, power supply system, and power supply method
JP2011103710A (en) * 2009-11-10 2011-05-26 Nec Access Technica Ltd Electrical load control device

Also Published As

Publication number Publication date
JP5086682B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
CA2766422C (en) Electronic circuit for converting a mains-operated luminaire into an emergency luminaire
EP2757655B1 (en) Charging Apparatus for Secondary Battery
JP4600662B2 (en) Charge pump type LED driver and charge pump step-up rate switching method
JP2005260110A (en) Light-emitting element driving device and portable device having light-emitting element
JP2008134288A (en) Led driver
WO2011039616A1 (en) Power distribution device and power distribution system using same
JP2008160933A (en) Chopper regulator circuit
KR102452518B1 (en) Power supply and driving method thereof
JP2008054477A (en) Power conversion device
EP3099139B1 (en) Efficient lighting circuit for led assemblies
JP2015027210A (en) Parallel-type power supply
EP3262735A1 (en) Emergency supply unit
JP5086682B2 (en) Power distribution system
NO327600B1 (en) Equally Troms converter.
US8602746B2 (en) Electrical system for a pump
KR20140055068A (en) Dc-dc converter and organic light emitting display device using the same
KR101306021B1 (en) Driving device for led lighting operatable using low voltage battery in case of emergency
CN106105397B (en) Lighting system, lamp and method for emergency lighting operation in a lighting system
EP2883425A1 (en) Designs for control on solar power system with extreme low energy consumption
JP2011091978A (en) Dc power distribution system
US11140760B2 (en) DC-DC converter and light source driving device comprising same
CN107885154B (en) Programmable logic controller
EP3104485B1 (en) Power providing apparatus for use with multiple electricity sources
JPH11332091A (en) Electronic equipment
CN102469666A (en) Feedback voltage stabilizing circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees