JP2008251860A - Silicon electrode plate for plasma etching - Google Patents

Silicon electrode plate for plasma etching Download PDF

Info

Publication number
JP2008251860A
JP2008251860A JP2007091737A JP2007091737A JP2008251860A JP 2008251860 A JP2008251860 A JP 2008251860A JP 2007091737 A JP2007091737 A JP 2007091737A JP 2007091737 A JP2007091737 A JP 2007091737A JP 2008251860 A JP2008251860 A JP 2008251860A
Authority
JP
Japan
Prior art keywords
silicon
hole part
gas hole
electrode plate
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007091737A
Other languages
Japanese (ja)
Other versions
JP4863082B2 (en
Inventor
Junichi Sasaki
順一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007091737A priority Critical patent/JP4863082B2/en
Publication of JP2008251860A publication Critical patent/JP2008251860A/en
Application granted granted Critical
Publication of JP4863082B2 publication Critical patent/JP4863082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon electrode plate for plasma etching in which only a few particles occur, even if a plasma etching is performed for a long time, and with which uniform etching can be performed. <P>SOLUTION: A silicon electrode substrate 1 comprises monocrystalline silicon, polycrystalline silicon or columnar crystalline silicon having a unidirectional coagulated configuration and is provided with a gas hole part inserting opening 2. A gas hole part 33 comprises silicon having a higher specific resistance than the silicon electrode substrate 1 and having a through pore 5 is fitted into the gas hole part inserting opening 2 of the silicon electrode substrate 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、長時間プラズマエッチングを行ってもパーティクル発生が少なくかつ均一なエッチングを行うことの出来るプラズマエッチング用シリコン電極板に関するものである。   The present invention relates to a silicon electrode plate for plasma etching that can generate uniform etching even when plasma etching is performed for a long time.

一般に、半導体集積回路を製造する際に、シリコンウエハ上に形成された層間絶縁膜をエッチングする必要があるが、この層間絶縁膜付きシリコンウエハ(以下、ウエハと呼ぶ)をエッチングするためにプラズマエッチング用シリコン電極板が使用されている。そのプラズマエッチング用シリコン電極板9は、図8の一部断面概略説明図に示されるように、単結晶シリコン、多結晶シリコン、または一方向凝固組織を有する柱状晶シリコンからなるシリコン電極基板11の厚さ方向に平行に貫通細孔5が設けられた構造を有している。このプラズマエッチング用シリコン電極板9は真空容器(図示せず)内のほぼ中央に固定し、一方、架台6の上にウエハ4を載置し、エッチングガス7を貫通細孔5を通してウエハ4に向って流しながら高周波電圧を印加することによりシリコン電極基板1とウエハ4の間にプラズマ8を発生させ、このプラズマ8がウエハ4に作用させてウエハ4の表面をエッチングするようになっている。   Generally, when manufacturing a semiconductor integrated circuit, it is necessary to etch an interlayer insulating film formed on a silicon wafer. Plasma etching is performed to etch this silicon wafer with an interlayer insulating film (hereinafter referred to as a wafer). Silicon electrode plates are used. The silicon electrode plate 9 for plasma etching is a silicon electrode substrate 11 made of single crystal silicon, polycrystalline silicon, or columnar crystal silicon having a unidirectionally solidified structure, as shown in the schematic cross-sectional explanatory diagram of FIG. It has a structure in which through-holes 5 are provided in parallel to the thickness direction. The silicon electrode plate 9 for plasma etching is fixed at substantially the center in a vacuum vessel (not shown). On the other hand, the wafer 4 is placed on the gantry 6 and the etching gas 7 is passed through the through-hole 5 to the wafer 4. A plasma 8 is generated between the silicon electrode substrate 1 and the wafer 4 by applying a high-frequency voltage while flowing in the opposite direction, and this plasma 8 acts on the wafer 4 to etch the surface of the wafer 4.

かかるウエハ4のプラズマエッチング操作を長時間行うと、プラズマエッチング用シリコン電極板9も同時にエッチングされ、特にシリコン電極基板11の厚さ方向に平行に設けられている貫通細孔5は、その一部断面説明図である図9に示されるように、プラズマに接する面の貫通細孔5が下広がりになるように拡大消耗し、さらに、その消耗の程度もプラズマの濃度差によって差が生じ、プラズマ濃度の最も高い中心部に位置する貫通細孔は周辺部に位置する貫通細孔に比べて消耗が激しく、そのためにウエハ4の表面のエッチングレートが中心部と周辺部とで不均一になる。この現象は、長時間プラズマエッチングを行うほどエッチングレートの不均一性が顕著になり、特に、プラズマ8の密度を均一に保持しウエハ4のエッチングレートを均一に保つことが要求されるような場合には、一枚のプラズマエッチング用シリコン電極板9を使用する時間が極めて短く限定されており、プラズマエッチング用シリコン電極板9の消耗量が少ないにもかかわらず早期に交換しなければならない。そして交換したプラズマエッチング用シリコン電極板9はスクラップとなるために無駄な使い方がなされている。   When the plasma etching operation of the wafer 4 is performed for a long time, the plasma etching silicon electrode plate 9 is also etched at the same time, and in particular, a part of the through-hole 5 provided parallel to the thickness direction of the silicon electrode substrate 11 As shown in FIG. 9 which is a cross-sectional explanatory view, the through-holes 5 on the surface in contact with the plasma are expanded and consumed so as to expand downward, and the degree of the consumption varies depending on the plasma concentration difference. The through-pores located in the central portion having the highest concentration are more exhausted than the through-pores located in the peripheral portion, so that the etching rate of the surface of the wafer 4 is not uniform between the central portion and the peripheral portion. In this phenomenon, the non-uniformity of the etching rate becomes more prominent as the plasma etching is performed for a longer time, and particularly when the density of the plasma 8 is kept uniform and the etching rate of the wafer 4 is required to be kept uniform. In this case, the time for using one silicon electrode plate 9 for plasma etching is limited to a very short time, and the plasma etching silicon electrode plate 9 must be replaced at an early stage even though the consumption amount of the silicon electrode plate 9 is small. Since the replaced silicon electrode plate 9 for plasma etching becomes scrap, it is used wastefully.

これを解決するために、図5の断面図に示されるように、ガス穴パーツ挿入開口2を有するシリコン電極基板1を作製し、このガス穴パーツ挿入開口2にシリコンに比べて消耗の少ない炭化珪素(SiC)からなる貫通細孔5を有するガス穴パーツ3をはめ込んで作製した図4の断面図に示されるプラズマエッチング用シリコン電極板10が提供されている。このプラズマエッチング用シリコン電極板10は、これを用いてウエハをエッチングすると、シリコンに比べて格段に消耗の少ない炭化珪素からなるガス穴パーツ3の貫通細孔5は拡大消耗することが極めて少なく、そのために長時間プラズマエッチングしてもエッチングレートの均一性が確保されるとされている。このシリコン電極基板1に設けられているガス穴パーツ挿入開口2は図5に示されるように大径穴部21と小径穴部22を有し、一方、ガス穴パーツ3は大径部31、小径部32および貫通細孔5を有しており、この貫通細孔5を有するガス穴パーツ3をガス穴パーツ挿入開口2にはめ込むと、ガス穴パーツ3の大径部31はガス穴パーツ挿入開口2の大径穴部21に嵌合し、ガス穴パーツ3の小径部32はガス穴パーツ挿入開口2の小径穴部22に嵌合するようになっており、プラズマエッチング用シリコン電極板をプラズマエッチング装置に装着した場合に、ガス穴パーツ3が脱落しないようになっている。 In order to solve this, as shown in the cross-sectional view of FIG. 5, a silicon electrode substrate 1 having a gas hole part insertion opening 2 is produced, and carbonization with less wear compared to silicon is made in the gas hole part insertion opening 2. A silicon electrode plate for plasma etching 10 shown in the cross-sectional view of FIG. 4 produced by fitting a gas hole part 3 having through-holes 5 made of silicon (SiC) is provided. When the silicon electrode plate 10 for plasma etching is used to etch a wafer, the through-hole 5 of the gas hole part 3 made of silicon carbide, which is much less consumed than silicon, is very little expanded and consumed. Therefore, it is said that the uniformity of the etching rate is ensured even if plasma etching is performed for a long time. As shown in FIG. 5, the gas hole part insertion opening 2 provided in the silicon electrode substrate 1 has a large diameter hole part 21 and a small diameter hole part 22, while the gas hole part 3 has a large diameter part 31, When the gas hole part 3 having the small diameter part 32 and the through hole 5 is fitted into the gas hole part insertion opening 2, the large diameter part 31 of the gas hole part 3 is inserted into the gas hole part. The small-diameter portion 32 of the gas hole part 3 is fitted into the small-diameter hole portion 22 of the gas hole part insertion opening 2 so as to fit into the large-diameter hole portion 21 of the opening 2. The gas hole part 3 is prevented from falling off when it is attached to the plasma etching apparatus.

また、図6に示されるように、シリコン電極基板1に設けられたガス穴パーツ挿入開口2は上広がりテーパを有しており、このテーパを有するガス穴パーツ挿入開口2に、ガス穴パーツ挿入開口2とは逆のテーパを有する炭化珪素からなるガス穴パーツを嵌合させたものも知られている(特許文献1参照)。
特開2004−79959号公報
Further, as shown in FIG. 6, the gas hole part insertion opening 2 provided in the silicon electrode substrate 1 has a taper extending upward, and the gas hole part insertion hole 2 is inserted into the gas hole part insertion opening 2 having this taper. A gas hole part made of silicon carbide having a taper opposite to that of the opening 2 is also known (see Patent Document 1).
JP 2004-79959 A

確かに貫通細孔5を有する炭化珪素からなるガス穴パーツ3をシリコン電極基板1に嵌め込んで作製したプラズマエッチング用シリコン電極板10は、これを用いてウエハをプラズマエッチングすると、炭化珪素からなるガス穴パーツの貫通細孔5は拡大消耗することが極めて少ないために長時間プラズマエッチングしてもエッチングの均一性が確保される。しかし、図7の一部断面図に示されるように、長時間スパッタリングすると、炭化珪素からなるガス穴パーツ3をシリコン電極基板1に嵌め込んで作製したプラズマエッチング用シリコン電極板10は、シリコン電極基板1の消耗が大きく、一方、炭化珪素からなるガス穴パーツの消耗が少ないところから、ガス穴パーツ3の先端12がシリコン電極基板1の下面から突出するようにシリコン電極基板1が消耗する。かかるガス穴パーツ3の先端12がシリコン電極基板1の下面から突出するように消耗すると、先端12とシリコン電極基板1との間に段差が形成され、この段差から異常放電が発生し、これが原因でパーティクルが多く発生し、従来の炭化珪素からなるガス穴パーツ3をシリコン電極基板1に嵌め込んで作製したプラズマエッチング用シリコン電極板10は、長時間使用するとパーティクルが多く発生するようになることから、あまり長時間使用することができない。 The silicon electrode plate for plasma etching 10 produced by fitting the gas hole part 3 made of silicon carbide having the through-holes 5 into the silicon electrode substrate 1 is certainly made of silicon carbide when the wafer is plasma etched using this. Since the through-hole 5 of the gas hole part is very little expanded and consumed, the etching uniformity is ensured even if plasma etching is performed for a long time. However, as shown in the partial sectional view of FIG. 7, when the sputtering is performed for a long time, the silicon electrode plate for plasma etching 10 produced by fitting the gas hole part 3 made of silicon carbide into the silicon electrode substrate 1 The silicon electrode substrate 1 is consumed so that the tip 12 of the gas hole part 3 protrudes from the lower surface of the silicon electrode substrate 1 because the consumption of the substrate 1 is large and the consumption of the gas hole parts made of silicon carbide is small. When the tip 12 of the gas hole part 3 is consumed so as to protrude from the lower surface of the silicon electrode substrate 1, a step is formed between the tip 12 and the silicon electrode substrate 1, and abnormal discharge occurs from this step, which is the cause. The silicon electrode plate for plasma etching 10 produced by fitting the gas hole part 3 made of conventional silicon carbide into the silicon electrode substrate 1 will generate many particles when used for a long time. Therefore, it cannot be used for a long time.

そこで、本発明者らは長時間プラズマエッチングを行ってもパーティクルの発生が少なくかつ均一なエッチングを行うことの出来るプラズマエッチング用シリコン電極板を得るべく研究を行った。その結果、
(イ)従来の炭化珪素からなるガス穴パーツに換えて、図1の断面図に示されるように、シリコン電極基板1の比抵抗よりも大きなシリコンからなるガス穴パーツ33を嵌め込んで作製したプラズマエッチング用シリコン電極板10は、シリコン電極基板1の比抵抗よりも大きなシリコンからなるガス穴パーツ33の消耗速度がシリコン電極基板1の消耗速度に比べて格段に大きな差がなく、したがって、従来の炭化珪素からなるガス穴パーツ3をシリコン電極基板1に嵌め込んで作製したプラズマエッチング用シリコン電極板10に比べてガス穴パーツ3とシリコン電極基板1との間に生じる段差が小さく、したがって、長時間プラズマエッチングしてもパーティクルの発生が少なくなり、またシリコン電極基板1の比抵抗よりも大きなシリコンからなるガス穴パーツ33の貫通細孔5の下広がりに拡大消耗することが少なくなって、エッチングの均一性が改善される、
(ロ)シリコン電極基板1の比抵抗をρとすると、ガス穴パーツの比抵抗ρ´は1.1ρ≦ρ´≦1.5ρの範囲内にあることが一層好ましい、などの研究結果が得られたのである。
Accordingly, the present inventors have studied to obtain a silicon electrode plate for plasma etching that can generate uniform etching even when plasma etching is performed for a long time. as a result,
(A) Instead of the conventional gas hole part made of silicon carbide, as shown in the cross-sectional view of FIG. 1, the gas hole part 33 made of silicon larger than the specific resistance of the silicon electrode substrate 1 was fitted and produced. In the silicon electrode plate for plasma etching 10, the consumption rate of the gas hole part 33 made of silicon larger than the specific resistance of the silicon electrode substrate 1 is not significantly different from the consumption rate of the silicon electrode substrate 1. Compared with the silicon electrode plate 10 for plasma etching produced by fitting the gas hole part 3 made of silicon carbide into the silicon electrode substrate 1, the level difference generated between the gas hole part 3 and the silicon electrode substrate 1 is small. Even when plasma etching is performed for a long time, the generation of particles is reduced, and the resistivity is larger than the specific resistance of the silicon electrode substrate 1. And it becomes less able to expand depleted under broadening of the through pores 5 of the gas hole part 33 made of Con, the etching uniformity is improved,
(B) When the specific resistance of the silicon electrode substrate 1 is ρ, it is more preferable that the specific resistance ρ ′ of the gas hole part is in the range of 1.1ρ ≦ ρ ′ ≦ 1.5ρ. It was done.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)ガス穴パーツ挿入開口を設けたシリコン電極基板のガス穴パーツ挿入開口に、前記シリコン電極基板よりも高比抵抗を有するシリコンからなる貫通細孔を有するガス穴パーツをはめ込んでなるプラズマエッチング用シリコン電極板、
(2)前記ガス穴パーツ挿入開口を設けたシリコン電極基板の比抵抗値をρ、前記貫通細孔を有するガス穴パーツの比抵抗値をρ´とすると、1.1ρ≦ρ´≦1.5ρの関係を有する前記(1)記載のプラズマエッチング用シリコン電極板、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) Plasma etching in which a gas hole part having a through hole made of silicon having a higher specific resistance than the silicon electrode substrate is inserted into a gas hole part insertion opening of a silicon electrode substrate provided with a gas hole part insertion opening. Silicon electrode plate,
(2) When the specific resistance value of the silicon electrode substrate provided with the gas hole part insertion opening is ρ and the specific resistance value of the gas hole part having the through hole is ρ ′, 1.1ρ ≦ ρ ′ ≦ 1. The silicon electrode plate for plasma etching according to the above (1) having a 5ρ relationship is characterized.

前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツは主に単結晶シリコンから作られるが、単結晶シリコンのほかに多結晶シリコンまたは一方向凝固組織を有する柱状晶シリコンからなることがある。したがって、この発明は、
(3)前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツはいずれも単結晶シリコンからなる前記(1)または2記載のプラズマエッチング用シリコン電極板、
(4)前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツはいずれも多結晶シリコンからなる前記(1)または2記載のプラズマエッチング用シリコン電極板、
(5)前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツはいずれも一方向凝固組織を有する柱状晶シリコンからなる前記(1)または2記載のプラズマエッチング用シリコン電極板、に特徴を有するものである。
The silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through-hole are mainly made of single crystal silicon, but in addition to single crystal silicon, polycrystalline silicon or columnar crystal silicon having a unidirectionally solidified structure May consist of Therefore, the present invention
(3) The silicon electrode substrate for plasma etching according to (1) or 2, wherein each of the silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through hole is made of single crystal silicon,
(4) The silicon electrode plate for plasma etching according to (1) or 2, wherein each of the silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through hole is made of polycrystalline silicon,
(5) The silicon electrode for plasma etching according to (1) or 2 above, wherein each of the silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through hole is made of columnar crystal silicon having a unidirectionally solidified structure. It is characterized by a plate.

この発明のプラズマエッチング用シリコン電極板は、貫通細孔を有するガス穴パーツの比抵抗値がガス穴パーツ挿入開口を設けたシリコン電極基板の比抵抗値よりも大であればよいが、ガス穴パーツ挿入開口を設けたシリコン電極基板の比抵抗値をρとし、前記貫通細孔を有するガス穴パーツの比抵抗値をρ´とした場合、1.1ρ≦ρ´≦1.5ρの関係を有することが一層好ましい。その理由は、ρ´が1.1ρよりも小さいと貫通細孔周辺の消耗を抑制する効果が十分でなく、従来の通常のシリコンで極板と同様にウエハのエッチングレートの不均一化が短期間で発生するようになるからであり、一方、ρ´が1.5ρよりも大きくなると、ガス穴パーツとシリコン電極基板の消耗速度が大きくなって炭化珪素製ガス穴パーツと同様に大きな段差が生じ、パーティクルの発生が多くなるので好ましくないからである。 The silicon electrode plate for plasma etching according to the present invention only needs to have a specific resistance value larger than that of a silicon electrode substrate provided with a gas hole part insertion opening. When the specific resistance value of the silicon electrode substrate provided with the part insertion opening is ρ and the specific resistance value of the gas hole part having the through-hole is ρ ′, the relationship of 1.1ρ ≦ ρ ′ ≦ 1.5ρ is established. More preferably, it has. The reason is that if ρ ′ is smaller than 1.1ρ, the effect of suppressing the wear around the through-hole is not sufficient, and the conventional etching rate of the wafer is not uniform in the same manner as the electrode plate in the normal silicon. On the other hand, when ρ ′ is larger than 1.5ρ, the consumption rate of the gas hole part and the silicon electrode substrate is increased, and a large level difference is caused as in the case of the gas hole part made of silicon carbide. This is because the generation of particles and the generation of particles increase.

図1の断面図に示されるこの発明のプラズマエッチング用シリコン電極板は、図3の断面図に示されるように、まず、大径穴部21と小径穴部22を有するガス穴パーツ挿入開口2を形成したシリコン電極基板1を作製し、さらにシリコン電極基板1よりも比抵抗値が大きくかつ大径部31、小径部32および貫通細孔5を有するガス穴パーツ3を作製し、この貫通細孔5を有するガス穴パーツ3をガス穴パーツ挿入開口2にはめ込むと、ガス穴パーツ3の大径部31はガス穴パーツ挿入開口2の大径穴部21に嵌合し、ガス穴パーツ3の小径部32はガス穴パーツ挿入開口2の小径穴部22に嵌合させて作製する。
また、この発明のプラズマエッチング用シリコン電極板は、図2の断面図に示されるように、シリコン電極基板1に設けられたガス穴パーツ挿入開口2は上広がりテーパを有しており、このテーパを有するガス穴パーツ挿入開口2に、ガス穴パーツ挿入開口2とは逆のテーパを有するシリコン電極基板1の比抵抗よりも大きな比抵抗を有するシリコンからなるガス穴パーツ34からなるガス穴パーツを嵌合させたものも含まれる。
The silicon electrode plate for plasma etching according to the present invention shown in the cross-sectional view of FIG. 1 has a gas hole part insertion opening 2 having a large-diameter hole portion 21 and a small-diameter hole portion 22 as shown in the cross-sectional view of FIG. And a gas hole part 3 having a specific resistance value larger than that of the silicon electrode substrate 1 and having a large diameter part 31, a small diameter part 32, and a through-hole 5 are prepared. When the gas hole part 3 having the hole 5 is fitted into the gas hole part insertion opening 2, the large diameter part 31 of the gas hole part 3 is fitted into the large diameter hole part 21 of the gas hole part insertion opening 2. The small diameter portion 32 is made to fit into the small diameter hole portion 22 of the gas hole part insertion opening 2.
Further, in the silicon electrode plate for plasma etching according to the present invention, as shown in the sectional view of FIG. 2, the gas hole part insertion opening 2 provided in the silicon electrode substrate 1 has a taper extending upward, and this taper. A gas hole part composed of a gas hole part 34 made of silicon having a specific resistance larger than the specific resistance of the silicon electrode substrate 1 having a taper opposite to that of the gas hole part insertion opening 2. The thing fitted is also included.

この発明のス穴パーツ挿入開口を設けたシリコン電極基板のガス穴パーツ挿入開口に前記シリコン電極基板よりも高比抵抗を有するシリコンからなる貫通細孔を有するガス穴パーツをはめ込んでなるプラズマエッチング用シリコン電極板は、長期間使用しても従来の通常のシリコンで極板のように短期間でウエハのエッチングレートの不均一化が発生することはなく、さらに炭化珪素からなるガス穴パーツをシリコン電極基板に嵌め込んで作製したプラズマエッチング用シリコン電極板に比べてパーティクルの発生が多くなることはないなど優れた作用効果を奏するものである。 For plasma etching in which a gas hole part having a through hole made of silicon having a higher specific resistance than that of the silicon electrode substrate is fitted into the gas hole part insertion opening of the silicon electrode substrate provided with the hole part insertion opening of the present invention. The silicon electrode plate does not cause non-uniformity in the etching rate of the wafer in a short period of time, unlike conventional electrode plates, even when used for a long time. Compared with the silicon electrode plate for plasma etching produced by being fitted to the electrode substrate, there are excellent effects such as no generation of particles.

実施例1
比抵抗:75Ω・cmの直径:300mmの単結晶シリコンインゴットを用意し、このインゴットをダイヤモンドバンドソーにより厚さ:6mmに輪切り切断し、直径:280mm、厚さ:5mmを有する寸法の単結晶シリコン電極基板を作製した。この単結晶シリコン電極基板に、図3に示されるように、直径:4mmの大径穴部21と直径:2mmの小径穴部22のからなるガス穴パーツ挿入開口2を形成した。
Example 1
A single crystal silicon ingot having a specific resistance of 75 Ω · cm and a diameter of 300 mm is prepared, and the ingot is cut into a thickness of 6 mm by a diamond band saw, and a single crystal silicon electrode having a diameter of 280 mm and a thickness of 5 mm. A substrate was produced. In this single crystal silicon electrode substrate, as shown in FIG. 3, a gas hole part insertion opening 2 including a large diameter hole portion 21 having a diameter of 4 mm and a small diameter hole portion 22 having a diameter of 2 mm was formed.

さらに、先の単結晶シリコン電極基板よりも大きな比抵抗:90Ω・cmを有する単結晶シリコンインゴットから直径:4mmの大径部31と直径:2mmの小径部32を有するガス穴パーツを切り出し、このガス穴パーツに直径:0.5mmの貫通細孔5を形成して単結晶シリコンからなるガス穴パーツ33を作製した。このガス穴パーツ33をガス穴パーツ挿入開口2にはめ込むことにより本発明プラズマエッチング用シリコン電極板(以下、本発明電極板という)1を作製した。   Further, a gas hole part having a large diameter portion 31 having a diameter of 4 mm and a small diameter portion 32 having a diameter of 2 mm is cut out from a single crystal silicon ingot having a specific resistance larger than that of the previous single crystal silicon electrode substrate: 90 Ω · cm. A through hole 5 having a diameter of 0.5 mm was formed in the gas hole part to produce a gas hole part 33 made of single crystal silicon. By inserting the gas hole part 33 into the gas hole part insertion opening 2, the silicon electrode plate for plasma etching of the present invention (hereinafter referred to as the present electrode plate) 1 was produced.

さらに、平均粒径:5μmを有する炭化ケイ素粉末を燒結することにより直径:4mmの大径部31と直径:2mmの小径部32を有する焼結体を作製し、この焼結体に直径:0.5mmの貫通細孔ガス穴5を形成して炭化ケイ素からなるガス穴パーツ3を作製し、このガス穴パーツ3をガス穴部開口部2にはめ込むことにより従来プラズマエッチング用シリコン電極板(以下、従来電極板という)1を作製した。
さらに、先に作製した直径:280mm、厚さ:5mmの寸法を有する単結晶シリコン電極基板に直径:0.5mmの貫通細孔ガス穴を8mm間隔で形成することにより従来電極板2を作製した。
さらに、予めCVD法によりSiO2 層を表面に形成した直径:200mmのウエハを用意した。
Furthermore, a sintered body having a large diameter portion 31 having a diameter of 4 mm and a small diameter portion 32 having a diameter of 2 mm is prepared by sintering silicon carbide powder having an average particle diameter of 5 μm. A gas hole part 3 made of silicon carbide is formed by forming a through-hole gas hole 5 of .5 mm, and this gas hole part 3 is fitted into the gas hole part opening 2 so that a conventional silicon electrode plate for plasma etching (hereinafter referred to as a gas electrode part 3). (Referred to as a conventional electrode plate).
Furthermore, the conventional electrode plate 2 was prepared by forming through-hole gas holes having a diameter of 0.5 mm at intervals of 8 mm on the single crystal silicon electrode substrate having a diameter of 280 mm and a thickness of 5 mm. .
Furthermore, a wafer having a diameter of 200 mm, on which a SiO 2 layer was formed on the surface in advance by a CVD method, was prepared.

この本発明電極板1および従来電極板1〜2をそれぞれプラズマエッチング装置にセットし、さらにSiO2 層を形成したウエハをプラズマエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始直後、エッチング開始から500時間経過後および700時間経過後のそれぞれの時点で発生したパーティクルの数を数え、その結果を表1に示した。さらに、ウエハを縦横20mm間隔で区切り、各エリアのエッチング量を測定し、最も深くエッチングされた中心部の深さ:Aおよび最も浅くエッチングされた周辺部の深さ:Bを選択し、このAおよびBの測定値を(A−B)/B×100(%)の式に代入し求めた値(以下、エッチングレート差という)を表1に示し、ウエハのプラズマエッチングの均一性を評価した。
The electrode plate 1 of the present invention and the conventional electrode plates 1 and 2 are each set in a plasma etching apparatus, and a wafer on which a SiO 2 layer is further formed is set in the plasma etching apparatus.
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under the conditions, plasma etching of the SiO 2 layer on the wafer surface was performed, and the number of particles generated immediately after the start of etching, after 500 hours from the start of etching, and after 700 hours had elapsed was counted. It was shown to. Further, the wafer is divided at 20 mm vertical and horizontal intervals, the etching amount of each area is measured, and the depth of the central portion etched most deeply: A and the depth of peripheral portion etched the shallowest: B are selected. Table 1 shows values obtained by substituting the measured values of B and B into the formula of (A−B) / B × 100 (%) (hereinafter referred to as etching rate difference), and evaluated the uniformity of plasma etching of the wafer. .

Figure 2008251860
Figure 2008251860

表1に示される本発明電極板1を使用してウエハ表面のSiO2 層をプラズマエッチングした結果と従来電極板1〜2を使用してウエハ表面のSiO2 層をプラズマエッチングした結果を比較すると、
(a)本発明電極板1を使用して500時間および700時間プラズマエッチングした場合のエッチングは従来電極板1を使用して500時間および700時間プラズマエッチングした場合のエッチングレート差に比べてその値が小さいところから、本発明電極板1および従来電極板1は共に長期間エッチングレート差を均一に保つことができるが、本発明電極板1は従来電極板1に比べて長時間スパッタリングしてもパーティクルの発生数が少ないことがわかる、
(b)また、本発明電極板1は従来電極板2と同様にパーティクルの発生が少ないが、本発明電極板1は従来電極板2に比べて500時間および700時間プラズマエッチングした場合のエッチングレート差が小さいところから、本発明電極板1は従来電極板1に比べて長期間エッチングレート差を均一に保つことができることがわかる。
The results of plasma etching the SiO 2 layer on the wafer surface using the electrode plate 1 of the present invention shown in Table 1 and the results of plasma etching the SiO 2 layer on the wafer surface using the conventional electrode plates 1 and 2 are compared. ,
(A) Etching in the case of plasma etching for 500 hours and 700 hours using the electrode plate 1 of the present invention is a value compared with the etching rate difference in the case of plasma etching for 500 hours and 700 hours using the conventional electrode plate 1 Therefore, both the electrode plate 1 of the present invention and the conventional electrode plate 1 can maintain a uniform etching rate difference for a long time, but the electrode plate 1 of the present invention can be sputtered for a longer time than the conventional electrode plate 1. You can see that the number of particles generated is small.
(B) Although the electrode plate 1 of the present invention generates less particles as in the case of the conventional electrode plate 2, the electrode plate 1 of the present invention has an etching rate when plasma etching is performed for 500 hours and 700 hours as compared with the conventional electrode plate 2. From the fact that the difference is small, it can be seen that the electrode plate 1 of the present invention can keep the etching rate difference uniform for a long period of time as compared with the conventional electrode plate 1.

実施例2
溶融・凝固法により直径:300mmを有する比抵抗:2Ω・cmの多結晶シリコンインゴットを作製し、このシリコンインゴットをダイヤモンドバンドソーにより切断したのち、研削加工およびポリッシング加工を施して直径:280mm、厚さ:5mmを有する寸法の多結晶シリコン電極基板を作製し、この多結晶シリコン電極基板に、図3に示される直径:4mmの大径穴部21と直径:2mmの小径穴部22のからなるガス穴パーツ挿入開口2を形成した。
Example 2
A polycrystalline silicon ingot having a specific resistance of 2 Ω · cm having a diameter of 300 mm is prepared by a melting / solidifying method, and this silicon ingot is cut with a diamond band saw, and then subjected to grinding and polishing to have a diameter of 280 mm and a thickness. A polycrystalline silicon electrode substrate having a size of 5 mm is prepared, and a gas comprising the large diameter hole portion 21 having a diameter of 4 mm and the small diameter hole portion 22 having a diameter of 2 mm shown in FIG. Hole part insertion opening 2 was formed.

さらに、先の多結晶シリコン電極基板よりも大きな比抵抗:3Ω・cmを有する多結晶シリコンインゴットから直径:4mmの大径部31と直径:2mmの小径部32を有するガス穴パーツを切り出し、このガス穴パーツに直径:0.5mmの貫通細孔5を形成して多結晶シリコンからなるガス穴パーツ33を作製した。このガス穴パーツ3をガス穴パーツ挿入開口2にはめ込むことにより本発明電極板2を作製した。   Further, a gas hole part having a large diameter portion 31 having a diameter of 4 mm and a small diameter portion 32 having a diameter of 2 mm is cut out from a polycrystalline silicon ingot having a specific resistance 3Ω · cm larger than that of the previous polycrystalline silicon electrode substrate. A through hole 5 having a diameter of 0.5 mm was formed in the gas hole part to produce a gas hole part 33 made of polycrystalline silicon. The electrode plate 2 of the present invention was manufactured by fitting the gas hole part 3 into the gas hole part insertion opening 2.

さらに、実施例1で作製した炭化ケイ素からなるガス穴パーツ3を直径:4mmの大径穴部21と直径:2mmの小径穴部22からなるガス穴パーツ挿入開口2を形成した多結晶シリコン電極基板のガス穴パーツ挿入開口2に挿入することにより従来電極板3を作製した。
さらに、先に作製した直径:280mm、厚さ:5mmの寸法を有する多結晶シリコン電極基板に直径:0.5mmの貫通細孔を10mm間隔で形成することにより従来電極板4を作製した。
さらに、予めCVD法によりSiO2 層を表面に形成した直径:200mmのウエハを用意した。
Further, the polycrystalline silicon electrode in which the gas hole part 3 made of silicon carbide produced in Example 1 is formed with the gas hole part insertion opening 2 made of the large diameter hole part 21 having a diameter of 4 mm and the small diameter hole part 22 having a diameter of 2 mm. A conventional electrode plate 3 was prepared by inserting into the gas hole part insertion opening 2 of the substrate.
Furthermore, the conventional electrode plate 4 was produced by forming through-holes having a diameter of 0.5 mm at intervals of 10 mm on the polycrystalline silicon electrode substrate having a diameter of 280 mm and a thickness of 5 mm.
Furthermore, a wafer having a diameter of 200 mm, on which a SiO 2 layer was formed on the surface in advance by a CVD method, was prepared.

この本発明電極板2および従来電極板3〜4をそれぞれプラズマエッチング装置にセットし、さらにSiO2 層を形成したウエハをプラズマエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始直後、エッチング開始からエッチング開始から500時間経過後および700時間経過後のそれぞれの時点で発生したパーティクルの数を数え、その結果を表2に示した。
さらに実施例1と同様にしてエッチングレート差を求め、その結果を表2に示し、ウエハのプラズマエッチングの均一性を評価した。
The electrode plate 2 of the present invention and the conventional electrode plates 3 to 4 are set in a plasma etching apparatus, and the wafer on which the SiO 2 layer is formed is set in the plasma etching apparatus.
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under the conditions, plasma etching of the SiO 2 layer on the wafer surface was performed, and immediately after the start of etching, the number of particles generated at each time after the start of etching and after 500 hours from the start of etching and after 700 hours had elapsed was counted. Are shown in Table 2.
Further, the etching rate difference was determined in the same manner as in Example 1, and the results are shown in Table 2. The uniformity of plasma etching of the wafer was evaluated.

Figure 2008251860
Figure 2008251860


表2に示される本発明電極板2を使用してウエハ表面のSiO2 層をプラズマエッチングした結果と従来電極板3〜4を使用してウエハ表面のSiO2 層をプラズマエッチングした結果を比較すると、
(c)本発明電極板2を使用して500時間および700時間プラズマエッチングした場合のエッチングレート差は従来電極板3を使用して500時間および700時間プラズマエッチングした場合のエッチングレート差に比べてその値が小さいところから、本発明電極板2および従来電極板3は共に長期間エッチングレート差を均一に保つことができるが、本発明電極板2は従来電極板3に比べて長時間スパッタリングしてもパーティクルの発生数が少ないことがわかる、
(d)また、本発明電極板2は従来電極板4と同様にパーティクルの発生が少ないが、本発明電極板2は従来電極板4に比べて500時間および700時間プラズマエッチングした場合のエッチングレート差が小さいところから、本発明電極板2は従来電極板4に比べて長期間エッチングレート差を均一に保つことができることがわかる。

When using the present invention the electrode plate 2 shown in Table 2 compare the results of the SiO 2 layer and plasma etching of the SiO 2 layer of the wafer surface plasma etching result with using the conventional electrode plate 3-4 wafer surface ,
(C) The etching rate difference when plasma etching is performed for 500 hours and 700 hours using the electrode plate 2 of the present invention is different from the etching rate difference when plasma etching is performed using the conventional electrode plate 3 for 500 hours and 700 hours. Since the value is small, both the electrode plate 2 of the present invention and the conventional electrode plate 3 can maintain a uniform etching rate difference for a long time, but the electrode plate 2 of the present invention is sputtered for a longer time than the conventional electrode plate 3. But you can see that the number of particles generated is small,
(D) Although the electrode plate 2 of the present invention generates less particles as in the case of the conventional electrode plate 4, the electrode plate 2 of the present invention has an etching rate when plasma etching is performed for 500 hours and 700 hours compared to the conventional electrode plate 4. From the fact that the difference is small, it can be seen that the electrode plate 2 of the present invention can maintain a uniform etching rate difference over a long period of time as compared with the conventional electrode plate 4.

実施例3
比抵抗:2Ω・cmを有する直径:300mmの柱状晶シリコンインゴットを用意し、このインゴットをダイヤモンドバンドソーにより厚さ:6mmに輪切り切断し、直径:280mm、厚さ:5mmを有する寸法の柱状晶シリコン電極基板を作製し、この柱状晶シリコン電極基板に、図3に示される直径:4mmの大径穴部21と直径:2mmの小径穴部22のからなるガス穴パーツ挿入開口2を形成した。
さらに、先の柱状晶シリコン電極基板よりも大きな比抵抗:3Ω・cmを有する柱状晶シリコンインゴットから直径:4mmの大径部31と直径:2mmの小径部32を有するガス穴パーツを切り出し、このガス穴パーツに直径:0.5mmの貫通細孔5を形成して柱状晶シリコンからなるガス穴パーツ33を作製した。このガス穴パーツ3をガス穴パーツ挿入開口2にはめ込むことにより本発明電極板3を作製した。
Example 3
A columnar silicon ingot having a specific resistance of 2 Ω · cm and a diameter of 300 mm is prepared, and this ingot is cut into pieces with a diamond band saw into a thickness of 6 mm, and the columnar crystal silicon having a diameter of 280 mm and a thickness of 5 mm. An electrode substrate was prepared, and a gas hole part insertion opening 2 composed of a large diameter hole portion 21 having a diameter of 4 mm and a small diameter hole portion 22 having a diameter of 2 mm shown in FIG. 3 was formed in this columnar crystal silicon electrode substrate.
Further, a gas hole part having a large diameter portion 31 having a diameter of 4 mm and a small diameter portion 32 having a diameter of 2 mm is cut out from a columnar silicon ingot having a specific resistance larger than that of the previous columnar crystal silicon electrode substrate: 3 Ω · cm. A through hole 5 having a diameter of 0.5 mm was formed in the gas hole part to produce a gas hole part 33 made of columnar crystal silicon. The electrode plate 3 of the present invention was produced by fitting the gas hole part 3 into the gas hole part insertion opening 2.

さらに、実施例1で作製した炭化ケイ素からなるガス穴パーツ3を直径:4mmの大径穴部21と直径:2mmの小径穴部22からなるガス穴パーツ挿入開口2を形成した柱状晶シリコン電極基板のガス穴パーツ挿入開口2に挿入することにより従来電極板5を作製した。 Furthermore, the columnar crystal silicon electrode in which the gas hole part 3 made of silicon carbide produced in Example 1 is formed with the gas hole part insertion opening 2 made of the large diameter hole part 21 having a diameter of 4 mm and the small diameter hole part 22 having a diameter of 2 mm. A conventional electrode plate 5 was produced by inserting it into the gas hole part insertion opening 2 of the substrate.

さらに、先に作製した直径:280mm、厚さ:5mmの寸法を有する柱状晶シリコン電極基板に直径:0.5mmの貫通細孔を10mm間隔で形成することにより従来電極板6を作製した。
さらに、予めCVD法によりSiO2 層を表面に形成した直径:200mmのウエハを用意した。
Furthermore, the conventional electrode plate 6 was prepared by forming through-holes having a diameter of 0.5 mm at intervals of 10 mm on the columnar crystal silicon electrode substrate having a diameter of 280 mm and a thickness of 5 mm.
Furthermore, a wafer having a diameter of 200 mm, on which a SiO 2 layer was formed on the surface in advance by a CVD method, was prepared.

この本発明電極板3および従来電極板5〜6をそれぞれプラズマエッチング装置にセットし、さらにSiO2 層を形成したウエハをプラズマエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始直後、エッチング開始から500時間経過後、700時間経過後のそれぞれの時点で発生したパーティクルの数を数え、その結果を表3に示した。
さらに実施例1と同様にしてエッチングレート差を求め、その結果を表3に示し、ウエハのエッチングの均一性を評価した。
The electrode plate 3 of the present invention and the conventional electrode plates 5 to 6 are set in a plasma etching apparatus, and a wafer on which a SiO 2 layer is formed is set in a plasma etching apparatus.
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under the conditions, plasma etching of the SiO 2 layer on the wafer surface was performed, and the number of particles generated at each time point immediately after the start of etching, after 500 hours from the start of etching, and after 700 hours had elapsed was counted. It was shown to.
Further, the etching rate difference was determined in the same manner as in Example 1, and the results are shown in Table 3 to evaluate the etching uniformity of the wafer.

Figure 2008251860
Figure 2008251860

表3に示される本発明電極板3を使用してウエハ表面のSiO2 層をプラズマエッチングした結果と従来電極板5〜6を使用してウエハ表面のSiO2 層をプラズマエッチングした結果を比較すると、
(e)本発明電極板3を使用して500時間および700時間プラズマエッチングした場合のエッチングレート差は従来電極板5を使用して500時間および700時間プラズマエッチングした場合のエッチングレート差に比べてその値が小さいところから、本発明電極板3および従来電極板5は共に長期間エッチングレート差を均一に保つことができるが、本発明電極板3は従来電極板5に比べて長時間スパッタリングしてもパーティクルの発生数が少ないことがわかる、
(f)また、本発明電極板3は従来電極板6と同様にパーティクルの発生が少ないが、本発明電極板3は従来電極板6に比べて500時間および700時間プラズマエッチングした場合のエッチングレート差が小さいところから、本発明電極板3は従来電極板6に比べて長期間エッチングレート差を均一に保つことができることがわかる。
When the SiO 2 layer of the wafer surface using the results of the conventional electrode plate 5-6 of the SiO 2 layer on the wafer surface was plasma etched using the present invention the electrode plate 3 shown in Table 3 to compare the results of the plasma etching ,
(E) The etching rate difference when plasma etching is performed for 500 hours and 700 hours using the electrode plate 3 of the present invention is different from the etching rate difference when plasma etching is performed using the conventional electrode plate 5 for 500 hours and 700 hours. Since the value is small, both the electrode plate 3 of the present invention and the conventional electrode plate 5 can maintain a uniform etching rate difference for a long time, but the electrode plate 3 of the present invention is sputtered for a longer time than the conventional electrode plate 5. But you can see that the number of particles generated is small,
(F) The electrode plate 3 of the present invention generates less particles as in the case of the conventional electrode plate 6, but the electrode plate 3 of the present invention has an etching rate when plasma etching is performed for 500 hours and 700 hours as compared with the conventional electrode plate 6. From the fact that the difference is small, it can be seen that the electrode plate 3 of the present invention can maintain a uniform etching rate difference over a long period of time compared to the conventional electrode plate 6.

この発明のプラズマエッチング用シリコン電極板を説明するための断面説明図である。It is a section explanatory view for explaining the silicon electrode plate for plasma etching of this invention. この発明のプラズマエッチング用シリコン電極板を説明するための断面説明図である。It is a section explanatory view for explaining the silicon electrode plate for plasma etching of this invention. 図1のこの発明のプラズマエッチング用シリコン電極板の製造方法を説明するための断面説明図である。FIG. 3 is a cross-sectional explanatory view for explaining the method of manufacturing the silicon electrode plate for plasma etching according to the present invention in FIG. 1. 従来のプラズマエッチング用シリコン電極板を説明するための断面説明図である。It is sectional explanatory drawing for demonstrating the conventional silicon electrode plate for plasma etching. 図4の従来のプラズマエッチング用シリコン電極板の製造方法を説明するための断面説明図である。FIG. 5 is a cross-sectional explanatory diagram for explaining a method of manufacturing the conventional plasma etching silicon electrode plate of FIG. 4. 従来のプラズマエッチング用シリコン電極板を説明するための断面説明図である。It is sectional explanatory drawing for demonstrating the conventional silicon electrode plate for plasma etching. 図4の従来のプラズマエッチング用シリコン電極板の貫通細孔における消耗状態を説明するための断面説明図である。FIG. 5 is a cross-sectional explanatory diagram for explaining a consumption state in a through-hole of the conventional silicon electrode plate for plasma etching of FIG. 4. 従来のプラズマエッチング用シリコン電極板の使用状態を説明するための一部断面概略説明図である。It is a partial cross section schematic explanatory drawing for demonstrating the use condition of the conventional silicon electrode plate for plasma etching. 従来のプラズマエッチング用シリコン電極板の貫通細孔ガス穴における消耗状態を説明するための断面説明図である。It is sectional explanatory drawing for demonstrating the consumption state in the through-hole gas hole of the silicon electrode plate for conventional plasma etching.

符号の説明Explanation of symbols

1:シリコン電極基板、2:ガス穴パーツ挿入開口、21:大径穴部、22:小径穴部、3:ガス穴パーツ、30:ガス穴パーツ、33:ガス穴パーツ、34:ガス穴パーツ、4:ウエハ、5:貫通細孔、6:架台、7:エッチングガス、8:プラズマ、9:従来のプラズマエッチング用シリコン電極板、10:従来のプラズマエッチング用シリコン電極板、11:シリコン電極基板、12:先端、   1: Silicon electrode substrate, 2: Gas hole part insertion opening, 21: Large diameter hole part, 22: Small diameter hole part, 3: Gas hole part, 30: Gas hole part, 33: Gas hole part, 34: Gas hole part 4: wafer, 5: through-hole, 6: mount, 7: etching gas, 8: plasma, 9: conventional silicon electrode plate for plasma etching, 10: conventional silicon electrode plate for plasma etching, 11: silicon electrode Substrate, 12: tip,

Claims (5)

ガス穴パーツ挿入開口を設けたシリコン電極基板のガス穴パーツ挿入開口に、前記シリコン電極基板よりも高比抵抗を有するシリコンからなる貫通細孔を有するガス穴パーツをはめ込んでなることを特徴とするプラズマエッチング用シリコン電極板。 The gas hole part insertion opening of the silicon electrode substrate provided with the gas hole part insertion opening is fitted with a gas hole part having a through-hole made of silicon having a higher specific resistance than the silicon electrode substrate. Silicon electrode plate for plasma etching. 前記ガス穴パーツ挿入開口を設けたシリコン電極基板の比抵抗値をρ、前記貫通細孔を有するガス穴パーツの比抵抗値をρ´とすると、1.1ρ≦ρ´≦1.5ρの関係を有することを特徴とする請求項1記載のプラズマエッチング用シリコン電極板。 When the specific resistance value of the silicon electrode substrate provided with the gas hole part insertion opening is ρ and the specific resistance value of the gas hole part having the through-hole is ρ ′, a relationship of 1.1ρ ≦ ρ ′ ≦ 1.5ρ The silicon electrode plate for plasma etching according to claim 1, comprising: 前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツはいずれも単結晶シリコンからなることを特徴とする請求項1または2記載のプラズマエッチング用シリコン電極板。 3. The silicon electrode plate for plasma etching according to claim 1, wherein both the silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through hole are made of single crystal silicon. 前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツはいずれも多結晶シリコンからなることを特徴とする請求項1または2記載のプラズマエッチング用シリコン電極板。 3. The silicon electrode plate for plasma etching according to claim 1, wherein the silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through-hole are both made of polycrystalline silicon. 前記ガス穴パーツ挿入開口を有するシリコン電極基板および貫通細孔を有するガス穴パーツはいずれも一方向凝固組織を有する柱状晶シリコンからなることを特徴とする請求項1または2記載のプラズマエッチング用シリコン電極板。 3. The silicon for plasma etching according to claim 1, wherein the silicon electrode substrate having the gas hole part insertion opening and the gas hole part having a through-hole are made of columnar crystal silicon having a unidirectionally solidified structure. Electrode plate.
JP2007091737A 2007-03-30 2007-03-30 Silicon electrode plate for plasma etching Expired - Fee Related JP4863082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091737A JP4863082B2 (en) 2007-03-30 2007-03-30 Silicon electrode plate for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091737A JP4863082B2 (en) 2007-03-30 2007-03-30 Silicon electrode plate for plasma etching

Publications (2)

Publication Number Publication Date
JP2008251860A true JP2008251860A (en) 2008-10-16
JP4863082B2 JP4863082B2 (en) 2012-01-25

Family

ID=39976454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091737A Expired - Fee Related JP4863082B2 (en) 2007-03-30 2007-03-30 Silicon electrode plate for plasma etching

Country Status (1)

Country Link
JP (1) JP4863082B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223204A (en) * 2000-02-08 2001-08-17 Shin Etsu Chem Co Ltd Electrode plate for plasma etching device
JP2003051485A (en) * 2001-08-03 2003-02-21 Mitsubishi Materials Corp Coating silicon electrode plate for plasma etching
JP2004079959A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Silicon electrode plate for plasma etching
JP2004079960A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Electrode plate for plasma etching
JP2004079961A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Silicon electrode plate for plasma etching
JP2004207533A (en) * 2002-12-25 2004-07-22 Shin Etsu Chem Co Ltd Silicon plate for plasma treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223204A (en) * 2000-02-08 2001-08-17 Shin Etsu Chem Co Ltd Electrode plate for plasma etching device
JP2003051485A (en) * 2001-08-03 2003-02-21 Mitsubishi Materials Corp Coating silicon electrode plate for plasma etching
JP2004079959A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Silicon electrode plate for plasma etching
JP2004079960A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Electrode plate for plasma etching
JP2004079961A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Silicon electrode plate for plasma etching
JP2004207533A (en) * 2002-12-25 2004-07-22 Shin Etsu Chem Co Ltd Silicon plate for plasma treatment

Also Published As

Publication number Publication date
JP4863082B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
TWI258818B (en) Silicon electrode plate for plasma etching having high durability
JP2007207842A (en) Electrostatic chuck device
JP4905855B2 (en) Focus ring and shield ring for plasma etching
WO2018151137A1 (en) Electrode plate for plasma processing apparatuses and method for regenerating electrode plate for plasma processing apparatuses
JP4045592B2 (en) Silicon electrode plate for plasma etching
JP4535283B2 (en) Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance
JP2003051485A (en) Coating silicon electrode plate for plasma etching
JP4863082B2 (en) Silicon electrode plate for plasma etching
JP4849247B2 (en) Composite silicon electrode with small in-plane variation of specific resistance value and manufacturing method thereof
JP4883368B2 (en) Single crystal silicon electrode plate for plasma etching
JP2007273707A (en) Method for carrying out uniformly plasma etching of wafer surface using silicon electrode board of almost the same size as wafer
JP4045591B2 (en) Electrode plate for plasma etching
JP5713182B2 (en) Silicon electrode plate for plasma etching
JP4517364B2 (en) Silicon electrode plate for plasma etching
JP5088483B2 (en) Composite silicon ring for plasma etching equipment to support wafer
JP4517363B2 (en) Silicon electrode plate for plasma etching
JP2004079959A (en) Silicon electrode plate for plasma etching
JP2006196491A (en) Plasma etching electrode plate
JP6855958B2 (en) Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment
JP5182136B2 (en) Electrode plate assembly for plasma processing apparatus and plasma processing apparatus
JP2004228500A (en) Shower plate for plasma treatment, and manufacturing method therefor
JP4117438B2 (en) Silicon electrode plate for plasma etching with less generation of particles
JPH0837179A (en) Electrode plate for plasma etching
JP2006128372A (en) Silicon ring for plasma etcher
JP2001007082A (en) Electrode plate for plasma etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees