JP2008251690A - Electromagnetic wave suppressing paper and manufacturing method therefor - Google Patents

Electromagnetic wave suppressing paper and manufacturing method therefor Download PDF

Info

Publication number
JP2008251690A
JP2008251690A JP2007088867A JP2007088867A JP2008251690A JP 2008251690 A JP2008251690 A JP 2008251690A JP 2007088867 A JP2007088867 A JP 2007088867A JP 2007088867 A JP2007088867 A JP 2007088867A JP 2008251690 A JP2008251690 A JP 2008251690A
Authority
JP
Japan
Prior art keywords
paper
electromagnetic wave
glass transition
acrylic resin
transition temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007088867A
Other languages
Japanese (ja)
Other versions
JP5105933B2 (en
Inventor
Mitsuo Hori
光男 堀
Kenji Wakita
建治 脇田
Hidenori Okaji
英紀 岡地
Katsuhiko Fukuchi
克彦 福地
Hironaga Miyauchi
宏長 宮内
Masayoshi Sakuma
雅義 佐久間
Shunsuke Takagi
俊輔 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANOJOIN KK
Hokuetsu Paper Mills Ltd
Original Assignee
NANOJOIN KK
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANOJOIN KK, Hokuetsu Paper Mills Ltd filed Critical NANOJOIN KK
Priority to JP2007088867A priority Critical patent/JP5105933B2/en
Publication of JP2008251690A publication Critical patent/JP2008251690A/en
Application granted granted Critical
Publication of JP5105933B2 publication Critical patent/JP5105933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave suppressing paper with improved conductivity and heat resistance of conductive paint, without causing degradation in the electromagnetic wave absorbing performance. <P>SOLUTION: The electromagnetic wave suppressing paper is coated, in a thickness range of 20-100 μm, with a conductor resin layer containing copper alloy whose main component is copper, acrylic resin with the glass transition temperature being 50°C or lower and a super-high molecular weight 300,000-1,000,000, and acryl resin whose glass transition temperature being 50°C or higher. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加工、取り扱いが容易で電磁波抑制性(電磁波シールド性)に優れる電磁波抑制紙に関し、85℃の使用温度においても性能を維持する電磁波抑制紙を提供する。さらに、電磁波抑制紙の製造方法に関する。   The present invention relates to an electromagnetic wave suppression paper that is easy to process and handle and has excellent electromagnetic wave suppression properties (electromagnetic wave shielding properties), and provides an electromagnetic wave suppression paper that maintains its performance even at a use temperature of 85 ° C. Furthermore, it is related with the manufacturing method of electromagnetic wave suppression paper.

近年、様々な分野でデジタル化が進み、身の回りにおいて、各種の情報通信、医療機器、精密機器などの制御分野において、また、電化製品、自動車などの日常生活品の分野においても高速高集積化された電子機器が広く使用されている。特にコンピュータや携帯電話、薄型テレビなど電子機器の性能が飛躍的に向上するにつれて、各種電子機器から漏洩する電磁波は、他の電子機器の誤作動だけでなく、人々の健康にも悪影響を与えていると言われており、電磁波障害対策が必要不可欠となってきている。   In recent years, digitalization has progressed in various fields, and high-speed and high-integration has been achieved in the control field of various information communication, medical equipment, precision equipment, etc., and in daily life goods such as electrical appliances and automobiles. Electronic devices are widely used. In particular, as the performance of electronic devices such as computers, mobile phones, and flat-screen TVs has improved dramatically, electromagnetic waves leaking from various electronic devices not only malfunctioning other electronic devices, but also have a negative impact on people's health. Therefore, countermeasures against electromagnetic interference have become indispensable.

この対策として、従来、これらの電波や電磁波の反射を防ぎ、電磁波のエネルギーを熱のエネルギーにかえる多種多様な電磁波吸収材が用いられてきた。なお、金属板は、厚みの如何に拘らず一般にその表面で電磁波を反射してしまい、吸収能力はない。その中で、シート状の電磁波吸収体がデジタル機器などに多く使われている。   Conventionally, a variety of electromagnetic wave absorbing materials that prevent reflection of these radio waves and electromagnetic waves and change the electromagnetic wave energy to heat energy have been used as countermeasures. Note that the metal plate generally reflects electromagnetic waves on its surface regardless of the thickness, and has no absorption capability. Among them, sheet-shaped electromagnetic wave absorbers are often used in digital devices and the like.

電磁波吸収体の基材(母材)には、プラスチック、金属、ゴム、フィルム、繊維、それらの複合体などが使用されているが、重い・厚い・加工が困難などの問題点がある。そこで出願人は、紙をベースとし、紙の表面に銅系導電性塗料を塗布した軽い・薄い・加工性の良い電磁波抑制体を検討している。   Plastics, metals, rubbers, films, fibers, and composites thereof are used for the base material (base material) of the electromagnetic wave absorber, but there are problems such as being heavy, thick, and difficult to process. Therefore, the applicant is studying a light, thin, and easy-to-process electromagnetic wave suppressor based on paper and coated with a copper-based conductive paint on the surface of the paper.

導電性塗料としては、超高分子量の特殊ポリマーを主体に、銅及び特殊合金粒子を混合した導電性塗料がある。しかしながら、銅系導電性塗料は、熱、温度などの環境で酸化されやすく、従って、耐環境性及び導電性の劣化(電磁波吸収性能の低下)を起こしやすいという問題点がある。かかる問題点は、電磁波吸収体の使用される温度が予期しなかった高い温度に達し、常温では高かった電磁波吸収性能を低下させる。例えばパソコンのような電子機器類において、処理データ量の増大に伴うCPUの負荷増大時にCPUの発熱量が増加する。自動車の制御系統に多用されているマイコンなどは、使用されているところの温度そのものが上昇する。高温での電磁波吸収性能の低下は、マイコンの正常な動作を危うくするから、安全上深刻な問題である。   As the conductive paint, there is a conductive paint mainly composed of an ultra high molecular weight special polymer and mixed with copper and special alloy particles. However, copper-based conductive paints are liable to be oxidized in an environment such as heat and temperature, and therefore have a problem that they tend to cause environmental resistance and conductivity deterioration (decrease in electromagnetic wave absorption performance). Such a problem is that the temperature at which the electromagnetic wave absorber is used reaches an unexpectedly high temperature, and deteriorates the electromagnetic wave absorption performance that was high at room temperature. For example, in electronic devices such as personal computers, the amount of heat generated by the CPU increases when the load on the CPU increases as the amount of processing data increases. In microcomputers and the like that are frequently used in automobile control systems, the temperature at which they are used rises. A decrease in electromagnetic wave absorption performance at high temperatures is a serious safety issue because it compromises the normal operation of the microcomputer.

この問題点を解消するために従来、次に示す技術が提案されている(例えば、特許文献1〜7を参照。)。   In order to solve this problem, the following techniques have been conventionally proposed (for example, see Patent Documents 1 to 7).

すなわち、特許文献1の技術は電解銅粉を有機カルボン酸で処理すること、特許文献2の技術は銅粉をカップリング剤で表面処理すること、特許文献3の技術は銅粉を銀で被覆すること、特許文献4の技術は銅粉を有機チタネートで被覆すること、特許文献5の技術は銅粉を有機アルミ二ウムで被覆すること、特許文献6の技術は銅粉を半田でメッキすること、特許文献7の技術は銅粉を酸化銅で被覆することなどが提案されている。   That is, the technique of Patent Document 1 treats electrolytic copper powder with an organic carboxylic acid, the technique of Patent Document 2 treats copper powder with a coupling agent, and the technique of Patent Document 3 coats copper powder with silver. The technique of patent document 4 coats copper powder with organic titanate, the technique of patent document 5 coats copper powder with organic aluminum, and the technique of patent document 6 plating copper powder with solder. In other words, the technique of Patent Document 7 proposes coating copper powder with copper oxide.

特開昭60−258273号公報JP 60-258273 A 特開昭60−30200号公報Japanese Patent Laid-Open No. 60-30200 特開昭60−243277号公報JP 60-243277 A 特開昭59−174661号公報JP 59-174661 A 特開昭59−179671号公報JP 59-179671 A 特開昭57−113505号公報Japanese Patent Laid-Open No. 57-113505 特開昭60−35405号公報JP 60-35405 A

銅粉に前述のような処理を施すことによって、耐環境性及び導電性の劣化の防止についてある程度の効果を得ることができる。しかしながら、銅粉の防錆性が良好でなく、導電性塗料の導電性及び耐熱性が十分ではない。特に電磁波吸収性能の低下が著しかった。   By subjecting the copper powder to the above-described treatment, a certain degree of effect can be obtained with respect to environmental resistance and prevention of deterioration of conductivity. However, the copper powder is not good in rust prevention, and the conductivity and heat resistance of the conductive paint are not sufficient. In particular, the decrease in electromagnetic wave absorption performance was remarkable.

この発明は、前述の背景に基づきなされたものであり、その目的とするところは、前記の従来の導電性塗料用銅粉及び導電性塗料の欠点を解消して、電磁波吸収性能を低下させることなく、導電性塗料の導電性及び耐熱性を向上させた電磁波抑制紙を提供することにある。   The present invention has been made based on the above-mentioned background, and its object is to eliminate the drawbacks of the conventional copper powder for conductive paints and conductive paints and to reduce electromagnetic wave absorption performance. The object is to provide an electromagnetic wave suppression paper with improved conductivity and heat resistance of the conductive paint.

本発明は、前記課題に着目し、紙基材に導電性塗料を塗布するという検討を重ね、前記課題を解決しようとするものである。すなわち、本発明に係る電磁波抑制紙は、基材の少なくとも片面に、銅を主成分とした銅合金と、ガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂と、ガラス転移温度が50℃以上のアクリル系樹脂とを含有する導電性樹脂層が、20〜100μmの厚さで塗被されていることを特徴とする。   The present invention pays attention to the above-mentioned problems and intends to solve the above-mentioned problems by repeatedly investigating applying a conductive paint to a paper substrate. That is, the electromagnetic wave suppression paper according to the present invention comprises a copper alloy mainly composed of copper and an ultrahigh molecular weight acrylic having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000 on at least one side of a substrate. A conductive resin layer containing an epoxy resin and an acrylic resin having a glass transition temperature of 50 ° C. or higher is coated with a thickness of 20 to 100 μm.

本発明に係る電磁波抑制紙では、前記導電性樹脂層は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料にガラス転移温度が50℃以上のアクリル系樹脂を混合した塗被液を、前記基材の少なくとも片面に塗被することによって形成された場合を含む。   In the electromagnetic wave suppression paper according to the present invention, the conductive resin layer includes a copper alloy containing copper as a main component and an ultra high molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000. The case where it forms by coating the coating liquid which mixed the acrylic resin whose glass transition temperature is 50 degreeC or more with the electroconductive paint which made it a main body on at least one side of the said base material is included.

本発明に係る電磁波抑制紙では、前記導電性樹脂層は、前記基材の少なくとも片面に、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料を塗布して乾燥した後、ガラス転移温度が50℃以上のアクリル系樹脂の含有液を更に塗布して乾燥することによって形成された場合であってもよい。   In the electromagnetic wave suppression paper according to the present invention, the conductive resin layer has, on at least one surface of the base material, a copper alloy containing copper as a main component and a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000. In the case where it is formed by applying and drying a conductive coating mainly composed of an ultra-high molecular weight acrylic resin, and further applying and drying a liquid containing an acrylic resin having a glass transition temperature of 50 ° C. or higher. There may be.

本発明に係る電磁波抑制紙では、前記導電性樹脂層は、前記導電性塗料の固形分換算100質量部に対して、前記ガラス転移温度が50℃以上のアクリル系樹脂を固形分換算5〜50質量部添加した組成からなることが好ましい。導電性樹脂層の導電性と耐熱性のいずれも十分に満足させることができる。   In the electromagnetic wave suppression paper according to the present invention, the conductive resin layer is an acrylic resin having a glass transition temperature of 50 ° C. or higher with respect to 100 parts by mass in terms of solid content of the conductive paint. It is preferable that it consists of the composition which added the mass part. Both the conductivity and heat resistance of the conductive resin layer can be sufficiently satisfied.

本発明に係る電磁波抑制紙では、前記導電性樹脂層の上に、オーバーコート層が設けられていることが好ましい。表面のざらつきを低減すると共に、折れ割れの発生を抑制する。電子機器の用途では、導電性樹脂層がざらついていたり、折られたときに導電性樹脂層の粉が脱落したりすると、ショートや絶縁が起こり、電気回路に悪い影響を及ぼすので表面のざらつきが低減されていること及び折れ割れ性を有していることが好ましい。   In the electromagnetic wave suppression paper according to the present invention, it is preferable that an overcoat layer is provided on the conductive resin layer. The surface roughness is reduced and the occurrence of creases is suppressed. In electronic equipment applications, if the conductive resin layer is rough, or if the powder of the conductive resin layer falls off when it is folded, a short circuit or insulation will occur, adversely affecting the electrical circuit, resulting in a rough surface. It is preferably reduced and has breakability.

本発明に係る電磁波抑制紙では、前記基材の一方の表面に前記導電性樹脂層が形成され、他方の表面に粘着剤層が形成されることが好ましい。粘着剤層を設けることで、本発明に係る電磁波抑制紙を、電子機器など電磁波を発生する機器に容易に貼付することができる。   In the electromagnetic wave suppression paper according to the present invention, it is preferable that the conductive resin layer is formed on one surface of the substrate and the pressure-sensitive adhesive layer is formed on the other surface. By providing the pressure-sensitive adhesive layer, the electromagnetic wave suppression paper according to the present invention can be easily attached to a device that generates an electromagnetic wave such as an electronic device.

本発明に係る電磁波抑制紙では、前記粘着剤層の表面に剥離紙が貼付されていることが好ましい。剥離紙を添付することで、ラベル用紙の形態で電磁波抑制紙を提供することができる。   In the electromagnetic wave suppression paper according to the present invention, it is preferable that a release paper is stuck on the surface of the pressure-sensitive adhesive layer. By attaching the release paper, the electromagnetic wave suppression paper can be provided in the form of label paper.

本発明に係る電磁波抑制紙では、前記基材は、酸性紙、中性紙、アルカリ性紙、不燃紙、難燃紙、ガラスペーパー、片面若しくは両面塗工紙、合成紙又はプラスチックフィルムであることが好ましい。基材は、紙基材に限定されない。ここで、ガラスペーパーとは、ガラス繊維による紙状構造体である。紙ベースと同様抄造によって製造が可能となる。また、軽量で嵩高くすることもできる。   In the electromagnetic wave suppression paper according to the present invention, the base material may be acid paper, neutral paper, alkaline paper, incombustible paper, flame retardant paper, glass paper, single-sided or double-sided coated paper, synthetic paper, or plastic film. preferable. The substrate is not limited to a paper substrate. Here, the glass paper is a paper-like structure made of glass fibers. Manufacture is possible by papermaking as well as paper base. Also, it can be light and bulky.

本発明に係る電磁波抑制紙では、近傍界用電波吸収材料測定法であるS−パラメーター法(S−21)を用いて測定した、85℃、1000時間加熱処理後の周波数2.4543GHzでの電波吸収率[dB]及び回路への影響度[dB]がいずれも−6dB以下であることが好ましい。   In the electromagnetic wave suppression paper according to the present invention, radio waves at a frequency of 2.4543 GHz after heat treatment at 85 ° C. for 1000 hours, measured using the S-parameter method (S-21), which is a near-field radio wave absorption material measurement method. It is preferable that both the absorption rate [dB] and the influence degree [dB] on the circuit are −6 dB or less.

本発明に係る電磁波抑制紙の製造方法は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂とを主体とした導電性塗料に、ガラス転移温度が50℃以上のアクリル系樹脂を混合して塗被液を調整し、基材の少なくとも片面に、前記塗被液を塗布し、20〜70℃の温度範囲で乾燥させて、導電性樹脂層の厚さを20〜100μmに形成したことを特徴とする。超高分子量のアクリル系樹脂を劣化させずに電磁波抑制効果を発揮し、かつ、乾燥時間の短縮がなされ生産性を向上させることができる。   The method for producing an electromagnetic wave suppression paper according to the present invention is mainly composed of a copper alloy mainly composed of copper and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000. An electrically conductive paint is mixed with an acrylic resin having a glass transition temperature of 50 ° C. or higher to prepare a coating solution, and the coating solution is applied to at least one side of the substrate, and the temperature is in the range of 20 to 70 ° C. The conductive resin layer is formed to a thickness of 20 to 100 μm by drying. The electromagnetic wave suppressing effect is exhibited without deteriorating the ultrahigh molecular weight acrylic resin, and the drying time is shortened to improve the productivity.

本発明に係る電磁波抑制紙の製造方法は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂とを主体とした導電性塗料を、基材の少なくとも片面に塗布し、20〜70℃の温度範囲で乾燥させて、更にその上に、ガラス転移温度が50℃以上のアクリル系樹脂の含有液を塗布し、20〜70℃の温度範囲で乾燥させて、導電性樹脂層の厚さを20〜100μmに形成したことを特徴とする。   The method for producing an electromagnetic wave suppression paper according to the present invention is mainly composed of a copper alloy mainly composed of copper and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000. A conductive paint is applied to at least one surface of the substrate, dried in a temperature range of 20 to 70 ° C., and further coated thereon with an acrylic resin-containing liquid having a glass transition temperature of 50 ° C. or higher. The conductive resin layer is formed to a thickness of 20 to 100 μm by drying in a temperature range of ˜70 ° C.

銅を主成分とした銅合金とガラス転移温度が50℃以下、分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料を、基材に塗布して使用した場合、該塗膜は60℃以上の環境条件下では、耐熱性が劣り、電磁波吸収性能すなわち電磁波抑制効果を低下させる。しかし、本発明に係る電磁波抑制紙は、85℃の環境条件下において、耐熱性に優れ、しかもその電磁波抑制効果を低下させることがない。   A conductive coating mainly composed of a copper alloy containing copper as a main component and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000 was applied to a base material. In this case, the coating film is inferior in heat resistance under an environmental condition of 60 ° C. or more, and deteriorates the electromagnetic wave absorption performance, that is, the electromagnetic wave suppression effect. However, the electromagnetic wave suppression paper according to the present invention is excellent in heat resistance under an environmental condition of 85 ° C. and does not deteriorate the electromagnetic wave suppression effect.

本発明について実施形態を次にあげて説明するが、実施形態は本発明の構成の例であり、本発明はこの実施の形態に制限されるものではない。   Embodiments of the present invention will be described below. However, the embodiments are examples of the configuration of the present invention, and the present invention is not limited to these embodiments.

本実施形態に係る電磁波抑制紙は、基材の少なくとも片面に、銅を主成分とした銅合金と、ガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂と、ガラス転移温度が50℃以上のアクリル系樹脂とを含有する導電性樹脂層が、20〜100μmの厚さで塗被されている。ここで導電性樹脂層は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料にガラス転移温度が50℃以上のアクリル系樹脂を混合した塗被液を、基材の少なくとも片面に塗被することによって形成された形態を含む。   The electromagnetic wave suppression paper according to the present embodiment includes a copper alloy containing copper as a main component on at least one surface of a base material, and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000. A conductive resin layer containing a resin and an acrylic resin having a glass transition temperature of 50 ° C. or higher is coated with a thickness of 20 to 100 μm. Here, the conductive resin layer is made of a conductive paint mainly composed of a copper alloy containing copper as a main component and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000. It includes a form formed by coating a coating liquid in which an acrylic resin having a transition temperature of 50 ° C. or higher is mixed on at least one surface of a substrate.

(基材)
本実施形態に用いられる紙基材としては、広葉樹材若しくは針葉樹材を蒸解して得られる未晒若しくは晒化学パルプ、若しくは、GP、サーモメカニカルパルプなどの機械パルプ、又は、脱墨古紙パルプから選ばれたパルプを単独で又は複数のパルプを混合し、公知の湿式抄紙機において単層で又は多層で抄紙された通常坪量が30〜250g/m程度の紙が用いられる。抄紙方法は、特に限定されず酸性紙、中性紙又はアルカリ性紙のいずれであってもよい。また、前記の紙や板紙からなる紙基材の上に公知の澱粉、ポリビニルアルコール、外添用サイズ剤、合成樹脂などから選ばれたサイズ剤をサイズプレスやロールコーターで塗布したものでもよい。さらには、不燃紙、難燃紙、ガラスペーパー(ガラス繊維による紙状構造体)、片面又は両面塗工紙なども本実施形態のための紙基材として使用することができる。さらに、合成紙、プラスチックフィルムを基材として使用することができる。
(Base material)
The paper substrate used in this embodiment is selected from unbleached or bleached chemical pulp obtained by digesting hardwood or softwood, or mechanical pulp such as GP or thermomechanical pulp, or deinked waste paper pulp A paper having a basis weight of about 30 to 250 g / m 2 is used, which is obtained by using a single pulp or a multilayer in a known wet paper machine. The papermaking method is not particularly limited, and any of acid paper, neutral paper, or alkaline paper may be used. Moreover, what applied the sizing agent chosen from the well-known starch, polyvinyl alcohol, the sizing agent for external addition, a synthetic resin, etc. with the size press or the roll coater on the paper base material which consists of said paper and paperboard may be used. Furthermore, incombustible paper, flame retardant paper, glass paper (paper-like structure made of glass fiber), single-sided or double-sided coated paper, and the like can also be used as a paper base material for the present embodiment. Furthermore, synthetic paper and plastic film can be used as a base material.

(導電性樹脂層の形成)
本実施形態で使用する導電性塗料は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料に、ガラス転移温度が50℃以上のアクリル系樹脂を混合した塗被液である。
(Formation of conductive resin layer)
The conductive paint used in this embodiment is composed mainly of a copper alloy containing copper as a main component and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000. It is a coating liquid in which an acrylic resin having a glass transition temperature of 50 ° C. or higher is mixed with a paint.

銅を主成分とした銅合金は、金属フィラーの形態で導電性塗料に含まれている。銅を主成分とした銅合金の組成は、主成分である銅に対し、アルミニウムを2〜10質量%、ニッケルを2〜5質量%、ボロンを0.001〜0.5質量%、鉄を0.5〜5質量%、マンガンを0.1〜3質量%、チタンを0.001〜1質量%を含有した組成である。   A copper alloy containing copper as a main component is contained in the conductive paint in the form of a metal filler. The composition of the copper alloy containing copper as the main component is 2 to 10% by mass of aluminum, 2 to 5% by mass of nickel, 0.001 to 0.5% by mass of boron and iron. It is a composition containing 0.5-5 mass%, 0.1-3 mass% of manganese, and 0.001-1 mass% of titanium.

導電性塗料に含有されるアクリル系樹脂は、ガラス転移温度が50℃以下で分子量が30万〜100万の超高分子量を有する。50℃を超えるガラス転移温度であると、塗工層が硬くなり、折れると割れるという問題がある。また、分子量が30万未満であると、金属フィラーがリビングポリマーの立体規則性をもった3次元のグラフト型に取り込まれにくくなり、酸化や劣化されやすくなるという問題があり、一方、分子量が100万を超えるとレオロジー的な性能が劣り、導電性塗料の流動性が悪化するという問題もある。   The acrylic resin contained in the conductive paint has an ultra-high molecular weight having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000. When the glass transition temperature exceeds 50 ° C., there is a problem that the coating layer becomes hard and breaks when broken. In addition, when the molecular weight is less than 300,000, there is a problem that the metal filler is less likely to be incorporated into the three-dimensional graft mold having the stereoregularity of the living polymer, and is easily oxidized or deteriorated. If it exceeds 10,000, the rheological performance is inferior and the fluidity of the conductive paint deteriorates.

導電性塗料に添加することとなるアクリル系樹脂は、ガラス転移温度が50℃以上である。上記の導電性塗料に、ガラス転移温度が50℃以上のアクリル系樹脂を混合することによって、導電性樹脂層の耐熱温度が改善され、銅を主成分とした銅合金を梯子状の高機能構造に取り込み、酸化や劣化を防止している。ガラス転移温度が50℃未満のアクリル系樹脂を混合してもこれらの効果が不十分となる。   The acrylic resin to be added to the conductive paint has a glass transition temperature of 50 ° C. or higher. The heat resistance temperature of the conductive resin layer is improved by mixing an acrylic resin having a glass transition temperature of 50 ° C. or higher with the above conductive paint, and a copper alloy mainly composed of copper is used as a ladder-like high-functional structure. To prevent oxidation and deterioration. Even if an acrylic resin having a glass transition temperature of less than 50 ° C. is mixed, these effects are insufficient.

導電性塗料中の金属含有量は、ガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂100質量部に対し、50〜500質量部が好ましい。金属含有量が500質量部を超えると柔軟性が阻害され、50質量部未満では電磁波抑制効果が十分に発揮されない場合がある。   The metal content in the conductive coating is preferably 50 to 500 parts by mass with respect to 100 parts by mass of the ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000. If the metal content exceeds 500 parts by mass, the flexibility is inhibited, and if it is less than 50 parts by mass, the electromagnetic wave suppressing effect may not be sufficiently exhibited.

前記導電性樹脂層は、前記導電性塗料の固形分換算100質量部に対して、前記ガラス転移温度が50℃以上のアクリル系樹脂を固形分換算5〜50質量部添加した組成からなることが好ましい。導電性樹脂層の導電性と耐熱性のいずれも十分に満足させることができる。ガラス転移温度が50℃以上のアクリル系樹脂を5質量部未満混合しても、耐熱性が十分に得られない場合がある。ガラス転移温度が50℃以上のアクリル系樹脂を50質量部を超えて混合しても、電磁波抑制効果が十分に得られない場合がある。   The conductive resin layer may have a composition in which an acrylic resin having a glass transition temperature of 50 ° C. or higher is added in an amount of 5 to 50 parts by mass in terms of solid content with respect to 100 parts by mass in terms of solid content of the conductive paint. preferable. Both the conductivity and heat resistance of the conductive resin layer can be sufficiently satisfied. Even when less than 5 parts by mass of an acrylic resin having a glass transition temperature of 50 ° C. or higher is mixed, heat resistance may not be sufficiently obtained. Even when an acrylic resin having a glass transition temperature of 50 ° C. or higher is mixed in excess of 50 parts by mass, the electromagnetic wave suppressing effect may not be sufficiently obtained.

なお、本実施形態に係る電磁波抑制紙は、前記塗被液を用いる方法のほか、次の形態であってもよい。すなわち、導電性樹脂層は、基材の少なくとも片面に、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂とを主体とした導電性塗料を塗布して乾燥した後、ガラス転移温度が50℃以上のアクリル系樹脂の含有液を更に塗布して乾燥することによって形成された形態である。このとき、2つの乾燥工程ではいずれも、後述する塗被液の塗被後の乾燥方式の場合と同様に、乾燥温度は電磁波抑制効果を考慮すると20〜70℃であることが好ましく、50〜60℃であることが更に好ましい。70℃を超えると超高分子量のアクリル系樹脂が分解されて電磁波抑制効果が悪化し、20℃未満では乾燥時間がかかり生産性が劣る。また、ガラス転移温度が50℃以上のアクリル系樹脂の含有液は、前記導電性塗料の塗布量を固形分換算で100質量部とすると、固形分換算で5〜50質量部を塗布することが好ましい。   In addition, the electromagnetic wave suppression paper according to the present embodiment may be in the following form in addition to the method using the coating liquid. That is, the conductive resin layer has a copper alloy containing copper as a main component and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000 on at least one side of the base material. This is a form formed by applying and drying the main conductive coating and further applying and drying a liquid containing an acrylic resin having a glass transition temperature of 50 ° C. or higher. At this time, in both of the two drying steps, the drying temperature is preferably 20 to 70 ° C. in consideration of the electromagnetic wave suppressing effect, as in the case of the drying method after coating of the coating liquid described later. More preferably, it is 60 degreeC. When it exceeds 70 ° C., the ultrahigh molecular weight acrylic resin is decomposed and the electromagnetic wave suppressing effect is deteriorated. Moreover, the liquid containing acrylic resin having a glass transition temperature of 50 ° C. or higher may be applied in an amount of 5 to 50 parts by mass in terms of solid content, assuming that the coating amount of the conductive coating is 100 parts by mass in terms of solid content. preferable.

本実施形態では、前記のような塗被液を紙基材上へ塗布するには公知のコーター、例えばパイプコーター、ブレードコーター、エアーナイフコーター、ロールコーター、リバースロールコーター、バーコーター、カーテンコーター、ダイコーター、グラビアコーター、チャンプレックスコーター、スプレーコーターなどから選ばれたコーターを用いて、一層又は多層に分けて塗布される。なお、導電性樹脂層は、基材の少なくとも片面に設けられる。   In the present embodiment, a known coater such as a pipe coater, a blade coater, an air knife coater, a roll coater, a reverse roll coater, a bar coater, a curtain coater, The coater is selected from a die coater, a gravure coater, a champlex coater, a spray coater and the like, and is applied in one layer or in multiple layers. The conductive resin layer is provided on at least one side of the substrate.

導電性樹脂層の厚さは、特に制限されないが、通常20〜100μm程度であり、好ましくは50〜80μmであり、より好ましくは60〜70μmである。20μm未満であると電磁波抑制効果が劣り、100μmを超えると生産性、コスト的に好ましくない。   The thickness of the conductive resin layer is not particularly limited, but is usually about 20 to 100 μm, preferably 50 to 80 μm, and more preferably 60 to 70 μm. If it is less than 20 μm, the electromagnetic wave suppressing effect is inferior, and if it exceeds 100 μm, it is not preferable in terms of productivity and cost.

導電性塗料の塗布後及びその後更にアクリル系樹脂の含有液の塗布後の乾燥方式又は導電性塗料にアクリル系樹脂を混合した塗被液の塗被後の乾燥方式は、特に限定されるものではなく、次の乾燥方式、すなわち熱風乾燥、赤外線乾燥、常温乾燥などが挙げられるが、その乾燥効率から赤外線乾燥、熱風乾燥が好ましい。なお、乾燥温度は、電磁波抑制効果を考慮すると20〜70℃であることが好ましく、50〜60℃であることが更に好ましい。70℃を超えると超高分子量のアクリル系樹脂が分解されて電磁波抑制効果が悪化し、20℃未満では乾燥時間がかかり生産性が劣る。   The drying method after the application of the conductive paint and after the application of the acrylic resin-containing liquid or after the application of the coating liquid obtained by mixing the conductive resin with the acrylic resin is not particularly limited. However, the following drying methods, that is, hot air drying, infrared drying, room temperature drying and the like can be mentioned, but infrared drying and hot air drying are preferable because of their drying efficiency. The drying temperature is preferably 20 to 70 ° C., more preferably 50 to 60 ° C. in consideration of the electromagnetic wave suppressing effect. When it exceeds 70 ° C., the ultrahigh molecular weight acrylic resin is decomposed and the electromagnetic wave suppressing effect is deteriorated.

(オーバーコート層の形成)
本実施形態では、導電性樹脂層面のざらつき及び折れ割れ改善の目的で、導電性樹脂層上にオーバーコート層を設けることが好ましい。本実施形態で導電性樹脂層上に塗布されるオーバーコート層用の塗布組成物に含ませる樹脂は、特に限定されるものではなく、ポリエチレンテレフタレート樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、フッ素樹脂、シリコーン樹脂、アクリル系樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリフェニレンオキサイド樹脂、ポリサルホン樹脂、ポリイミド樹脂、熱可塑ポリエステル樹脂、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、シアリルフタレート樹脂、フラン樹脂、シリコン系無機化合物などが挙げられる。より好ましくは耐熱性を有しているものが好ましい。
(Formation of overcoat layer)
In the present embodiment, it is preferable to provide an overcoat layer on the conductive resin layer for the purpose of improving the roughness of the surface of the conductive resin layer and improving cracks. The resin included in the coating composition for the overcoat layer applied on the conductive resin layer in this embodiment is not particularly limited, and is a polyethylene terephthalate resin, polypropylene resin, vinyl chloride resin, fluororesin, silicone. Resin, acrylic resin, polyurethane resin, polycarbonate resin, polyphenylene oxide resin, polysulfone resin, polyimide resin, thermoplastic polyester resin, phenol resin, urea resin, epoxy resin, melamine resin, sialyl phthalate resin, furan resin, silicon inorganic compound Etc. More preferably, it has heat resistance.

本実施形態では、前記のような塗布組成物のオーバーコート用樹脂を導電性樹脂層上へ塗布するには、導電性樹脂層形成の塗布方式と同様である。   In this embodiment, to apply the overcoat resin of the coating composition as described above onto the conductive resin layer, it is the same as the coating method for forming the conductive resin layer.

オーバーコート層の厚さは、特に制限されないが、通常1〜20μm程度であり、好ましくは3〜10μmである。1μm未満であると導電性樹脂層のザラツキが出て表面性の改善効果がなく、20μmを超えるとコスト的に好ましくない。   The thickness of the overcoat layer is not particularly limited, but is usually about 1 to 20 μm, preferably 3 to 10 μm. If the thickness is less than 1 μm, roughness of the conductive resin layer appears and there is no effect of improving the surface property, and if it exceeds 20 μm, it is not preferable in terms of cost.

オーバーコート層用の塗布組成物の塗布後の乾燥方式は、特に限定されるものではなく、次の乾燥方式、すなわち熱風乾燥、赤外線乾燥、常温乾燥などが挙げられるが、その乾燥効率から赤外線乾燥、熱風乾燥が好ましい。なお、乾燥温度は、電磁波抑制効果を考慮すると20〜70℃であることが好ましく、50〜60℃であることが更に好ましい。70℃を超えると超高分子量のアクリル系樹脂が分解されて電磁波抑制効果が悪化し、20℃未満では乾燥時間がかかり生産性が悪い。   The drying method after the application of the coating composition for the overcoat layer is not particularly limited, and examples include the following drying methods: hot air drying, infrared drying, room temperature drying, etc. Hot air drying is preferred. The drying temperature is preferably 20 to 70 ° C., more preferably 50 to 60 ° C. in consideration of the electromagnetic wave suppressing effect. If it exceeds 70 ° C., the ultra-high molecular weight acrylic resin is decomposed and the electromagnetic wave suppression effect is deteriorated.

(粘着シートの形成)
粘着剤層は、導電性樹脂層を設けた表面の裏面側に設けられ、粘着シートであることが好ましい。粘着シートは、家庭用、商業用、工業用など、非常に広範囲に使用される。本実施形態の具体的な利用方法としては、各種電気機器への電磁波抑制ラベルなどである。粘着シートの構成は、支持体と剥離紙との間に粘着剤層を設けたものであり、支持体には本実施形態の、導電性樹脂層及びオーバーコート層を設けた紙基材が使用される。
(Formation of adhesive sheet)
The pressure-sensitive adhesive layer is provided on the back side of the surface provided with the conductive resin layer, and is preferably a pressure-sensitive adhesive sheet. The pressure-sensitive adhesive sheet is used in a very wide range such as home use, commercial use and industrial use. A specific usage method of the present embodiment is an electromagnetic wave suppression label for various electrical devices. The structure of the pressure-sensitive adhesive sheet is that the pressure-sensitive adhesive layer is provided between the support and the release paper, and the paper base material provided with the conductive resin layer and the overcoat layer of this embodiment is used for the support. Is done.

一方、本実施形態において、粘着剤層の表面に剥離紙が貼付されていることが好ましい。剥離紙としては、上質紙などの非塗工紙、一般コート紙、アート紙などの塗工紙、グラシン紙、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂などを用いたフィルム又はフィルムラミネート紙が使用される。目的に応じて剥離剤としてシリコーン樹脂、フッ素樹脂などを、乾燥質量で0.1〜3g/m程度塗布、乾燥したものを使用できる。 On the other hand, in this embodiment, it is preferable that release paper is stuck on the surface of the pressure-sensitive adhesive layer. As the release paper, non-coated paper such as high-quality paper, coated paper such as general coated paper and art paper, glassine paper, film using polyethylene resin, polyethylene terephthalate resin, or film laminated paper is used. Depending on the purpose, as a release agent, a silicone resin, a fluororesin, or the like applied and dried at a dry mass of about 0.1 to 3 g / m 2 can be used.

本実施形態における粘着剤層に使用される粘着剤の種類としては、天然ゴム系、合成ゴム系、ポリウレタン系、アクリル系ポリマー、酢酸ビニル系ポリマー、酢酸ビニル−アクリル酸エステルコポリマー、酢酸ビニル−エチレンコポリマーなどの各種粘着剤が目的に応じて使用される。   The types of pressure-sensitive adhesive used in the pressure-sensitive adhesive layer in the present embodiment include natural rubber-based, synthetic rubber-based, polyurethane-based, acrylic polymer, vinyl acetate-based polymer, vinyl acetate-acrylate copolymer, vinyl acetate-ethylene. Various adhesives such as copolymers are used depending on the purpose.

本実施形態に係る電磁波抑制紙は、近傍界用電波吸収材料測定法であるS−パラメーター法(S−21)を用いて測定した、85℃、1000時間加熱処理後の周波数2.4543GHzでの電波吸収率[dB]及び回路への影響度[dB]がいずれも−6dB以下であることが好ましい。電波吸収率[dB]及び回路への影響度[dB]が−6dBを超えると、電磁波抑制率が75%未満となるので効果が薄い。   The electromagnetic wave suppression paper according to the present embodiment was measured using the S-parameter method (S-21), which is a near-field radio wave absorption material measurement method, at a frequency of 2.4543 GHz after heat treatment at 85 ° C. for 1000 hours. It is preferable that both the radio wave absorption rate [dB] and the influence degree [dB] on the circuit are −6 dB or less. When the radio wave absorption rate [dB] and the influence degree [dB] on the circuit exceed −6 dB, the electromagnetic wave suppression rate becomes less than 75%, and thus the effect is weak.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、例中の「部」及び「%」は特に断らない限り「質量部」及び「質量%」を示す。なお、物性の測定方法は、次のとおりである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to these Examples. Further, “parts” and “%” in the examples indicate “parts by mass” and “% by mass” unless otherwise specified. In addition, the measuring method of a physical property is as follows.

(実施例1)
ベーキングペーパー原紙(北越製紙社製:坪量49.9g/m、厚さ0.081mm、密度0.62g/cm)の片面に、導電性塗料(商品名:エコゴールドPLS−200−US、固形分62%、ヘルツ化学社製)の固形分換算100質量部に対して、アクリル系樹脂(商品名:アルマテックスL1092−1、Tg=60℃、固形分50.8%、三井化学社製)が固形分換算20.5質量部(荷姿薬品の質量比で導電性塗料:アクリル系樹脂=80:20)添加された配合割合で混合して、塗被液を調製し、乾燥後の導電性樹脂層の膜厚が70μmになるように塗被液を塗被後、熱風乾燥機にて60℃で1分間乾燥し、実施例1の電磁波抑制紙を得た。なお、前記導電性塗料は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体としている。
Example 1
Conductive paint (trade name: Eco Gold PLS-200-US) on one side of a baking paper base (made by Hokuetsu Paper Co., Ltd .: basis weight 49.9 g / m 2 , thickness 0.081 mm, density 0.62 g / cm 3 ) Acrylic resin (trade name: Armatex L1092-1, Tg = 60 ° C., solid content 50.8%, Mitsui Chemicals Co., Ltd.) 20.5 parts by mass in terms of solid content (conducting paint: acrylic resin = 80: 20 in terms of mass ratio of the packing chemical) and mixed at a blended ratio to prepare a coating solution, and after drying After coating the coating solution so that the film thickness of the conductive resin layer became 70 μm, it was dried at 60 ° C. for 1 minute with a hot air dryer to obtain the electromagnetic wave suppression paper of Example 1. The conductive paint is mainly composed of a copper alloy containing copper as a main component and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000.

[電磁波抑制紙の物性評価]
このようにして得られた電磁波抑制紙において、導電性樹脂層の厚さ、電磁波抑制性、耐熱性の評価は、23℃、50%RHで調湿後、次の方法に準拠して行い、表1に示した。
[Physical property evaluation of electromagnetic wave suppression paper]
In the electromagnetic wave suppression paper obtained in this manner, the thickness of the conductive resin layer, the electromagnetic wave suppression property, and the heat resistance are evaluated according to the following method after conditioning at 23 ° C. and 50% RH, It is shown in Table 1.

[導電性樹脂層の厚さ]
JIS P 8118:1998「紙及び板紙−厚さ及び密度の試験方法」に規定された方法で原紙と塗被紙の厚さを測定し、原紙と塗被紙の厚さの差を塗被した導電性樹脂層の厚さとした。
[Thickness of conductive resin layer]
The thickness of the base paper and the coated paper was measured by the method specified in JIS P 8118: 1998 “Paper and paperboard—Test method for thickness and density”, and the difference in thickness between the base paper and the coated paper was applied. The thickness of the conductive resin layer was used.

[電磁波抑制性]
近傍界用電波吸収材料測定装置であるネットワークアナライザー(アンリツ37シリーズ)を用いて、S−パラメーター法にて周波数2.4543GHzでの電波吸収率[dB]及び回路への影響度[dB]を測定した。電波吸収率[dB]、回路への影響度[dB]とも−6dB以下なら電磁波抑制紙として使えるレベルと判断される。また、−10dB(90%の電磁波抑制率)なら電波吸収率[dB]は良好であり、回路への影響度[dB]もないと判断される。さらに、−20dBであれば99%、−30dBであれば99.9%の電磁波抑制率となる。
評価基準は、次のとおりである。
×:電波吸収率[dB]及び回路への影響度[dB]とも−6dBより大きく、電磁波抑制紙として不可。
△:電波吸収率[dB]及び回路への影響度[dB]とも−6dB〜−10dBであり、電磁波抑制紙として使えるレベルである。
○:電磁波吸収率[dB]及び回路への影響度[dB]とも−10dB未満であり、電磁波抑制紙として極めて良好なレベルである。
[Electromagnetic wave suppression]
Using a network analyzer (Anritsu 37 series), which is a near-field radio wave absorption material measuring device, the radio wave absorption rate [dB] at a frequency of 2.4543 GHz and the degree of influence on the circuit [dB] are measured by the S-parameter method. did. If both the radio wave absorption rate [dB] and the influence level [dB] on the circuit are −6 dB or less, it is determined that the electromagnetic wave suppression paper can be used. On the other hand, if it is −10 dB (90% electromagnetic wave suppression rate), it is determined that the radio wave absorption rate [dB] is good and the degree of influence [dB] on the circuit is not. Furthermore, the electromagnetic wave suppression rate is 99% for -20 dB, and 99.9% for -30 dB.
The evaluation criteria are as follows.
X: Both the radio wave absorption rate [dB] and the influence level [dB] on the circuit are larger than −6 dB, and cannot be used as electromagnetic wave suppression paper.
Δ: Both the radio wave absorption rate [dB] and the influence level [dB] on the circuit are −6 dB to −10 dB, which is a level that can be used as electromagnetic wave suppression paper.
○: The electromagnetic wave absorption rate [dB] and the influence degree [dB] on the circuit are both less than −10 dB, which is a very good level as an electromagnetic wave suppression paper.

[耐熱性]
乾燥機中で85℃、1000時間加熱処理後の周波数2.4543GHzでの電波吸収率[dB]及び回路への影響度[dB]を前記の測定法にて評価した。
[Heat-resistant]
The radio wave absorptivity [dB] and frequency influence [dB] at a frequency of 2.4543 GHz after heat treatment at 85 ° C. for 1000 hours in a dryer were evaluated by the above measurement method.

(実施例2)
導電性塗料(商品名:エコゴールドPLS−200−US、固形分62%、ヘルツ化学社製)の固形分換算100質量部に対して、アクリル系樹脂(商品名:アルマテックスL1092−1、Tg=60℃、固形分50.8%、三井化学社製)が固形分換算9.1質量部(荷姿薬品の質量比で導電性塗料:アクリル系樹脂=90:10)添加された配合割合とした以外は実施例1と同様にして実施例2の電磁波抑制紙を得た。
(Example 2)
Acrylic resin (trade name: Almatex L1092-1, Tg) with respect to 100 parts by mass in terms of solid content of conductive paint (trade name: Eco Gold PLS-200-US, solid content 62%, manufactured by Hertz Chemical Co., Ltd.) = 60 ° C, solid content 50.8%, manufactured by Mitsui Chemicals Co., Ltd.) 9.1 parts by mass in terms of solid content (conductive paint: acrylic resin = 90: 10 in terms of mass ratio of packing chemicals) An electromagnetic wave suppression paper of Example 2 was obtained in the same manner as Example 1 except that.

(実施例3)
実施例1において、乾燥後の導電性樹脂層の膜厚が60μmになるように塗被液を塗被した以外は実施例1と同様にして実施例3の電磁波抑制紙を得た。
(Example 3)
In Example 1, the electromagnetic wave suppression paper of Example 3 was obtained in the same manner as in Example 1 except that the coating liquid was applied so that the thickness of the conductive resin layer after drying was 60 μm.

(実施例4)
実施例1において、導電性塗料の塗布後の乾燥条件を50℃で1分間とした以外は実施例1と同様にして実施例4の電磁波抑制紙を得た。
Example 4
In Example 1, the electromagnetic wave suppression paper of Example 4 was obtained in the same manner as in Example 1 except that the drying condition after application of the conductive paint was changed to 50 ° C. for 1 minute.

(実施例5)
ベーキングペーパー原紙(北越製紙社製:坪量49.9g/m、厚さ0.081mm、密度0.62g/cm)の片面に導電性塗料(商品名:エコゴールドPLS−200−US、固形分62%、ヘルツ化学社製)を乾燥後の厚さが67μmとなるように塗布して熱風乾燥機にて60℃で1分間乾燥した後、アクリル系樹脂(商品名:アルマテックスL1092−1、Tg=60℃、固形分50.8%、三井化学社製)を丸棒にて膜厚が3μmになるよう塗布して、乾燥後の導電性樹脂層の全体の膜厚が70μmになるように、熱風乾燥機にて60℃で1分間乾燥して、実施例5の電磁波抑制紙を得た。得られた導電性樹脂層は、導電性塗料の固形分換算100質量部に対して、ガラス転移温度が50℃以上のアクリル系樹脂が固形分換算20.5質量部添加された組成を有する。
(Example 5)
Conductive paint (trade name: Eco Gold PLS-200-US) on one side of a baking paper base (made by Hokuetsu Paper Co., Ltd .: basis weight 49.9 g / m 2 , thickness 0.081 mm, density 0.62 g / cm 3 ) 62% solid content (manufactured by Hertz Chemical Co., Ltd.) was applied so that the thickness after drying was 67 μm, dried at 60 ° C. for 1 minute with a hot air dryer, and then an acrylic resin (trade name: Almatex L1092-) 1, Tg = 60 ° C., solid content 50.8%, manufactured by Mitsui Chemicals Co., Ltd.) with a round bar so that the film thickness is 3 μm, and the total thickness of the conductive resin layer after drying is 70 μm. Thus, it dried for 1 minute at 60 degreeC with the hot air dryer, and the electromagnetic wave suppression paper of Example 5 was obtained. The obtained conductive resin layer has a composition in which 20.5 parts by mass of an acrylic resin having a glass transition temperature of 50 ° C. or higher is added to 100 parts by mass of the solid content of the conductive coating.

(実施例6)
実施例1において、グラシン紙(商品名:加工用グラシン紙、リンテック社製)85g/mを剥離基材として、溶剤シリコーン剥離剤(商品名:KS−776、信越シリコーン社製)を1g/m、アクリル系粘着剤(商品名:BPS5303−20J1/BHS8515=100/1.5、東洋インキ社製)を20g/mそれぞれ乾燥質量で塗布乾燥したものをベーキングペーパー原紙の非塗布面に貼り合わせて粘着シートを製造した以外は実施例1と同様にして実施例6の電磁波抑制紙を得た。
(Example 6)
In Example 1, glassine paper (trade name: glassine paper for processing, manufactured by Lintec Co., Ltd.) 85 g / m 2 was used as a release substrate, and solvent silicone release agent (trade name: KS-776, manufactured by Shin-Etsu Silicone Co., Ltd.) 1 g / m 2 , acrylic pressure-sensitive adhesive (trade name: BPS5303-20J1 / BHS8515 = 100 / 1.5, manufactured by Toyo Ink Co., Ltd.), 20 g / m 2 each of which was dried and dried on the non-coated surface of the baking paper base paper An electromagnetic wave suppression paper of Example 6 was obtained in the same manner as in Example 1 except that the pressure-sensitive adhesive sheet was produced by bonding.

(実施例7)
実施例1において、乾燥後の導電性樹脂層の膜厚が45μmになるように塗被液を塗被した以外は実施例1と同様にして実施例7の電磁波抑制紙を得た。
(Example 7)
In Example 1, an electromagnetic wave suppression paper of Example 7 was obtained in the same manner as in Example 1 except that the coating liquid was applied so that the thickness of the conductive resin layer after drying was 45 μm.

(実施例8)
実施例1において、乾燥後の導電性樹脂層の膜厚が90μmになるように塗被液を塗被した以外は実施例1と同様にして実施例8の電磁波抑制紙を得た。
(Example 8)
In Example 1, an electromagnetic wave suppression paper of Example 8 was obtained in the same manner as in Example 1 except that the coating liquid was applied so that the thickness of the conductive resin layer after drying was 90 μm.

(実施例9)
導電性塗料(商品名:エコゴールドPLS−200−US、固形分62%、ヘルツ化学社製)の固形分換算100質量部に対して、アクリル系樹脂(商品名:アルマテックスL1092−1、Tg=60℃、固形分50.8%、三井化学社製)が固形分換算35.1質量部(荷姿薬品の質量比で導電性塗料:アクリル系樹脂=70:30)添加された以外は実施例1と同様にして実施例9の電磁波抑制紙を得た。
Example 9
Acrylic resin (trade name: Almatex L1092-1, Tg) with respect to 100 parts by mass in terms of solid content of conductive paint (trade name: Eco Gold PLS-200-US, solid content 62%, manufactured by Hertz Chemical Co., Ltd.) = 60 ° C., solid content 50.8%, manufactured by Mitsui Chemicals Co., Ltd.) 35.1 parts by mass in terms of solid content (conductive paint: acrylic resin = 70: 30 in terms of mass ratio of packing chemicals) was added The electromagnetic wave suppression paper of Example 9 was obtained in the same manner as Example 1.

(比較例1)
実施例1において、乾燥後の導電性樹脂層の膜厚を10μmになるように塗被した以外は実施例1と同様にして比較例1の電磁波抑制紙を得た。
(Comparative Example 1)
In Example 1, the electromagnetic wave suppression paper of Comparative Example 1 was obtained in the same manner as in Example 1 except that the conductive resin layer after drying was coated to a thickness of 10 μm.

(比較例2)
実施例1において、導電性塗料とアクリル系樹脂からなる塗被液の塗被後の乾燥条件を105℃で1分とした以外は実施例1と同様にして比較例2の電磁波抑制紙を得た。
(Comparative Example 2)
In Example 1, the electromagnetic wave suppression paper of Comparative Example 2 was obtained in the same manner as in Example 1 except that the drying condition after application of the coating liquid composed of the conductive paint and acrylic resin was changed to 105 ° C. for 1 minute. It was.

(比較例3)
比較例2において、乾燥条件を125℃で1分とした以外は比較例2と同様にして比較例3の電磁波抑制紙を得た。
(Comparative Example 3)
In Comparative Example 2, an electromagnetic wave suppression paper of Comparative Example 3 was obtained in the same manner as Comparative Example 2 except that the drying condition was 125 ° C. for 1 minute.

(比較例4)
実施例1において、アクリル系樹脂を添加しなかった以外は実施例1と同様にして、比較例4の電磁波抑制紙を得た。
(Comparative Example 4)
In Example 1, the electromagnetic wave suppression paper of Comparative Example 4 was obtained in the same manner as Example 1 except that the acrylic resin was not added.

(比較例5)
実施例2において、乾燥後の導電性樹脂層の膜厚を10μmになるように塗被した以外は実施例1と同様にして比較例5の電磁波抑制紙を得た。
(Comparative Example 5)
In Example 2, the electromagnetic wave suppression paper of Comparative Example 5 was obtained in the same manner as in Example 1 except that the conductive resin layer after drying was coated to a thickness of 10 μm.

(比較例6)
実施例1において、ガラス転移温度(Tg)25℃のアクリル系樹脂(商品名:アルマテックスL1060、固形分40%、三井化学社製)を、ガラス転移温度(Tg)60℃のアクリル系樹脂代わりに添加した以外は実施例1と同様にして、比較例6の電磁波抑制紙を得た。
(Comparative Example 6)
In Example 1, an acrylic resin having a glass transition temperature (Tg) of 25 ° C. (trade name: Armatex L1060, solid content 40%, manufactured by Mitsui Chemicals) was replaced with an acrylic resin having a glass transition temperature (Tg) of 60 ° C. The electromagnetic wave suppression paper of Comparative Example 6 was obtained in the same manner as in Example 1 except that it was added to the above.

(比較例7)
導電性塗料(商品名:エコゴールドPLS−200−US、固形分62%、ヘルツ化学社製)の固形分換算100質量部に対して、アクリル系樹脂(商品名:アルマテックスL1092−1、Tg=60℃、固形分50.8%、三井化学社製)が固形分換算54.6質量部(荷姿薬品の質量比で導電性塗料:アクリル系樹脂=60:40)添加された以外は実施例1と同様にして比較例7の電磁波抑制紙を得た。
(Comparative Example 7)
Acrylic resin (trade name: Almatex L1092-1, Tg) with respect to 100 parts by mass in terms of solid content of conductive paint (trade name: Eco Gold PLS-200-US, solid content 62%, manufactured by Hertz Chemical Co., Ltd.) = 60 ° C., solid content 50.8%, manufactured by Mitsui Chemicals Co., Ltd.) except that 54.6 parts by mass in terms of solid content (conductive paint: acrylic resin = 60: 40 in terms of mass ratio of the packing chemical) was added The electromagnetic wave suppression paper of Comparative Example 7 was obtained in the same manner as Example 1.

Figure 2008251690
Figure 2008251690

表1の結果から明らかなように、実施例1〜9はいずれも、85℃の環境条件下で使用しても、電磁波抑制効果が低下しにくいので、耐熱性に優れていた。   As is clear from the results in Table 1, all of Examples 1 to 9 were excellent in heat resistance because the electromagnetic wave suppressing effect was hardly lowered even when used under environmental conditions of 85 ° C.

一方、比較例1及び比較例5は、導電性樹脂層の厚さが10μmと薄いため、電波吸収率が低く、耐熱性も不十分であった。比較例2及び比較例3は、乾燥温度が高かったため、耐熱性が得られなかった。比較例4は、ガラス転移温度が50℃以上のアクリル系樹脂を添加しなかったので、耐熱性が得られなかった。比較例6は、導電性塗料にガラス転移温度が25℃のアクリル系樹脂を添加して塗被液としたため、耐熱性が得られなかった。比較例7は、導電性塗料とガラス転移温度が50℃以上のアクリル系樹脂との配合のバランスが偏り、耐熱性が十分でなかった。
On the other hand, in Comparative Example 1 and Comparative Example 5, since the thickness of the conductive resin layer was as thin as 10 μm, the radio wave absorption rate was low and the heat resistance was insufficient. Since the comparative example 2 and the comparative example 3 had high drying temperature, heat resistance was not acquired. In Comparative Example 4, since no acrylic resin having a glass transition temperature of 50 ° C. or higher was added, heat resistance was not obtained. In Comparative Example 6, heat resistance was not obtained because an acrylic resin having a glass transition temperature of 25 ° C. was added to the conductive paint to form a coating solution. In Comparative Example 7, the balance of blending the conductive paint and the acrylic resin having a glass transition temperature of 50 ° C. or higher was uneven, and the heat resistance was not sufficient.

Claims (11)

基材の少なくとも片面に、銅を主成分とした銅合金と、ガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂と、ガラス転移温度が50℃以上のアクリル系樹脂とを含有する導電性樹脂層が、20〜100μmの厚さで塗被されていることを特徴とする電磁波抑制紙。   On at least one side of the substrate, a copper alloy mainly composed of copper, an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000, and a glass transition temperature of 50 ° C. or higher An electromagnetic wave suppression paper, wherein a conductive resin layer containing an acrylic resin is coated with a thickness of 20 to 100 μm. 前記導電性樹脂層は、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料にガラス転移温度が50℃以上のアクリル系樹脂を混合した塗被液を、前記基材の少なくとも片面に塗被することによって形成されたことを特徴とする請求項1に記載の電磁波抑制紙。   The conductive resin layer has a glass transition to a conductive paint mainly composed of a copper alloy mainly composed of copper and an ultra high molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000. The electromagnetic wave suppression paper according to claim 1, wherein the electromagnetic wave suppression paper is formed by coating a coating liquid in which an acrylic resin having a temperature of 50 ° C. or more is mixed on at least one surface of the substrate. 前記導電性樹脂層は、前記基材の少なくとも片面に、銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂を主体とした導電性塗料を塗布して乾燥した後、ガラス転移温度が50℃以上のアクリル系樹脂の含有液を更に塗布して乾燥することによって形成されたことを特徴とする請求項1に記載の電磁波抑制紙。   The conductive resin layer is mainly composed of a copper alloy mainly composed of copper and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or lower and a molecular weight of 300,000 to 1,000,000 on at least one surface of the base material. The conductive paint according to claim 1, which is formed by applying and drying a conductive paint, and further applying and drying a liquid containing an acrylic resin having a glass transition temperature of 50 ° C or higher. Electromagnetic wave suppression paper. 前記導電性樹脂層は、前記導電性塗料の固形分換算100質量部に対して、前記ガラス転移温度が50℃以上のアクリル系樹脂を固形分換算5〜50質量部添加した組成からなることを特徴とする請求項1、2又は3に記載の電磁波抑制紙。   The conductive resin layer has a composition in which an acrylic resin having a glass transition temperature of 50 ° C. or higher is added in an amount of 5 to 50 parts by mass in terms of solid content with respect to 100 parts by mass in terms of solid content of the conductive paint. The electromagnetic wave suppression paper according to claim 1, 2, or 3. 前記導電性樹脂層の上に、オーバーコート層が設けられていることを特徴とする請求項1、2、3又は4に記載の電磁波抑制紙。   5. The electromagnetic wave suppression paper according to claim 1, wherein an overcoat layer is provided on the conductive resin layer. 前記基材の一方の表面に前記導電性樹脂層が形成され、他方の表面に粘着剤層が形成されることを特徴とする請求項1、2、3、4又は5に記載の電磁波抑制紙。   6. The electromagnetic wave suppression paper according to claim 1, wherein the conductive resin layer is formed on one surface of the substrate, and an adhesive layer is formed on the other surface. . 前記粘着剤層の表面に剥離紙が貼付されていることを特徴とする請求項6に記載の電磁波抑制紙。   The electromagnetic wave suppression paper according to claim 6, wherein a release paper is affixed to a surface of the pressure-sensitive adhesive layer. 前記基材は、酸性紙、中性紙、アルカリ性紙、不燃紙、難燃紙、ガラスペーパー、片面若しくは両面塗工紙、合成紙又はプラスチックフィルムであることを特徴とする請求項1、2、3、4、5、6又は7に記載の電磁波抑制紙。   The base material is acid paper, neutral paper, alkaline paper, incombustible paper, flame retardant paper, glass paper, single-sided or double-sided coated paper, synthetic paper, or plastic film, The electromagnetic wave suppression paper according to 3, 4, 5, 6 or 7. 近傍界用電波吸収材料測定法であるS−パラメーター法(S−21)を用いて測定した、85℃、1000時間加熱処理後の周波数2.4543GHzでの電波吸収率[dB]及び回路への影響度[dB]がいずれも−6dB以下であることを特徴とする請求項1、2、3、4、5、6、7又は8に記載の電磁波抑制紙。   Measured using the S-parameter method (S-21), which is a near-field radio wave absorption material measurement method, and the radio wave absorption rate [dB] at a frequency of 2.4543 GHz after 1000 hours of heat treatment at 85 ° C. 9. The electromagnetic wave suppression paper according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the degree of influence [dB] is -6 dB or less. 銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂とを主体とした導電性塗料に、ガラス転移温度が50℃以上のアクリル系樹脂を混合して塗被液を調整し、基材の少なくとも片面に、前記塗被液を塗布し、20〜70℃の温度範囲で乾燥させて、導電性樹脂層の厚さを20〜100μmに形成したことを特徴とする電磁波抑制紙の製造方法。   A conductive paint mainly composed of a copper alloy containing copper as a main component and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000 has a glass transition temperature of 50 ° C. or more. The acrylic resin is mixed to adjust the coating solution, and the coating solution is applied to at least one surface of the base material and dried in a temperature range of 20 to 70 ° C., so that the thickness of the conductive resin layer is increased. An electromagnetic wave suppression paper manufacturing method characterized by being formed to 20 to 100 μm. 銅を主成分とした銅合金とガラス転移温度が50℃以下で分子量が30万〜100万である超高分子量のアクリル系樹脂とを主体とした導電性塗料を、基材の少なくとも片面に塗布し、20〜70℃の温度範囲で乾燥させて、更にその上に、ガラス転移温度が50℃以上のアクリル系樹脂の含有液を塗布し、20〜70℃の温度範囲で乾燥させて、導電性樹脂層の厚さを20〜100μmに形成したことを特徴とする電磁波抑制紙の製造方法。   A conductive paint mainly composed of a copper alloy mainly composed of copper and an ultrahigh molecular weight acrylic resin having a glass transition temperature of 50 ° C. or less and a molecular weight of 300,000 to 1,000,000 is applied to at least one surface of the substrate. And dried in a temperature range of 20 to 70 ° C., and further coated thereon with an acrylic resin-containing liquid having a glass transition temperature of 50 ° C. or higher, and dried in a temperature range of 20 to 70 ° C. A method for producing an electromagnetic wave-suppressing paper, wherein the thickness of the conductive resin layer is 20 to 100 μm.
JP2007088867A 2007-03-29 2007-03-29 Electromagnetic wave suppressing paper and manufacturing method thereof Expired - Fee Related JP5105933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088867A JP5105933B2 (en) 2007-03-29 2007-03-29 Electromagnetic wave suppressing paper and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088867A JP5105933B2 (en) 2007-03-29 2007-03-29 Electromagnetic wave suppressing paper and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008251690A true JP2008251690A (en) 2008-10-16
JP5105933B2 JP5105933B2 (en) 2012-12-26

Family

ID=39976322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088867A Expired - Fee Related JP5105933B2 (en) 2007-03-29 2007-03-29 Electromagnetic wave suppressing paper and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5105933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267010A (en) * 2008-04-24 2009-11-12 Nanojoin Kk Electromagnetic wave suppression paper

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160065A (en) * 1989-11-16 1991-07-10 Kanae Kagaku Kogyo Kk Conductive coating material
JP2001323004A (en) * 2000-05-12 2001-11-20 Saiden Chemical Industry Co Ltd Method for producing aqueous polymer dispersion for coating, and its composition
JP2002072897A (en) * 2000-08-25 2002-03-12 Fuji Photo Film Co Ltd Electromagnetic wave shieldable transparent film
JP2004331796A (en) * 2003-05-07 2004-11-25 Sumitomo Osaka Cement Co Ltd Coating material for forming transparent film, transparent film using the same, transparent base material provided with the same, and optical component
JP2005298535A (en) * 2004-03-18 2005-10-27 Sumitomo Bakelite Co Ltd Thermoplastic resin electroconductive sheet and container for conveying electronic part
WO2006035761A1 (en) * 2004-09-30 2006-04-06 Nippon Paper Industries, Co., Ltd. Laminated sheet
JP2006222197A (en) * 2005-02-09 2006-08-24 Hokuetsu Paper Mills Ltd Electromagnetic wave suppressing paper and manufacturing method thereof
WO2006088127A1 (en) * 2005-02-18 2006-08-24 Toyo Ink Manufacturing Co., Ltd. Electromagnetic-wave-shielding adhesive film, process for producing the same, and method of shielding adherend from electromagnetic wave
JP2006335976A (en) * 2005-06-06 2006-12-14 Hitachi Chem Co Ltd Conductive coating
JP2007059795A (en) * 2005-08-26 2007-03-08 Nanojoin Kk Electromagnetic wave suppression paper

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160065A (en) * 1989-11-16 1991-07-10 Kanae Kagaku Kogyo Kk Conductive coating material
JP2001323004A (en) * 2000-05-12 2001-11-20 Saiden Chemical Industry Co Ltd Method for producing aqueous polymer dispersion for coating, and its composition
JP2002072897A (en) * 2000-08-25 2002-03-12 Fuji Photo Film Co Ltd Electromagnetic wave shieldable transparent film
JP2004331796A (en) * 2003-05-07 2004-11-25 Sumitomo Osaka Cement Co Ltd Coating material for forming transparent film, transparent film using the same, transparent base material provided with the same, and optical component
JP2005298535A (en) * 2004-03-18 2005-10-27 Sumitomo Bakelite Co Ltd Thermoplastic resin electroconductive sheet and container for conveying electronic part
WO2006035761A1 (en) * 2004-09-30 2006-04-06 Nippon Paper Industries, Co., Ltd. Laminated sheet
JP2006222197A (en) * 2005-02-09 2006-08-24 Hokuetsu Paper Mills Ltd Electromagnetic wave suppressing paper and manufacturing method thereof
WO2006088127A1 (en) * 2005-02-18 2006-08-24 Toyo Ink Manufacturing Co., Ltd. Electromagnetic-wave-shielding adhesive film, process for producing the same, and method of shielding adherend from electromagnetic wave
JP2006335976A (en) * 2005-06-06 2006-12-14 Hitachi Chem Co Ltd Conductive coating
JP2007059795A (en) * 2005-08-26 2007-03-08 Nanojoin Kk Electromagnetic wave suppression paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267010A (en) * 2008-04-24 2009-11-12 Nanojoin Kk Electromagnetic wave suppression paper

Also Published As

Publication number Publication date
JP5105933B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP6970025B2 (en) Electromagnetic wave shield film
WO2014200035A1 (en) Electromagnetic wave shielding film, and electronic component mounting substrate
TWI385227B (en) Adhesive agent and adhesive sheet
JP2006307209A (en) Sheet product, laminated product, product equipped with sheet and method for manufacturing sheet
TWM555982U (en) High-performance EMI shielding film
TWI706864B (en) Electromagnetic interference shielding film having conductive fiber and the methods for preparing the same
JP2005277145A (en) Adhesive sheet for shielding electromagnetic wave
JP4635888B2 (en) Conductive paste and conductive circuit manufacturing method
JP4588477B2 (en) Electromagnetic wave suppressing paper and manufacturing method thereof
TW201121405A (en) Electro-magnetic wave shielding film and wiring board
TWI631889B (en) Electromagnetic wave shielding composite film
JP5106224B2 (en) Electromagnetic wave suppression paper
JP5105933B2 (en) Electromagnetic wave suppressing paper and manufacturing method thereof
JP5073525B2 (en) Electromagnetic wave suppression paper
JP2016062934A (en) Film for electromagnetic shielding
JP4841896B2 (en) Electromagnetic wave suppression paper
CN109835002B (en) Release film and preparation method thereof
JP5605766B2 (en) Radio wave suppression body, electronic device including the radio wave suppression body, and radio wave suppression component
JPH11277499A (en) Backup board for printed wiring board
JP2009104876A (en) Resistive touch panel
JP2014065801A (en) Acrylic heat-conductive double-sided tacky sheet and method for manufacturing the same
CN103547132A (en) Electromagnetic interference shielding structure and flexible printed circuit board with same
TWI688644B (en) Thermosetting resin composition for semiconductor pakage, prepreg and metal clad laminate
JP2008140963A (en) Noise suppressing sheet
JP5361055B2 (en) Composite sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees