JP2008247857A - Aromatic sulfonic acid ester and sulfonated polyarylene polymer - Google Patents

Aromatic sulfonic acid ester and sulfonated polyarylene polymer Download PDF

Info

Publication number
JP2008247857A
JP2008247857A JP2007093759A JP2007093759A JP2008247857A JP 2008247857 A JP2008247857 A JP 2008247857A JP 2007093759 A JP2007093759 A JP 2007093759A JP 2007093759 A JP2007093759 A JP 2007093759A JP 2008247857 A JP2008247857 A JP 2008247857A
Authority
JP
Japan
Prior art keywords
group
integer
atom
polymer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093759A
Other languages
Japanese (ja)
Other versions
JP4985041B2 (en
Inventor
Kohei Goto
幸平 後藤
Yoshitaka Yamakawa
芳孝 山川
Shingo Takasugi
晋吾 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007093759A priority Critical patent/JP4985041B2/en
Publication of JP2008247857A publication Critical patent/JP2008247857A/en
Application granted granted Critical
Publication of JP4985041B2 publication Critical patent/JP4985041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new aromatic sulfonic acid ester and a sulfonated polyarylene polymer, imparting high proton conductivity and enabling designing a material with suppressed swelling even under high temperature and humidified conditions. <P>SOLUTION: The new aromatic sulfonic acid ester derivative is provided, being represented by general formula (1). In general formula (1), X is an atom or a group selected from the group consisting of a halogen atom except fluorine (i.e. chlorine, bromine or iodine), -OSO<SB>2</SB>CH<SB>3</SB>and -OSO<SB>2</SB>CF<SB>3</SB>; Y is -CO- or -SO<SB>2</SB>-; Z is a direct bond, -CO-, -SO<SB>2</SB>- or -SO-; n is an integer of 2-5; and R is a 4-20C hydrocarbon group. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規な芳香族スルホン酸エステルおよびスルホン化ポリアリーレン系重合体に関する。   The present invention relates to a novel aromatic sulfonate ester and a sulfonated polyarylene polymer.

高分子電解質は、高分子鎖中にスルホン酸基などのプロトン酸基を有する高分子材料であり、特定のイオンと強固に結合したり、陽イオンまたは陰イオンを選択的に透過する性質を有していることから、粒子、繊維または膜状に成形されて各種の用途に利用されている。   A polyelectrolyte is a polymer material having a protonic acid group such as a sulfonic acid group in a polymer chain, and has a property of firmly binding to a specific ion or selectively transmitting a cation or an anion. Therefore, it is formed into particles, fibers or films and used for various applications.

たとえば、固体高分子型燃料電池は、プロトン伝導性を有する高分子電解質膜(プロトン伝導膜)の両面に一対の電極を設け、改質ガス等の水素を含む燃料ガスを一方の電極(燃料極)へ供給し、空気等の酸素を含む酸化剤ガスを他方の電極(空気極)へ供給し、燃料が酸化する際に発生する化学エネルギーを、直接電気エネルギーとして取り出す電池である。   For example, in a polymer electrolyte fuel cell, a pair of electrodes is provided on both sides of a proton conductive polymer electrolyte membrane (proton conductive membrane), and a fuel gas containing hydrogen such as a reformed gas is supplied to one electrode (fuel electrode). ), An oxidant gas containing oxygen such as air is supplied to the other electrode (air electrode), and chemical energy generated when the fuel is oxidized is directly taken out as electric energy.

固体高分子型燃料電池は、電池の作動温度が高くなるほど、発電効率が高くなることが知られている。また、プロトン伝導膜の両面に接合される電極には、白金系の電極触媒が含まれているが、白金は微量の一酸化炭素であっても被毒され、燃料電池の出力を低下させる原因となる。しかも、白金系電極触媒の一酸化炭素による被毒は、低温ほど著しくなることが知られている。そのため、微量の一酸化炭素を含むメタノール改質ガスなどを燃料ガスとして用いる固体高分子型燃料電池においては、発電効率を向上させるとともに、電極触媒の一酸化炭素による被毒を低減するために、作動温度を高くすることが望まれている。また、高分子電解質膜は、発電時にプロトン伝導性能を発現させるため、膜中の水分が重要であるが、そのため一般に十分に加湿した燃料ガスが用いられている。   It is known that solid polymer fuel cells have higher power generation efficiency as the operating temperature of the cells increases. In addition, the electrode bonded to both surfaces of the proton conducting membrane contains a platinum-based electrocatalyst. However, even if a minute amount of carbon monoxide is platinum, it is poisoned and causes a decrease in the output of the fuel cell. It becomes. Moreover, it is known that the poisoning of the platinum-based electrode catalyst by carbon monoxide becomes more remarkable at lower temperatures. Therefore, in a polymer electrolyte fuel cell using methanol reformed gas containing a small amount of carbon monoxide as a fuel gas, in order to improve power generation efficiency and reduce poisoning due to carbon monoxide of the electrode catalyst, It is desirable to increase the operating temperature. In addition, in the polymer electrolyte membrane, moisture in the membrane is important in order to develop proton conduction performance at the time of power generation. For this reason, a sufficiently humidified fuel gas is generally used.

しかしながら、高温加湿条件下での使用では、高分子電解質の寸法変化などの問題、また、プロトン伝導性を有する高分子電解質として知られるナフィオン(登録商標、デュポン社製)に代表されるパーフルオロ系電解質は、非架橋であることから耐熱性が低いため、高温で使用できないといった問題がある。   However, when used under high-temperature humidification conditions, problems such as dimensional change of the polymer electrolyte, and perfluoro-based materials represented by Nafion (registered trademark, manufactured by DuPont), known as a polymer electrolyte having proton conductivity Since the electrolyte is non-crosslinked and has low heat resistance, there is a problem that it cannot be used at high temperatures.

一方、高温耐久性改善のために、芳香族ポリアリーレンエーテルケトン類や芳香族ポリアリーレンエーテルスルホン類などの炭化水素系ポリマーに、スルホン酸基などを導入した高分子電解質も研究されている(たとえば、特許文献1、非特許文献1〜3)。
米国特許第5,403,675号公報 Polymer Preprints,Japan,Vol.42,No.3,p.730 (1993) Polymer Preprints,Japan,Vol.42,No.7,p.2490〜2492 (1993) Polymer Preprints,Japan,Vol.43,No.3,p.735〜736 (1994)
On the other hand, in order to improve high-temperature durability, polymer electrolytes in which sulfonic acid groups are introduced into hydrocarbon polymers such as aromatic polyarylene ether ketones and aromatic polyarylene ether sulfones have been studied (for example, Patent Document 1, Non-Patent Documents 1 to 3).
US Pat. No. 5,403,675 Polymer Preprints, Japan, Vol.42, No.3, p.730 (1993) Polymer Preprints, Japan, Vol.42, No.7, p.2490-2492 (1993) Polymer Preprints, Japan, Vol.43, No.3, p.735-736 (1994)

しかしながら、一般にこれらの高分子電解質は、高温加湿条件下での吸水率および膨潤が大きく、寸法安定性に優れないという問題点がある。また、膨潤抑制のためにスルホン酸濃度を下げるとプロトン伝導度が著しく低下してしまう。さらに、高温条件下で使用し続けるとスルホン酸基が脱離または分解してしまうため、耐久性が低いという問題も存在する。   However, in general, these polymer electrolytes have a problem in that they have a large water absorption rate and swelling under high temperature humidification conditions and are not excellent in dimensional stability. Further, when the sulfonic acid concentration is lowered to suppress swelling, the proton conductivity is remarkably lowered. Furthermore, since the sulfonic acid group is eliminated or decomposed when it is continuously used under a high temperature condition, there is a problem that the durability is low.

上記の様な問題点があることに加え、燃料ガスを加湿するという煩雑なシステムが必要とされる点から、燃料電池システムの効率化のために高温低加湿での作動も求められている。しかし、電解質膜は、高温低加湿環境においては、逆に膜の保水性が低下し、やはりプロトン伝導度が低下してしまうという問題点もある。   In addition to the above-mentioned problems, a complicated system for humidifying the fuel gas is required, so that operation at high temperature and low humidity is also required to improve the efficiency of the fuel cell system. However, the electrolyte membrane also has a problem that, in a high temperature and low humidity environment, the water retention of the membrane is lowered, and the proton conductivity is also lowered.

すなわち、本発明の課題は、スルホン酸基の導入量を増加して高い電気的性質を付与でき、高温加湿条件下でも優れた膨潤抑制効果を有し、かつ高温低加湿条件下でも優れた電気的性質を有した膜を与えることができるスルホン化ポリマーおよびその原料である、芳香族スルホン酸エステル誘導体を提供することにある。   That is, the object of the present invention is to increase the amount of sulfonic acid groups introduced and to impart high electrical properties, to have an excellent swelling suppression effect even under high-temperature humidification conditions, and excellent electricity under high-temperature and low-humidification conditions. It is an object of the present invention to provide a sulfonated polymer that can provide a membrane having specific properties and an aromatic sulfonate derivative that is a raw material thereof.

本発明者らは、上記の問題点を解決すべく、鋭意研究した。その結果、特定の構成単位を有する、スルホン化ポリアリーレンによって、上記課題を解決できることを見出し、本発明を完成させるに至った。   The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above problems can be solved by a sulfonated polyarylene having a specific structural unit, and the present invention has been completed.

本発明の態様は、以下[1]〜[5]に示される。
[1]下記一般式(1)で表されることを特徴とする芳香族スルホン酸エステル誘導体。
Embodiments of the present invention are shown in [1] to [5] below.
[1] An aromatic sulfonic acid ester derivative represented by the following general formula (1):

Figure 2008247857
Figure 2008247857

[式(1)中、Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2CH3および−OSO2CF3からなる群より選ばれる原子または基を示し、Yは−CO−または−S
2−を示す。Zは直接結合または−CO−または−SO2−または−SO−を示し、nは
2〜5の整数を示す。Rは独立に炭素数4〜20の炭化水素基を示す。
[2]下記一般式(1’)で表される構成単位を有することを特徴とするポリアリーレン系重
合体。
[In the formula (1), X a halogen atom except fluorine (chlorine, bromine, iodine), - indicates OSO 2 CH 3 and atom or a group selected from the group consisting of -OSO 2 CF 3, Y is -CO- Or -S
O 2 − is shown. Z represents a direct bond or —CO— or —SO 2 — or —SO—, and n represents an integer of 2 to 5. R independently represents a hydrocarbon group having 4 to 20 carbon atoms.
[2] A polyarylene polymer having a structural unit represented by the following general formula (1 ′).

Figure 2008247857
Figure 2008247857

[式(1’)中、Yは−CO−または−SO2−を示す。Zは直接結合または−CO−または
−SO2−または−SO−を示す。nは2〜5の整数を示す。
[3]さらに、一般式(2)で表される構成単位を有する[2]のポリアリーレン系共重合体。
[In the formula (1 ′), Y represents —CO— or —SO 2 —. Z represents a direct bond or —CO— or —SO 2 — or —SO—. n shows the integer of 2-5.
[3] The polyarylene copolymer of [2] further having a structural unit represented by the general formula (2).

Figure 2008247857
Figure 2008247857

[式(2)中、A、Dはそれぞれ独立に直接結合、−O−、−S−、−CO−、−SO2
、−SO−、−CONH−、−COO−、−(CF2)i−(iは1〜10の整数である)、−(CH2)j−(jは1〜10の整数である)、−CR’’2−(R’’は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子を示し、R1〜R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基およびニトリル基からなる群より選ばれる少なくとも1種の原子または基を示し、sおよびtはそれぞれ独立に0〜4の整数を示し、rは0または1以上の整数を示す。]
[4]上記一般式(1’)が下記一般式(1’a)で表される構成単位である[2]または[3]のポ
リアリーレン系共重合体。
[In the formula (2), A and D are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —.
, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10) , —CR ″ 2 — (R ″ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a halogenated hydrocarbon group), a cyclohexylidene group, or a fluorenylidene group. Wherein B independently represents an oxygen atom or a sulfur atom, R 1 to R 16 may be the same or different from each other, and a hydrogen atom, a fluorine atom, an alkyl group, or a part or all of them are halogenated. And at least one atom or group selected from the group consisting of a halogenated alkyl group, an allyl group, an aryl group, a nitro group and a nitrile group, s and t each independently represent an integer of 0 to 4, and r is 0 or an integer of 1 or more is shown. ]
[4] The polyarylene copolymer of [2] or [3], wherein the general formula (1 ′) is a structural unit represented by the following general formula (1′a).

Figure 2008247857
Figure 2008247857

[式(1’a)中、Zは直接結合または−CO−または−SO2−または−SO−を示す。n
は2〜5の整数を示す。]
[5][3]および[4]のポリアリーレン系共重合体を含む固体高分子電解質膜。
[In the formula (1′a), Z represents a direct bond, —CO—, —SO 2 — or —SO—. n
Represents an integer of 2 to 5. ]
[5] A solid polymer electrolyte membrane comprising the polyarylene copolymer of [3] and [4].

本発明によれば、複数のスルホン酸エステル基を位置選択的に、特定の芳香環に導入した芳香族化合物、該化合物から誘導される複数のスルホン酸基を側鎖の末端部にのみ有する芳香族ユニットと、スルホン酸基を有さないユニットとを有する共重合体を提供することができる。本発明の複数のスルホン酸基を側鎖の末端部にのみ有する芳香族ユニットの効果により、スルホン酸基を有さない芳香族ユニットとの共重合体中においても、複数のスルホン酸基を側鎖の末端部にのみ有する芳香族ユニットの主鎖部分の疎水性が十分に発揮される。このため、高いスルホン酸濃度の共重合体が合成できることによる、高いプロトン伝導性の付与と、高温加湿条件下でも膨潤抑制された材料設計が可能となる。さらに、同一の芳香環に複数のスルホン酸が結合していることにより、スルホン酸の酸性度が向上する上、親水部のスルホン酸密度が高いために高温低湿環境でも優れたプロトン伝導性を維持することが可能となる。   According to the present invention, an aromatic compound in which a plurality of sulfonic acid ester groups are regioselectively introduced into a specific aromatic ring, and an aromatic compound having a plurality of sulfonic acid groups derived from the compound only at the terminal portion of the side chain. A copolymer having a group unit and a unit having no sulfonic acid group can be provided. Due to the effect of the aromatic unit having a plurality of sulfonic acid groups only at the end portion of the side chain of the present invention, the side with the plurality of sulfonic acid groups is also present in the copolymer with the aromatic unit having no sulfonic acid group. The hydrophobicity of the main chain portion of the aromatic unit possessed only at the end of the chain is sufficiently exhibited. For this reason, it becomes possible to provide a high proton conductivity due to the ability to synthesize a copolymer having a high sulfonic acid concentration, and to design a material in which swelling is suppressed even under high-temperature humidification conditions. Furthermore, by combining multiple sulfonic acids with the same aromatic ring, the acidity of the sulfonic acid is improved and the sulfonic acid density in the hydrophilic part is high, so excellent proton conductivity is maintained even in high-temperature and low-humidity environments. It becomes possible to do.

以下、本発明の芳香族スルホン酸エステル誘導体について詳細に説明する。
<芳香族スルホン酸エステル誘導体>
本発明の芳香族スルホン酸エステル誘導体は、下記一般式(1)で表される。
Hereinafter, the aromatic sulfonic acid ester derivative of the present invention will be described in detail.
<Aromatic sulfonic acid ester derivative>
The aromatic sulfonic acid ester derivative of the present invention is represented by the following general formula (1).

Figure 2008247857
Figure 2008247857

[式(1)中、Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2CH3および−OSO2CF3からなる群より選ばれる原子または基を示し、ハロゲン原子が好ましい。Yは−CO−または−SO2−を示し、−CO−が好ましい。Zは直接結合または−CO−または−SO2−または−SO−を示し、直接結合が好ましい。nは2〜5の整数を示し、好ましくは2〜3である。 [In the formula (1), X is a halogen atom other than fluorine (chlorine, bromine, iodine), - indicates OSO 2 CH 3 and atom or a group selected from the group consisting of -OSO 2 CF 3, halogen atoms are preferred. Y represents —CO— or —SO 2 —, preferably —CO—. Z represents a direct bond or —CO— or —SO 2 — or —SO—, and is preferably a direct bond. n shows the integer of 2-5, Preferably it is 2-3.

Rは独立に炭素数4〜20の炭化水素基を示す。具体的には、t−ブチル基、sec−ブチル基、イソブチル基、n−ブチル基、n−ペンチル基、ネオペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、シクロペンチルメチル基、アダマンチル基、シクロヘキシルメチル基、アダマンチルメチル基、テトラヒドロフルフリル基、2−メチルブチル基、3,3−ジメチル−2,4−ジオキソランメチル基、ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.1]ヘプチルメチル基などの直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基などが挙げられる。   R independently represents a hydrocarbon group having 4 to 20 carbon atoms. Specifically, t-butyl group, sec-butyl group, isobutyl group, n-butyl group, n-pentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, heptyl group, octyl group, 2- Ethylhexyl group, cyclopentylmethyl group, adamantyl group, cyclohexylmethyl group, adamantylmethyl group, tetrahydrofurfuryl group, 2-methylbutyl group, 3,3-dimethyl-2,4-dioxolanemethyl group, bicyclo [2.2.1] Examples thereof include straight chain hydrocarbon groups such as heptyl group and bicyclo [2.2.1] heptylmethyl group, branched hydrocarbon groups, and alicyclic hydrocarbon groups.

後述する、共重合体とする場合、これらの中でも、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチルメチル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、ネオペンチル基がより好ましい。   In the case of a copolymer described later, among these, a neopentyl group, a tetrahydrofurfuryl group, a cyclopentylmethyl group, a cyclohexylmethyl group, an adamantylmethyl group, a bicyclo [2.2.1] heptylmethyl group are preferable, and a neopentyl group Is more preferable.

このような芳香族スルホン酸エステルとしては、以下のものが例示される。   Examples of such aromatic sulfonic acid esters include the following.

Figure 2008247857
Figure 2008247857

Figure 2008247857
Figure 2008247857

Figure 2008247857
Figure 2008247857

Figure 2008247857
Figure 2008247857

Figure 2008247857
Figure 2008247857

また、本発明の上記一般式(1)で表される芳香族スルホン酸エステルには、上記例示した化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物なども挙げることができる。さらに、塩素原子が、−OSO2CH3および−OSO2CF3に置き換わった化合物も挙げられる。 In addition, examples of the aromatic sulfonic acid ester represented by the general formula (1) of the present invention include compounds in which the chlorine atom is replaced with a bromine atom or an iodine atom in the exemplified compounds. Further, compounds in which the chlorine atom is replaced with —OSO 2 CH 3 and —OSO 2 CF 3 are also included.

このような芳香族スルホン酸エステル誘導体の合成方法としては、式(1)で表される化合物が合成できれば特に制限されるものではない。しかしながら、主たる骨格を合成してから、スルホン化剤などを用いる方法を利用して複数のスルホン酸エステル基を導入する場合、導入位置の限定が困難となる場合が多い。本発明のようなスルホン酸エステル誘導体を合成するには、先に複数のスルホン酸エステル基を有する芳香環部分を合成し、後に特定の主鎖部分を構成する構造体とカップリング反応させる方法等がある。具体的には、以下のような方法がある。   The method for synthesizing such an aromatic sulfonic acid ester derivative is not particularly limited as long as the compound represented by the formula (1) can be synthesized. However, when a plurality of sulfonate groups are introduced using a method using a sulfonating agent after the main skeleton is synthesized, it is often difficult to limit the introduction position. In order to synthesize the sulfonic acid ester derivative as in the present invention, a method in which an aromatic ring portion having a plurality of sulfonic acid ester groups is first synthesized, followed by a coupling reaction with a structure constituting a specific main chain portion, etc. There is. Specifically, there are the following methods.

複数のスルホン酸エステル基を有する芳香環部分の合成は、ハロゲン化ベンゼンを、一般的に知られる方法でスルホン化し、得られたスルホン化ベンゼンを保護基で保護することで、ハロゲン化ベンゼンスルホン酸エステルが得られる。このとき、スルホン化剤の種類や温度などの条件を調節することで、複数のスルホン酸を導入した骨格を合成することができる。   Synthesis of an aromatic ring moiety having a plurality of sulfonic acid ester groups is accomplished by sulfonating a halogenated benzene by a generally known method, and protecting the resulting sulfonated benzene with a protecting group. Esters are obtained. At this time, a skeleton into which a plurality of sulfonic acids are introduced can be synthesized by adjusting conditions such as the type and temperature of the sulfonating agent.

本発明の複数のスルホン酸エステル基を有する芳香環部分にはベンゼン環を用いるのが好ましい。一つの環に複数のスルホニル基が導入されることにより、環の電子密度が低くなることにより、スルホン酸の脱離を抑制する効果も期待できる。ナフタレンやアントラセン等種々の多環芳香族化合物を用いても同様に合成は可能であるが、分子内のスルホン酸エステル基の導入位置の制御の困難さが増すために合成時の収率低下などの問題や、環構造や分子自体が大きくなりすぎることによりスルホン酸の高密度化の効果が薄れてしまうといった問題を招いてしまう。   A benzene ring is preferably used for the aromatic ring moiety having a plurality of sulfonate groups of the present invention. By introducing a plurality of sulfonyl groups into one ring, the electron density of the ring is lowered, so that an effect of suppressing the elimination of sulfonic acid can be expected. Synthesis is possible in the same way using various polycyclic aromatic compounds such as naphthalene and anthracene, but the difficulty in controlling the introduction position of the sulfonate group in the molecule increases, resulting in a decrease in yield during synthesis, etc. And the problem that the effect of increasing the density of the sulfonic acid is diminished due to the ring structure and the molecule itself becoming too large.

主鎖部分を構成する骨格は、ベンゾフェノン、ジフェニルスルホキシド、ジフェニルスルホンといった主骨格で、一方のフェニル基に、ポリマー化する際に必要である、2つのフッ素以外のハロゲン基を有し、もう一方のフェニル基には、上記複数のスルホン酸を導入した骨格とカップリングするための官能基を有するものを用いると良い。カップリング
に用いる官能基としては、ハロゲン、メルカプト基、ボロン酸などを用いることができるが、ポリマー化に用いる主鎖のハロゲン基と異なる官能基を用いることが、収率良く目的物を得る上で好ましい。具体的には、ポリマー化する際に主鎖を形成する芳香環に置換された官能基が塩素の場合、臭素、ヨウ素、ボロン酸などを用いることができる。
The skeleton constituting the main chain portion is a main skeleton such as benzophenone, diphenyl sulfoxide, diphenyl sulfone, and one phenyl group has two halogen groups other than fluorine necessary for polymerization, and the other skeleton. As the phenyl group, one having a functional group for coupling with the skeleton into which the plurality of sulfonic acids are introduced may be used. As the functional group used for coupling, halogen, mercapto group, boronic acid or the like can be used. However, using a functional group different from the halogen group of the main chain used for polymerization can improve the yield of the target product. Is preferable. Specifically, bromine, iodine, boronic acid, or the like can be used when the functional group substituted with the aromatic ring that forms the main chain upon polymerization is chlorine.

この骨格の合成は、一般に知られる合成方法を用いることができる。具体的に例示すると、ベンゾイルクロリドを経由するフリーデルクラフツ反応を利用する方法、フェニルチオールとフッ化フェニルの求核置換反応によるチオエーテル化を経由し、過酸化物によるスルフィニル基やスルホニル基への酸化反応を用いる方法などが挙げられる。   For the synthesis of this skeleton, a generally known synthesis method can be used. Specifically, a method using the Friedel-Crafts reaction via benzoyl chloride, oxidation to sulfinyl group or sulfonyl group by peroxide via thioetherification by nucleophilic substitution reaction of phenylthiol and phenyl fluoride Examples include a method using a reaction.

上記のようにして得られた複数のスルホン酸エステル基を有する芳香環部分と、主鎖部分を構成する部分とのカップリングには、一般に知られる方法を用いることができる。例えば、スルホン酸エステル基を有するハロゲン化ベンゼンを、亜鉛などの金属で処理し有機金属化合物に変換する。このときマグネシウムやリチウムなどの活性の高い金属は、保護されたスルホン酸エステルと反応してしまうため、亜鉛やインジウムなど適度な活性を有する金属が好ましい。次に主鎖部分を構成する部分と、パラジウム触媒やニッケル触媒を用いてクロスカップリング反応することで、目的とする芳香族スルホン酸エステル誘導体を得ることができる。   A generally known method can be used for coupling the aromatic ring part having a plurality of sulfonate groups obtained as described above and the part constituting the main chain part. For example, a halogenated benzene having a sulfonate group is treated with a metal such as zinc to convert it to an organometallic compound. At this time, a highly active metal such as magnesium or lithium reacts with the protected sulfonic acid ester, and therefore a metal having moderate activity such as zinc or indium is preferable. Next, a target aromatic sulfonic acid ester derivative can be obtained by performing a cross-coupling reaction with a portion constituting the main chain portion using a palladium catalyst or a nickel catalyst.

得られた芳香族スルホン酸エステル誘導体は、必要に応じて精製される。
芳香族スルホン酸エステル誘導体の同定方法としては、特に制限されるものではなく、公知の、NMRなどの方法が採用される。
The obtained aromatic sulfonic acid ester derivative is purified as necessary.
The identification method of the aromatic sulfonic acid ester derivative is not particularly limited, and a known method such as NMR is employed.

<スルホン化ポリアリーレン系重合体>
本発明に係るポリアリーレン系重合体は、下記一般式(1')で表される構成単位を有す
る。
<Sulfonated polyarylene polymer>
The polyarylene polymer according to the present invention has a structural unit represented by the following general formula (1 ′).

Figure 2008247857
Figure 2008247857

[式(1’)中、Yは−CO−または−SO2−を示し、−CO−が好ましい。
Zは直接結合または−CO−または−SO2−または−SO−を示し、直接結合が好ましい。nは2〜5の整数を示し、好ましくは2〜3である。
[In the formula (1 ′), Y represents —CO— or —SO 2 —, preferably —CO—.
Z represents a direct bond or —CO— or —SO 2 — or —SO—, and is preferably a direct bond. n shows the integer of 2-5, Preferably it is 2-3.

<スルホン化ポリアリーレン系共重合体>
本発明に係るポリアリーレン系重合体は、上記式(1')で表される構成単位の単独重
合体であってもよく、通常、一般式(4)で表される構成単位を含むことが望ましい。このような構成単位を含んでいると、重合体の強度や耐水性を向上させることができる。
<Sulfonated polyarylene copolymer>
The polyarylene polymer according to the present invention may be a homopolymer of a structural unit represented by the above formula (1 ′), and usually contains a structural unit represented by the general formula (4). desirable. When such a structural unit is contained, the strength and water resistance of the polymer can be improved.

Figure 2008247857
Figure 2008247857

式(4)中、AおよびDは、それぞれ独立に直接結合、−O−、−S−、−CO−、−S
2−、−SO−、−CONH−、−COO−、−(CF2)i−(iは1〜10の整数である)、−(CH2)j−(jは1〜10の整数である)、−CR’2−(R’は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基およびフルオレニリデン基からなる群より選ばれる少なくとも1種の構造を示す。これらの中では、直接結合、−O−、−CO−、−SO2−、−CR’2−、シクロヘキシリデン基およびフルオレニリデン基が好ましい。R’としては、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基、エチルヘキシル基、フェニル基、トリフルオロメチル基、これらの置換基中の水素原子の一部もしくはすべてがハロゲン化された置換基などが挙げられる。
In formula (4), A and D are each independently a direct bond, —O—, —S—, —CO—, —S.
O 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10) -CR ' 2- (R' represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a halogenated hydrocarbon group), at least one selected from the group consisting of a cyclohexylidene group and a fluorenylidene group The structure of the species is shown. Among these, a direct bond, —O—, —CO—, —SO 2 —, —CR ′ 2 —, a cyclohexylidene group and a fluorenylidene group are preferable. Examples of R ′ include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, hexyl group, octyl group, decyl group, octadecyl group, ethylhexyl group, phenyl group, trifluoro group. Examples thereof include a methyl group and a substituent in which some or all of hydrogen atoms in these substituents are halogenated.

Bは独立に酸素原子または硫黄原子を示し、酸素原子が好ましい。
1〜R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル
基、一部もしくはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基およびニトリル基からなる群より選ばれる少なくとも1種の原子または基を示す。
B independently represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
R 1 to R 16 may be the same as or different from each other, and are a hydrogen atom, a fluorine atom, an alkyl group, a halogenated alkyl group, an allyl group, an aryl group, a nitro group, and a nitrile group, which are partially or completely halogenated. At least one atom or group selected from the group consisting of

上記アルキル基としては、たとえば、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。
上記ハロゲン化アルキル基としては、たとえば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられる。
Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a hexyl group, a cyclohexyl group, and an octyl group.
Examples of the halogenated alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.

上記アリル基としては、たとえば、プロペニル基などが挙げられる。上記アリール基としては、たとえば、フェニル基、ペンタフルオロフェニル基などが挙げられる。
sおよびtは0〜4の整数を示す。rは0または1以上の整数を示し、上限は通常100、好ましくは1〜80である。
As said allyl group, a propenyl group etc. are mentioned, for example. Examples of the aryl group include a phenyl group and a pentafluorophenyl group.
s and t show the integer of 0-4. r shows 0 or an integer greater than or equal to 1, and an upper limit is 100 normally, Preferably it is 1-80.

上記構成単位(4)の好ましい構造としては、上記式(4)において
(1)s=1およびt=1であり、Aが−CR’2−、シクロヘキシリデン基またはフルオ
レニリデン基であり、Bが酸素原子であり、Dが−CO−または−SO2−であり、R1〜R16が水素原子またはフッ素原子である構造、
(2)s=1およびt=0であり、Bが酸素原子であり、Dが−CO−または−SO2−で
あり、R1〜R16が水素原子またはフッ素原子である構造、
(3)s=0およびt=1であり、Aが−CR’2−、シクロヘキシリデン基またはフルオ
レニリデン基、Bが酸素原子であり、R1〜R16が水素原子、フッ素原子またはニトリル
基である構造が挙げられる。
As a preferable structure of the structural unit (4), in the above formula (4),
(1) s = 1 and t = 1, A is —CR ′ 2 —, a cyclohexylidene group or a fluorenylidene group, B is an oxygen atom, and D is —CO— or —SO 2 —. , R 1 to R 16 are hydrogen atoms or fluorine atoms,
(2) a structure in which s = 1 and t = 0, B is an oxygen atom, D is —CO— or —SO 2 —, and R 1 to R 16 are a hydrogen atom or a fluorine atom,
(3) s = 0 and t = 1, A is —CR ′ 2 —, a cyclohexylidene group or a fluorenylidene group, B is an oxygen atom, and R 1 to R 16 are a hydrogen atom, a fluorine atom or a nitrile group The structure which is is mentioned.

上記構成単位(4)となりうるモノマーもしくはオリゴマー(以下「化合物(4’)」とも
いう)は、たとえば、特開2004−137444号公報に記載の方法を参照することに
より合成することができる。
The monomer or oligomer (hereinafter also referred to as “compound (4 ′)”) that can be the structural unit (4) can be synthesized, for example, by referring to the method described in JP-A No. 2004-137444.

<スルホン化ポリアリーレン系重合体の製造方法>
本発明のスルホン化ポリアリーレン系重合体は、たとえば、特開2004−137444号公報に記載の方法で合成することができる。
<Method for producing sulfonated polyarylene polymer>
The sulfonated polyarylene polymer of the present invention can be synthesized, for example, by the method described in JP-A No. 2004-137444.

具体的には、まず、上記式(1)で表される芳香族スルホン酸エステル誘導体、および上記化合物(4)の前駆体である下記一般式(4’)で表される化合物を触媒の存在下で共重合させ、スルホン酸エステル基を有するポリアリーレンを製造し、該スルホン酸エステル基を脱エステル化して、スルホン酸エステル基をスルホン酸基に変換することにより合成す
ることができる。
Specifically, first, an aromatic sulfonic acid ester derivative represented by the above formula (1) and a compound represented by the following general formula (4 ′) which is a precursor of the above compound (4) are present in the presence of a catalyst. It can be synthesized by copolymerizing under the above to produce a polyarylene having a sulfonate group, deesterifying the sulfonate group, and converting the sulfonate group to a sulfonate group.

Figure 2008247857
Figure 2008247857

式(4’)中、Xは、フッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2CH3
および−OSO2CF3からなる群より選ばれる原子または基を示し、塩素または臭素が好ましい。A、B、D、R1〜R16、s、t、rは、上記式(4)中のA、B、D、R1〜R16、s、t、rと同義である。
In the formula (4 ′), X represents a halogen atom other than fluorine (chlorine, bromine, iodine), —OSO 2 CH 3
And an atom or group selected from the group consisting of —OSO 2 CF 3, preferably chlorine or bromine. A, B, D, R 1 ~R 16, s, t, r is, A, in the formula (4) B, which is D, R 1 ~R 16, s , t, synonymous with r.

上記重合の際に用いられる触媒は、遷移金属化合物を含む触媒系であり、このような触媒系としては、(i)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。) 、または、配位子が配位された遷移金属錯体(銅塩を含む)と、(ii)還元剤とを必須成分とし、さらに、重合速度を上げるために「塩」を添加してもよい。   The catalyst used in the above polymerization is a catalyst system containing a transition metal compound, and such a catalyst system includes (i) a compound that becomes a transition metal salt and a ligand (hereinafter referred to as `` ligand component ''). Or a transition metal complex coordinated with a ligand (including a copper salt) and (ii) a reducing agent as essential components, and a salt is added to increase the polymerization rate. May be.

これらの触媒成分の具体例、各成分の使用割合、反応溶媒、濃度、温度、時間等の重合条件などは、特開2001−342241号公報に記載されている化合物および条件等を参考にして使用または設定することができる。   Specific examples of these catalyst components, use ratio of each component, polymerization conditions such as reaction solvent, concentration, temperature, time, etc. are used with reference to the compounds and conditions described in JP-A No. 2001-342241. Or can be set.

上記のような方法により製造されるスルホン化ポリアリーレンのイオン交換容量は、通常0.3〜5meq/g、好ましくは0.5〜4meq/g、さらに好ましくは0.8〜3.5meq/gである。イオン交換容量が上記範囲よりも低いと、プロトン伝導度が低く、発電性能が低くなる傾向にあり、上記範囲を超えると、耐水性が大幅に低下する傾向にある。   The ion exchange capacity of the sulfonated polyarylene produced by the above method is usually 0.3 to 5 meq / g, preferably 0.5 to 4 meq / g, more preferably 0.8 to 3.5 meq / g. It is. If the ion exchange capacity is lower than the above range, proton conductivity tends to be low and power generation performance tends to be low, and if it exceeds the above range, water resistance tends to be greatly reduced.

ただし、今回開発した多スルホン化モノマーを用いると、従来のモノスルホン化モノマーを用いた場合と比較して、イオン交換量を大幅に大きくできた。このため、今回合成したポリマーは、従来のポリマーと比較して高いプロトン伝導度を有する傾向にある。   However, the amount of ion exchange could be significantly increased by using the newly sulfonated monomer compared to the case of using a conventional monosulfonated monomer. For this reason, the polymer synthesized this time tends to have a higher proton conductivity than the conventional polymer.

上記イオン交換容量は、たとえば、上記化合物(1’)および化合物(4’)の種類、使用割合、組み合わせなどを変えることにより、調整することができる。なお、本発明のスルホン化ポリアリーレンは、構成単位(1)を0.5〜100モル%、好ましくは10〜99.999モル%の割合で、構成単位(4)を99.5〜0モル%、好ましくは90〜0.001モル%の割合で含有することが望ましい。   The ion exchange capacity can be adjusted, for example, by changing the types, use ratios, combinations, and the like of the compound (1 ′) and the compound (4 ′). In the sulfonated polyarylene of the present invention, the structural unit (1) is 0.5 to 100 mol%, preferably 10 to 99.999 mol%, and the structural unit (4) is 99.5 to 0 mol. %, Preferably 90 to 0.001 mol%.

このようにして得られるスルホン化ポリアリーレンの重量平均分子量は、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算で、1万〜100万、好ましくは2万〜50万、より好ましくは10万〜40万である。   The weight average molecular weight of the sulfonated polyarylene thus obtained is 10,000 to 1,000,000, preferably 20,000 to 500,000, more preferably 100,000 to 40 in terms of polystyrene by gel permeation chromatography (GPC). Ten thousand.

このようなポリアリーレン系重合体は、プロトン伝導性が高く、燃料電池のプロトン伝導膜、電極電解質、結着剤として好適に使用できる。また、このようなポリアリーレン系重合体を含む電極電解質は、膜電極接合体としても好適である。   Such a polyarylene polymer has high proton conductivity, and can be suitably used as a proton conductive membrane, an electrode electrolyte, and a binder for a fuel cell. An electrode electrolyte containing such a polyarylene polymer is also suitable as a membrane electrode assembly.

[実施例]
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例における各種の測定項目は、下記のようにして求めた。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples. The various measurement items in the examples were determined as follows.

(分子量)
重合体の分子量は、GPCによってポリスチレン換算の重量平均分子量を求めた。溶媒として臭化リチウムを添加したN−メチル−2−ピロリドンを用いた。
(Molecular weight)
As for the molecular weight of the polymer, the weight average molecular weight in terms of polystyrene was determined by GPC. N-methyl-2-pyrrolidone to which lithium bromide was added was used as a solvent.

(イオン交換容量)
得られたスルホン化ポリマーの水洗水がpH4〜6になるまで洗浄して、フリーの残存している酸を除去して十分に洗浄し、乾燥した後、所定量を秤量し、THF/水の混合溶剤に溶解させ、フェノールフタレインを指示薬とし、NaOHの標準液にて滴定し、中和点からイオン交換容量を求めた。
(Ion exchange capacity)
The resulting sulfonated polymer is washed with water until the pH becomes 4 to 6, the free remaining acid is removed and washed thoroughly, and after drying, a predetermined amount is weighed, and THF / water It was dissolved in a mixed solvent, phenolphthalein was used as an indicator, titrated with a standard solution of NaOH, and the ion exchange capacity was determined from the neutralization point.

(プロトン伝導度)
まず、短冊状の試料膜(40mm×5mm)の表面に、白金線(φ=0.5mm)を5mm間隔に5本押し当て、恒温恒湿装置((株)ヤマト科学製「JW241」)中に試料を保持し、白金線間の交流インピーダンス測定により交流抵抗を求めた。測定は、抵抗測定装置として(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用いて、85℃、相対湿度を変化させた環境下、交流10kHzの条件で、線間距離を5〜20mmに変化させて行った。次いで、線間距離と抵抗の勾配から膜の比抵抗Rを下記式に従って算出し、比抵抗Rの逆数からプロトン伝導度を算出した。
比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
(耐水性試験)
まず、2×3cmに切削した試料膜の長辺と短辺の長さを精密に測定した。同試料膜を耐熱性樹脂容器に入れ、十分な量の水を加えて密栓した後、オーブンまたはプレッシャークッカー試験機を用い、それぞれ95℃、120℃で24時間加熱処理した。加熱終了後、室温まで放冷し、試料膜を取出し、表面の水滴を軽く拭き取った後、各辺の長さ及び膜厚、重量を測定した。得られた数値を用い、試料の耐水性について以下の通り算出した。寸法変化率(%)=(試験後の長辺(cm)/試験前の長辺(cm))+(試験後の短辺(cm)/試験前の短辺(cm))/2×100
<実施例1>
(1)ブロモベンゼン−2,4−ジスルホン酸ネオペンチルの合成
滴下ロート、温度計、ジムロートを取り付けた四つ口フラスコに、窒素雰囲気下でクロロスルホン酸186g(1.2mol)を取り、撹拌下ブロモベンゼン31.4g(0.2mol)を滴下ロートから約30分かけて滴下した。120℃で6時間反応させた後、反応液を氷水に注ぎ、有機物を酢酸エチルで抽出した。有機層を、硫酸マグネシウムを用いて乾燥した後、エバポレーターを用いて溶媒を留去し、ブロモベンゼン−2,4−ジスル
ホニルクロリドの粗生成物70gを得た。
(Proton conductivity)
First, five platinum wires (φ = 0.5 mm) were pressed at 5 mm intervals on the surface of a strip-shaped sample film (40 mm × 5 mm), and in a constant temperature and humidity apparatus (“JW241” manufactured by Yamato Scientific Co., Ltd.) A sample was held on the substrate, and AC resistance was obtained by measuring AC impedance between platinum wires. The measurement is performed using a chemical impedance measurement system manufactured by NF Circuit Design Block Co., Ltd. as a resistance measuring device, and the distance between the lines is set to 5 to 20 mm under the conditions of AC 10 kHz under an environment where the relative humidity is changed at 85 ° C. Changed and went. Subsequently, the specific resistance R of the membrane was calculated from the distance between the lines and the resistance gradient according to the following formula, and the proton conductivity was calculated from the reciprocal of the specific resistance R.
Specific resistance R (Ω · cm) = 0.5 (cm) × film thickness (cm) × resistance-to-resistance gradient (Ω / cm)
(Water resistance test)
First, the length of the long side and the short side of the sample film cut to 2 × 3 cm was measured accurately. The sample film was placed in a heat resistant resin container, a sufficient amount of water was added and sealed, and then heat-treated at 95 ° C. and 120 ° C. for 24 hours using an oven or a pressure cooker tester, respectively. After completion of heating, the sample was allowed to cool to room temperature, the sample film was taken out, and water droplets on the surface were lightly wiped, and then the length, film thickness, and weight of each side were measured. Using the obtained numerical values, the water resistance of the sample was calculated as follows. Dimensional change rate (%) = (long side after test (cm) / long side before test (cm)) + (short side after test (cm) / short side before test (cm)) / 2 × 100
<Example 1>
(1) Synthesis of neopentyl bromobenzene-2,4-disulfonate In a four-necked flask equipped with a dropping funnel, thermometer and Dimroth, 186 g (1.2 mol) of chlorosulfonic acid was taken under a nitrogen atmosphere, and bromo was stirred. 31.4 g (0.2 mol) of benzene was added dropwise from the dropping funnel over about 30 minutes. After reacting at 120 ° C. for 6 hours, the reaction solution was poured into ice water, and the organic matter was extracted with ethyl acetate. The organic layer was dried using magnesium sulfate, and then the solvent was distilled off using an evaporator to obtain 70 g of a crude product of bromobenzene-2,4-disulfonyl chloride.

三口フラスコにピリジン118.9g(1.5mol)、2,2−ジメチル−1−プロ
パノール17.4g(0.198mol)を加え、0℃まで冷却した。上記で得られたスルホニルクロリドの粗生成物を、この溶液に徐々に加えた。
氷浴で5℃以下を保ちながら4時間反応させた後、氷浴を取り除き室温までゆっくりと昇温させた。反応液を500mlの塩酸水溶液に注ぎ、有機物を酢酸エチルで抽出した。有機層を塩酸水溶液、5%炭酸水素ナトリウム溶液、ついで飽和食塩水で洗浄した後、有機層を硫酸マグネシウムで乾燥した。エバポレーターを用いて溶媒を留去し、得られた粗生成物を酢酸エチル/ヘキサン溶液から再結晶し、目的物の粗結晶72gを得た。
(2)4−(2,5−ジクロロベンゾイル)−ベンゼンボロン酸−2,2−ジメチル−1,3−プロパンジオールエステルの合成
ディーンスターク管、温度計を取り付けた三口フラスコに、トルエン300mlを取り、2,5−ジクロロ−4'−ブロモベンゾフェノン115.5g(0.35mol)、2,2−ジメチル−1,3−プロパンジオール60.5g(0.58mol)、p−トルエンスルホン酸1水和物6.66g(0.04mol)を加え、130℃で加熱還流して生成する水を除きながら反応させた。約20時間後、理論量(約6.3g)の水を回収したことを確認し、反応液を1Lのビーカーに移した。塩氷浴で反応液を冷却し、析出した結晶をろ過回収した後、エタノールですすぎ、白色結晶120gを得た。
To a three-necked flask, 118.9 g (1.5 mol) of pyridine and 17.4 g (0.198 mol) of 2,2-dimethyl-1-propanol were added and cooled to 0 ° C. The crude sulfonyl chloride product obtained above was added slowly to this solution.
After reacting for 4 hours while keeping the temperature at 5 ° C. or lower in an ice bath, the ice bath was removed and the temperature was slowly raised to room temperature. The reaction solution was poured into 500 ml of an aqueous hydrochloric acid solution, and the organic matter was extracted with ethyl acetate. The organic layer was washed with an aqueous hydrochloric acid solution, a 5% sodium hydrogen carbonate solution and then with a saturated saline solution, and then the organic layer was dried over magnesium sulfate. The solvent was distilled off using an evaporator, and the resulting crude product was recrystallized from an ethyl acetate / hexane solution to obtain 72 g of a target crude crystal.
(2) Synthesis of 4- (2,5-dichlorobenzoyl) -benzeneboronic acid-2,2-dimethyl-1,3-propanediol ester Into a three-necked flask equipped with a Dean-Stark tube and thermometer, 300 ml of toluene was placed. 2,5-dichloro-4′-bromobenzophenone 115.5 g (0.35 mol), 2,2-dimethyl-1,3-propanediol 60.5 g (0.58 mol), p-toluenesulfonic acid monohydrate 6.66 g (0.04 mol) of the product was added, and the reaction was carried out while removing the water produced by heating to reflux at 130 ° C. After about 20 hours, it was confirmed that a theoretical amount (about 6.3 g) of water was recovered, and the reaction solution was transferred to a 1 L beaker. The reaction solution was cooled in a salt ice bath, and the precipitated crystals were collected by filtration and rinsed with ethanol to obtain 120 g of white crystals.

三口フラスコに窒素雰囲気下で脱水テトラヒドロフラン500mlを取り、上記白色結晶41.2g(0.1mol)を加えて溶解させた後、ドライアイス/アセトン浴で−7
5℃まで冷却した。n−ブチルリチウムの10Mヘキサン溶液を10.5ml(0.105mol)シリンジを用いてゆっくりと滴下し、−65℃で1時間反応させた。ついでほう酸トリメチル15.5g(0.15mol)を滴下し、−60℃で1時間反応させた。その後冷却浴を取り除き、室温までゆっくりと昇温した。次に反応溶液に塩酸溶液を加えて70℃に加熱して反応させた。冷却後、アセトンを加えて撹拌した後、エバポレーターで溶媒を除き、析出した粗結晶をろ過で回収した。酢酸エチル/ヘキサン溶液から再結晶し、目的物の白色結晶23gを得た。
(3)4’−(2,5−ジクロロベンゾイル)ビフェニル−2,4−ジスルホン酸ネオペンチルの合成
ジムロート、温度計を取り付けた三口フラスコにトルエン77mlをとり、ブロモベンゼン−2,4−ジスルホン酸ネオペンチル14.0g(0.03mol)、テトラキスト
リフェニルホスフィンパラジウム1.06g(0.9mmol)を加え撹拌した。さらに2mol/l炭酸カリウム水溶液32gを加えた後、4−(2,5−ジクロロベンゾイル
)−ベンゼンボロン酸−2,2−ジメチル−1,3−プロパンジオールエステルをエタノール16mlに分散させたものを加え、加熱還流して6時間反応させた。反応溶液に30%過酸化水素水1.8gを加え1時間撹拌後、反応液に酢酸エチルを加え抽出した。有機層を水、次いで飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去、得られた粗結晶をアセトン/ヘキサン溶液から再結晶し、下記式(I)に示される構造の目的物12gを得た。得られた化合物のNMRチャートを図1に示す。
In a three-necked flask, 500 ml of dehydrated tetrahydrofuran was taken under a nitrogen atmosphere, 41.2 g (0.1 mol) of the above white crystals were added and dissolved, and then −7 in a dry ice / acetone bath.
Cooled to 5 ° C. A 10M hexane solution of n-butyllithium was slowly added dropwise using a 10.5 ml (0.105 mol) syringe and reacted at -65 ° C for 1 hour. Then, 15.5 g (0.15 mol) of trimethyl borate was added dropwise and reacted at −60 ° C. for 1 hour. Thereafter, the cooling bath was removed, and the temperature was slowly raised to room temperature. Next, a hydrochloric acid solution was added to the reaction solution and heated to 70 ° C. for reaction. After cooling, acetone was added and stirred, the solvent was removed by an evaporator, and the precipitated crude crystals were collected by filtration. Recrystallization from an ethyl acetate / hexane solution gave 23 g of the objective white crystal.
(3) Synthesis of 4 ′-(2,5-dichlorobenzoyl) biphenyl-2,4-disulfonate neopentyl 77 ml of toluene was placed in a three-necked flask equipped with a Dimroth and thermometer, and neopentyl bromobenzene-2,4-disulfonate. 14.0 g (0.03 mol) and 1.06 g (0.9 mmol) of tetrakistriphenylphosphine palladium were added and stirred. Further, 32 g of 2 mol / l potassium carbonate aqueous solution was added, and then 4- (2,5-dichlorobenzoyl) -benzeneboronic acid-2,2-dimethyl-1,3-propanediol ester was dispersed in 16 ml of ethanol. In addition, the mixture was heated to reflux for 6 hours. To the reaction solution, 1.8 g of 30% aqueous hydrogen peroxide was added and stirred for 1 hour, and then extracted with ethyl acetate added to the reaction solution. The organic layer was washed with water and then with saturated brine, and then dried over magnesium sulfate. The solvent was distilled off with an evaporator, and the resulting crude crystals were recrystallized from an acetone / hexane solution to obtain 12 g of a target product having a structure represented by the following formula (I). An NMR chart of the obtained compound is shown in FIG.

Figure 2008247857
Figure 2008247857

<実施例2>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、実施例1で得られたスルホン酸ネオペンチル54.5g(86.8mmol)、下記構造式(II)で示すMn11,200の疎水性ユニット34.3g(3.2mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.77g(3.0mmol)、ヨウ化ナトリウム0.41g(2.7mmol)、トリフェニルホスフィン9.44g(36.0mmol)、亜鉛14.1g(216mmol)をはかりとり、乾燥窒素置換した。
<Example 2>
In a 1 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube, 54.5 g (86.8 mmol) of neopentyl sulfonate obtained in Example 1 and hydrophobicity of Mn11,200 represented by the following structural formula (II) Unit 34.3 g (3.2 mmol), bis (triphenylphosphine) nickel dichloride 1.77 g (3.0 mmol), sodium iodide 0.41 g (2.7 mmol), triphenylphosphine 9.44 g (36.0 mmol) Then, 14.1 g (216 mmol) of zinc was weighed and replaced with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)270mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc480mLを加えて希釈し、不溶物を濾過した。   270 mL of N, N-dimethylacetamide (DMAc) was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, 480 mL of DMAc was added for dilution, and insoluble matters were filtered off.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた。115℃に加熱攪拌し、臭化リチウム23g(260mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体70gを得た。得られた重合体の重量平均分子量(Mw)は235,000であった。得られた重合体は式(III)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。   The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 23 g (260 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, acetone, 1N hydrochloric acid, and pure water were washed in this order and dried to obtain 70 g of the desired polymer. The weight average molecular weight (Mw) of the obtained polymer was 235,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (III). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

<実施例3>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、実施例1で得られたスルホン酸ネオペンチル54.4g(86.8mmol)、下記構造式(IV)で示すMn8,200の疎水性ユニット34.3g(4.2mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.38g(3.6mmol)、ヨウ化ナトリウム0.41g(2.7mmol)、トリフェニルホスフィン9.55g(36.4mmol)、亜鉛14.3g(218mmol)をはかりとり、乾燥窒素置換した。
<Example 3>
In a 1 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube, 54.4 g (86.8 mmol) of neopentyl sulfonate obtained in Example 1 and hydrophobicity of Mn8,200 represented by the following structural formula (IV) Unit 34.3 g (4.2 mmol), bis (triphenylphosphine) nickel dichloride 2.38 g (3.6 mmol), sodium iodide 0.41 g (2.7 mmol), triphenylphosphine 9.55 g (36.4 mmol) Then, 14.3 g (218 mmol) of zinc was weighed and replaced with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)270mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc480mLを加えて希釈し、不溶物を濾過した。   270 mL of N, N-dimethylacetamide (DMAc) was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, 480 mL of DMAc was added for dilution, and insoluble matters were filtered off.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた。115℃に加熱攪拌し、臭化リチウム23g(260mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体70gを得た。得られた重合体の重量平均分子量(Mw)は235,000であった。得られた重合体は式(III)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。   The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 23 g (260 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, acetone, 1N hydrochloric acid, and pure water were washed in this order and dried to obtain 70 g of the desired polymer. The weight average molecular weight (Mw) of the obtained polymer was 235,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (III). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

<実施例4>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、実施例1で得られたスルホン酸ネオペンチル54.0g(86.0mmol)、下記構造式(VI)で示すMn9,000の疎水性ユニット35.6g(4.0mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.36g(3.6mmol)、ヨウ化ナトリウム0.40g(2.7mmol)、トリフェニルホスフィン9.44g(36.0mmol)、亜鉛14.1g(216mmol)をはかりとり、乾燥窒素置換した。
<Example 4>
In a 1 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube, 54.0 g (86.0 mmol) of neopentyl sulfonate obtained in Example 1 and hydrophobicity of Mn 9,000 represented by the following structural formula (VI) Unit 35.6 g (4.0 mmol), bis (triphenylphosphine) nickel dichloride 2.36 g (3.6 mmol), sodium iodide 0.40 g (2.7 mmol), triphenylphosphine 9.44 g (36.0 mmol) Then, 14.1 g (216 mmol) of zinc was weighed and replaced with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)290mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc500mLを加えて希釈し、不溶物を濾過した。   290 mL of N, N-dimethylacetamide (DMAc) was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, 500 mL of DMAc was added for dilution, and insoluble matter was filtered off.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた。115℃に加熱攪拌し、臭化リチウム22.4g(258mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体68gを得た。得られた重合体の重量平均分子量(Mw)は250,000であった。得られた重合体は式(VII)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。   The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 22.4 g (258 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, acetone, 1N hydrochloric acid, and pure water were washed in this order and dried to obtain 68 g of the desired polymer. The weight average molecular weight (Mw) of the obtained polymer was 250,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (VII). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

<実施例5>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、実施例1で得られたスルホン酸ネオペンチル53.3g(85.0mmol)、下記構造式(VIII)で示すMn7,000の疎水性ユニット35.6g(5.0mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.36g(3.6mmol)、ヨウ化ナトリウム0.40g(2.7mmol)、トリフェニルホスフィン9.44g(36.0mmol)、亜鉛14.1g(216mmol)をはかりとり、乾燥窒素置換した。
<Example 5>
In a 1 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introducing tube, 53.3 g (85.0 mmol) of neopentyl sulfonate obtained in Example 1 and hydrophobicity of Mn7,000 represented by the following structural formula (VIII) Unit 35.6 g (5.0 mmol), bis (triphenylphosphine) nickel dichloride 2.36 g (3.6 mmol), sodium iodide 0.40 g (2.7 mmol), triphenylphosphine 9.44 g (36.0 mmol) Then, 14.1 g (216 mmol) of zinc was weighed and replaced with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)290mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc500mLを加えて希釈し、不溶物を濾過した。   290 mL of N, N-dimethylacetamide (DMAc) was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, 500 mL of DMAc was added for dilution, and insoluble matter was filtered off.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた。115℃に加熱攪拌し、臭化リチウム22.1g(255mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体68gを得た。得られた重合体の重量平均分子量(Mw)は250,000であった。得られた重合体は式(IX)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。   The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 22.1 g (255 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, acetone, 1N hydrochloric acid, and pure water were washed in this order and dried to obtain 68 g of the desired polymer. The weight average molecular weight (Mw) of the obtained polymer was 250,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (IX). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

<実施例6>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、実施例1で得られたスルホン酸ネオペンチル53.3g(85.0mmol)、下記構造式(X)で示すMn7,
000の疎水性ユニット35.6g(5.0mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.36g(3.6mmol)、ヨウ化ナトリウム0.40g(2.7mmol)、トリフェニルホスフィン9.44g(36.0mmol)、亜鉛14.1g(216mmol)をはかりとり、乾燥窒素置換した。
<Example 6>
In a 1 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube, 53.3 g (85.0 mmol) of neopentyl sulfonate obtained in Example 1, Mn7 represented by the following structural formula (X),
000 hydrophobic units 35.6 g (5.0 mmol), bis (triphenylphosphine) nickel dichloride 2.36 g (3.6 mmol), sodium iodide 0.40 g (2.7 mmol), triphenylphosphine 9.44 g ( 36.0 mmol) and 14.1 g (216 mmol) of zinc were weighed and replaced with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)290mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc500mLを加えて希釈し、不溶物を濾過した。   290 mL of N, N-dimethylacetamide (DMAc) was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, 500 mL of DMAc was added for dilution, and insoluble matter was filtered off.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた。115℃に加熱攪拌し、臭化リチウム22.1g(255mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体68gを得た。得られた重合体の重量平均分子量(Mw)は250,000であった。得られた重合体は式(XI)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。   The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 22.1 g (255 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, acetone, 1N hydrochloric acid, and pure water were washed in this order and dried to obtain 68 g of the desired polymer. The weight average molecular weight (Mw) of the obtained polymer was 250,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (XI). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

<比較例1>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、下記構造式(XII)
で示す4’−(2,5−ジクロロベンゾイル)−ビフェニル−4−スルホン酸ネオペンチル68.8g(144mmol)、上記構造式(II)で示したMn11,200の疎水性ユニット11.0g(1.0mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド3.79g(5.8mmol)、ヨウ化ナトリウム0.65g(4.4mmol)、トリフェニルホスフィン15.2g(58.0mmol)、亜鉛22.75g(348mmol)をはかりとり、乾燥窒素置換した。
<Comparative Example 1>
In a 1L three-necked flask equipped with a stirrer, thermometer, and nitrogen inlet tube, the following structural formula (XII)
68.8 g (144 mmol) of neopentyl 4 ′-(2,5-dichlorobenzoyl) -biphenyl-4-sulfonate shown in the above, 11.0 g (1 .1 of hydrophobic unit of Mn 11,200 shown in the above structural formula (II). 0 mmol), bis (triphenylphosphine) nickel dichloride 3.79 g (5.8 mmol), sodium iodide 0.65 g (4.4 mmol), triphenylphosphine 15.2 g (58.0 mmol), zinc 22.75 g (348 mmol) ) And weighed with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)255mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc480mLを加えて希釈し、不溶物を濾過した。   N, N-dimethylacetamide (DMAc) 255 mL was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, DMAc 480 mL was added for dilution, and insoluble matters were filtered.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた。115℃に加熱攪拌し、臭化リチウム37.5g(432mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体70gを得た。得られた重合体の重量平均分子量(Mw)は335,000であった。得られた重合体は式(XIII)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。   The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 37.5 g (432 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, acetone, 1N hydrochloric acid, and pure water were washed in this order and dried to obtain 70 g of the desired polymer. The weight average molecular weight (Mw) of the obtained polymer was 335,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (XIII). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

<比較例2>
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、下記構造式(XIV)
で示す4’−(2,5−ジクロロベンゾイル)−ビフェニル−2',4−ジスルホン酸ネオペンチル54.5g(86.8mmol)、上記構造式(II)で示したMn11,200の疎水性ユニット34.3g(3.2mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.77g(3.0mmol)、ヨウ化ナトリウム0.41g(2.7mmol)、トリフェニルホスフィン9.44g(36.0mmol)、亜鉛14.1g(216mmol)をはかりとり、乾燥窒素置換した。
<Comparative example 2>
In a 1 L three-necked flask equipped with a stirrer, thermometer and nitrogen inlet tube, the following structural formula (XIV)
4 '-(2,5-dichlorobenzoyl) -biphenyl-2', 4-disulfonic acid neopentyl 54.5 g (86.8 mmol), Mn11,200 hydrophobic unit 34 represented by the above structural formula (II) .3 g (3.2 mmol), bis (triphenylphosphine) nickel dichloride 1.77 g (3.0 mmol), sodium iodide 0.41 g (2.7 mmol), triphenylphosphine 9.44 g (36.0 mmol), zinc 14.1 g (216 mmol) was weighed and replaced with dry nitrogen.

ここにN,N-ジメチルアセトアミド(DMAc)270mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc480mLを加えて希釈し、不溶物を濾過した。   270 mL of N, N-dimethylacetamide (DMAc) was added thereto, and stirring was continued for 3 hours while maintaining the reaction temperature at 80 ° C. Then, 480 mL of DMAc was added for dilution, and insoluble matters were filtered off.

得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れた
。115℃に加熱攪拌し、臭化リチウム23g(260mmol)を加えた。7時間攪拌後、イオン交換水7Lに注いで生成物を沈殿させた。ついで、アセトン、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体70gを得た。得られた重合体の重量平均分子量(Mw)は240,000であった。得られた重合体は式(XV)で表されるスルホン化ポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであった。
The obtained solution was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube. The mixture was heated and stirred at 115 ° C., and 23 g (260 mmol) of lithium bromide was added. After stirring for 7 hours, the product was precipitated by pouring into 7 L of ion-exchanged water. Subsequently, after washing in order of acetone, 1N hydrochloric acid and pure water, it was dried to obtain 70 g of the intended polymer. The weight average molecular weight (Mw) of the obtained polymer was 240,000. The obtained polymer is presumed to be a sulfonated polymer represented by the formula (XV). The ion exchange capacity of this polymer was 2.3 meq / g.

Figure 2008247857
Figure 2008247857

(評価用フィルムの作製)
実施例1〜6および比較例1,2で得られたポリマーをそれぞれ濃度14〜16%でN−メチル−2−ピロリドンに溶解し、ガラス板上にキャストした後、乾燥して膜厚40μmのフィルムを得た。
(評価)
得られたフィルムを用い、耐水性試験およびプロトン伝導度の測定を実施した。結果を表1に示す。
(Production of evaluation film)
The polymers obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were each dissolved in N-methyl-2-pyrrolidone at a concentration of 14 to 16%, cast on a glass plate, and then dried to a film thickness of 40 μm. A film was obtained.
(Evaluation)
Using the obtained film, a water resistance test and measurement of proton conductivity were performed. The results are shown in Table 1.

Figure 2008247857
Figure 2008247857

表1に示すとおり、本発明の芳香族スルホン酸エステル誘導体(実施例1)を用いて合成されたスルホン化ポリマー(実施例2〜6)からなる膜は、高温加湿環境化における寸法安定性が優れており、高温低湿度環境下でのプロトン伝導性の低下も低く抑えられ、優れた電気的特性を発揮している。   As shown in Table 1, the membrane composed of the sulfonated polymer (Examples 2 to 6) synthesized using the aromatic sulfonate ester derivative (Example 1) of the present invention has dimensional stability in a high-temperature humidified environment. It is excellent, and the decrease in proton conductivity under high temperature and low humidity environment is kept low, and it exhibits excellent electrical characteristics.

図1は実施例1で得られた化合物のNMRチャートを示す。FIG. 1 shows an NMR chart of the compound obtained in Example 1.

Claims (5)

下記一般式(1)で表されることを特徴とする芳香族スルホン酸エステル誘導体。
Figure 2008247857
[式(1)中、Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2CH3および−OSO2CF3からなる群より選ばれる原子または基を示し、Yは−CO−または−S
2−を示す。Zは直接結合または−CO−または−SO2−または−SO−を示し、nは
2〜5の整数を示す。Rは独立に炭素数4〜20の炭化水素基を示す。]
An aromatic sulfonic acid ester derivative represented by the following general formula (1):
Figure 2008247857
[In the formula (1), X a halogen atom except fluorine (chlorine, bromine, iodine), - indicates OSO 2 CH 3 and atom or a group selected from the group consisting of -OSO 2 CF 3, Y is -CO- Or -S
O 2 − is shown. Z represents a direct bond or —CO— or —SO 2 — or —SO—, and n represents an integer of 2 to 5. R independently represents a hydrocarbon group having 4 to 20 carbon atoms. ]
下記一般式(1’)で表される構成単位を有することを特徴とするポリアリーレン系重合体。
Figure 2008247857
[式(1’)中、Yは−CO−または−SO2−を示す。Zは直接結合または−CO−または
−SO2−または−SO−を示す。nは2〜5の整数を示す。]
A polyarylene polymer having a structural unit represented by the following general formula (1 ′).
Figure 2008247857
[In the formula (1 ′), Y represents —CO— or —SO 2 —. Z represents a direct bond or —CO— or —SO 2 — or —SO—. n shows the integer of 2-5. ]
さらに、一般式(2)で表される構成単位を有することを特徴とする請求項2に記載のポリアリーレン系共重合体。
Figure 2008247857
[式(2)中、A、Dはそれぞれ独立に直接結合、−O−、−S−、−CO−、−SO2
、−SO−、−CONH−、−COO−、−(CF2)i−(iは1〜10の整数である)、−(CH2)j−(jは1〜10の整数である)、−CR’’2−(R’’は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子を示し、R1〜R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基およびニトリル基からなる群より選ばれる少なくとも1種の原子または基を示し、sおよびtはそれぞれ独立に0〜4の整数を示し、rは0または1以上の整数を示す。]
Furthermore, it has a structural unit represented by General formula (2), The polyarylene-type copolymer of Claim 2 characterized by the above-mentioned.
Figure 2008247857
[In the formula (2), A and D are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —.
, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10) , —CR ″ 2 — (R ″ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a halogenated hydrocarbon group), a cyclohexylidene group, or a fluorenylidene group. Wherein B independently represents an oxygen atom or a sulfur atom, R 1 to R 16 may be the same or different from each other, and a hydrogen atom, a fluorine atom, an alkyl group, or a part or all of them are halogenated. And at least one atom or group selected from the group consisting of a halogenated alkyl group, an allyl group, an aryl group, a nitro group and a nitrile group, s and t each independently represent an integer of 0 to 4, and r is 0 or an integer of 1 or more is shown. ]
上記一般式(1’)が下記一般式(1’a)で表される構成単位であることを特徴とする請求項2または3に記載のポリアリーレン系共重合体。
Figure 2008247857
[式(1’a)中、Zは直接結合または−CO−または−SO2−または−SO−を示す。n
は2〜5の整数を示す。]
The polyarylene copolymer according to claim 2 or 3, wherein the general formula (1 ') is a structural unit represented by the following general formula (1'a).
Figure 2008247857
[In the formula (1′a), Z represents a direct bond, —CO—, —SO 2 — or —SO—. n
Represents an integer of 2 to 5. ]
請求項3および4に記載のポリアリーレン系共重合体を含むことを特徴とする固体高分子電解質膜。 A solid polymer electrolyte membrane comprising the polyarylene copolymer according to claim 3.
JP2007093759A 2007-03-30 2007-03-30 Aromatic sulfonate esters and sulfonated polyarylene polymers Expired - Fee Related JP4985041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093759A JP4985041B2 (en) 2007-03-30 2007-03-30 Aromatic sulfonate esters and sulfonated polyarylene polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093759A JP4985041B2 (en) 2007-03-30 2007-03-30 Aromatic sulfonate esters and sulfonated polyarylene polymers

Publications (2)

Publication Number Publication Date
JP2008247857A true JP2008247857A (en) 2008-10-16
JP4985041B2 JP4985041B2 (en) 2012-07-25

Family

ID=39973237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093759A Expired - Fee Related JP4985041B2 (en) 2007-03-30 2007-03-30 Aromatic sulfonate esters and sulfonated polyarylene polymers

Country Status (1)

Country Link
JP (1) JP4985041B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046234A1 (en) 2009-10-16 2011-04-21 住友化学株式会社 Polyarylene copolymer and uses thereof
WO2011062302A1 (en) * 2009-11-20 2011-05-26 住友化学株式会社 Polyarylene block copolymer and use thereof
JP2011122092A (en) * 2009-12-11 2011-06-23 Tokyo Institute Of Technology New organic compound, new polymeric organic compound and polymer electrolyte using the same, polymer electrolyte membrane, membrane electrode assembly, and fuel cell
CN102786667A (en) * 2012-07-25 2012-11-21 陈康成 Block sulfonated polyphenylene, and preparation method and application thereof
WO2021135922A1 (en) * 2019-12-31 2021-07-08 深圳新宙邦科技股份有限公司 Lithium-ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137444A (en) * 2002-08-22 2004-05-13 Jsr Corp New aromatic sulfonic acid ester derivative, polyarylene, polyarylene bearing sulfo group, its production method and proton conductive membrane and production method thereof
JP2004346163A (en) * 2003-05-21 2004-12-09 Jsr Corp New aromatic sulfonic acid ester derivative, polyarylene, sulfo-containing polyarylene and method for producing the same, and solid polyelectrolyte and proton conductive membrane
JP2004346164A (en) * 2003-05-21 2004-12-09 Jsr Corp Polyarylene having sulfonic acid group, its manufacturing method and proton conductive membrane for direct methanol type fuel cell
JP2005126391A (en) * 2003-10-27 2005-05-19 Jsr Corp New aromatic sulfonate derivative, its polyarylene, polyarylene having sulfonic acid group and method for producing the same and polymer solid electrolyte and proton-conductive film
JP2006299080A (en) * 2005-04-20 2006-11-02 Yamaguchi Univ Polysulfonated aromatic compound, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2006298794A (en) * 2005-04-18 2006-11-02 Yamaguchi Univ Aromatic sulfonic acid derivative, sulfonated polymer, solid polyelectrolyte, and proton-conductive film
JP2006299082A (en) * 2005-04-20 2006-11-02 Yamaguchi Univ Aromatic sulfonic acid derivative bearing nitrile group, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2007046046A (en) * 2005-07-15 2007-02-22 Jsr Corp Sulfonated polyarylene-based polymer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137444A (en) * 2002-08-22 2004-05-13 Jsr Corp New aromatic sulfonic acid ester derivative, polyarylene, polyarylene bearing sulfo group, its production method and proton conductive membrane and production method thereof
JP2004346163A (en) * 2003-05-21 2004-12-09 Jsr Corp New aromatic sulfonic acid ester derivative, polyarylene, sulfo-containing polyarylene and method for producing the same, and solid polyelectrolyte and proton conductive membrane
JP2004346164A (en) * 2003-05-21 2004-12-09 Jsr Corp Polyarylene having sulfonic acid group, its manufacturing method and proton conductive membrane for direct methanol type fuel cell
JP2005126391A (en) * 2003-10-27 2005-05-19 Jsr Corp New aromatic sulfonate derivative, its polyarylene, polyarylene having sulfonic acid group and method for producing the same and polymer solid electrolyte and proton-conductive film
JP2006298794A (en) * 2005-04-18 2006-11-02 Yamaguchi Univ Aromatic sulfonic acid derivative, sulfonated polymer, solid polyelectrolyte, and proton-conductive film
JP2006299080A (en) * 2005-04-20 2006-11-02 Yamaguchi Univ Polysulfonated aromatic compound, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2006299082A (en) * 2005-04-20 2006-11-02 Yamaguchi Univ Aromatic sulfonic acid derivative bearing nitrile group, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2007046046A (en) * 2005-07-15 2007-02-22 Jsr Corp Sulfonated polyarylene-based polymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046234A1 (en) 2009-10-16 2011-04-21 住友化学株式会社 Polyarylene copolymer and uses thereof
WO2011062302A1 (en) * 2009-11-20 2011-05-26 住友化学株式会社 Polyarylene block copolymer and use thereof
JP2011122092A (en) * 2009-12-11 2011-06-23 Tokyo Institute Of Technology New organic compound, new polymeric organic compound and polymer electrolyte using the same, polymer electrolyte membrane, membrane electrode assembly, and fuel cell
CN102786667A (en) * 2012-07-25 2012-11-21 陈康成 Block sulfonated polyphenylene, and preparation method and application thereof
WO2021135922A1 (en) * 2019-12-31 2021-07-08 深圳新宙邦科技股份有限公司 Lithium-ion battery

Also Published As

Publication number Publication date
JP4985041B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5472267B2 (en) Nitrogen-containing aromatic compound, method for producing the same, polymer, and proton conducting membrane
KR100756457B1 (en) Block copolymers containing perfluorocyclobutane rings and electrolyte membranes using the same
JP2007523230A (en) Branched sulfonated multiblock copolymer and electrolyte membrane using the same
JP4985041B2 (en) Aromatic sulfonate esters and sulfonated polyarylene polymers
JP2007022959A (en) New aromatic compound, sulfonated polyarylene, and use of the same
JP2006299080A (en) Polysulfonated aromatic compound, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2008251363A (en) Membrane-electrode structure for solid polymer fuel cell
JP4579073B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2007109472A (en) Membrane electrode assembly for fuel cell
JP2003147075A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
Jiang et al. Cross-linked high conductive membranes based on water soluble ionomer for high performance proton exchange membrane fuel cells
JP4554568B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP4752336B2 (en) Proton conducting membrane with improved thermal stability and composition for forming the conducting membrane
JP2006299015A (en) Aromatic sulfonic acid derivative, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP4997852B2 (en) Sulfonated polyarylene polymer
JP2009295319A (en) Membrane-electrode assembly for polymer electrolyte fuel cell
JP2008166199A (en) High-polymer electrolyte, high-polymer electrolyte film, and fuel cell with film
JP2007213937A (en) Membrane-electrode structure for solid polymer fuel cell and its manufacturing method
JPWO2006048942A1 (en) Sulfonated polymers and solid polymer electrolytes with nitrile-type hydrophobic blocks
JP5350974B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP5581593B2 (en) Polyarylene-based copolymer, proton conducting membrane and solid polymer electrolyte fuel cell
JP5512488B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2007063533A (en) Sulfonic group-containing polymer, use of the same, and method for producing the same
JP2010229352A (en) Aromatic polymer electrolyte having super-strong acid group, and use thereof
JP5391779B2 (en) Polymer electrolyte membrane and solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4985041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees