JP2008247176A - き電回路共振抑制装置 - Google Patents

き電回路共振抑制装置 Download PDF

Info

Publication number
JP2008247176A
JP2008247176A JP2007090519A JP2007090519A JP2008247176A JP 2008247176 A JP2008247176 A JP 2008247176A JP 2007090519 A JP2007090519 A JP 2007090519A JP 2007090519 A JP2007090519 A JP 2007090519A JP 2008247176 A JP2008247176 A JP 2008247176A
Authority
JP
Japan
Prior art keywords
current
feeder circuit
voltage
filter
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090519A
Other languages
English (en)
Inventor
Hiromi Morimoto
大観 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007090519A priority Critical patent/JP2008247176A/ja
Publication of JP2008247176A publication Critical patent/JP2008247176A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】き電回路の共振周波数が低下しても、共振現象の拡大を抑制する際、エネルギーの使用効率の低下を従来例に比較して抑制するき電回路共振抑制装置を提供する。
【解決手段】本発明のき電回路共振抑制装置は、き電変電所から延びる交流き電回路の末端に取り付けられ、き電回路が有する特性インピーダンスに対してインピーダンス整合を行うき電回路共振抑制装置であり、き電回路の電圧波形をサンプリングするサンプリング部と、特性インピーダンスと同一の特性を有する模擬受動素子フィルタをデジタル演算によりシュミレートし、電圧波形に対応して模擬受動素子フィルタに流れるフィルタ電流値を計算する等価フィルタ電流演算部と、フィルタ電流値に対応した電流を、直流コンデンサに蓄積あるいは放電することによりき電回路に対して流す電力変換部とを有する。
【選択図】図1

Description

本発明は、交流き電回路において、電車から発生する高調波が共振して拡大することを防止するき電回路共振抑制装置に関する。
従来、新幹線鉄道に代表される交流電気車は、サイリスタ位相制御を行い、力流電力に変換して直流電動機を駆動している。このため、交流側電流波形は三角波及び矩形波の中間にあり、基本波電流に高調波電流が重畳することとなる。また、PWMコンバータ・インバータを用いる交流電気車では、交流電力をPWMコンバータで直流に変換し、それをVVVF(可変電圧可変周波数制御)インバータで交流電力に変換して交流電動機を駆動しているが、PWMコンバータが交流電力を直流電力に変換する際に、基本波電流に鋸波状の高調波電流が重畳することとなる。
一方、図4に示すように、き電点Kから見たき電変電所250側における電源側インピーダンスは誘導性であり、電源リアクタンス300として存在し、き電点Kから見た架線100全体と対地間における浮遊容量(分布定数回路における線間・対地静電容量301〜30nの合計値)と特定周波数(以下、共振周波数)にて並列共振となり、すなわち高調波の周波数と電源リアクタンス300及び浮遊容量の回路の共振周波数とが接近した場合に、高調波による電流の拡大現象が生じ、電力や通信機器に対して悪影響を与える。
そのため、き電回路末端となるき電区分所に、コンデンサと抵抗とリアクトルとから構成される高調波共振抑制装置(HMCR装置)を設置して、共振点を雑音評価係数の小さい低次に移行させるとともに、高調波による電流の拡大率を小さく抑制している。
すなわち、架線100と対地間とで形成される分布定数回路において、き電変電所250と逆方向の末端が開放されている場合、高調波の電流波形は開放された末端にて反射され、架線100に戻るため拡大する。
このため、き電回路における架線100の末端が特性インピーダンスにて整合されている場合、末端方向へ進む進行波のみとなり無限長の架線と等価とすることができる。
すなわち、図4に示すように、架線100の末端に高調波共振抑制装置を配置し、この高調波共振抑制装置内にて、架線100の末端に、この架線100の有する特性インピーダンスと等しい値の抵抗を接続して高調波の電流の拡大を抑制し、基本波電流を抑制するためにコンデンサとリアクトルとを接続している(例えば、特許文献1参照)。
特開平6−284514号公報
しかしながら、図4に示すように架線100の長さが30km〜50kmの長大き電回路となると、架線100が長くなり浮遊静電容量が増加することとなり、き電回路の共振周波数は低下する。また、電源リアクタンス300が増加しても、同様にき電回路の共振周波数が低下することとなる。ここで、特許文献1に示す高調波共振制御装置にあっては、き電回路の共振周波数が低下することにより、共振周波数が高い場合に比較して、抵抗により多くの電流を流す必要が生じ、この抵抗の発熱によりエネルギーを消費させることとなり、エネルギーの実使用の効率がより低下することとなる。
また、都市部のトンネルにて同軸ケーブルを架線として用いるき電回路の場合、周囲の状況(空間が狭い)により空中に数万Vの送電線を何本も張ることができないため、電力同軸ケーブルを用いている。
この電力同軸ケーブルは、中心導体の周囲を絶縁層にてカバーし、その絶縁層の外周面にシールドを設けたものであり、通常の空中に張る架線に用いる送電線に対して、構造的に容量が大きいため、空中に張る架線に比較すると、より短い距離にて共振周波数が低下することになる。
本発明は、このような事情に鑑みてなされたもので、き電回路の共振周波数が低下しても、共振現象の拡大を抑制する際、エネルギーの使用効率の低下を従来例に比較して抑制するき電回路共振抑制装置を提供することを目的とする。
発明のき電回路共振抑制装置は、き電変電所から延びる交流き電回路の末端に取り付けられ、前記き電回路が有する特性インピーダンスに対してインピーダンス整合を行うき電回路共振抑制装置であり、き電回路の電圧波形をサンプリングするサンプリング部と、前記特性インピーダンスと同一の特性を有する模擬受動素子フィルタをデジタル演算によりシュミレートし、前記電圧波形に対応して前記模擬受動素子フィルタに流れるフィルタ電流値を計算する等価フィルタ電流演算部と、前記フィルタ電流値に対応した電流を、直流コンデンサに蓄積あるいは放電することによりき電回路に対して流す電力変換部とを有する。
本発明のき電回路共振抑制装置は、前記電力変換部に直流コンデンサが設けられ、前記電力変換部に直流コンデンサに蓄積される電荷を充電または放電して一定電圧に制御することにより、き電回路に流れる電流を制御する制御部をさらに有することを特徴とする。
本発明のき電回路共振抑制装置は、前記制御部が、前記直流コンデンサの直流電圧及び予め設定した設定電圧の差分電圧から、直流コンデンサに対して充電あるいは放電を行う電流値を算出する直流電圧制御部と、前記フィルタ電流値と前記直流電圧制御部の算出する電流値とを加算し、加算結果の制御電流値により電力変換部を制御する電流制御部とを有することを特徴とする。
本発明のき電回路共振抑制装置は、前記サンプリング部が、き電回路に1次側が取り付けれ、前記等価フィルタ電流演算部に2次側が取り付けられた変圧器を有していることを特徴とする。
以上説明したように、本発明によれば、き電回路の特性インピーダンスと同様の特性インピーダンスを有する受動素子フィルタの動作、すなわちき電回路における交流電圧の電圧波形に対応して受動素子フィルタに流れる電流を、デジタル演算によりシミュレートし、き電回路の共振周波数に対応する高調波電流の極性に応じて、電力変換器により直流コンデンサに電荷を充電または放電させることにより、共振動作を抑制するとともに、さらにこの直流コンデンサに蓄積される電圧を一定に制御することにより、基本波電力の流入量をほぼ「0」に制御することができ、き電回路の電圧波形をき電変電所から出力される基本波形に制御することができる。
また、本発明によれば、上記直流コンデンサに蓄積した高調波の電力を、高調波を抑制する電流として戻すことにより、き電回路へ高調波の電力を回生することも可能となり、き電回路における共振動作抑制における電力損失を低減することができる。
また、本発明によれば、受動素子フィルタの特性インピーダンスをシミュレートする演算式を、いずれの型のフィルタにより模擬してよく、設置されるき電回路の特性インピーダンスに対応して適時変更することが可能であり、汎用的に用いることができる。
以下、本発明の一実施形態によるき電回路共振抑制装置を図面を参照して説明する。図1は同実施形態によるき電回路共振抑制装置を設けたき電回路の構成例を示す概念図である。また、図2は図1における本実施形態によるき電回路共振抑制装置の構成例を示すブロック図である。
この図1において、架線100は、抵抗と誘導性及び容量性リアクタンスとからなる分布定数回路を構成している。誘導性リアクタンスは線路リアクタンス301〜30n、抵抗は線路抵抗401〜40n、容量リアクタンスは線間・対地静電容量501〜50nである。
このき電回路の共振周波数は、き電点Kから見た交流き電変電所250、及びその先にある発電所からの送電線などの誘導性リアクタンスである電源リアクタンス300と、架線100の有する線間・対地静電容量501〜50nの分布定数を、同様にき電点Kから集中定数として見た線間・対地静電容量Cとの特性インピーダンスにより決定される。
図1の本発明によるき電回路共振抑制装置1は、上記特性インピーダンスと同一の特性インピーダンスを有する受動素子フィルタを仮想的に設け(受動素子フィルタの演算式をデジタル演算することによりシミュレートする機能を持たせ)、すなわち架線の電圧波形に応じて、この受動素子フィルタに流れる電流をデジタル演算し、受動素子フィルタの動作を模擬し、演算結果の電圧電流を電力変換器(後述)で発生させ、き電回路に流すことにより、き電回路のインピーダンス整合を行う。これにより、本発明のき電回路共振抑制装置1は、き電回路の線間・対地静電容量501〜50nと電源リアクタンス300に対応した共振周波数及びき電回路の特性インピーダンスに対応した共振周波数での電流拡大を抑制し、き電回路が共振状態に陥る現象を防止することができる。
ここで、電力変換器として、例えばPWMインバータ(図3)を用い、PWMインバータの直流側は無負荷として、高調波電力を蓄積する直流コンデンサを設け、この直流コンデンサに蓄積される電圧を一定値とする制御を行うことにより、基本波からの電力の流入量をほぼゼロにして基本波の電力損失を抑制し、高調波を吸収して直流コンデンサに蓄積した高調波電力を、高調波を打ち消すように基本波の電力に変換してき電回路に回生することが可能となり、共振周波数がき電変電所から送電される基本波の周波数近傍となっても、従来例に比較して共振動作抑制における基本波の電力損失を削減することができる。
上述したように、本実施形態においては、き電回路の伝送線路(架線100及びレール101)内における電気信号の反射及びき電回路の線間・対地静電容量501〜50nと電源リアクタンス300での共振を防ぐため、き電変電所250から延びる架線100及びレール101からなるき電回路の末端に、インピーダンス整合を行うための、仮想受動素子フィルタを有するき電回路共振抑制装置1を設ける。
このき電回路共振抑制装置1は、図2に示すように、変圧器2、変圧器3、等価フィルタ電流演算部4、電流センサ5、電流制御部6、ゲート制御部7、電力変換部8、直流電圧制御部9、直流コンデンサ10、電圧計11及び加算器12を有している。
例えば、30000Vの交流電圧が電車を介し、き電変電所250から架線100からレール101に流れているとする。
変圧器2は、1次側の端子各々がそれぞれ架線100、レール101に接続され、2次側の端子各々が電力変換部8に接続され、き電回路の交流電圧を変圧、すなわち巻き数比1:30とすると、30000Vを1000Vに降圧し、この降圧した第1降圧電圧を電力変換部8へ出力する。
変圧器3は、1次側の端子各々がそれぞれ架線100、レール101に接続され、2次側の端子各々が等価フィルタ電流演算部4に接続され、き電回路の交流電圧を変圧、すなわち巻き数比を1:300とすると、30000Vを100Vに変圧、すなわち降圧し、この降圧した第2降圧電圧を等価フィルタ電流演算部4へ出力する。
電流センサ5は、変圧器2の2次側の配線に取り付けられており、変圧器2の2次側に流れる電流値を検出し、検出電流値として電流制御部6に対して出力する。
等価フィルタ電流演算部4は、変圧器3から入力される上記第2降圧電圧を予め設定された周期(例えば、2000Hz)にてサンプリングし、架線100の電圧波形のデータを取得する。
また、等価フィルタ電流演算部4は、き電回路の特性インピーダンスと同一の特性インピーダンスを有する受動素子フィルタのモデルデータ(抵抗、コンデンサ、インダクタからなるフィルタの特性インピーダンス、すなわち伝達インピーダンスの演算式)が内部に設定されており、この受動素子フィルタを上記モデルデータを用いてデジタル演算することによりシュミレートし、電圧波形に対応して受動素子フィルタに流れるフィルタ電流値を計算する。
この特性インピーダンスは、き電回路共振抑制装置を設ける対象のき電回路を実際に測定して得た数値である。
このモデルデータは、例えば、電圧波形の電圧値、周波数び位相と流れる電流値との対応関係を示す演算式、すなわち抵抗、コンデンサ、インダクタ等から構成される受動素子フィルタの伝達関数(伝達インピーダンス)を示すものであり、サンプリングされた電圧波形を入力し、受動素子フィルタに流れるフィルタ電流値を求めるシミュレーションを行う上記伝達関数に基づく演算式を用いたプログラムにて生成したものである。
そして、等価フィルタ電流演算部4は、内部のマイクロプロセッサあるいはシグナルプロセッサにより、上記プログラムにより、サンプリングした電圧波形から、例えばラプラス変換演算等により電圧値、周波数び位相を求め、き電回路と同様の特性インピーダンスを有する仮想の受動素子フィルタに流れるフィルタ電流値を算出する。
上述したように、等価フィルタ電流演算部4は、入力される波形電圧の電圧値,周波数び位相を求めて、これらに対応してサンプリングタイミング毎に、模擬している仮想の受動素子フィルタに流れるフィルタ電流値を求め、求めたフィルタ電流値を第1指令値として加算器12に出力する。
ここで、等価フィルタ電流演算部4は、高調波の位相において正のピークに対して「+」のフィルタ電流値とし、高調波の位相において負のピークに対対して「−」のフィルタ電流値とする。
電圧計11は、直流コンデンサ11の両端の電圧を測定し、電圧値Edとして直流電圧制御部9へ出力する。
直流電圧制御部9は、直流電圧制御部9から入力される電圧値Edと、直流コンデンサ11の両端の電圧値Edが予め設定された閾値電圧Edt(例えば、Edt≧21/2|Vs|:実効値)とを比較し、その電圧差を予め設定した変換関数、あるいはテーブルにより電流値に変換し、第2指令値として加算器12へ出力する。ここで、例えば、変圧器2の2次側が1000Vの場合、閾値電圧Edtは1800Vとして設定する。
このとき、直流電圧制御部9は、電圧値Edが閾値電圧Edt以上の場合、上記電圧差分の電荷を直流コンデンサ10から放電する第2指令値を出力し、電圧値Edが閾値電圧Edt未満の場合、上記電圧差分の電荷を直流コンデンサ10に対して充電する第2指令値を出力する。例えば、直流電圧制御部9は、電圧値Edから閾値電圧Edtを減算し、この減算結果を制御ゲインに乗算することで電力変換部8に流す電流値を第2指令値として算出する。
ここで、直流電圧制御部9は、例えば、電圧値Edが閾値電圧Edtを超えたことを検出した場合、第2指令値が「+」の電流値を示し、電圧値Edが閾値電圧Edt以下であることを検出した場合、第2指令値が「−」の電流値を示すよう出力する。
加算器12は、等価フィルタ電流演算部4から入力される第1指令値と、直流電圧制御部9から入力される第2指令値とを加算し、電流指令値として電流制御部6へ出力する。
電流制御部6は、電流センサー5から入力される検出電流値と、加算器12からの電流指令値とを比較、すなわち検出電流値から電流指令値を減算して差分電流値を求め、この差分電流値をゲート制御部7へ出力する。
ゲート制御部7は、上記差分電流値が「+」の場合、直流コンデンサ10に電荷を蓄積するゲート制御信号を、一方、差分電流値が「−」の場合、直流コンデンサ10から電荷を放電するゲート制御信号を、電力変換部8に対して出力する。
電力変換部8は、上記ゲート制御信号が入力されると、このゲート制御信号に応じて、直流コンデンサ10に電荷を充電する、あるいは直流コンデンサ10に蓄積された電荷を放電する動作を行う。
図3は、上記電力変換部8の構成例を示すブロック図である。電力変換部8は、IGBT(Inerted Gate Bipolar Transistor、絶縁バイポーラトランジスタ)701、702、703及び704と、ダイオード601、602、603及び604とから形成されたPWMインバータであり、直流コンデンサ10に対して充電及び放電の動作を行う。
ここで、IGBT701とIGBT702とは直列に接続され、ダイオード601がIGBT701に並列に接続され、ダイオード602がIGBT702に並列に接続されている。同様に、IGBT703とIGBT704とは直列に接続され、ダイオード603がIGBT703に並列に接続され、ダイオード604がIGBT704に並列に接続されている。
そして、IGBT701及びIGBT702の直列接続と、IGBT703及びIGBT704の直列接続とが並列接続されている。
ゲート制御部7は、IGBT71〜IGBT74各々のゲートを制御し、コンデンサ10に対する充電及び放電を制御する。
すなわち、ゲート制御部7は、合計電流値が「+」の場合、直流コンデンサ10を充電する状態にIGBT71〜IGBT74各々をオンオフ制御するために各IGBTのゲートに印加する信号を生成し、合計電流値が「−」の場合、直流コンデンサ10を放電する状態にIGBT71〜IGBT74各々をオンオフ制御するために各IGBTのゲートに印加する信号を生成する。
なお、図2における等価フィルタ電流演算部4、直流電圧制御部4、加算器12、電流制御部6及びゲート制御部7の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりインピーダンス整合のフィルタ処理の動作を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
本発明の一実施形態によるき電回路共振抑制装置を用いたき電回路の構成例を示す概念図である。 本発明の一実施形態によるき電回路共振抑制装置の構成例を示すブロック図である。 図2における電力変換回路8の構成例を示すブロック図である。 従来例によるき電回路共振抑制装置を用いたき電回路の構成例を示す概念図である。
符号の説明
1…き電回路共振抑制装置
2,3…変圧器
4…等価フィルタ電流演算部
5…電流センサ
6…電流制御部
7…ゲート制御部
8…電力変換部
9…直流電圧制御部
10…直流コンデンサ
11…電圧計
12…加算器
301,302,303,30n-1,30n…線路リアクタンス
401,402,403,40n-1,40n…線路抵抗
501,502,503,50n-1,50n…線間・対地静電容量
601,602,603,60n-1,60n…ダイオード
701,702,703,70n-1,70n…IGBT
100…架線
101…レール
200…走行車両
250…交流き電変電所
300…電源リアクタンス

Claims (4)

  1. き電変電所から延びる交流き電回路の末端に取り付けられ、前記き電回路が有する特性インピーダンスに対してインピーダンス整合を行うき電回路共振抑制装置であり、
    き電回路の電圧波形をサンプリングするサンプリング部と、
    前記特性インピーダンスと同一の特性を有する模擬受動素子フィルタをデジタル演算によりシュミレートし、前記電圧波形に対応して前記模擬受動素子フィルタに流れるフィルタ電流値を計算する等価フィルタ電流演算部と、
    前記フィルタ電流値に対応した電流を、直流コンデンサに蓄積あるいは放電することによりき電回路に対して流す電力変換部と
    を有するき電回路共振抑制装置。
  2. 前記電力変換部に直流コンデンサに蓄積される電荷を充電または放電して一定電圧に制御することにより、き電回路に流れる電流を制御する制御部をさらに有することを特徴とする請求項1に記載のき電回路共振抑制装置。
  3. 前記制御部が、
    前記直流コンデンサの直流電圧及び予め設定した設定電圧の差分電圧から、直流コンデンサに対して充電あるいは放電を行う電流値を算出する直流電圧制御部と、
    前記フィルタ電流値と前記直流電圧制御部の算出する電流値とを加算し、加算結果の制御電流値により電力変換部を制御する電流制御部と
    を有することを特徴とする請求項2に記載のき電回路共振抑制装置。
  4. 前記サンプリング部が、
    き電回路に1次側が取り付けれ、前記等価フィルタ電流演算部に2次側が取り付けられた変圧器を有していることを特徴とする請求項1から請求項3のいずれかに記載のき電回路共振抑制装置。
JP2007090519A 2007-03-30 2007-03-30 き電回路共振抑制装置 Pending JP2008247176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090519A JP2008247176A (ja) 2007-03-30 2007-03-30 き電回路共振抑制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090519A JP2008247176A (ja) 2007-03-30 2007-03-30 き電回路共振抑制装置

Publications (1)

Publication Number Publication Date
JP2008247176A true JP2008247176A (ja) 2008-10-16

Family

ID=39972642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090519A Pending JP2008247176A (ja) 2007-03-30 2007-03-30 き電回路共振抑制装置

Country Status (1)

Country Link
JP (1) JP2008247176A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117993A (ja) * 2012-12-14 2014-06-30 Hitachi Ltd 電力変換器および電力変換器の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117993A (ja) * 2012-12-14 2014-06-30 Hitachi Ltd 電力変換器および電力変換器の制御方法

Similar Documents

Publication Publication Date Title
Costa et al. Modeling of conducted common mode perturbations in variable-speed drive systems
Singh et al. Single‐stage ZETA‐SEPIC‐based multifunctional integrated converter for plug‐in electric vehicles
Cui et al. Resonant harmonic elimination pulse width modulation‐based high‐frequency resonance suppression of high‐speed railways
CN103595243B (zh) 适用于抑制风力发电机驱动系统中共模电磁干扰的方法
Luszcz High frequency conducted emission in AC motor drives fed by frequency converters: sources and propagation paths
Rahnamaee et al. MOSFET based Multilevel converter for IPT systems
Stackler et al. 25 kV–50 Hz railway supply modelling for medium frequencies (0–5 kHz)
Takahashi et al. Review of modeling and suppression techniques for electromagnetic interference in power conversion systems
Kalla et al. Improved power quality charging scheme for heavy‐duty vehicle battery swapping stations
Zhang et al. Wavelet‐based EMTR method for fault location of VSC‐HVDC transmission lines
JP2008247176A (ja) き電回路共振抑制装置
Chikhi et al. European Journal of Electrical Engineering
KR102424583B1 (ko) Dc 마이크로그리드 시스템의 제어 방법
Haghbin et al. High‐frequency modelling of a three‐phase pulse width modulation inverter towards the dc bus considering line and controller harmonics
Bhakthavachala et al. A simplified filter topology for compensating common mode voltage and electromagnetic interference in induction motor drives
Evans et al. A preliminary loss comparison of solid-state transformers in a rail application employing silicon carbide (SiC) MOSFET switches
Esmaeli et al. Suppressing of commonmode voltage, shaft voltage, leakage current and EMI generated by voltage source PWM inverter
Xu et al. Suppression effectiveness research on multi-level EMI filter in thermal electromagnetic interactive filed of explosion-proof three-level NPC converter
Peroutka et al. Adverse effects in voltage source inverter-fed drive systems
Sabran et al. LCL-filter design and analysis for PWM recuperating system used in DC traction power substation
CN103280964B (zh) 一种功率因数校正电路
Azam Three to single‐phase high‐power quality switch‐mode cycloconverter
Grasel et al. The impact of V2G charging stations (active power electronics) to the higher frequency grid impedance
Jettanasen et al. Minimization of common-mode conducted noise in PWM inverter-fed AC motor drive systems using optimized passive EMI filter
Horton et al. Calculation of GIC in bulk power systems