JP2008248290A - Low-yield point steel with excellent toughness for damper, and its manufacturing method - Google Patents

Low-yield point steel with excellent toughness for damper, and its manufacturing method Download PDF

Info

Publication number
JP2008248290A
JP2008248290A JP2007089748A JP2007089748A JP2008248290A JP 2008248290 A JP2008248290 A JP 2008248290A JP 2007089748 A JP2007089748 A JP 2007089748A JP 2007089748 A JP2007089748 A JP 2007089748A JP 2008248290 A JP2008248290 A JP 2008248290A
Authority
JP
Japan
Prior art keywords
steel
less
yield point
low
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007089748A
Other languages
Japanese (ja)
Other versions
JP4705601B2 (en
Inventor
Yoshiyuki Watabe
義之 渡部
Ryuji Uemori
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007089748A priority Critical patent/JP4705601B2/en
Publication of JP2008248290A publication Critical patent/JP2008248290A/en
Application granted granted Critical
Publication of JP4705601B2 publication Critical patent/JP4705601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low-yield point steel for a damper as an energy absorbing device at a big earthquake and also to provide its manufacturing method. <P>SOLUTION: The steel has a composition containing 0.001 to 0.050% C, ≤0.80% Si, 0.1 to 2.0% Mn, ≤0.020% P, ≤0.015% S, Ti in an amount >4 times that of C and not larger than 0.30%,≤0.060% Al and ≤0.006% N and further containing, if necessary, one or more among Nb, V, B, Ni, Cu, Cr, Mo, Ca and REM each in a specific amount and also has a microstructure composed of ferrite single phase and shows no clear upper/lower yield point at a tensile test. A cast slab or steel slab, having the above components, is heated to 1,000 to 1,300°C and then subjected, after the completion of hot rolling at ≥900°C, to natural cooling or subjected, after hot rolling, to holding at 900 to 1,000°C for ≥10 min and then to natural cooling. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地震による建物への入力エネルギーを特定の部位に吸収させ、耐震性能を確保するためのエネルギー吸収デバイス(ダンパー)用鋼およびその製造方法に関するものである。なお、主に対象とする強度レベルは、降伏強さで150〜250MPa、引張強さで250〜450MPaの低強度・低降伏点鋼である。   The present invention relates to steel for an energy absorbing device (damper) for absorbing energy input to a building caused by an earthquake in a specific part and ensuring seismic performance, and a method for manufacturing the same. Note that the main strength level is a low strength / low yield point steel having a yield strength of 150 to 250 MPa and a tensile strength of 250 to 450 MPa.

従来より行われている建物の耐震設計は、大地震時に柱や梁の構造体が塑性化することによりエネルギーを吸収しようとするものであり、建築物の倒壊を防ぎ、人的被害の防止を大前提としながら、建設コストも比較的低く抑えることができる非常に合理的な設計法である。一方、近年の耐震設計技術の発展により、制振・免震構造の開発と実用化が進み、地震による建物への入力エネルギーを特定の部位(エネルギー吸収デバイス(ダンパー))に吸収させ、耐震性能を確保するとともに、主要構造である柱、梁の損傷を防止する設計技術が注目されている。   The conventional seismic design of buildings is designed to absorb energy by making the structures of columns and beams plastic during a large earthquake, preventing the collapse of buildings and preventing human damage. It is a very rational design method that can keep the construction cost relatively low while assuming the main premise. On the other hand, with the development of seismic design technology in recent years, the development and practical application of vibration control and seismic isolation structures have progressed, and the energy input to the building due to the earthquake is absorbed by a specific part (energy absorption device (damper)), and seismic performance Attention has been paid to design technology that prevents damage to the pillars and beams, which are the main structures.

このようなエネルギー吸収デバイス(ダンパー)用として、低降伏点鋼が利用されている。その原理は、通常の柱や梁の構造材よりも降伏点が低いことにより、地震時に早期に降伏し、地震による振動エネルギーを塑性エネルギーに変換することで振動応答を抑えるというものである。   For such an energy absorbing device (damper), low yield point steel is used. The principle is that the yield point is lower than that of a normal column or beam structural material, yielding at an early stage during an earthquake, and vibration response due to the earthquake is converted into plastic energy to suppress the vibration response.

低降伏点化を達成するためには、添加元素のほとんどない純鉄に近い成分の鋼とすること(例えば、特許文献1参照)や、場合によっては純鉄に近い成分をさらに高温で焼準処理する方法等(例えば、特許文献2、3参照)がある。これらはいずれも粗粒なフェライトにすることによる低降伏点化のため、低温靭性に劣るという欠点があった。また、いずれもC量を0.005%以下とする必要があり、製鋼工程への負荷が高く、添加元素はほとんどないにも関わらず、コスト的には必ずしも有利ではないという問題があった。   In order to achieve a low yield point, steel with a component close to pure iron with almost no added elements (see, for example, Patent Document 1), and in some cases, a component close to pure iron is normalized at a higher temperature. There are methods for processing (see, for example, Patent Documents 2 and 3). All of these have the disadvantage of being inferior in low-temperature toughness due to the low yield point by making coarse ferrite. In addition, in each case, the C amount needs to be 0.005% or less, and there is a problem that the load on the steelmaking process is high and there is almost no added element, but the cost is not necessarily advantageous.

これに対して、本発明者らは、先に、C量を必要以上に低減することなく炭化物形成元素を適正添加することで実質的なC量を低減した低降伏点鋼およびその製造方法を発明した(例えば、特許文献4、5参照)。ダンパー用鋼として特定部位で確実に塑性化させるには、降伏強さは狭レンジ制御が要求され、日本鉄鋼連盟規格になるLY225鋼では、降伏強度は205〜245MPaというそのレンジがわずか40MPaとされている。   On the other hand, the inventors of the present invention previously described a low yield point steel and a method for producing the same, in which a substantial amount of C is reduced by appropriately adding a carbide-forming element without reducing the amount of C more than necessary. Invented (see, for example, Patent Documents 4 and 5). Narrow range control is required for yield strength in order to ensure plasticization at a specific site as a steel for dampers. With LY225 steel, which is a standard of the Japan Iron and Steel Federation, the yield strength of 205 to 245 MPa is only 40 MPa. ing.

本発明者らの先の発明は、引張試験特に明瞭な降伏点を有するものであるが、そのような鋼材においては、鋼材そのものの材質ばらつきだけでなく、引張試験機の応答性、剛性などによっても降伏強さがばらつくこともあって、安定した狭レンジ制御の面では、必ずしも十分ではなかった。   The inventors' previous invention has a yield point that is particularly clear in tensile tests, but in such steel materials, not only the material variations of the steel materials themselves, but also the responsiveness, rigidity, etc. of the tensile tester. However, the yield strength varies, and it was not always sufficient in terms of stable narrow range control.

特開平3−31467号公報JP-A-3-31467 特開平5−214442号公報Japanese Patent Laid-Open No. 5-214442 特開平5−320760号公報JP-A-5-320760 特開平10−183293号公報JP-A-10-183293 特許第3411217号公報Japanese Patent No. 3411217

本発明は、C量を必要以上に低減することなく、C量に応じたTiの適正添加によってフェライト単相組織とするとともに引張試験時の上・下降伏点を消失させ、降伏強さのばらつきを抑えた低降伏点鋼およびその製造方法を提供することを目的とするものである。   The present invention eliminates the upper and lower yield points during a tensile test and eliminates the yield strength variation by properly adding Ti according to the amount of C without reducing the amount of C more than necessary. An object of the present invention is to provide a low-yield-point steel with reduced steel and a method for producing the same.

本発明者らは、上記課題を解決するため鋭意研究をおこなったところ、TiをC量に対し化学量論的にやや過剰添加することでIF(lnterstitial free)化し、引張試験時の降伏点を消失させることを見出し、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above-mentioned problems. As a result of adding Ti slightly stoichiometrically with respect to the C content, the inventors have made IF (interstitial free), and set the yield point during the tensile test. The present invention was completed by finding that it disappears.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

(1) 鋼組成が質量%で、
C:0.001%以上0.050%以下、
Si:0.80%以下、
Mn:0.1%以上2.0%以下、
P:0.020%以下、
S:0.015%以下、
Ti:C含有量の4倍超、かつ0.30%以下、
Al:0.060%以下、
N:0.006%以下
であり、残部が鉄および不可避的不純物からなり、鋼のミクロ組織がフェライト単相であって、かつ、引張試験時の応力−歪曲線において明瞭な上降伏点および下降伏点を有さないことを特徴とするダンパー用低降伏点鋼。
(1) Steel composition is mass%,
C: 0.001% to 0.050%,
Si: 0.80% or less,
Mn: 0.1% or more and 2.0% or less,
P: 0.020% or less,
S: 0.015% or less,
Ti: more than 4 times the C content and 0.30% or less,
Al: 0.060% or less,
N: 0.006% or less, the balance being iron and inevitable impurities, the microstructure of the steel being a ferrite single phase, and a clear upper yield point and lower in the stress-strain curve during a tensile test Low yield point steel for dampers, characterized by having no yield point.

(2) さらに質量%で、
Nb:0.01%以上0.10%以下、
V:0.01%以上0.10%以下
の範囲でいずれか一方または両方の元素が含有されていることを特徴とする上記(1)に記載のダンパー用低降伏点鋼。
(2) Furthermore, in mass%,
Nb: 0.01% or more and 0.10% or less,
V: The low yield point steel for a damper according to the above (1), wherein either one or both elements are contained in a range of 0.01% to 0.10%.

(3) さらに質量%で、
B:0.0002%以上0.0030%以下
の範囲で含有されていることを特徴とする上記(1)または(2)に記載のダンパー用低降伏点鋼。
(3) Furthermore, in mass%,
B: The low yield point steel for a damper according to the above (1) or (2), which is contained in a range of 0.0002% to 0.0030%.

(4) さらに質量%で、
Ni:0.05%以上0.50%以下、
Cu:0.05%以上0.50%以下、
Cr:0.05%以上0.50%以下、
Mo:0.05%以上0.50%以下
の範囲で1種または2種以上の元素が含有されていることを特徴とする上記(1)乃至(3)のいずれかに記載のダンパー用低降伏点鋼。
(4) Furthermore, in mass%,
Ni: 0.05% or more and 0.50% or less,
Cu: 0.05% or more and 0.50% or less,
Cr: 0.05% or more and 0.50% or less,
Mo: One or more elements in a range of 0.05% or more and 0.50% or less are contained, and the low for a damper according to any one of (1) to (3) above Yield point steel.

(5) さらに質量%で、
Ca:0.0005%以上0.004%以下、
REM:0.0005%以上0.008%以下
の範囲でいずれか1種または2種の元素が含有されていることを特徴とする上記(1)乃至(4)のいずれかに記載のダンパー用低降伏点鋼。
(5) Furthermore, in mass%,
Ca: 0.0005% or more and 0.004% or less,
REM: For dampers according to any one of (1) to (4) above, wherein any one or two elements are contained in a range of 0.0005% to 0.008%. Low yield point steel.

(6) 上記(1)〜(5)のいずれか1項に記載の鋼組成からなる鋳片または鋼片を、1000〜1300℃の温度に加熱し、900℃以上の温度で熱間圧延を終了し、その後放冷することにより、鋼のミクロ組織をフェライト単相とすることを特徴とするダンパー用低降伏点鋼の製造方法。   (6) The slab or steel slab comprising the steel composition described in any one of (1) to (5) above is heated to a temperature of 1000 to 1300 ° C, and hot rolling is performed at a temperature of 900 ° C or higher. The manufacturing method of the low yield point steel for dampers characterized by making the microstructure of steel into a ferrite single phase by finishing and cooling after that.

(7) 上記(1)〜(5)のいずれか1項に記載の鋼組成からなる鋳片または鋼片を熱間圧延後、900〜1000℃の温度に再加熱しその温度域に10分以上滞留させた後放冷することにより、鋼のミクロ組織をフェライト単相とすることを特徴とするダンパー用低降伏点鋼の製造方法。   (7) After hot rolling the slab or steel slab comprising the steel composition described in any one of the above (1) to (5), it is reheated to a temperature of 900 to 1000 ° C. A method for producing a low yield point steel for a damper, wherein the steel microstructure is made into a ferrite single phase by allowing it to cool after being retained for a long time.

本発明により、安定して低い降伏強さを有し、靭性にも優れるダンパー用低降伏点鋼を大量かつ安価に供給できるようになった。その結果、該鋼材をダンパー用として用いることで建築物の耐震性能が向上でき、安全性を一段と高めることが可能となった。   According to the present invention, a low yield point steel for a damper having a stable and low yield strength and excellent toughness can be supplied in a large amount and at a low cost. As a result, the use of the steel material for dampers can improve the earthquake resistance of the building and further enhance the safety.

本発明に係るダンパー用低降伏点鋼は、鋼組成が質量%で、
C:0.001%以上0.050%以下、
Si:0.80%以下、
Mn:0.1%以上2.0%以下、
P:0.020%以下、
S:0.015%以下、
Ti:C含有量の4倍超かつ0.30%以下、
Al:0.060%以下、
N:0.006%以下
であり、残部が鉄および不可避的不純物からなり、さらに必要に応じて特定量のNb、V、B、Ni、Cu、Cr、Mo、Ca、REMを1種又は2種以上を含有し、鋼のミクロ組織がフェライト単相であって、かつ、引張試験時の応力−歪曲線において明瞭な上降伏点および下降伏点を有さないことを特徴とするものである。
The low yield point steel for dampers according to the present invention has a steel composition of mass%,
C: 0.001% to 0.050%,
Si: 0.80% or less,
Mn: 0.1% or more and 2.0% or less,
P: 0.020% or less,
S: 0.015% or less,
Ti: more than 4 times the C content and 0.30% or less,
Al: 0.060% or less,
N: 0.006% or less, the balance is made of iron and inevitable impurities, and if necessary, a specific amount of Nb, V, B, Ni, Cu, Cr, Mo, Ca, REM is one or two It contains more than seeds, the microstructure of the steel is a ferrite single phase, and has no clear upper and lower yield points in the stress-strain curve during the tensile test. .

以下、鋼成分の限定理由およびに鋼のミクロ組織ならびに上降伏点および下降伏点について説明する。   Hereinafter, the reasons for limiting the steel components, the microstructure of the steel, and the upper and lower yield points will be described.

Cは、靭性を劣化させ、強度を上昇させるパーライトなどの硬質第二相の生成に大きな影響を及ぼすものであり、かつ、後述するように、Cを完全に固定しIF化するために添加するTi量の観点からも、本発明鋼においては低いほど好ましい。しかし、脱炭のための製鋼コストを考慮し、下限を0.001%とした。一方、その上限については、Cの完全固定によるIF化のためのTiの適正添加量が多くなり、コスト的にも、また溶接部の靭性の観点からも好ましくないため、上限を0.050%に限定した。   C has a great influence on the formation of a hard second phase such as pearlite, which deteriorates toughness and increases strength, and is added to completely fix C and convert to IF as described later. Also from the viewpoint of Ti amount, the lower the steel in the present invention, the better. However, considering the steelmaking cost for decarburization, the lower limit was made 0.001%. On the other hand, the upper limit is 0.050% because the appropriate addition amount of Ti for IF conversion by complete fixation of C is increased, which is not preferable from the viewpoint of cost and toughness of the welded portion. Limited to.

Siは、脱酸上から鋼に含まれる元素であるとともに固溶強化としても作用するため、必要とする強度に応じて適宜添加できる。しかし、多すぎる添加は、溶接性や溶接部靭性が劣化するため、上限を0.80%に限定した。鋼の脱酸はTi、Alのみでも十分可能であり、必ずしも添加する必要はない。   Since Si is an element contained in steel from the top of deoxidation and also acts as a solid solution strengthening, it can be appropriately added depending on the required strength. However, too much addition deteriorates weldability and weld toughness, so the upper limit was limited to 0.80%. Deoxidation of steel can be sufficiently performed only with Ti and Al, and it is not always necessary to add them.

Mnは、固溶強化元素として母材の強度を上昇させるため、必要とする強度レベルに応じて、任意に添加できる。ただし、本発明が対象とする降伏強さで150〜250MPa、引張強さで250〜400MPaを安定して確保するためには、最低限0.1%の添加が必要である。しかし、Mn量が多すぎると焼入性が必要以上に増大して溶接性、溶接部靭性を劣化させるだけでなく、連続鋳造スラブの中心偏析を助長するので、上限を2.0%とした。   Since Mn increases the strength of the base material as a solid solution strengthening element, it can be arbitrarily added depending on the required strength level. However, in order to stably secure the yield strength of 150 to 250 MPa and the tensile strength of 250 to 400 MPa that are the subject of the present invention, it is necessary to add at least 0.1%. However, if the amount of Mn is too large, not only the hardenability increases more than necessary and the weldability and weld toughness deteriorate, but also the center segregation of the continuously cast slab is promoted, so the upper limit was made 2.0%. .

Pは、本発明鋼においては不純物であり、P量の低減は溶接熱影響部における粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.020%とした。   P is an impurity in the steel of the present invention, and a reduction in the amount of P tends to reduce the grain boundary fracture in the weld heat affected zone, so the smaller the amount, the better. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.020%.

Sは、Pと同様本発明鋼においては不純物であり、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため、上限を0.015%とした。   S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.015%.

Tiは、本発明の最大の特徴ともいうべきもので、目的は鋼中Cの炭化物(または炭窒化物)として完全固定し、IF化することにある。Tiの炭化物TiCは、化学量論的に質量比(Ti/C)は約3.42であり、本発明においては、Tiの窒化物TiNとしてのTiの消費を考慮してもなお十分なC含有量の4倍超に限定した。絶対値としての上限0.30%は、C量の上限0.050%の場合でも0.20%超であればよいことを勘案し、合金コストの観点から限定したものである。したがって、必ずしも上限には限界的意味合いはない。   Ti should be said to be the greatest feature of the present invention, and the purpose is to completely fix it as a carbide (or carbonitride) of C in steel and to convert it to IF. The Ti carbide TiC has a stoichiometric mass ratio (Ti / C) of about 3.42, and in the present invention, even if considering the consumption of Ti as the Ti nitride TiN, C is still sufficient. It was limited to more than 4 times the content. The upper limit of 0.30% as an absolute value is limited from the viewpoint of the alloy cost in consideration of the fact that even if the upper limit of C amount is 0.050%, it may be more than 0.20%. Therefore, the upper limit is not necessarily limited.

Alは、一般に脱酸剤として用いられ鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない。しかし、Al量が多くなると鋼の清浄度が悪くなるだけでなく、溶接金属の靭性が劣化するので上限を0.060%とした。   Al is an element generally used as a deoxidizer and contained in steel, but Si or Ti is sufficient for deoxidation, and the lower limit is not limited in the steel of the present invention. However, when the amount of Al increases, not only the cleanliness of the steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit was made 0.060%.

Nは、不可避的不純物として鋼中に含まれるもので、下限は特に限定するものではない。多すぎると上述したC固定のためのTiを窒化物として消費する可能性が高まるため、上限を0.006%に限定した。   N is contained in steel as an inevitable impurity, and the lower limit is not particularly limited. If the amount is too large, the above-described possibility of consuming Ti for C fixation as a nitride increases, so the upper limit was limited to 0.006%.

また、本発明に係るダンパー用低降伏点鋼には、NbまたはVのいずれか一方または両方を添加してもよい。   Moreover, you may add any one or both of Nb or V to the low yield point steel for dampers which concerns on this invention.

NbおよびVは、Tiよりも炭化物形成能の低い元素で、Cを炭化物として固定する上ではTiの補完的意味合いを持つものである。Nb、Vの添加効果を確実に享受する上で、最低0.01%の添加が必要である一方、多すぎる添加は、溶接熱影響部の靭性を劣化させるため、上限を0.10%とした。   Nb and V are elements having a lower carbide forming ability than Ti, and have a complementary meaning to Ti in fixing C as a carbide. In order to surely enjoy the effect of addition of Nb and V, addition of at least 0.01% is necessary. On the other hand, too much addition deteriorates the toughness of the weld heat affected zone, so the upper limit is 0.10%. did.

また、本発明に係るダンパー用低降伏点鋼には、さらに、Bを添加しても良い。   Further, B may be further added to the low yield point steel for dampers according to the present invention.

Bは、フェライト粒界に偏析して粒界を強化し、粒界破壊を抑制する効果を有する。したがって、本発明のようなCをで固定するフェライト単相の低降伏点鋼においては、特に、粗粒かつ強度が低くなるほど有効に作用する。このようなBの効果は、本発明者らの実験によれば、0.0002%あればよく、必要以上に多く添加してもその効果は飽和する。このため、本発明においては、実験で確認した上限であり、かつ鋼材特性上ネガティブな影響が見られなかったことから、0.0002〜0.0030%の範囲に限定した、なお、建築用鋼として一般的な試験温度0℃では、結晶粒径が100μmを超えるような極端な粗粒でなければ、粒界破壊してもシャルピー吸収エネルギーの極端な低下が見られないため、必須元素ではなく必要に応じ選択的に添加するものであるが、本発明鋼においては、添加することが好ましい。   B segregates at the ferrite grain boundary, strengthens the grain boundary, and has an effect of suppressing grain boundary fracture. Therefore, the ferrite single-phase low yield point steel that fixes C as in the present invention works more effectively as the grain size and strength decrease. According to the experiments of the present inventors, such an effect of B may be 0.0002%, and the effect is saturated even if it is added more than necessary. For this reason, in this invention, since it is the upper limit confirmed by experiment and the negative influence was not seen on steel material characteristics, it limited to the range of 0.0002 to 0.0030%. As a general test temperature of 0 ° C., if the grain size is not extremely coarse so that the grain size exceeds 100 μm, the Charpy absorbed energy is not drastically reduced even if the grain boundary breaks, so it is not an essential element. Although it selectively adds as needed, in this invention steel, adding is preferable.

さらに、本発明に係るダンパー用低降伏点鋼には、Ni、Cu、Cr、Moのうちの1種または2種以上の元素を添加しても良い。   Further, one or more elements of Ni, Cu, Cr, and Mo may be added to the low yield point steel for dampers according to the present invention.

基本となる成分に、さらに必要に応じこれらの元素を添加する目的は、強度調整のためである。   The purpose of adding these elements to the basic components as needed is for strength adjustment.

後述するように、本発明鋼は、引張試験時の応力−歪曲線において明瞭な上降伏点および下降伏点を有さない。このようなケースでは、降伏強さとして、一般に0.2%オフセット耐力が取られるが、降伏点が消失すると、この見掛けの降伏強さ(0.2%オフセット耐力)は大きく低下する。本発明が対象とするダンパー用低降伏点鋼は、単に降伏強さが低いほど良いわけではなく、柱や梁の構造体よりも早期に確実に塑性化させるため、一般的な建築構造用鋼よりは低いものの、ある特定の降伏強さを有し、かつその狭レンジ制御が重要となる。したがって、Ni、Cu、Cr、Moの添加は、設計上要求される降伏強さに応じて、母材や溶接熱影響部靭性、あるいは合金コストなどを総合的に勘案し、適宜選択添加することになる。   As will be described later, the steel of the present invention does not have clear upper and lower yield points in the stress-strain curve during the tensile test. In such a case, 0.2% offset proof stress is generally taken as the yield strength, but when the yield point disappears, this apparent yield strength (0.2% offset proof strength) is greatly reduced. The low yield point steel for dampers targeted by the present invention is not necessarily better as the yield strength is lower, but it is a general steel for building structures in order to ensure plasticization earlier than the structure of columns and beams. Although it is lower, it has a certain yield strength and its narrow range control is important. Therefore, the addition of Ni, Cu, Cr, and Mo should be selected and added as appropriate in consideration of the base material, weld heat affected zone toughness, alloy costs, etc., depending on the yield strength required in the design. become.

Niは、過剰に添加しなければ、溶接性、溶接部の靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。ただし、Niといえども多すぎる添加は溶接性に好ましくなく、比較的高価な元素でもあるので、経済性なども考慮し、上限は0.50%に抑えた。   If Ni is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and the toughness of the welded portion. In order to exert these effects, addition of at least 0.05% is essential. However, even though Ni is too much added, it is not preferable for weldability and is also a relatively expensive element, so the upper limit was kept at 0.50% in consideration of economics.

Cuは、Niとほぼ同様の効果、現象を示し、上限の0.50%は溶接性の劣化に加え、Cu単独での過剰な添加は熱間圧延時にCu−クラックが発生し製造困難となるため規制される。下限は実質的な効果が得られるための最小量とすべきで0.05%である。   Cu exhibits substantially the same effects and phenomena as Ni, with an upper limit of 0.50% in addition to deterioration of weldability, and excessive addition of Cu alone causes Cu-cracks during hot rolling, making it difficult to manufacture. Therefore, it is regulated. The lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%.

Cr、Moは、母材の強度、靭性をともに向上させる。これらの効果を享受するため、添加する場合、それぞれ最低0.05%が必要である。しかし、添加量が多すぎると母材、溶接部靭性および溶接性の劣化を招き、経済性も失するためそれぞれ上限を0.50%とした。   Cr and Mo improve both the strength and toughness of the base material. In order to enjoy these effects, at least 0.05% of each is required when added. However, if the addition amount is too large, the base material, welded portion toughness and weldability are deteriorated, and economic efficiency is lost.

さらに、本発明に係るダンパー用低降伏点鋼には、CaまたはREM(希土類元素)のうちの1種または2種の元素を添加しても良い。   Further, one or two elements of Ca or REM (rare earth element) may be added to the low yield point steel for damper according to the present invention.

CaおよびREMは、MnSの形態を制御し、母材の低温靭性や板厚方向特性を向上させる。これらの効果を発揮するためには、それぞれ最低0.0005%必要である。しかし、多すぎる添加は、鋼の清浄度を逆に悪化させ、上述した特性向上効果が得られないばかりか、むしろ劣化させるため、添加量の上限はCa、REMそれぞれ0.004%、0.008%に限定した。CaとREMは、ほぼ同等の効果を有するため、いずれか1種を上記範囲で添加すればよく、2種を添加してもよい。   Ca and REM control the form of MnS and improve the low-temperature toughness and sheet thickness direction characteristics of the base material. In order to exert these effects, at least 0.0005% is required. However, too much addition adversely deteriorates the cleanliness of the steel, and not only the above-described property improvement effect is obtained, but rather deteriorates. Therefore, the upper limit of the addition amount is 0.004% for Ca and REM, respectively. Limited to 008%. Since Ca and REM have substantially the same effect, any one may be added in the above range, and two may be added.

次に、ミクロ組織および引張試験時の応力−歪曲線の限定理由について説明する。   Next, the reasons for limiting the microstructure and the stress-strain curve during the tensile test will be described.

ミクロ組織がフェライト単相であって、かつ、引張試験時の応力−歪曲線において明瞭な上降伏点および下降伏点を有さないとする規定は、鋼組成を上述してきた本発明の通りに調整すれば、その効果として必然的に得られるもので、いわば発明の効果と言えるものであるが、本発明の特徴を明確にするために敢えて限定するものである。   The provision that the microstructure is a single phase of ferrite and that there are no clear upper and lower yield points in the stress-strain curve during the tensile test is the same as that of the present invention described above. If adjusted, the effect is inevitably obtained, which can be said to be the effect of the invention, but is intentionally limited to clarify the characteristics of the present invention.

フェライト単相のミクロ組織は、低降伏点鋼という本発明のターゲットとする低強度化を達成するためには不可欠である。また、同時に、低強度化のための粗粒組織の下で優れた靭性を獲得するためには、破壊の起点となり得る硬質なセメンタイトを含む組織の存在は好ましくない。このため、本発明では、ミクロ組織をフェライト単相に限定した。   The microstructure of the ferrite single phase is indispensable for achieving the low strength that is the target of the present invention, that is, the low yield point steel. At the same time, in order to obtain excellent toughness under a coarse-grained structure for reducing strength, the presence of a structure containing hard cementite that can be a starting point of fracture is not preferable. For this reason, in the present invention, the microstructure is limited to the ferrite single phase.

一方、引張試験時の応力−歪曲線において、降伏点を消失させ、明瞭な上降伏点および下降伏点を有さないようにすることは、前述したように降伏強さを安定して狭レンジに制御するために必要である。ダンパー用低降伏点鋼においては、降伏強度の狭レンジ制御は商品価値を高めることにつながり、その達成手段として発明の重要な構成要素の一つと考え、本発明の通り限定するものである。   On the other hand, in the stress-strain curve during the tensile test, eliminating the yield point and not having clear upper and lower yield points stabilizes the yield strength in a narrow range as described above. Is necessary to control. In low yield point steel for dampers, narrow range control of yield strength leads to an increase in commercial value, and it is considered as one of the important components of the invention as a means for achieving it, and is limited according to the present invention.

このようなダンパー用低降伏点鋼を安定して得るためには、本発明の通り製造条件を限定することがきわめて有効である。   In order to stably obtain such a low yield point steel for a damper, it is extremely effective to limit the production conditions as in the present invention.

以下、その理由について説明する。   The reason will be described below.

通常、厚鋼板においては、組織の微細化による強靭化が一般的な方向性であるが、本発明が対象とする低降伏点鋼は、むしろ逆の方向であり、加熱温度は高くてもよい。上限は、加熱炉側からの制約の方がむしろ大きく、工業生産的な観点に加え、高すぎる加熱温度は、鋳片または鋼片の表面性状、引いては圧延後の表面性状を損なう恐れも増大するため、上限を1300℃に限定した。下限温度は、後述する圧延温度確保の観点や最終組織が必要以上に微細化し、強度が過剰となるのを避けるとともに、圧延能率の観点から1000℃とした。工業的な大量生産の上では、加熱温度範囲として1100〜1200℃程度が好ましい。   Usually, in thick steel plates, toughening by refining the structure is a general direction, but the low yield point steel targeted by the present invention is rather the opposite direction, and the heating temperature may be high. . The upper limit is rather greater from the furnace side. In addition to the industrial production viewpoint, too high a heating temperature may damage the surface properties of the slab or steel slab, and thus the surface properties after rolling. In order to increase, the upper limit was limited to 1300 ° C. The lower limit temperature was set to 1000 ° C. from the viewpoint of securing the rolling temperature, which will be described later, and the final structure was refined more than necessary to prevent the strength from becoming excessive, and from the viewpoint of rolling efficiency. In terms of industrial mass production, the heating temperature range is preferably about 1100 to 1200 ° C.

前記温度範囲に加熱された鋳片または鋼片は、900℃以上で熱間圧延を終了した後、放冷する必要がある。圧延終了温度が900℃を下回ると、圧延組織が細粒化し、結果として最終的な変態組織も細粒となって、強度が上昇する可能性が高まる。また、900℃以上で熱間圧延を終了しても、その後の冷却を放冷より高めた場合、変態温度が低下し、最終的な変態組織が細粒となって、強度が上昇する可能性が高まる。このため、900℃以上で熱間圧延を終了した後、放冷することに限定した。   The slab or steel slab heated to the temperature range needs to be allowed to cool after hot rolling is finished at 900 ° C. or higher. When the rolling end temperature is lower than 900 ° C., the rolled structure becomes finer, and as a result, the final transformed structure also becomes finer, increasing the possibility of increasing the strength. In addition, even if hot rolling is finished at 900 ° C. or higher, if the subsequent cooling is higher than that of cooling, the transformation temperature may decrease, the final transformation structure may become fine particles, and the strength may increase. Will increase. For this reason, after finishing hot rolling at 900 degreeC or more, it limited to standing to cool.

また、圧延後、900〜1000℃の温度範囲に再加熱することは、熱間圧延やその後の冷却時の変態によって導入される歪・転位を回復させる効果を有し、圧延温度や板厚によっては、低降伏点鋼としてより好ましい。その再加熱の効果を確実に享受するため、前記温度域に10分以上滞留する必要があり、冷却時に再び歪・転位が導入されるのを防ぐため再加熱処理後は放冷でなければならない。なお、再加熱処理が上記効果を有するため、再加熱処理を施す場合、それに先立つ鋼片または鋳片の加熱温度範囲は、熱間圧延後放冷して製造する場合に対して緩和してもよいが、上限は前述した表面性状、下限は圧延能率の観点から、同等に規制することが好ましい。   In addition, after rolling, reheating to a temperature range of 900 to 1000 ° C. has an effect of recovering strain and dislocation introduced by transformation during hot rolling and subsequent cooling, depending on the rolling temperature and thickness. Is more preferred as a low yield point steel. In order to reliably enjoy the effect of the reheating, it is necessary to stay in the temperature range for 10 minutes or more. In order to prevent the introduction of strain and dislocation during cooling, it must be allowed to cool after the reheating treatment. . In addition, since reheating treatment has the above-mentioned effect, when reheating treatment is performed, the heating temperature range of the steel slab or slab prior to the reheating treatment may be relaxed compared to the case where it is allowed to cool and manufacture after hot rolling. Although the upper limit is preferably the surface properties described above, the lower limit is preferably regulated equally from the viewpoint of rolling efficiency.

また、圧延温度は900℃を下回っても、また圧延後の冷却は放冷でなくても良い。圧延の下限温度は特に限定するものではないが、再加熱処理で回復させるべき歪・転位が、圧延で必要以上に導入されないよう概ね800℃を下回らないことが好ましい、また、同様の理由から、圧延後の冷却は放冷が好ましいことは言うまでもない。   Moreover, even if rolling temperature is less than 900 degreeC, the cooling after rolling does not need to be allowed to cool. Although the lower limit temperature of rolling is not particularly limited, it is preferable that the strain / dislocation to be recovered by reheating treatment is preferably not less than 800 ° C. so as not to be introduced more than necessary in rolling, and for the same reason, Needless to say, the cooling after rolling is preferably allowed to cool.

転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ6〜50mm)を製造し、その機械的性質(強度、靭性)を調査した。   Steel sheets of various steel components (thickness 6 to 50 mm) were produced by the converter-continuous casting-thick plate process, and the mechanical properties (strength and toughness) were investigated.

表1に比較鋼とともに本発明鋼の鋼成分を、表2に鋼板の製造条件と機械的性質を示す。   Table 1 shows the steel components of the steel of the present invention together with the comparative steel, and Table 2 shows the production conditions and mechanical properties of the steel sheet.

本発明法に則って製造した鋼板(本発明鋼)は、すべて良好な特性を有する。これに対し、本発明によらない比軟鋼は、低降伏点鋼としての強度(降伏強度)が適正でなかったり、靭性が劣っている。   All the steel plates manufactured in accordance with the method of the present invention (present invention steel) have good characteristics. On the other hand, the specific mild steel not according to the present invention has an inadequate strength (yield strength) as a low yield point steel or is inferior in toughness.

比較鋼13は、C量が高く、C固定のためのTi量が不足(C量の4倍以下)するため、降伏点が現われて降伏強度が高くなり、またパーライト組織が生成するために靭性にも劣る。比較鋼14は、C、Ti量それぞれ単独では本発明範囲内にあるものの、C量に対してTi量が低い(C量の4倍以下)ため、降伏点が現われるとともに、セメンタイトを含む組織が生成するために靭性に劣る。降伏点が現われた本比較例では、降伏強度そのものは低いが、同一鋼板から採取した試験片による引張試験において、上降伏点並びに下降伏点のばらつきが大きいことを確認している。比較鋼15はP量が、比較鋼16はS量が高いため、靭性が劣る。また、比較鋼17、18は、それぞれSi、Mnが高いため、強度がやや高めであると同時に、溶接熱影響部を模擬した再現熱サイクル付与後の靭性が劣ることを確認している。   Since the comparative steel 13 has a high C amount and a Ti amount for fixing C is insufficient (four times or less than the C amount), the yield point appears and the yield strength becomes high, and the pearlite structure is generated and the toughness is generated. Also inferior. Although the comparative steel 14 is within the scope of the present invention when each of the C and Ti amounts is alone, the Ti amount is lower than the C amount (four times or less the C amount), so that the yield point appears and the structure containing cementite is present. Inferior toughness to produce. In this comparative example in which the yield point appeared, although the yield strength itself was low, it was confirmed that the variation in the upper yield point and the lower yield point was large in the tensile test using test pieces taken from the same steel plate. Since the comparative steel 15 has a high P content and the comparative steel 16 has a high S content, the toughness is inferior. Moreover, since the comparative steels 17 and 18 have high Si and Mn, respectively, it has been confirmed that the strength is slightly high, and at the same time, the toughness after applying the reproducible thermal cycle simulating the weld heat affected zone is confirmed.

一方、比較鋼19〜22は、本発明の鋼組成範囲を満足する本発明鋼5と同一成分ながら、製造方法が本発明範囲を逸脱するため、特性が劣っている。すなわち、比較鋼19は加熱温度が低く、この結果圧延温度が確保できず圧延終了温度も低いこと、比較鋼12は圧延終了温度が低いこと、比較鋼21は圧延後加速冷却されていることから、組織が細粒となって強度が高い。また、比較鋼22は、圧延終了温度が低いことも要因であるが、その後の再加熱温度が低いため、歪・転位の回復が不十分で、強度が高く、靭性にも劣る。   On the other hand, the comparative steels 19 to 22 have the same components as the steel 5 of the present invention that satisfies the steel composition range of the present invention, but the manufacturing method deviates from the scope of the present invention, so the characteristics are inferior. That is, the comparative steel 19 has a low heating temperature. As a result, the rolling temperature cannot be secured and the rolling end temperature is low, the comparative steel 12 has a low rolling end temperature, and the comparative steel 21 is accelerated and cooled after rolling. The structure becomes fine and the strength is high. The comparative steel 22 is also caused by a low rolling end temperature, but since the subsequent reheating temperature is low, the recovery of strain and dislocation is insufficient, the strength is high, and the toughness is inferior.

以上の実施例から、本発明によれば低い降伏強さを有し、靭性にも優れるダンパー用低降伏点鋼が得られることが分かる。   From the above examples, it can be seen that according to the present invention, a low yield point steel for a damper having low yield strength and excellent toughness can be obtained.

Figure 2008248290
Figure 2008248290

Figure 2008248290
Figure 2008248290

Claims (7)

鋼組成が質量%で、
C:0.001%以上0.050%以下、
Si:0.80%以下、
Mn:0.1%以上2.0%以下、
P:0.020%以下、
S:0.015%以下、
Ti:C含有量の4倍超、かつ0.30%以下、
Al:0.060%以下、
N:0.006%以下
であり、残部が鉄および不可避的不純物からなり、鋼のミクロ組織がフェライト単相であって、かつ、引張試験時の応力−歪曲線において明瞭な上降伏点および下降伏点を有さないことを特徴とするダンパー用低降伏点鋼。
Steel composition is mass%,
C: 0.001% to 0.050%,
Si: 0.80% or less,
Mn: 0.1% or more and 2.0% or less,
P: 0.020% or less,
S: 0.015% or less,
Ti: more than 4 times the C content and 0.30% or less,
Al: 0.060% or less,
N: 0.006% or less, the balance being iron and inevitable impurities, the microstructure of the steel being a ferrite single phase, and a clear upper yield point and lower in the stress-strain curve during a tensile test Low yield point steel for dampers, characterized by having no yield point.
さらに質量%で、
Nb:0.01%以上0.10%以下、
V:0.01%以上0.10%以下
の範囲でいずれか一方または両方の元素が含有されていることを特徴とする請求項1に記載のダンパー用低降伏点鋼。
In addition,
Nb: 0.01% or more and 0.10% or less,
The low yield point steel for a damper according to claim 1, wherein either one or both elements are contained in a range of V: 0.01% or more and 0.10% or less.
さらに質量%で、
B:0.0002%以上0.0030%以下
の範囲で含有されていることを特徴とする請求項1または2に記載のダンパー用低降伏点鋼。
In addition,
B: Low yield point steel for dampers according to claim 1 or 2, characterized in that it is contained in a range of 0.0002% to 0.0030%.
さらに質量%で、
Ni:0.05%以上0.50%以下、
Cu:0.05%以上0.50%以下、
Cr:0.05%以上0.50%以下、
Mo:0.05%以上0.50%以下
の範囲で1種または2種以上の元素が含有されていることを特徴とする請求項1ないし請求項3のいずれかに記載のダンパー用低降伏点鋼。
In addition,
Ni: 0.05% or more and 0.50% or less,
Cu: 0.05% or more and 0.50% or less,
Cr: 0.05% or more and 0.50% or less,
The low yield for a damper according to any one of claims 1 to 3, wherein one or more elements are contained within a range of Mo: 0.05% to 0.50%. Spot steel.
さらに質量%で、
Ca:0.0005%以上0.004%以下、
REM:0.0005%以上0.008%以下
の範囲でいずれか1種または2種の元素が含有されていることを特徴とする請求項1ないし請求項4のいずれかに記載のダンパー用低降伏点鋼。
In addition,
Ca: 0.0005% or more and 0.004% or less,
REM: Any one or two elements are contained in the range of 0.0005% or more and 0.008% or less, and the low for dampers according to any one of claims 1 to 4 Yield point steel.
請求項1〜5のいずれか1項に記載の鋼組成からなる鋳片または鋼片を、1000〜1300℃の温度に加熱し、900℃以上の温度で熱間圧延を終了し、その後放冷することにより、鋼のミクロ組織をフェライト単相とすることを特徴とするダンパー用低降伏点鋼の製造方法。   The slab or steel slab comprising the steel composition according to any one of claims 1 to 5 is heated to a temperature of 1000 to 1300 ° C, the hot rolling is finished at a temperature of 900 ° C or higher, and then allowed to cool. A method for producing a low yield point steel for a damper, characterized in that the microstructure of the steel is a ferrite single phase. 請求項1〜5のいずれか1項に記載の鋼組成からなる鋳片または鋼片を熱間圧延後、900〜1000℃の温度に再加熱しその温度域に10分以上滞留させた後放冷することにより、鋼のミクロ組織をフェライト単相とすることを特徴とするダンパー用低降伏点鋼の製造方法。   A slab or steel slab comprising the steel composition according to any one of claims 1 to 5 is hot-rolled and then reheated to a temperature of 900 to 1000 ° C and retained in the temperature range for 10 minutes or more. A method for producing a low yield point steel for a damper, wherein the microstructure of the steel is changed to a ferrite single phase by cooling.
JP2007089748A 2007-03-29 2007-03-29 Low yield point steel for dampers with excellent toughness and method for producing the same Expired - Fee Related JP4705601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089748A JP4705601B2 (en) 2007-03-29 2007-03-29 Low yield point steel for dampers with excellent toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089748A JP4705601B2 (en) 2007-03-29 2007-03-29 Low yield point steel for dampers with excellent toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008248290A true JP2008248290A (en) 2008-10-16
JP4705601B2 JP4705601B2 (en) 2011-06-22

Family

ID=39973586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089748A Expired - Fee Related JP4705601B2 (en) 2007-03-29 2007-03-29 Low yield point steel for dampers with excellent toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4705601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492725A (en) * 2017-12-22 2020-08-04 株式会社Posco Steel sheet for shielding magnetic field and method for manufacturing the same
KR102255829B1 (en) * 2019-12-16 2021-05-25 주식회사 포스코 Steel sheet for seismic damper having superior toughness property and manufacturing method of the same
CN113564458A (en) * 2021-06-28 2021-10-29 唐山钢铁集团有限责任公司 Low-yield-strength fire-resistant anti-seismic building steel and production method thereof
CN113930664A (en) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 High-purity battery case steel and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214442A (en) * 1991-12-11 1993-08-24 Nippon Steel Corp Production of structural steel reduced in yield strength and increased in elongation
JPH10245626A (en) * 1997-03-07 1998-09-14 Nippon Steel Corp Production of low yield point steel excellent in toughness
JPH10298644A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp Production of steel with low yield point, excellent in toughness
JPH1112650A (en) * 1997-06-26 1999-01-19 Nippon Steel Corp Production of steel with low yield point, excellent in toughness
JPH11229076A (en) * 1998-02-09 1999-08-24 Nippon Steel Corp Steel with low yield point excellent in toughness
JP2000109953A (en) * 1998-10-05 2000-04-18 Nippon Steel Corp Low yield point steel for damping device
JP2004285437A (en) * 2003-03-24 2004-10-14 National Institute For Materials Science Superfine-grained steel exhibiting no upper/lower yield phenomenon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214442A (en) * 1991-12-11 1993-08-24 Nippon Steel Corp Production of structural steel reduced in yield strength and increased in elongation
JPH10245626A (en) * 1997-03-07 1998-09-14 Nippon Steel Corp Production of low yield point steel excellent in toughness
JPH10298644A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp Production of steel with low yield point, excellent in toughness
JPH1112650A (en) * 1997-06-26 1999-01-19 Nippon Steel Corp Production of steel with low yield point, excellent in toughness
JPH11229076A (en) * 1998-02-09 1999-08-24 Nippon Steel Corp Steel with low yield point excellent in toughness
JP2000109953A (en) * 1998-10-05 2000-04-18 Nippon Steel Corp Low yield point steel for damping device
JP2004285437A (en) * 2003-03-24 2004-10-14 National Institute For Materials Science Superfine-grained steel exhibiting no upper/lower yield phenomenon

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492725A (en) * 2017-12-22 2020-08-04 株式会社Posco Steel sheet for shielding magnetic field and method for manufacturing the same
US20200318215A1 (en) * 2017-12-22 2020-10-08 Posco Steel sheet for shielding magnetic field and method for manufacturing same
CN111492725B (en) * 2017-12-22 2023-09-19 浦项股份有限公司 Steel sheet for shielding magnetic field and method for manufacturing same
KR102255829B1 (en) * 2019-12-16 2021-05-25 주식회사 포스코 Steel sheet for seismic damper having superior toughness property and manufacturing method of the same
CN113930664A (en) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 High-purity battery case steel and manufacturing method thereof
CN113564458A (en) * 2021-06-28 2021-10-29 唐山钢铁集团有限责任公司 Low-yield-strength fire-resistant anti-seismic building steel and production method thereof
CN113564458B (en) * 2021-06-28 2022-08-09 唐山钢铁集团有限责任公司 Low-yield-strength fire-resistant anti-seismic building steel and production method thereof

Also Published As

Publication number Publication date
JP4705601B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4572002B1 (en) Steel sheet for line pipe having good strength and ductility and method for producing the same
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
JP5521712B2 (en) Ni-containing steel for low temperature excellent in strength, low temperature toughness and brittle crack propagation stopping characteristics, and method for producing the same
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP5655351B2 (en) Method for producing 9% Ni steel excellent in strength and low temperature toughness
JP4705508B2 (en) Low yield point steel for damper and manufacturing method thereof
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
JP2019524987A (en) High strength steel sheet excellent in low yield ratio characteristics and low temperature toughness and method for producing the same
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP4705601B2 (en) Low yield point steel for dampers with excellent toughness and method for producing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2020506293A (en) Thick steel plate with low yield ratio and high strength and high toughness and method for producing the same
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP6394378B2 (en) Abrasion resistant steel plate and method for producing the same
CN111225987A (en) Thick steel sheet having excellent low-temperature strain aging impact characteristics and method for producing same
WO2010119989A1 (en) MASS PRODUCED 780 MPa GRADE HIGH TENSION STEEL SHEET HAVING EXCELLENT LOW-TEMPERATURE TOUGHNESS AND METHOD FOR PRODUCING THE SAME
JP4715473B2 (en) Low yield point thick steel plate excellent in low temperature toughness and ductility and its manufacturing method
JP2006233328A (en) Method for producing low yield point thick steel plate having excellent low temperature toughness
JP4331971B2 (en) Method for producing 225 MPa and 235 MPa class low yield point steels excellent in toughness and material stability
JP6455533B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R151 Written notification of patent or utility model registration

Ref document number: 4705601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees