JP2008249286A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner Download PDF

Info

Publication number
JP2008249286A
JP2008249286A JP2007093245A JP2007093245A JP2008249286A JP 2008249286 A JP2008249286 A JP 2008249286A JP 2007093245 A JP2007093245 A JP 2007093245A JP 2007093245 A JP2007093245 A JP 2007093245A JP 2008249286 A JP2008249286 A JP 2008249286A
Authority
JP
Japan
Prior art keywords
temperature
indoor
heat exchanger
air conditioner
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093245A
Other languages
Japanese (ja)
Other versions
JP4952335B2 (en
Inventor
Goji Ohira
剛司 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007093245A priority Critical patent/JP4952335B2/en
Publication of JP2008249286A publication Critical patent/JP2008249286A/en
Application granted granted Critical
Publication of JP4952335B2 publication Critical patent/JP4952335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in a conventional multi-chamber type air conditioner, a relatively expensive pressure detector is used as a capacity control input of a compressor and excessive heating is effected under low load because a pressure setting value is determined according to the operation-on horsepower irrespective of the load of an indoor unit. <P>SOLUTION: The condensation temperature of refrigerating cycle can be detected at the maximum temperature value of an indoor heat exchanger in the connected indoor unit even without using the pressure detector. The heating performance can be ensured by correcting the frequency of the compressor upward until the target value is reached, when the condensation temperature is lower than a specified target condensation temperature threshold value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、1台の室外機に複数台の室内機を接続して冷房もしくは暖房サイクルを構成する多室形空気調和機の圧縮機制御方法に関する。   The present invention relates to a compressor control method for a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit to constitute a cooling or heating cycle.

従来、この種の多室形空気調和機の圧縮機能力制御は、外気温度、配管長、運転馬力数を制御入力とし、圧力検知器により高圧側圧力を検知するとともに、圧力差算出器により検知圧力と設定圧力との差圧を算出し、算出した差圧に応じて圧縮機能力を決定しているものがあった(例えば、特許文献1参照)。   Conventionally, the compression function force control of this type of multi-chamber air conditioner uses the outside air temperature, pipe length, and operating horsepower as control inputs, and detects the high-pressure side pressure with a pressure detector and the pressure difference calculator. Some have calculated the differential pressure between the pressure and the set pressure, and determined the compression function force according to the calculated differential pressure (see, for example, Patent Document 1).

図7のフローチャートは、特許文献1に記載された従来の多室形空気調和機を示すものである。図7に示すように、圧縮機108の能力制御決定手段107は、外気温検知器101、配管長検知器102、運転馬力数検知器103を制御入力として設定圧力検知器104により設定圧力を定め、圧力検知器105との差圧を圧力差算出器106で算出して決定している。
特開平4−187930号公報
The flowchart of FIG. 7 shows a conventional multi-room air conditioner described in Patent Document 1. As shown in FIG. 7, the capacity control determining means 107 of the compressor 108 determines the set pressure by the set pressure detector 104 using the outside air temperature detector 101, the pipe length detector 102, and the operating horsepower number detector 103 as control inputs. The pressure difference with the pressure detector 105 is determined by calculating with the pressure difference calculator 106.
Japanese Patent Laid-Open No. 4-187930

しかしながら、前記従来の構成では、圧縮機の能力制御入力として部品単価が高価な圧力検知器を使用している。また、室内機の負荷に関係なく運転オン馬力数で圧力設定値を決めていることから低負荷時には過剰暖房となるという課題を有していた。   However, in the conventional configuration, a pressure detector having a high component unit price is used as the capacity control input of the compressor. Further, since the pressure set value is determined by the operation on horsepower number regardless of the load of the indoor unit, there is a problem that overheating occurs at a low load.

本発明は、前記従来の課題を解決するもので、暖房運転中のサーモオン室内機の能力ランクに応じて圧縮機の基本周波数を決定し、暖房運転中接続全室内機の室内熱交換器温度を検出し、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正することにより、部品単価が高価な圧力検知器を使用することなく冷凍サイクルの凝縮温度を検知し暖房性能を確保することが可能な多室形空気調和機を提供することを目的とする。   The present invention solves the above-mentioned conventional problem, determines the fundamental frequency of the compressor according to the capability rank of the thermo-on indoor unit during heating operation, and sets the indoor heat exchanger temperature of all indoor units connected during heating operation. If the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensing temperature threshold, the frequency is corrected until the condensing temperature reaches the certain threshold. An object of the present invention is to provide a multi-room air conditioner capable of detecting the condensing temperature of the refrigeration cycle and ensuring the heating performance without using an expensive pressure detector.

前記従来の課題を解決するために、本発明の多室形空気調和機は、能力可変圧縮機と四方弁と室外熱交換器と室外膨張弁とを有する1台の室外機と、室内熱交換器と前記室内熱交換器の温度検出手段とを有する複数台の室内機とが接続された多室形空気調和機において、暖房運転中のサーモオン室内機の能力ランクに応じて前記圧縮機の基本周波数を決定し、暖房運転中接続全室内機の室内熱交換器温度を検出し、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正することを特徴としたものである。   In order to solve the above-described conventional problems, a multi-room air conditioner of the present invention includes a single outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, and an indoor heat exchange. In a multi-room air conditioner in which a plurality of indoor units having a heater and a temperature detecting means of the indoor heat exchanger are connected, the basics of the compressor according to the capability rank of the thermo-on indoor unit during heating operation Determine the frequency, detect the indoor heat exchanger temperature of all connected indoor units during heating operation, and if the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensing temperature threshold, the condensing temperature The frequency is corrected to increase until the value reaches a certain threshold value.

これによって、部品単価が高価な圧力検知器を使用しなくとも接続室内機中の室内熱交換器温度最高値で冷凍サイクルの凝縮温度を検知することができ、凝縮温度が一定の目標凝縮温度しきい値より低い場合に凝縮温度が一定しきい値に到達するまで周波数を上昇補正することで目標とする凝縮温度で暖房性能を確保することができる。   As a result, the condensing temperature of the refrigeration cycle can be detected at the maximum indoor heat exchanger temperature in the connected indoor unit without using an expensive pressure detector, and the target condensing temperature is constant. When the temperature is lower than the threshold value, the heating performance can be ensured at the target condensing temperature by correcting the frequency to increase until the condensing temperature reaches a certain threshold value.

本発明の多室形空気調和機は、暖房運転中のサーモオン室内機の能力ランクに応じて圧縮機の基本周波数を決定し、暖房運転中接続全室内機の室内熱交換器温度を検出し、接続
全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正することにより、部品単価が高価な圧力検知器を使用することなく冷凍サイクルの凝縮温度を検知し暖房性能を確保することができる。
The multi-room air conditioner of the present invention determines the basic frequency of the compressor according to the capability rank of the thermo-on indoor unit during heating operation, detects the indoor heat exchanger temperature of all indoor units connected during heating operation, When the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensing temperature threshold, the unit price is high by correcting the frequency until the condensing temperature reaches the certain threshold. Without using a simple pressure detector, the condensation temperature of the refrigeration cycle can be detected to ensure heating performance.

第1の発明の多室形空気調和機は、能力可変圧縮機と四方弁と室外熱交換器と室外膨張弁とを有する1台の室外機と、室内熱交換器と前記室内熱交換器の温度検出手段とを有する複数台の室内機とが接続された多室形空気調和機において、暖房運転中のサーモオン室内機の能力ランクに応じて前記圧縮機の基本周波数を決定し、暖房運転中接続全室内機の室内熱交換器温度を検出し、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正することを特徴としたものである。   A multi-room air conditioner according to a first aspect of the present invention includes a single outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, an indoor heat exchanger, and the indoor heat exchanger. In a multi-room air conditioner connected to a plurality of indoor units having temperature detection means, the basic frequency of the compressor is determined according to the capability rank of the thermo-on indoor unit during heating operation, and during heating operation When the indoor heat exchanger temperature of all connected indoor units is detected and the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensation temperature threshold, the condensation temperature reaches the certain threshold. Up to, the frequency is corrected to be increased.

これによって、部品単価が高価な圧力検知器を使用しなくとも接続室内機中の室内熱交換器温度最高値で冷凍サイクルの凝縮温度を検知することができ、凝縮温度が一定の目標凝縮温度しきい値より低い場合に凝縮温度が一定しきい値に到達するまで周波数を上昇補正することで目標とする凝縮温度で暖房性能を確保することができる。   As a result, the condensing temperature of the refrigeration cycle can be detected at the maximum indoor heat exchanger temperature in the connected indoor unit without using an expensive pressure detector, and the target condensing temperature is constant. When the temperature is lower than the threshold value, the heating performance can be ensured at the target condensing temperature by correcting the frequency to increase until the condensing temperature reaches a certain threshold value.

第2の発明は、多室形空気調和機において、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を一定比率上昇補正することを特徴としたものである。これによって、周波数を確実に上昇補正することができ目標とする凝縮温度で暖房性能を確保することができる。   According to a second aspect of the present invention, in the multi-room air conditioner, when the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensation temperature threshold, the condensation temperature reaches a certain threshold. Up to this point, the frequency is corrected at a certain rate. As a result, the frequency can be reliably corrected to increase, and the heating performance can be ensured at the target condensation temperature.

第3の発明は、多室形空気調和機において、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正する際、初回の上昇補正が2回目以降の補正値より大きいことを特徴としたものである。これによって、周波数の上昇補正を初回に大きく2回目以降初回補正より小さくすることで冷凍サイクルの凝縮温度を目標とする凝縮温度まで素早くかつオーバーシュートすることなく調節することができ暖房性能を確保することができる。   According to a third aspect of the present invention, in the multi-room air conditioner, when the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensation temperature threshold, the condensation temperature reaches a certain threshold. Up to this point, when the frequency is corrected to be increased, the first increase correction is larger than the second and subsequent correction values. This makes it possible to adjust the condensation temperature of the refrigeration cycle to the target condensation temperature quickly and without overshooting by ensuring that the frequency increase correction is large at the first time and smaller than the first time correction after the second time, ensuring heating performance. be able to.

第4の発明は、多室形空気調和機において、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正する際、接続全室内機中の最高室内熱交換器温度と一定の目標凝縮温度しきい値との差温より補正値を決めることを特徴としたものである。これによって、周波数の上昇補正を目標とする凝縮温度との差温によって決定することができ冷凍サイクルの凝縮温度を目標とする凝縮温度まで素早くかつオーバーシュートすることなく調節することができ暖房性能を確保することができる。   According to a fourth aspect of the present invention, in the multi-room air conditioner, when the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensation temperature threshold, the condensation temperature reaches a certain threshold. Until the frequency is corrected, the correction value is determined from the difference between the maximum indoor heat exchanger temperature in all the connected indoor units and a constant target condensing temperature threshold. This makes it possible to determine the frequency increase correction based on the temperature difference from the target condensation temperature, and to quickly adjust the condensation temperature of the refrigeration cycle to the target condensation temperature without overshooting. Can be secured.

第5の発明は、室内吸い込み空気温度と室内機リモコン設定温度の差温算出手段を有する複数台の室内機が接続された多室形空気調和機において、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合でも前記室内吸い込み空気温度と室内機リモコン設定温度の差温が低い室内機が存在する場合は周波数を上昇補正しないことを特徴としたものである。これによって、前記室内吸い込み空気温度と室内機リモコン設定温度の差温によりユーザーが要求する暖房負荷を検知することができ要求負荷が小さい低負荷時には接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合でも周波数を上昇補正せず過剰暖房を抑制することができる。   A fifth aspect of the invention is a multi-room air conditioner having a plurality of indoor units connected to each other having a temperature difference calculating means between the indoor intake air temperature and the indoor unit remote controller set temperature. Even if the chamber temperature is lower than a certain target condensing temperature threshold, if there is an indoor unit with a low temperature difference between the indoor intake air temperature and the indoor unit remote controller set temperature, the frequency is not increased and corrected. It is. As a result, the heating load required by the user can be detected from the difference between the indoor intake air temperature and the indoor unit remote controller set temperature, and the maximum indoor heat exchanger temperature in all connected indoor units can be detected when the required load is low and the load is low. Even when the temperature is lower than a certain target condensing temperature threshold, it is possible to suppress overheating without increasing the frequency.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態における多室形空気調和機の構成模式図である。図1において、能力可変圧縮機1と四方弁2と室外熱交換器3と室外膨張弁4とを有する1台の室外機5に対し、室内熱交換器6a,6b,6c(以降、複数台を表すa,b,cをnとして6nのように記述する)と室内熱交換器温度検出手段7nとを有する複数台の室内機8nが接続された多室形空気調和機において、能力可変圧縮機1の運転時、四方弁2の切り替えにより室内機8nは凝縮器となり放熱して暖房運転となり、室外膨張弁4で減圧して室外熱交換器3は蒸発器となり外気より吸熱し冷凍サイクルを構成している。この時、室内熱交換器温度検出手段7nの最高温度を冷凍サイクルの凝縮温度として認識する。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a multi-room air conditioner according to an embodiment of the present invention. In FIG. 1, an indoor heat exchanger 6a, 6b, 6c (hereinafter, a plurality of units) is provided for one outdoor unit 5 having a variable capacity compressor 1, a four-way valve 2, an outdoor heat exchanger 3, and an outdoor expansion valve 4. In a multi-room type air conditioner to which a plurality of indoor units 8n having indoor heat exchanger temperature detecting means 7n are connected, and a indoor heat exchanger temperature detecting means 7n. When the machine 1 is operated, the indoor unit 8n becomes a condenser by switching the four-way valve 2 to dissipate heat for heating, and the outdoor expansion valve 4 depressurizes and the outdoor heat exchanger 3 becomes an evaporator to absorb heat from the outside air and perform a refrigeration cycle. It is composed. At this time, the maximum temperature of the indoor heat exchanger temperature detecting means 7n is recognized as the condensation temperature of the refrigeration cycle.

図2は実施の形態1における多室形空気調和機のフローチャートである。図2により本発明の第1実施の形態における多室形空気調和機の動作、作用について説明する。   FIG. 2 is a flowchart of the multi-room air conditioner in the first embodiment. The operation and action of the multi-room air conditioner according to the first embodiment of the present invention will be described with reference to FIG.

暖房運転圧縮機能力制御(STEP0)において、室外機5は複数台の室内機8nの運転停止状態を認識し、運転中の室内機8nに記憶された室内機能力ランクを受信(STEP1)する。室外機5は、室内機5に記憶された室内機能力ランクと圧縮機運転周波数との対比表あるいは所定の演算式に基づいて基本周波数を決定して認識(STEP2)する。次に接続全室内機熱交換器温度検出手段(STEP3)で検出した室内機熱交換器温度中最高温度を接続全室内機熱交換器温度最高値算出手段(STEP4)で算出し、算出した室内機熱交換器温度中最高温度を目標凝縮温度と比較して目標凝縮温度未満かの凝縮温度判定(STEP5)を行う。   In the heating operation compression functional force control (STEP 0), the outdoor unit 5 recognizes the operation stop state of the plurality of indoor units 8n, and receives the indoor functional force rank stored in the operating indoor unit 8n (STEP 1). The outdoor unit 5 determines and recognizes the basic frequency based on a comparison table between the indoor functional force rank stored in the indoor unit 5 and the compressor operating frequency or a predetermined arithmetic expression (STEP 2). Next, the maximum temperature in the indoor unit heat exchanger temperature detected by the connected all indoor unit heat exchanger temperature detecting means (STEP 3) is calculated by the connected all indoor unit heat exchanger temperature maximum value calculating means (STEP 4), and the calculated indoor The maximum temperature in the machine heat exchanger temperature is compared with the target condensing temperature, and a condensing temperature determination (STEP 5) is made as to whether it is less than the target condensing temperature.

ここで、目標凝縮温度以上の場合(STEP5のNo)は、基本周波数を決定して認識(STEP2)した値で圧縮機運転周波数を決定(STEP7)し、室内機能力ランクを受信(STEP1)に移行する。また、目標凝縮温度未満の場合(STEP5のYes)は、周波数を上昇補正(STEP6)して圧縮機運転周波数を決定(STEP7)し、室内機能力ランクを受信(STEP1)に移行する。   Here, when the temperature is equal to or higher than the target condensation temperature (No in STEP 5), the compressor operating frequency is determined (STEP 7) based on the value determined and recognized (STEP 2), and the indoor functional force rank is received (STEP 1). Transition. When the temperature is lower than the target condensation temperature (STEP 5 Yes), the frequency is increased (STEP 6), the compressor operating frequency is determined (STEP 7), and the indoor functional force rank is received (STEP 1).

上記のことより、部品単価が高価な圧力検知器を使用しなくとも接続室内機中の室内熱交換器温度最高値で冷凍サイクルの凝縮温度を検知することができ、凝縮温度が一定の目標凝縮温度しきい値より低い場合に凝縮温度が一定しきい値に到達するまで周波数を上昇補正することで目標とする凝縮温度で暖房性能を確保することができる
(実施の形態2)
図3は、本発明の第2の実施の形態における多室形空気調和機のフローチャートである。図3において、図2と同じ構成要素については同じ符号を用い説明を省略する。図3により本発明の第2の実施の形態における多室形空気調和機の動作、作用について説明する。
From the above, it is possible to detect the condensing temperature of the refrigeration cycle at the maximum value of the indoor heat exchanger temperature in the connected indoor unit without using a pressure detector with an expensive part price, and the target condensing temperature is constant. When the temperature is lower than the temperature threshold, the heating performance can be ensured at the target condensing temperature by correcting the frequency to be increased until the condensing temperature reaches a certain threshold (Embodiment 2).
FIG. 3 is a flowchart of the multi-room air conditioner according to the second embodiment of the present invention. In FIG. 3, the same components as those in FIG. The operation and action of the multi-room air conditioner in the second embodiment of the present invention will be described with reference to FIG.

接続全室内機熱交換器温度検出手段(STEP3)で検出した室内機熱交換器温度中最高温度を接続全室内機熱交換器温度最高値算出手段(STEP4)で算出し、算出した室内機熱交換器温度中最高温度を目標凝縮温度と比較して目標凝縮温度未満かどうかの凝縮温度判定(STEP5)を行う。目標凝縮温度以上の場合(STEP5のNo)は、基本周波数を決定して認識(STEP2)した値で圧縮機運転周波数を決定(STEP17)し、室内機能力ランクを受信(STEP1)に移行する。また、目標凝縮温度未満の場合(STEP5のYes)は、周波数を一定比率上昇補正(STEP16)して圧縮機運転周波数を決定(STEP17)し、室内機能力ランクを受信(STEP1)に移行する。   The maximum temperature in the indoor unit heat exchanger temperature detected by the connected all indoor unit heat exchanger temperature detecting means (STEP 3) is calculated by the connected all indoor unit heat exchanger temperature maximum value calculating means (STEP 4), and the calculated indoor unit heat The maximum temperature in the exchanger temperature is compared with the target condensing temperature, and a condensing temperature determination (STEP 5) is performed to determine whether the temperature is lower than the target condensing temperature. When the temperature is equal to or higher than the target condensing temperature (NO in STEP 5), the compressor operating frequency is determined (STEP 17) based on the value determined and recognized (STEP 2), and the indoor functional force rank is shifted to receiving (STEP 1). When the temperature is lower than the target condensing temperature (STEP 5: Yes), the frequency is corrected at a fixed rate (STEP 16), the compressor operating frequency is determined (STEP 17), and the indoor functional force rank is received (STEP 1).

上記のことより、周波数を確実に上昇補正することができ目標とする凝縮温度で暖房性能を確保することができる。   From the above, the frequency can be reliably corrected to increase, and the heating performance can be ensured at the target condensation temperature.

(実施の形態3)
図4は、本発明の第3の実施の形態における多室形空気調和機のフローチャートである。図4において、図2、図3と同じ構成要素については同じ符号を用い説明を省略する。図4により本発明の第3の実施の形態における多室形空気調和機の動作、作用について説明する。
(Embodiment 3)
FIG. 4 is a flowchart of the multi-room air conditioner according to the third embodiment of the present invention. 4, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals, and the description thereof is omitted. The operation and action of the multi-room air conditioner in the third embodiment of the present invention will be described with reference to FIG.

接続全室内機熱交換器温度検出手段(STEP3)で検出した室内機熱交換器温度中最高温度を接続全室内機熱交換器温度最高値算出手段(STEP4)で算出し、算出した室内機熱交換器温度中最高温度を目標凝縮温度と比較して目標凝縮温度未満かどうかの凝縮温度判定(STEP5)を行う。目標凝縮温度以上の場合(STEP5のNo)は、基本周波数を決定して認識(STEP2)した値で圧縮機運転周波数を決定(STEP29)し、室内機能力ランクを受信(STEP1)に移行する。   The maximum temperature in the indoor unit heat exchanger temperature detected by the connected all indoor unit heat exchanger temperature detecting means (STEP 3) is calculated by the connected all indoor unit heat exchanger temperature maximum value calculating means (STEP 4), and the calculated indoor unit heat The maximum temperature in the exchanger temperature is compared with the target condensing temperature, and a condensing temperature determination (STEP 5) is performed to determine whether the temperature is lower than the target condensing temperature. When the temperature is equal to or higher than the target condensing temperature (NO in STEP 5), the compressor operating frequency is determined (STEP 29) based on the value determined and recognized (STEP 2), and the indoor functional force rank is shifted to receiving (STEP 1).

ここで、目標凝縮温度未満の場合(STEP5のYes)は、周波数上昇補正が初回であるかの判定(STEP26)を行い、上昇補正が初回の場合(STEP26のYes)は初回周波数上昇補正(STEP27)を行い、圧縮機運転周波数を決定(STEP29)して室内機能力ランクを受信(STEP1)に移行する。上昇補正が初回でない場合(STEP26のNo)は、初回周波数上昇補正(STEP27)未満の周波数上昇補正(STEP28)を行い、圧縮機運転周波数を決定(STEP29)して室内機能力ランクを受信(STEP1)に移行する。   Here, when the temperature is lower than the target condensation temperature (STEP 5 Yes), it is determined whether the frequency increase correction is the first time (STEP 26). When the increase correction is the first time (STEP 26 Yes), the first frequency increase correction (STEP 27). ), The compressor operating frequency is determined (STEP 29), and the indoor functional force rank is shifted to reception (STEP 1). When the increase correction is not the first time (No in STEP 26), the frequency increase correction (STEP 28) less than the initial frequency increase correction (STEP 27) is performed, the compressor operating frequency is determined (STEP 29), and the indoor functional force rank is received (STEP 1). ).

上記のことより、周波数の上昇補正を初回に大きく2回目以降初回補正より小さくすることで冷凍サイクルの凝縮温度を目標とする凝縮温度まで素早くかつオーバーシュートすることなく調節することができ、暖房性能を確保することができる。   From the above, it is possible to adjust the condensing temperature of the refrigeration cycle to the target condensing temperature quickly and without overshooting by increasing the frequency increase correction first time and making it smaller than the first correction after the second time. Can be secured.

(実施の形態4)
図5は、本発明の第4の実施の形態における多室形空気調和機のフローチャートである。図5において、図2、図3、図4と同じ構成要素については同じ符号を用い説明を省略する。図5により本発明の第4の実施の形態における多室形空気調和機の動作、作用について説明する。
(Embodiment 4)
FIG. 5 is a flowchart of the multi-room air conditioner according to the fourth embodiment of the present invention. In FIG. 5, the same components as those in FIGS. The operation and action of the multi-room air conditioner in the fourth embodiment of the present invention will be described with reference to FIG.

接続全室内機熱交換器温度検出手段(STEP3)で検出した室内機熱交換器温度中最高温度を接続全室内機熱交換器温度最高値算出手段(STEP4)で算出し、算出した室内機熱交換器温度中最高温度を目標凝縮温度と比較して目標凝縮温度未満かどうかの凝縮温度判定(STEP5)を行う。目標凝縮温度以上の場合(STEP5のNo)は、基本周波数を決定して認識(STEP2)した値で圧縮機運転周波数を決定(STEP29)し、室内機能力ランクを受信(STEP1)に移行する。目標凝縮温度未満の場合(STEP5のYes)は、室内熱交換器最高値と目標凝縮温度差温算出手段(STEP36)により冷凍サイクルの凝縮温度と目標凝縮温度との差温を認識し、目標凝縮温度差温が例えば5K以上かどうかの判定(STEP37)を行い、目標凝縮温度差温が5K以上の場合(STEP37のYes)は差温5K以上時の周波数上昇補正(STEP38)を行い、目標凝縮温度差温が5K未満の場合(STEP37のNo)は差温5K以上時の周波数上昇補正(STEP38)以下に設定する周波数上昇補正(STEP39)し、圧縮機運転周波数を決定(STEP40)して室内機能力ランクを受信(STEP1)に移行する。   The maximum temperature in the indoor unit heat exchanger temperature detected by the connected all indoor unit heat exchanger temperature detecting means (STEP 3) is calculated by the connected all indoor unit heat exchanger temperature maximum value calculating means (STEP 4), and the calculated indoor unit heat The maximum temperature in the exchanger temperature is compared with the target condensing temperature, and a condensing temperature determination (STEP 5) is performed to determine whether the temperature is lower than the target condensing temperature. When the temperature is equal to or higher than the target condensing temperature (NO in STEP 5), the compressor operating frequency is determined (STEP 29) based on the value determined and recognized (STEP 2), and the indoor functional force rank is shifted to receiving (STEP 1). When the temperature is lower than the target condensation temperature (STEP5: Yes), the difference between the condensation temperature of the refrigeration cycle and the target condensation temperature is recognized by the maximum value of the indoor heat exchanger and the target condensation temperature difference temperature calculation means (STEP36). For example, it is determined whether or not the temperature difference temperature is 5K or more (STEP 37). If the target condensation temperature difference temperature is 5K or more (Yes in STEP 37), frequency increase correction (STEP 38) is performed when the temperature difference is 5K or more. When the temperature difference temperature is less than 5K (No in STEP 37), the frequency increase correction (STEP 39) is set to be equal to or less than the frequency increase correction (STEP 38) when the difference temperature is 5K or more, and the compressor operating frequency is determined (STEP 40). The function power rank is shifted to reception (STEP 1).

上記のことより、周波数の上昇補正を目標とする凝縮温度との差温によって決定することができて冷凍サイクルの凝縮温度を目標とする凝縮温度まで素早くかつオーバーシュートすることなく調節することができ、暖房性能を確保することができる。   From the above, the frequency increase correction can be determined by the temperature difference from the target condensation temperature, and the condensation temperature of the refrigeration cycle can be adjusted quickly and without overshooting to the target condensation temperature. Heating performance can be ensured.

(実施の形態5)
図6は、本発明の第5の実施の形態における多室形空気調和機のフローチャートである。図6において、図2、図3、図4、図5と同じ構成要素については同じ符号を用い説明を省略する。図5により本発明の第5の実施の形態における多室形空気調和機の動作、作用について説明する。
(Embodiment 5)
FIG. 6 is a flowchart of the multi-room air conditioner according to the fifth embodiment of the present invention. In FIG. 6, the same components as those in FIGS. 2, 3, 4, and 5 are denoted by the same reference numerals and description thereof is omitted. The operation and action of the multi-room air conditioner in the fifth embodiment of the present invention will be described with reference to FIG.

暖房運転圧縮機能力制御(STEP0)において、室外機5は複数台の室内機8nの運転停止状態を認識し、運転中の室内機8nに記憶された室内機能力ランクを受信(STEP1)する。室外機5は、室内機5に記憶された室内機能力ランクと圧縮機運転周波数との対比表あるいは所定の演算式に基づいて基本周波数を決定して認識(STEP2)する。各室内機吸い込み空気温度とリモコン設定温度差温算出手段(STEP41)により各室内機の暖房負荷状態を把握し、暖房負荷判定(STEP42)により各室内機吸い込み空気温度とリモコン設定温度差温が、例えば1K以下の室内機が存在する場合(STEP42のNo)は基本周波数を決定して認識(STEP2)した値で圧縮機運転周波数を決定(STEP7)し、各室内機吸い込み空気温度とリモコン設定温度差温が、例えば1K以下の室内機が存在しない場合(STEP42のYes)は、接続全室内機熱交換器温度検出手段(STEP3)で検出した室内機熱交換器温度中最高温度を接続全室内機熱交換器温度最高値算出手段(STEP4)で算出し、算出した室内機熱交換器温度中最高温度を目標凝縮温度と比較して目標凝縮温度未満かどうかの凝縮温度判定(STEP5)を行う。   In the heating operation compression functional force control (STEP 0), the outdoor unit 5 recognizes the operation stop state of the plurality of indoor units 8n, and receives the indoor functional force rank stored in the operating indoor unit 8n (STEP 1). The outdoor unit 5 determines and recognizes the basic frequency based on a comparison table between the indoor functional force rank stored in the indoor unit 5 and the compressor operating frequency or a predetermined arithmetic expression (STEP 2). Each indoor unit intake air temperature and the remote controller set temperature difference temperature calculation means (STEP 41) grasp the heating load state of each indoor unit, and the heating load determination (STEP 42) determines the indoor unit intake air temperature and the remote controller set temperature difference temperature, For example, when there is an indoor unit of 1K or less (NO in STEP42), the compressor operating frequency is determined (STEP7) based on the value determined and recognized (STEP2), and the indoor unit intake air temperature and the remote controller set temperature are determined. For example, when there is no indoor unit having a temperature difference of 1K or less (YES in STEP 42), the maximum temperature among the indoor unit heat exchanger temperatures detected by the connected all indoor unit heat exchanger temperature detection means (STEP 3) It is calculated by the maximum heat exchanger temperature calculation means (STEP 4), and the target indoor temperature is calculated by comparing the maximum indoor heat exchanger temperature with the target condensation temperature. Condensation temperature lower than if the condensing temperature determined (STEP5) performed.

ここで、目標凝縮温度以上の場合(STEP5のNo)は、基本周波数を決定して認識(STEP2)した値で圧縮機運転周波数を決定(STEP7)し、室内機能力ランクを受信(STEP1)に移行する。目標凝縮温度未満の場合(STEP5のYes)は、周波数を上昇補正(STEP6)して圧縮機運転周波数を決定(STEP7)し、室内機能力ランクを受信(STEP1)に移行する。   Here, when the temperature is equal to or higher than the target condensation temperature (No in STEP 5), the compressor operating frequency is determined (STEP 7) based on the value determined and recognized (STEP 2), and the indoor functional force rank is received (STEP 1). Transition. When the temperature is lower than the target condensing temperature (STEP5: Yes), the frequency is increased (STEP6), the compressor operating frequency is determined (STEP7), and the indoor functional force rank is received (STEP1).

上記のことより、室内吸い込み空気温度と室内機リモコン設定温度の差温によりユーザーが要求する暖房負荷を検知することができ、要求負荷が小さい低負荷時には、接続全室内機中の最高室内熱交換器温度が一定の目標凝縮温度しきい値より低い場合でも、周波数を上昇補正せず過剰暖房を抑制することができる。   Based on the above, it is possible to detect the heating load requested by the user based on the difference between the indoor intake air temperature and the indoor unit remote controller set temperature. When the required load is low, the maximum indoor heat exchange among all connected indoor units Even when the chamber temperature is lower than a certain target condensing temperature threshold, it is possible to suppress excessive heating without increasing the frequency.

以上のように、本発明にかかる多室形空気調和機は、部品単価が高価な圧力検知器を使用しなくとも接続室内機中の室内熱交換器温度最高値で冷凍サイクルの凝縮温度を検知することができ、凝縮温度が一定の目標凝縮温度しきい値より低い場合に凝縮温度が一定しきい値に到達するまで周波数を上昇補正することで、目標とする凝縮温度で暖房性能を確保することができるので、蓄熱式多室形形空気調和機等にも適用できる。   As described above, the multi-room air conditioner according to the present invention detects the condensing temperature of the refrigeration cycle at the highest indoor heat exchanger temperature in the connected indoor unit without using a pressure detector with an expensive part price. If the condensing temperature is lower than a certain target condensing temperature threshold, heating performance is ensured at the target condensing temperature by correcting the frequency until the condensing temperature reaches the certain threshold. Therefore, it can be applied to a heat storage type multi-room type air conditioner.

本発明の実施の形態における多室形空気調和機の構成模式図Configuration schematic diagram of a multi-room air conditioner in an embodiment of the present invention 本発明の実施の形態1における多室形空気調和機のフローチャートFlowchart of the multi-room air conditioner in Embodiment 1 of the present invention 本発明の実施の形態2における多室形空気調和機のフローチャートFlowchart of multi-room air conditioner in Embodiment 2 of the present invention 本発明の実施の形態3における多室形空気調和機のフローチャートFlow chart of multi-room air conditioner in Embodiment 3 of the present invention 本発明の実施の形態4における多室形空気調和機のフローチャートThe flowchart of the multi-room air conditioner in Embodiment 4 of this invention 本発明の実施の形態5における多室形空気調和機のフローチャートFlow chart of multi-room air conditioner in Embodiment 5 of the present invention 従来の多室形空気調和機のフローチャートConventional multi-room air conditioner flowchart

符号の説明Explanation of symbols

1 能力可変圧縮機
2 四方弁
3 室外熱交換器
4 室外膨張弁
5 室外機
6n 室内熱交換器
7n 室内熱交換器温度検出手段
8n 室内機
STEP0 暖房運転圧縮機能力制御
STEP1 室内機能力ランクを受信
STEP2 基本周波数決定認識
STEP3 接続全室内機熱交換器温度検出手段
STEP4 接続全室内機熱交換器温度最高値算出手段
STEP5 凝縮温度判定
STEP6 周波数上昇補正
STEP7 圧縮機運転周波数決定
DESCRIPTION OF SYMBOLS 1 Capability variable compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 5 Outdoor unit 6n Indoor heat exchanger 7n Indoor heat exchanger temperature detection means 8n Indoor unit STEP0 Heating operation compression functional force control STEP1 Receives indoor functional force rank STEP 2 Basic frequency determination recognition STEP 3 Connected all indoor unit heat exchanger temperature detection means STEP 4 Connected all indoor unit heat exchanger temperature maximum value calculation means STEP 5 Condensation temperature determination STEP 6 Frequency increase correction STEP 7 Compressor operating frequency determination

Claims (5)

能力可変圧縮機と四方弁と室外熱交換器と室外膨張弁とを有する1台の室外機と、室内熱交換器と前記室内熱交換器の温度検出手段とを有する複数台の室内機とが接続された多室形空気調和機において、暖房運転中のサーモオン室内機の能力ランクに応じて前記圧縮機の基本周波数を決定し、暖房運転中接続全室内機の室内熱交換器温度を検出し、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正することを特徴とする多室形空気調和機。 One outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, and a plurality of indoor units having an indoor heat exchanger and temperature detecting means of the indoor heat exchanger. In the connected multi-room air conditioner, the basic frequency of the compressor is determined according to the capacity rank of the thermo-on indoor unit during heating operation, and the indoor heat exchanger temperature of all the indoor units connected during heating operation is detected. When the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensation temperature threshold, the frequency is corrected to increase until the condensation temperature reaches the certain threshold. Room type air conditioner. 接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を一定比率上昇補正することを特徴とする請求項1に記載の多室形空気調和機。 When the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensing temperature threshold value, the frequency is corrected to increase by a certain ratio until the condensing temperature reaches the certain threshold value. The multi-room air conditioner according to claim 1. 接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正する際、初回の上昇補正が2回目以降の補正値より大きいことを特徴とする請求項1に記載の多室形空気調和機。 When the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensing temperature threshold, when the frequency is corrected to increase until the condensing temperature reaches the certain threshold, the first increase correction is performed. The multi-room air conditioner according to claim 1, wherein the multi-room air conditioner is larger than a correction value after the second time. 接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合、凝縮温度が一定しきい値に到達するまで、周波数を上昇補正する際、接続全室内機中の最高室内熱交換器温度と一定の目標凝縮温度しきい値との差温より補正値を決めることを特徴とする請求項1に記載の多室形空気調和機。 When the maximum indoor heat exchanger temperature in all connected indoor units is lower than a certain target condensing temperature threshold, when the frequency is corrected to increase until the condensing temperature reaches the certain threshold, all connected indoor units The multi-room air conditioner according to claim 1, wherein the correction value is determined from a difference temperature between the maximum indoor heat exchanger temperature and a constant target condensation temperature threshold value. 室内吸い込み空気温度と室内機リモコン設定温度の差温算出手段を有する複数台の室内機が接続された多室形空気調和機において、接続全室内機中の最高室内熱交換器温度が、一定の目標凝縮温度しきい値より低い場合でも前記室内吸い込み空気温度と室内機リモコン設定温度の差温が低い室内機が存在する場合は周波数を上昇補正しないことを特徴とする請求項1に記載の多室形空気調和機。 In a multi-room air conditioner connected to multiple indoor units that have a means for calculating the difference between the indoor intake air temperature and the indoor unit remote controller set temperature, the maximum indoor heat exchanger temperature in all connected indoor units is constant. The frequency is not corrected to be increased when there is an indoor unit having a low differential temperature between the indoor intake air temperature and the indoor unit remote controller set temperature even when the temperature is lower than a target condensation temperature threshold. Room type air conditioner.
JP2007093245A 2007-03-30 2007-03-30 Multi-room air conditioner Expired - Fee Related JP4952335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093245A JP4952335B2 (en) 2007-03-30 2007-03-30 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093245A JP4952335B2 (en) 2007-03-30 2007-03-30 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JP2008249286A true JP2008249286A (en) 2008-10-16
JP4952335B2 JP4952335B2 (en) 2012-06-13

Family

ID=39974440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093245A Expired - Fee Related JP4952335B2 (en) 2007-03-30 2007-03-30 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP4952335B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299914A (en) * 2008-06-10 2009-12-24 Panasonic Corp Multiroom air conditioner
CN105546760A (en) * 2016-01-12 2016-05-04 芜湖美智空调设备有限公司 Air conditioner, and control method and device for compressor of air conditioner
CN109114754A (en) * 2018-10-19 2019-01-01 珠海格力电器股份有限公司 A kind of multi-connected machine convertible frequency air-conditioner high temperature-proof protection control method
CN111271834A (en) * 2019-05-28 2020-06-12 宁波奥克斯电气股份有限公司 Frequency reduction control method of air conditioner and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133747A (en) * 1988-11-15 1990-05-22 Toshiba Corp Air conditioning plant
JPH109639A (en) * 1996-06-25 1998-01-16 Toshiba Corp Control method for air conditioner
JPH10288408A (en) * 1997-04-10 1998-10-27 Yaskawa Electric Corp Method for controlling energy conservation refrigerating system
JP2001280669A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating cycle device
JP2005024153A (en) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd Method of controlling operating frequency of compressor of multi-chamber air conditioner
JP2006234295A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Multiple air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133747A (en) * 1988-11-15 1990-05-22 Toshiba Corp Air conditioning plant
JPH109639A (en) * 1996-06-25 1998-01-16 Toshiba Corp Control method for air conditioner
JPH10288408A (en) * 1997-04-10 1998-10-27 Yaskawa Electric Corp Method for controlling energy conservation refrigerating system
JP2001280669A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating cycle device
JP2005024153A (en) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd Method of controlling operating frequency of compressor of multi-chamber air conditioner
JP2006234295A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Multiple air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299914A (en) * 2008-06-10 2009-12-24 Panasonic Corp Multiroom air conditioner
CN105546760A (en) * 2016-01-12 2016-05-04 芜湖美智空调设备有限公司 Air conditioner, and control method and device for compressor of air conditioner
CN105546760B (en) * 2016-01-12 2018-08-17 芜湖美智空调设备有限公司 Compressor control method, device and the air conditioner of air conditioner
CN109114754A (en) * 2018-10-19 2019-01-01 珠海格力电器股份有限公司 A kind of multi-connected machine convertible frequency air-conditioner high temperature-proof protection control method
CN109114754B (en) * 2018-10-19 2020-04-28 珠海格力电器股份有限公司 Multi-split variable frequency air conditioner high temperature prevention protection control method
CN111271834A (en) * 2019-05-28 2020-06-12 宁波奥克斯电气股份有限公司 Frequency reduction control method of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP4952335B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP5125782B2 (en) Multi-room air conditioner
US8572995B2 (en) Refrigeration system
AU2008272384B2 (en) Refrigeration system
US8522568B2 (en) Refrigeration system
JP6338761B2 (en) Air conditioning system
KR101943325B1 (en) Air conditioner and Method for controlling it
JP2013015299A (en) Air-conditioning apparatus
JP2011069570A (en) Heat pump cycle device
WO2014112615A1 (en) Binary refrigeration cycle device
US20170227272A1 (en) Air conditioner and method of controlling the same
JP5776314B2 (en) Heat pump water heater
JP2016053452A (en) Air conditioner
JP4952335B2 (en) Multi-room air conditioner
JP2005024153A (en) Method of controlling operating frequency of compressor of multi-chamber air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JP2006194526A (en) Air conditioner
JP6428221B2 (en) Air conditioner
KR101911272B1 (en) Air conditioner and Method for controlling it
JP6615371B2 (en) Refrigeration cycle equipment
JP2011149611A (en) Air-conditioning apparatus
WO2018073904A1 (en) Indoor unit of air conditioner and air conditioner
JP2008281304A (en) Multi-room type air conditioner
JP2019020093A (en) Air conditioner
JP6124851B2 (en) Air conditioner
JP6286844B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R151 Written notification of patent or utility model registration

Ref document number: 4952335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees