JP2008247173A - Axlebox supporting device - Google Patents

Axlebox supporting device Download PDF

Info

Publication number
JP2008247173A
JP2008247173A JP2007090485A JP2007090485A JP2008247173A JP 2008247173 A JP2008247173 A JP 2008247173A JP 2007090485 A JP2007090485 A JP 2007090485A JP 2007090485 A JP2007090485 A JP 2007090485A JP 2008247173 A JP2008247173 A JP 2008247173A
Authority
JP
Japan
Prior art keywords
axle box
spring
side connection
spring element
carriage frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090485A
Other languages
Japanese (ja)
Inventor
Makoto Ishige
真 石毛
Yasuhiro Umehara
康宏 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007090485A priority Critical patent/JP2008247173A/en
Publication of JP2008247173A publication Critical patent/JP2008247173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axlebox supporting device equipped with an enhanced steering performance during running on a curved track while the running stability during running on a straight track is secured. <P>SOLUTION: The axlebox supporting device 50 is to support each axlebox 40 on a bogie frame by a coupling means 53 extending approximately along the vehicle advancing direction, the axleboxes 40 being installed at the ends of each axle 30 of a bogie 1 for rolling stock, wherein the coupling means 53 is equipped with a box side member 110 connected with a box side connection part 41, a bogie frame side member 120 connected with a bogie frame side connection part 11 and connected with the box side member in such a way as able to make relative displacement in the direction of changing the distance between the box side connection part and the bogie frame side connection part, a first spring element 140 to generate a biasing force in the direction of shortening the distance between the box side connection part and the bogie frame side connection part, a second spring element 150 to generate a biasing force in the direction of expanding the distance between the box side connection part and the bogie frame side connection part, and a spring constant controlling means to enlarge the spring constant of the second spring element in relation to that of the first spring element by changing the spring constant of at least either of the two spring elements when the vehicle is running on the curved track. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄道の車体を支持してレール上を走行する鉄道車両用台車(以下、単に「台車」と称する)の軸箱支持装置に関する。特には、直線走行時の走行安定性を確保しつつ曲線走行時の操舵性能を向上した軸箱支持装置に関する。   The present invention relates to an axle box support device for a railcar bogie (hereinafter simply referred to as a “trolley”) that travels on a rail while supporting a railcar body. In particular, the present invention relates to a shaft box support device that improves the steering performance during curved traveling while ensuring traveling stability during linear traveling.

台車は、輪軸に設けられる軸箱を、軸バネの伸縮等に応じて台車枠に対して変位可能に装着して構成されている(例えば、特許文献1参照)。このような鉄道車両用台車において、軸箱を台車枠に対して支持する機構は軸箱支持装置と称されている。
軸箱支持装置は、直線走行時における輪軸の蛇行等を防止しつつ、曲線走行時の転向性を確保するため、輪軸を台車枠に対して所定の剛性において弾性支持する。
特開2002−293237号公報
The cart is configured by mounting a shaft box provided on a wheel shaft so as to be displaceable with respect to the cart frame in accordance with expansion and contraction of a shaft spring (for example, see Patent Document 1). In such a railway vehicle carriage, a mechanism for supporting the axle box with respect to the carriage frame is referred to as an axle box support device.
The axle box support device elastically supports the wheel shaft with a predetermined rigidity with respect to the carriage frame in order to prevent turning of the wheel shaft during straight running and to ensure turning performance during curved running.
JP 2002-293237 A

鉄道車両の高速化に伴い、直線走行時の走行安定性を確保するためには、軸箱支持装置による輪軸の支持剛性を向上することが好ましい。しかし、軸箱支持装置の支持剛性を向上すると、曲線走行時における輪軸の鉛直軸回りの回転が困難となって操舵性能が低下し、曲線通過性能が低下してしまう。
本発明は、上記の課題に鑑みてなされたものであって、直線走行時の走行安定性を確保しつつ曲線走行時の操舵性能を向上した軸箱支持装置を提供することを目的とする。
As the speed of the railway vehicle increases, it is preferable to improve the support rigidity of the wheel shaft by the axle box support device in order to ensure running stability during straight running. However, when the support rigidity of the axle box support device is improved, it becomes difficult to rotate the wheel shaft around the vertical axis during curve traveling, and the steering performance is lowered, and the curve passing performance is lowered.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a shaft box support device that improves the steering performance during curved traveling while ensuring traveling stability during linear traveling.

上記の課題を解決するため、本発明の軸箱支持装置は、鉄道車両用台車の輪軸両端部に設けられる軸箱を、車両の進行方向にほぼ沿って延在する連結手段によって該台車の台車枠に対して支持する軸箱支持装置であって、前記連結手段は、前記軸箱に設けられた軸箱側接続部に接続された軸箱側部材と、前記台車枠に設けられた台車枠側接続部に接続され、前記軸箱側部材に対して、前記軸箱側接続部と前記台車枠側接続部との距離を変化させる方向に相対変位可能に接続された台車枠側部材と、前記軸箱側部材と前記台車枠側部材との間に設けられ、前記軸箱側接続部と前記台車枠側接続部との距離を短縮する方向の付勢力を発生する第1のバネ要素と、前記軸箱側部材と前記台車枠側部材との間に設けられ、前記軸箱側接続部と前記台車枠側接続部との距離を伸張する方向の付勢力を発生する第2のバネ要素と、車両の曲線走行時に前記第1のバネ要素、前記第2のバネ要素の少なくとも一方のバネ定数を変化させて、前記第2のバネ要素のバネ定数を前記第1のバネ要素のバネ定数に対して相対的に大きくするバネ定数制御手段と、を備えることを特徴とする。
これによれば、連結手段の引張荷重に対する剛性を、直線走行時には大きくして走行安定性を確保するとともに、曲線走行時には小さくして連結手段の伸びを許容し、輪軸の操舵性能を改善して曲線通過性能を向上することができる。
In order to solve the above-described problem, the axle box support device according to the present invention is provided with a carriage of the carriage by connecting means extending substantially along the traveling direction of the axle boxes provided at both ends of the axle of the railway carriage carriage. An axle box support device for supporting a frame, wherein the connecting means includes an axle box side member connected to an axle box side connection provided in the axle box, and a carriage frame provided in the carriage frame. A carriage frame side member connected to a side connection part and connected to the axle box side member so as to be relatively displaceable in a direction in which a distance between the axle box side connection part and the carriage frame side connection part is changed; A first spring element that is provided between the axle box side member and the carriage frame side member and that generates a biasing force in a direction that shortens the distance between the axle box side connection portion and the carriage frame side connection portion; The axle box side member and the carriage frame side member are provided between the axle box side connection part and the carriage. A second spring element that generates an urging force in a direction that extends a distance from the side connection portion, and at least one of the first spring element and the second spring element is changed when the vehicle is traveling in a curved line. Spring constant control means for making the spring constant of the second spring element relatively larger than the spring constant of the first spring element.
According to this, the rigidity of the connecting means with respect to the tensile load is increased during straight running to ensure running stability, and during curved running, the rigidity of the connecting means is allowed to be reduced to improve the steering performance of the axle. Curve passing performance can be improved.

本発明の軸箱支持装置は、前記第2のバネ要素として空気バネを備え、前記バネ定数制御手段は、車両の曲線走行時に前記空気バネの内圧を増大させる構成とすることができる。
これによれば、第2のバネ要素のバネ定数を無段階に変更することができる。また、空気バネの作動流体として、鉄道車両に一般的に装備される空気溜めに貯留される圧縮空気を用いることができることから、既存の鉄道車両に対して小規模な改修で適用することができる。
The axle box support device of the present invention may include an air spring as the second spring element, and the spring constant control means may increase the internal pressure of the air spring when the vehicle is traveling in a curved line.
According to this, the spring constant of the second spring element can be changed steplessly. Moreover, since the compressed air stored in the air reservoir generally equipped in a railway vehicle can be used as the working fluid of the air spring, it can be applied to an existing railway vehicle with a small renovation. .

本発明の軸箱支持装置は、前記バネ定数制御手段は、車両の曲線走行時に、前記第2のバネ要素のバネ定数の前記第1のバネ要素のバネ定数に対する相対的な増加率を、内軌側よりも外軌側において大きくする構成とすることができる。
この場合、第1のバネ要素のバネ定数に対する第2のバネ要素のバネ定数を、内軌側も増大させるが外軌側においてさらに増大させるようにしてもよい。また、内軌側は変化させずに外軌側のみ増大させるようにしてもよい。
これによれば、外軌側の連結部の引張荷重に対する剛性を内軌側よりも相対的に低下させることによって、曲線走行時における輪軸の操舵を促進し、曲線通過性能をより向上することができる。
In the axle box support device of the present invention, the spring constant control means includes a relative increase rate of the spring constant of the second spring element with respect to the spring constant of the first spring element when the vehicle runs on a curve. It can be set as the structure enlarged on the outer gauge side rather than the gauge side.
In this case, the spring constant of the second spring element with respect to the spring constant of the first spring element is increased on the inner track side, but may be further increased on the outer track side. Further, only the outer gauge side may be increased without changing the inner gauge side.
According to this, by lowering the rigidity with respect to the tensile load of the connecting portion on the outer gauge side relative to that on the inner gauge side, it is possible to promote the steering of the wheel shaft during curve traveling and further improve the curve passing performance. it can.

以上のように、本発明によれば、軸箱と台車枠とを連結する連結手段を縮める方向に付勢する第1のバネ要素、伸ばす方向に付勢する第2のバネ要素を設けて、曲線走行時に第1のバネ要素のバネ定数に対して第2のバネ要素のバネ定数を大きくすることによって、直線走行時の走行安定性を確保しつつ曲線走行時の操舵性能を向上することができる。   As described above, according to the present invention, the first spring element that urges the connecting means that connects the axle box and the carriage frame in the direction of contracting, and the second spring element that urges in the extending direction are provided. By increasing the spring constant of the second spring element relative to the spring constant of the first spring element during curve traveling, it is possible to improve the steering performance during curve traveling while ensuring traveling stability during linear traveling. it can.

以下、図面を参照しつつ本発明を適用した軸箱支持装置の実施形態について説明する。なお、以下の説明では、通常の鉄道車両の技術におけるのと同様に、レールの長手方向(車両の進行方向)を前後方向、軌道面におけるレール長手方向と直角をなす方向を左右方向(車幅方向)、軌道面に垂直な方向を上下方向と呼ぶ。   Hereinafter, embodiments of an axle box support device to which the present invention is applied will be described with reference to the drawings. In the following description, the rail longitudinal direction (vehicle traveling direction) is the front-rear direction and the direction perpendicular to the rail longitudinal direction on the track surface is the left-right direction (vehicle width), as in the ordinary railcar technology. Direction), the direction perpendicular to the track surface is called the up-down direction.

<第1の実施形態>
図1は、第1の実施形態の軸箱支持装置を有する2軸式台車の側面視図である。
台車1は、台車枠10、空気バネ20、輪軸30、軸箱40、軸箱支持装置50等を備えている。
<First Embodiment>
FIG. 1 is a side view of a two-shaft cart having the axle box support device of the first embodiment.
The carriage 1 includes a carriage frame 10, an air spring 20, an axle 30, an axle box 40, an axle box support device 50, and the like.

台車枠10は、台車1を構成する構造部材であって、左右の側ばり、側ばりを中央でつなぐ横ばり等で構成されている。台車枠10は空気バネ20、牽引装置等の車体支持装置を介して車体に装着されている。   The bogie frame 10 is a structural member that constitutes the bogie 1, and is composed of left and right side beams, side beams that connect the side beams at the center, and the like. The carriage frame 10 is mounted on the vehicle body via a body support device such as an air spring 20 and a traction device.

空気バネ20は、台車枠10と車体との間に設けられている。空気バネ20は、台車1の左右に例えば1対が設けられ、台車枠10の左右の側ばりの上部にそれぞれ固定されている。   The air spring 20 is provided between the carriage frame 10 and the vehicle body. For example, a pair of air springs 20 are provided on the left and right sides of the carriage 1, and are fixed to upper portions of left and right side beams of the carriage frame 10, respectively.

輪軸30は、2枚の車輪31を車軸32に圧入して組み立てたものである。
軸箱40は、輪軸30の車軸32の両端部に設けられ、車軸を回転可能に支持する軸受、軸受を収容する軸箱体、潤滑装置等を備えて構成されている。
The axle 30 is assembled by press-fitting two wheels 31 into an axle 32.
The axle box 40 is provided at both ends of the axle 32 of the wheel axle 30, and includes a bearing that rotatably supports the axle, an axle box body that accommodates the bearing, a lubrication device, and the like.

軸箱支持装置50は、軸箱40を台車枠10に対して位置決めし、弾性支持する装置である。本実施形態において、軸箱支持装置50は、モノリンク式のものであって、軸バネ51、ダンパ52、モノリンク53等を備えている。   The axle box support device 50 is a device that positions the axle box 40 with respect to the carriage frame 10 and elastically supports it. In this embodiment, the axle box support device 50 is of a monolink type, and includes an axle spring 51, a damper 52, a monolink 53, and the like.

軸バネ51は、軸箱40の上部と台車枠10の下部とにわたして設けられ、垂直方向の荷重を支持する。
ダンパ52は、軸箱40の側部と台車枠10との間に設けられ、軸箱40が台車枠に対して垂直方向に変位した際に、減衰力を発生する。
The shaft spring 51 is provided on the upper portion of the shaft box 40 and the lower portion of the carriage frame 10 and supports a load in the vertical direction.
The damper 52 is provided between the side portion of the axle box 40 and the carriage frame 10, and generates a damping force when the axle box 40 is displaced in a direction perpendicular to the carriage frame.

モノリンク53は、台車枠10と軸箱40との間に設けられ、これらに対してピン継手により揺動可能に接続された連結部材である。台車枠10のモノリンク53との接続部11は、軸箱40に対して台車枠10の前後方向における中央部側に配置されている。モノリンク53は、一方の端部がこの接続部11に連結されるとともに、他方の端部が軸箱40の接続部41に連結されている。   The monolink 53 is a connecting member that is provided between the carriage frame 10 and the axle box 40 and is swingably connected thereto by a pin joint. The connection part 11 with the monolink 53 of the carriage frame 10 is arranged on the center side in the front-rear direction of the carriage frame 10 with respect to the axle box 40. The monolink 53 has one end connected to the connecting portion 11 and the other end connected to the connecting portion 41 of the axle box 40.

図2は、モノリンク53の拡大断面図である。
モノリンク53は、軸箱40側に接続される軸箱側部材110、台車枠10側に接続され、軸箱側部材110に対してモノリンク53を伸縮させる方向に相対移動する台車枠側部材120、円筒ゴムブッシュ130、戻しバネ140、空気バネ150等を備えている。
FIG. 2 is an enlarged cross-sectional view of the monolink 53.
The monolink 53 is connected to the axle box side member 110 connected to the axle box 40 side and the carriage frame 10 side, and is moved relative to the axle box side member 110 in the direction in which the monolink 53 is expanded and contracted. 120, a cylindrical rubber bush 130, a return spring 140, an air spring 150, and the like.

軸箱側部材110は、軸部111、フランジ112、ブッシュ保持部113、軸箱側ブッシュ114、ストッパ115、ナット部116等を備えている。
軸部111は、モノリンク53の長手方向に沿って配置された円柱状の部材である。
フランジ112は、軸部111の軸箱40側の端部から、外径側へつば状へ張り出して形成された円盤状の部材である。
The axle box side member 110 includes an axis portion 111, a flange 112, a bush holding portion 113, an axle box side bush 114, a stopper 115, a nut portion 116, and the like.
The shaft part 111 is a columnar member arranged along the longitudinal direction of the monolink 53.
The flange 112 is a disk-shaped member that is formed so as to project from the end of the shaft portion 111 on the shaft box 40 side to a flange shape toward the outer diameter side.

ブッシュ保持部113は、フランジ112の軸箱40側の面部から突き出して形成されており、軸箱側ブッシュ114が圧入される貫通穴が形成されている。
軸箱側ブッシュ114は、ブッシュ保持部113に対して軸箱40を弾性支持するものであって、車軸方向と平行に配置されブッシュ保持部113の貫通穴に圧入される外筒、及び、この外筒の内径側に配置された円環状の弾性体(ゴム等)を備えている。軸箱側ブッシュ114は、この弾性体の内径側に、軸箱40の接続部41に支持されるピンを挿入することによって、軸箱40に対してピン回りに回転可能に連結される。
The bush holding portion 113 is formed so as to protrude from the surface portion of the flange 112 on the axle box 40 side, and a through hole into which the axle box side bush 114 is press-fitted is formed.
The axle box side bush 114 elastically supports the axle box 40 with respect to the bush holding portion 113, and is arranged in parallel to the axle direction and is press-fitted into a through hole of the bush holding portion 113, and this An annular elastic body (rubber or the like) disposed on the inner diameter side of the outer cylinder is provided. The axle box side bush 114 is connected to the axle box 40 so as to be rotatable around the pin by inserting a pin supported by the connection portion 41 of the axle box 40 on the inner diameter side of the elastic body.

ストッパ115は、軸部111の台車枠10側の端部に固定され、軸部111の外周面よりも外径側につば状に張り出した円盤状の部材であって、軸部111が後述する台車枠側部材120の外筒121に対して相対移動するストロークを規制するものである。このストロークは、車両が走行する路線の曲線における曲率や、モノリンク53の幾何学的配置に応じて適宜設定されるが、例えば3mm程度である。
ナット部116は、フランジ112の台車枠10側の面部に固定され、後述する戻しバネ140の保持ボルト141の先端部が挿入されネジ結合される部分である。
The stopper 115 is a disk-shaped member that is fixed to the end of the shaft portion 111 on the cart frame 10 side and protrudes to the outer diameter side of the outer peripheral surface of the shaft portion 111, and the shaft portion 111 will be described later. The stroke which moves relatively with respect to the outer cylinder 121 of the cart frame side member 120 is regulated. This stroke is appropriately set according to the curvature of the curve of the route on which the vehicle travels and the geometrical arrangement of the monolink 53, and is about 3 mm, for example.
The nut portion 116 is a portion that is fixed to a surface portion of the flange 112 on the cart frame 10 side, and a tip portion of a holding bolt 141 of a return spring 140 described later is inserted and screwed.

台車枠側部材120は、外筒121、フランジ122、ブッシュ保持部123、台車枠側ブッシュ124、戻しバネ座125、空気供給孔126等を備えている。
外筒121は、上述した軸部111とほぼ同心の円筒状に形成され、その内径側に軸部111が挿入される部分である。外筒121は、軸部111に対して、中心軸方向に沿って相対移動可能となっている。
フランジ122は、外筒121の台車枠10側の端部の外周面から外径側につば状に張り出して形成された円盤状の部分である。
The cart frame side member 120 includes an outer cylinder 121, a flange 122, a bush holding portion 123, a cart frame side bush 124, a return spring seat 125, an air supply hole 126, and the like.
The outer cylinder 121 is formed in a cylindrical shape substantially concentric with the above-described shaft portion 111, and the shaft portion 111 is inserted into the inner diameter side thereof. The outer cylinder 121 is movable relative to the shaft portion 111 along the central axis direction.
The flange 122 is a disk-shaped portion formed so as to project from the outer peripheral surface of the end portion of the outer cylinder 121 on the cart frame 10 side toward the outer diameter side.

ブッシュ保持部123は、フランジ122の台車枠10側の面部から突き出して形成されており、台車枠側ブッシュ124が圧入される貫通穴が形成されている。
台車枠側ブッシュ124は、ブッシュ保持部123に対して台車枠10を弾性支持するものであって、車軸方向と平行に配置されブッシュ保持部123の貫通穴に圧入される外筒、及び、この外筒の内径側に配置された円環状の弾性体(ゴム等)を備えている。台車枠側ブッシュ124は、この弾性体の内径側に、台車枠10の接続部11に支持されるピンを挿入することによって、台車枠10に対してピン回りに回転可能に連結される。
なお、本明細書等において、モノリンク53の長さ方向とは、軸箱側ブッシュ114と台車枠側ブッシュ124の中心間を結んだ直線の方向を指すものとする。
The bush holding portion 123 is formed so as to protrude from the surface portion of the flange 122 on the cart frame 10 side, and a through hole into which the cart frame side bush 124 is press-fitted is formed.
The bogie frame side bush 124 elastically supports the bogie frame 10 with respect to the bush holding portion 123. The bogie frame side bush 124 is disposed parallel to the axle direction and is press-fitted into a through hole of the bush holding portion 123. An annular elastic body (rubber or the like) disposed on the inner diameter side of the outer cylinder is provided. The carriage frame side bush 124 is connected to the carriage frame 10 so as to be rotatable around the pins by inserting a pin supported by the connection portion 11 of the carriage frame 10 on the inner diameter side of the elastic body.
In the present specification and the like, the length direction of the monolink 53 refers to the direction of a straight line connecting the centers of the axle box side bush 114 and the cart frame side bush 124.

戻しバネ座125は、戻しバネ140の軸箱40に近い側の端部と当接し、戻しバネ140を保持する面部であって、外筒121の軸箱40側の端部における外周面から外径側へ突き出して形成されている。戻しバネ座125には、戻しバネ140の保持ボルト141が挿入される開口が形成されている。
空気供給孔126は、ブッシュ保持部123の外周面からフランジ122内を経由して空気バネ150の気室内まで連通して形成されており、空気バネ150に圧縮空気を供給する図示しない管路が接続される。
The return spring seat 125 is a surface portion that abuts the end portion of the return spring 140 on the side close to the axle box 40 and holds the return spring 140 and is external to the outer peripheral surface at the end portion of the outer cylinder 121 on the axle box 40 side. It is formed to protrude to the radial side. The return spring seat 125 is formed with an opening into which the holding bolt 141 of the return spring 140 is inserted.
The air supply hole 126 is formed so as to communicate from the outer peripheral surface of the bush holding portion 123 to the air chamber of the air spring 150 through the flange 122, and a pipe line (not shown) that supplies compressed air to the air spring 150 is formed. Connected.

円筒ゴムブッシュ130は、軸箱側部材110の軸部111の外周面と、台車枠側部材120の外筒121の内周面との間に配置され、外筒121に対して軸部111を弾性支持する。円筒ゴムブッシュ130は、円筒状に形成された外筒及び内筒を備え、内筒は外筒の内径側に挿入されている。そして、外筒の内周面と内筒の外周面との間隔には、例えばゴム系の弾性材料が充填され、外筒及び内筒とそれぞれ加硫接着によって接合されている。円筒ゴムブッシュ130の外筒は、台車枠側部材120の外筒121の内径側に圧入されている。また、円筒ゴムブッシュ130の内筒には、軸箱側部材110の軸部111が挿入される。   The cylindrical rubber bush 130 is disposed between the outer peripheral surface of the shaft portion 111 of the axle box side member 110 and the inner peripheral surface of the outer cylinder 121 of the carriage frame side member 120. Elastic support. The cylindrical rubber bush 130 includes an outer cylinder and an inner cylinder formed in a cylindrical shape, and the inner cylinder is inserted on the inner diameter side of the outer cylinder. The space between the inner peripheral surface of the outer cylinder and the outer peripheral surface of the inner cylinder is filled with, for example, a rubber-based elastic material, and is joined to the outer cylinder and the inner cylinder by vulcanization adhesion. The outer cylinder of the cylindrical rubber bush 130 is press-fitted into the inner diameter side of the outer cylinder 121 of the carriage frame side member 120. Further, the shaft portion 111 of the axle box side member 110 is inserted into the inner cylinder of the cylindrical rubber bush 130.

円筒ゴムブッシュ130は、本実施形態の場合には、例えば2つが軸方向に直列に並べて設けられている。
また、円筒ゴムブッシュ130は、主にゴム部が弾性変形することによって、軸箱側部材110の軸部111が台車枠側部材120の外筒121に対してその軸方向に移動することを許容する。
In the present embodiment, for example, two cylindrical rubber bushes 130 are provided in series in the axial direction.
The cylindrical rubber bushing 130 allows the shaft portion 111 of the axle box side member 110 to move in the axial direction with respect to the outer cylinder 121 of the carriage frame side member 120 mainly due to elastic deformation of the rubber portion. To do.

戻しバネ140は、軸箱側部材110に対して台車枠側部材120をモノリンク53の長さが短縮される方向に付勢する金属製コイルスプリングである。戻しバネ140は、モノリンク53に対して縮み勝手となる予圧縮を与えており、その結果、モノリンク53は、引張方向の外力が一定値に達するまでは基本の長さを保つようになっている。この点については後に詳しく説明する。
戻しバネ140は、その軸方向をモノリンク53の伸縮方向とほぼ沿わせて配置された圧縮バネであって、外筒121の外周面と隣接して配置されている。戻しバネ140は、保持ボルト141を備えている。
The return spring 140 is a metal coil spring that urges the carriage frame side member 120 in the direction in which the length of the monolink 53 is shortened with respect to the axle box side member 110. The return spring 140 provides pre-compression that is easy to contract with respect to the monolink 53, and as a result, the monolink 53 maintains the basic length until the external force in the tensile direction reaches a constant value. ing. This point will be described in detail later.
The return spring 140 is a compression spring that is disposed so that its axial direction is substantially aligned with the expansion / contraction direction of the monolink 53, and is disposed adjacent to the outer peripheral surface of the outer cylinder 121. The return spring 140 includes a holding bolt 141.

保持ボルト141は、軸箱側部材110のナット部116に対して、台車枠10側から挿入され、ネジ結合される。このとき、保持ボルト141の中間部は、台車枠側部材120の戻しバネ座125に挿入され、この戻しバネ座125に対して軸方向に沿って移動可能となっている。
戻しバネ140は、その内径側に保持ボルト141が挿入され、一方の端部は戻しバネ座125と当接し、他方の端部は保持ボルト141の頭部に係止され、これらの間で圧縮された状態で保持されている。
なお、戻しバネ140は、外筒120の周方向に分散して複数が設けられる。
The holding bolt 141 is inserted into the nut portion 116 of the axle box side member 110 from the carriage frame 10 side and is screw-coupled. At this time, the intermediate portion of the holding bolt 141 is inserted into the return spring seat 125 of the carriage frame side member 120 and is movable in the axial direction with respect to the return spring seat 125.
The return spring 140 has a holding bolt 141 inserted on its inner diameter side, one end abutting against the return spring seat 125, and the other end locked to the head of the holding bolt 141, and compressing between them Is held in the state.
A plurality of return springs 140 are provided in a distributed manner in the circumferential direction of the outer cylinder 120.

空気バネ150は、軸箱側部材110に対して台車枠側部材120をモノリンク53の長さが延長される方向に付勢する。
空気バネ150は、ベローズ151、ベローズ保持部材152,153を備えている。
ベローズ151は、ゴム等の弾性を有する材料によって形成された円筒状の幕体であって、その内部に空気バネ150の気室を形成する。上述した筒部111、外筒121、戻しバネ140等はこのベローズ151の内径側に配置される。
ベローズ保持部材152,153は、ベローズ151の軸箱40側、台車枠10側の端部を、フランジ112,122に対してそれぞれ固定するものである。ベローズ保持部材152,153は、円環状のプレートの内縁部にベローズ151の端部に形成されたビード部と係合する凹凸部を形成したものであり、フランジ112,122に対してボルトによって締結される。
The air spring 150 biases the cart frame side member 120 against the axle box side member 110 in a direction in which the length of the monolink 53 is extended.
The air spring 150 includes a bellows 151 and bellows holding members 152 and 153.
The bellows 151 is a cylindrical curtain body formed of an elastic material such as rubber, and forms an air chamber of the air spring 150 therein. The above-described cylinder portion 111, outer cylinder 121, return spring 140, and the like are disposed on the inner diameter side of the bellows 151.
The bellows holding members 152 and 153 fix the end portions of the bellows 151 on the axle box 40 side and the carriage frame 10 side to the flanges 112 and 122, respectively. The bellows holding members 152 and 153 are formed by forming concave and convex portions that engage with the bead portions formed at the end portions of the bellows 151 on the inner edge portion of the annular plate, and are fastened to the flanges 112 and 122 by bolts. Is done.

また、本実施形態において、軸箱支持装置の空気バネ150には、以下説明する図示しない空気バネ制御装置が設けられる。
空気バネ制御装置は、車両の走行状態に応じて空気バネ150の内圧を調整することによって空気バネ150のバネ定数を制御する。
先ず、車両の直線走行時においては、空気バネ制御装置は、空気バネ150のバネ定数を、戻しバネ140のバネ定数に対して低く設定する。これによって、モノリンク53に引張方向の外力が実質的に作用しないか、又は、直線走行時の輪軸蛇行動等によって入力される程度の比較的小さな引張荷重が作用した場合には、外筒122の軸箱40側の端部がフランジ112と当接し、モノリンク53は最も縮んだ状態に維持される。すなわち、戻しバネ140の付勢力から空気バネ150の付勢力を減じた値は、直線走行時に作用する最大引張力よりも大きくなるように設定される。
In the present embodiment, the air spring 150 of the axle box support device is provided with an air spring control device (not shown) described below.
The air spring control device controls the spring constant of the air spring 150 by adjusting the internal pressure of the air spring 150 according to the traveling state of the vehicle.
First, when the vehicle is traveling straight, the air spring control device sets the spring constant of the air spring 150 to be lower than the spring constant of the return spring 140. As a result, when the external force in the pulling direction does not substantially act on the monolink 53, or when a relatively small tensile load that is input by the wheel-shaft snake behavior or the like during straight running is applied, the outer cylinder 122 The end of the axle box 40 side contacts the flange 112, and the monolink 53 is maintained in the most contracted state. That is, the value obtained by subtracting the urging force of the air spring 150 from the urging force of the return spring 140 is set so as to be larger than the maximum tensile force acting during the straight running.

これに対し、車両の曲線走行時においては、空気バネ制御装置は、空気バネ150の内圧を大きくする制御を行う。
このような空気圧の制御は、例えば、車両の空気溜めから空気バネ150に圧縮空気を供給する管路の途中に、比例制御弁を設けることによって実行することができる。
ここで、車両の曲線走行の検出は、例えば、車体にヨーレートセンサや横Gセンサを設けて、その出力に基づいて行うことができる。このとき、これらの出力と車両の走行速度とに基づいて曲線の曲率を求め、曲率が小さくなるのに応じて空気バネ150の内圧の増加量を大きくしてもよい。
また、車両が走行する路線の曲線データを予め保持し、自車の走行位置と曲線データを対比して曲線走行を検出するようにしてもよい。
On the other hand, the air spring control device performs control to increase the internal pressure of the air spring 150 when the vehicle is traveling on a curve.
Such air pressure control can be executed, for example, by providing a proportional control valve in the middle of a pipeline that supplies compressed air from the air reservoir of the vehicle to the air spring 150.
Here, the detection of the vehicle traveling in a curve can be performed based on the output of a yaw rate sensor or a lateral G sensor provided on the vehicle body, for example. At this time, the curvature of the curve may be obtained based on these outputs and the traveling speed of the vehicle, and the amount of increase in the internal pressure of the air spring 150 may be increased as the curvature decreases.
Alternatively, curve data of a route on which the vehicle travels may be stored in advance, and curve travel may be detected by comparing the travel position of the vehicle with the curve data.

図3は、モノリンク53に作用する外力と、台車枠10の接続部11に対する軸箱40の接続部41の変位との相関を示すグラフである。図3において、横軸はモノリンク53に作用する外力を示し、右側が引張力、左側が圧縮力を示している。また、縦軸は、台車枠10の接続部11に対する軸箱40の接続部41のモノリンク53の長さ方向に沿った変位を示しており、上側が離間する方向、下側が近接する方向を示している。
図3に示すように、モノリンク53が圧縮される領域においては、外力と軸箱の変位とはほぼ線形の相関を示す。この領域においては、モノリンク53の軸箱側部材110と台車枠側部材120との相対移動(モノリンク53の縮み)はなく、軸箱の変位は専ら軸箱側ブッシュ114及び台車枠側ブッシュ124のゴム部のたわみによるものである。
FIG. 3 is a graph showing the correlation between the external force acting on the monolink 53 and the displacement of the connecting portion 41 of the axle box 40 with respect to the connecting portion 11 of the carriage frame 10. In FIG. 3, the horizontal axis shows the external force acting on the monolink 53, the right side shows the tensile force, and the left side shows the compressive force. The vertical axis indicates the displacement along the length direction of the monolink 53 of the connection portion 41 of the axle box 40 with respect to the connection portion 11 of the bogie frame 10. The direction in which the upper side separates and the direction in which the lower side approaches Show.
As shown in FIG. 3, in the region where the monolink 53 is compressed, the external force and the displacement of the axle box show a substantially linear correlation. In this region, there is no relative movement (shrinking of the monolink 53) between the axle box side member 110 and the carriage frame side member 120 of the monolink 53, and the displacement of the axle box is mainly caused by the axle box side bush 114 and the carriage frame side bush. This is due to the deflection of the rubber part 124.

これに対し、モノリンク53が引張られる領域においては、外力が小さい領域では圧縮される領域と同様に、各ブッシュのたわみに起因する線形の相関を示す。その後、引張力が大きくなって、引張力と空気バネ150の付勢力との和が戻しバネ140の付勢力を上回ると、軸箱側部材110と台車枠側部材120とがモノリンク53を伸張する方向に相対移動を開始する。これによって、単位荷重あたりの台車枠10に対する軸箱40の変位量(グラフにおける傾き)は大きくなる。すなわち、モノリンク53の引張荷重に対する剛性が低くなる。そして、軸箱側部材110と台車枠側部材120とがストッパ115によって規制される最大ストロークまで変位すると、モノリンク53自体はそれ以上伸びなくなり、再び各ブッシュの弾性変形による変位のみが許容されるようになり、モノリンク53の引張荷重に対する剛性は再び高くなる。   On the other hand, in the region where the monolink 53 is pulled, the linear correlation resulting from the deflection of each bush is shown in the region where the external force is small, similarly to the region where the external force is compressed. Thereafter, when the tensile force increases and the sum of the tensile force and the biasing force of the air spring 150 exceeds the biasing force of the return spring 140, the axle box side member 110 and the carriage frame side member 120 extend the monolink 53. The relative movement is started in the direction. As a result, the displacement amount (inclination in the graph) of the axle box 40 relative to the carriage frame 10 per unit load increases. That is, the rigidity of the monolink 53 with respect to the tensile load is reduced. When the axle box side member 110 and the carriage frame side member 120 are displaced to the maximum stroke regulated by the stopper 115, the monolink 53 itself does not extend any more, and only displacement due to elastic deformation of each bush is allowed again. Thus, the rigidity of the monolink 53 against the tensile load is increased again.

そして、本実施形態のモノリンク53においては、空気バネ150の内圧を変更することによって、上述したモノリンク53の引張荷重に対する剛性が低下する外力の範囲を調節することができる。具体的には、空気バネ150の内圧を大きくし、空気バネ150のバネ定数及び付勢力を増大すると、モノリンク53の剛性が低下する範囲を、外力が小さい側へシフトさせることができる。   And in the monolink 53 of this embodiment, the range of the external force in which the rigidity with respect to the tension load of the monolink 53 mentioned above falls can be adjusted by changing the internal pressure of the air spring 150. Specifically, when the internal pressure of the air spring 150 is increased and the spring constant and the urging force of the air spring 150 are increased, the range in which the rigidity of the monolink 53 decreases can be shifted to the side where the external force is small.

以上説明したように、本実施形態によれば、モノリンク53の引張荷重に対する剛性(輪軸30の前後方向支持剛性)を直線走行時には大きくして輪軸30の蛇行等を防止し、走行安定性を確保するとともに、曲線走行時にはこの剛性を小さくしてモノリンク53を伸びやすくし、輪軸30の操舵性能を改善して曲線通過性能を向上することができる。
また、モノリンク53の上述した剛性調整を、空気バネ150の内圧を調整して行うことによって、無段階に調整を行うことができる。また、空気バネ150の作動流体として、鉄道車両に一般的に装備される空気溜めに貯留される圧縮空気を用いることができることから、既存の鉄道車両に対して小規模な改修で適用することができる。
As described above, according to the present embodiment, the rigidity against the tensile load of the monolink 53 (supporting rigidity in the front-rear direction of the wheel shaft 30) is increased during straight traveling to prevent meandering of the wheel shaft 30 and to improve traveling stability. In addition, the rigidity can be reduced and the monolink 53 can be easily extended during curve traveling, and the steering performance of the wheel shaft 30 can be improved to improve curve passing performance.
In addition, the above-described rigidity adjustment of the monolink 53 can be performed steplessly by adjusting the internal pressure of the air spring 150. Moreover, since the compressed air stored in the air reservoir generally equipped in a railway vehicle can be used as the working fluid of the air spring 150, it can be applied to an existing railway vehicle by a small-scale renovation. it can.

<第2の実施形態>
次に、本発明を適用した軸箱支持装置の第2の実施形態について説明する。なお、上述した第1の実施形態と実質的に同様の箇所については同じ符号を付して説明を省略し、主に相違点について説明する。
第2の実施形態においては、空気バネ制御装置は、曲線走行時に、内軌側の空気バネ150の内圧は変化させず、外軌側の空気バネ150の内圧を大きくする。
以上説明した第2の実施形態においては、車両の曲線走行時に外軌側のモノリンク53を伸張することによって、輪軸30を操舵することができ、曲線通過性能をより向上することができる。
<Second Embodiment>
Next, a second embodiment of the axle box support device to which the present invention is applied will be described. In addition, about the location substantially the same as 1st Embodiment mentioned above, the same code | symbol is attached | subjected and description is abbreviate | omitted and a difference is mainly demonstrated.
In the second embodiment, the air spring control device increases the internal pressure of the air spring 150 on the outer gauge side without changing the internal pressure of the air spring 150 on the inner gauge side when traveling on a curve.
In the second embodiment described above, the wheel shaft 30 can be steered by extending the monolink 53 on the outer track side when the vehicle is traveling on a curve, and the curve passing performance can be further improved.

(他の実施の形態)
なお、本発明は上記した実施形態のみに限定されるものではなく、種々の応用や変形が考えられる。例えば、上記実施形態を応用した次の各形態を実施することもできる。
(1)上述した実施形態は、モノリンク式の軸箱支持装置であるが、本発明はこれに限らず、例えば、平行リンク式や軸ばり式等の他の形式の軸箱支持装置にも適用することができる。
(2)上述した実施形態は、第1のバネ要素として金属コイルバネを備え、第2のバネ要素として空気バネを備えているが、本発明はこれらに限定されず、各バネ要素の種類、組み合わせは適宜変更することができる。例えば、第1のバネ要素に空気バネ、第2のバネ要素に金属バネをそれぞれ適用し、曲線走行時には空気バネの内圧を直線走行時よりも低くしてもよい。
(Other embodiments)
In addition, this invention is not limited only to above-described embodiment, Various application and deformation | transformation can be considered. For example, the following embodiments applying the above embodiment can be implemented.
(1) Although the above-described embodiment is a monolink type axle box support device, the present invention is not limited to this, and for example, other types of axle box support devices such as a parallel link type and a shaft beam type are also applicable. Can be applied.
(2) Although the embodiment described above includes a metal coil spring as the first spring element and an air spring as the second spring element, the present invention is not limited thereto, and the types and combinations of the spring elements Can be appropriately changed. For example, an air spring may be applied to the first spring element and a metal spring may be applied to the second spring element, and the internal pressure of the air spring may be made lower during straight running than during straight running.

本発明の実施形態である軸箱支持装置を有する台車の側面視図である。It is a side view of the trolley | bogie which has the axle box support apparatus which is embodiment of this invention. 図1の軸箱支持装置におけるモノリンクの拡大断面図である。It is an expanded sectional view of the monolink in the axle box support apparatus of FIG. 図2のモノリンクに作用する外力と伸縮量との相関を示すグラフである。It is a graph which shows the correlation with the external force and the expansion-contraction amount which act on the monolink of FIG.

符号の説明Explanation of symbols

1 台車
10 台車枠
20 空気バネ
30 輪軸
31 車輪
32 車軸
40 軸箱
50 軸箱支持装置
51 軸バネ
52 ダンパ
53 モノリンク
110 軸箱側部材
111 軸部
112 フランジ
113 ブッシュ保持部
114 軸箱側ブッシュ
115 ストッパ
116 ナット部
120 台車枠側部材
121 外筒
122 フランジ
123 ブッシュ保持部
124 台車枠側ブッシュ
125 戻しバネ座
126 空気供給孔
130 円筒ゴムブッシュ
140 戻しバネ
141 保持ボルト
150 空気バネ
151 ベローズ
152,153 ベローズ保持部材
1 bogie 10 bogie frame 20 air spring 30 wheel shaft 31 wheel 32 axle 40 shaft box 50 shaft box support device 51 shaft spring 52 damper 53 monolink 110 shaft box side member 111 shaft section 112 flange 113 bush holding section 114 axle box side bush 115 Stopper 116 Nut portion 120 Carriage frame side member 121 Outer cylinder 122 Flange 123 Bush holding portion 124 Bogie frame side bush 125 Return spring seat 126 Air supply hole 130 Cylindrical rubber bush 140 Return spring 141 Holding bolt 150 Air spring 151 Bellows 152, 153 Bellows Holding member

Claims (3)

鉄道車両用台車の輪軸両端部に設けられる軸箱を、車両の進行方向にほぼ沿って延在する連結手段によって該台車の台車枠に対して支持する軸箱支持装置であって、
前記連結手段は、
前記軸箱に設けられた軸箱側接続部に接続された軸箱側部材と、
前記台車枠に設けられた台車枠側接続部に接続され、前記軸箱側部材に対して、前記軸箱側接続部と前記台車枠側接続部との距離を変化させる方向に相対変位可能に接続された台車枠側部材と、
前記軸箱側部材と前記台車枠側部材との間に設けられ、前記軸箱側接続部と前記台車枠側接続部との距離を短縮する方向の付勢力を発生する第1のバネ要素と、
前記軸箱側部材と前記台車枠側部材との間に設けられ、前記軸箱側接続部と前記台車枠側接続部との距離を伸張する方向の付勢力を発生する第2のバネ要素と、
車両の曲線走行時に前記第1のバネ要素、前記第2のバネ要素の少なくとも一方のバネ定数を変化させて、前記第2のバネ要素のバネ定数を前記第1のバネ要素のバネ定数に対して相対的に大きくするバネ定数制御手段と、を備えることを特徴とする軸箱支持装置。
An axle box support device for supporting axle boxes provided at both ends of a wheel shaft of a railway vehicle carriage with respect to the carriage frame of the carriage by connecting means extending substantially along the traveling direction of the vehicle,
The connecting means includes
An axle box side member connected to an axle box side connection provided in the axle box,
Connected to a carriage frame side connection provided in the carriage frame, and relative to the axle box side member in a direction in which the distance between the axle box side connection and the carriage frame side connection can be changed. Connected cart frame side members;
A first spring element that is provided between the axle box side member and the carriage frame side member and that generates a biasing force in a direction that shortens the distance between the axle box side connection portion and the carriage frame side connection portion; ,
A second spring element that is provided between the axle box side member and the carriage frame side member and generates a biasing force in a direction that extends a distance between the axle box side connection portion and the carriage frame side connection portion; ,
At least one of the first spring element and the second spring element is changed when the vehicle is traveling on a curve, and the spring constant of the second spring element is changed with respect to the spring constant of the first spring element. And a spring constant control means for relatively increasing the shaft constant support device.
前記第2のバネ要素として空気バネを備え、
前記バネ定数制御手段は、車両の曲線走行時に前記空気バネの内圧を増大させること、を特徴とする請求項1に記載の軸箱支持装置。
An air spring as the second spring element;
2. The axle box support device according to claim 1, wherein the spring constant control means increases an internal pressure of the air spring when the vehicle runs on a curve.
前記バネ定数制御手段は、車両の曲線走行時に、前記第2のバネ要素のバネ定数の前記第1のバネ要素のバネ定数に対する相対的な増加率を、内軌側よりも外軌側において大きくすること、を特徴とする請求項1又は2に記載の軸箱支持装置。   The spring constant control means increases a relative increase rate of the spring constant of the second spring element with respect to the spring constant of the first spring element on the outer track side than on the inner track side when the vehicle is traveling on a curve. The axle box support device according to claim 1 or 2, wherein
JP2007090485A 2007-03-30 2007-03-30 Axlebox supporting device Pending JP2008247173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090485A JP2008247173A (en) 2007-03-30 2007-03-30 Axlebox supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090485A JP2008247173A (en) 2007-03-30 2007-03-30 Axlebox supporting device

Publications (1)

Publication Number Publication Date
JP2008247173A true JP2008247173A (en) 2008-10-16

Family

ID=39972639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090485A Pending JP2008247173A (en) 2007-03-30 2007-03-30 Axlebox supporting device

Country Status (1)

Country Link
JP (1) JP2008247173A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167835A (en) * 2009-01-20 2010-08-05 Railway Technical Res Inst Axle box support device
JP2011213218A (en) * 2010-03-31 2011-10-27 Railway Technical Research Institute Journal box support device
JP2013006453A (en) * 2011-06-22 2013-01-10 Railway Technical Research Institute Bogie angle detection mechanism for bolsterless bogie, bogie angle interlocking pneumatic valve system for bolsterless bogie, and bogie angle interlocking assistive steering system for bolsterless bogie
WO2017073002A1 (en) * 2015-10-29 2017-05-04 川崎重工業株式会社 Axle box support device for railroad vehicle bogie
EP3241716A1 (en) * 2016-04-28 2017-11-08 Siemens AG Österreich Bogie for a rail vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067274A (en) * 1983-09-22 1985-04-17 Mazda Motor Corp Four-wheel steering device of car
JPH02120279A (en) * 1989-09-19 1990-05-08 Shin Etsu Chem Co Ltd Production of ceramic
JPH02293252A (en) * 1989-04-10 1990-12-04 Gec Alsthom Sa Wheel shaft of rolling stock having prymary hanger and directional variability
JPH08324426A (en) * 1995-05-29 1996-12-10 Sumitomo Metal Ind Ltd Axle box supporting device for rolling stock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067274A (en) * 1983-09-22 1985-04-17 Mazda Motor Corp Four-wheel steering device of car
JPH02293252A (en) * 1989-04-10 1990-12-04 Gec Alsthom Sa Wheel shaft of rolling stock having prymary hanger and directional variability
JPH02120279A (en) * 1989-09-19 1990-05-08 Shin Etsu Chem Co Ltd Production of ceramic
JPH08324426A (en) * 1995-05-29 1996-12-10 Sumitomo Metal Ind Ltd Axle box supporting device for rolling stock

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167835A (en) * 2009-01-20 2010-08-05 Railway Technical Res Inst Axle box support device
JP2011213218A (en) * 2010-03-31 2011-10-27 Railway Technical Research Institute Journal box support device
JP2013006453A (en) * 2011-06-22 2013-01-10 Railway Technical Research Institute Bogie angle detection mechanism for bolsterless bogie, bogie angle interlocking pneumatic valve system for bolsterless bogie, and bogie angle interlocking assistive steering system for bolsterless bogie
WO2017073002A1 (en) * 2015-10-29 2017-05-04 川崎重工業株式会社 Axle box support device for railroad vehicle bogie
JP2017081441A (en) * 2015-10-29 2017-05-18 川崎重工業株式会社 Axle box suspension for railroad vehicle truck
TWI607914B (en) * 2015-10-29 2017-12-11 Kawasaki Heavy Ind Ltd Axle box supporting device for trolley for railway vehicles
EP3241716A1 (en) * 2016-04-28 2017-11-08 Siemens AG Österreich Bogie for a rail vehicle

Similar Documents

Publication Publication Date Title
KR101500257B1 (en) Railway vehicle bogie and railway vehicle provided with same
JP4404849B2 (en) bush
JP5094029B2 (en) Vehicle body stabilization system
CA2875920C (en) Steering arrangement
JP6289304B2 (en) Car body support device and railway vehicle
JP4494217B2 (en) Support system and suspension system
JP2008247173A (en) Axlebox supporting device
CN106314469A (en) Method for improving overall performance of bogie of rail vehicle and suspension vibration absorption system
JP2011504852A (en) Active roll stabilization assembly and vehicle suspension comprising the same
JP6718237B2 (en) Railcar steering trolley with a brake unit
JP4452117B2 (en) Vehicle stabilization system between vehicles
JP2007045275A (en) Axle box supporting device for railroad vehicle
KR20130066332A (en) Active geometry control suspension system
JP6213825B2 (en) Traveling trolley and track type vehicle
JP5771107B2 (en) Shaft box support device
JP5436368B2 (en) Inter-vehicle damper device
JP2008238999A (en) Linking device of vehicle body
JP5254058B2 (en) Shaft box support device
JP2004262438A (en) Air spring height adjusting mechanism for railroad car
JP5291655B2 (en) Shaft box support device
KR102059115B1 (en) Suspension coil spring
JP5259999B2 (en) Axle box support device for bogie for high-speed railway vehicles
JP2007190998A (en) Axle steering device for rolling stock
JP2013216175A (en) Railway vehicle bogie and railway vehicle provided with the same
JP2007191017A (en) Bogie for rolling stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Effective date: 20111013

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120227