JP2008246471A - Treatment method of circulation type cooling water - Google Patents

Treatment method of circulation type cooling water Download PDF

Info

Publication number
JP2008246471A
JP2008246471A JP2008041161A JP2008041161A JP2008246471A JP 2008246471 A JP2008246471 A JP 2008246471A JP 2008041161 A JP2008041161 A JP 2008041161A JP 2008041161 A JP2008041161 A JP 2008041161A JP 2008246471 A JP2008246471 A JP 2008246471A
Authority
JP
Japan
Prior art keywords
cooling water
water
solid
algae
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008041161A
Other languages
Japanese (ja)
Inventor
Tama Nakamura
瑞 中村
Hiroshi Oura
博 大浦
Toyotaro Kawabe
豊太郎 河邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OURA SHOKAI KK
Nitchitsu Co Ltd
Shinwa Controls Co Ltd
Original Assignee
OURA SHOKAI KK
Nitchitsu Co Ltd
Shinwa Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OURA SHOKAI KK, Nitchitsu Co Ltd, Shinwa Controls Co Ltd filed Critical OURA SHOKAI KK
Priority to JP2008041161A priority Critical patent/JP2008246471A/en
Publication of JP2008246471A publication Critical patent/JP2008246471A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for efficiently and surely suppressing the generation of fungi and/or algae in circulation cooling water without using a chemical. <P>SOLUTION: A solid matter P uniformly containing a photocatalyst with a function capable of renewing a surface to a light source at all times by the stream of cooling water is disposed inside a tower of a cooling tower 1, the cooling water is brought into contact with the solid matter P, and the decomposition treatment of an organic compound is performed. The solid matter P is composed of a substance for which a titanium oxide is deposited to crystalline quartz, glass powder and the clay mineral of a plasticizer which are kneaded, molded and calcined. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主に、水冷式空調設備に使用される循環式冷却用水の処理に適用するもので、詳しくは水中の菌類及びまたは藻類の繁殖を抑止する手段に係り、排水及び大気汚染の原因となる薬剤投入に代わる技術に関するものである。   The present invention is mainly applied to the treatment of circulating cooling water used in water-cooled air conditioning equipment, and more particularly relates to means for inhibiting the growth of fungi and / or algae in the water, causing drainage and air pollution. It relates to a technology that replaces the drug input.

一般例に係る代表的な冷却用水の循環系統を示すと、図10で示すように、まず、冷却塔1の下部側から送り配管2より排出された水は循環ポンプ3で加圧され、空調機に付属した熱交換器4に輸送される。熱交換器4で温められ、高温となった冷却用水は戻り配管5より冷却塔1の上部側に戻り、空気と接触する。ここで、水の一部を蒸発させ、その蒸発潜熱により冷却用水の水温を低下せしめ、再び冷却に使用される。冷却用水系の補給水としては、一般に市水、工業用水、地下水などが使用される。   A typical cooling water circulation system according to a general example is shown in FIG. 10. First, water discharged from the feed pipe 2 from the lower side of the cooling tower 1 is pressurized by a circulation pump 3 and air-conditioned. It is transported to the heat exchanger 4 attached to the machine. The cooling water heated to the high temperature by the heat exchanger 4 returns to the upper side of the cooling tower 1 from the return pipe 5 and comes into contact with air. Here, a part of the water is evaporated, the temperature of the cooling water is lowered by the latent heat of evaporation, and the water is used again for cooling. In general, city water, industrial water, groundwater, and the like are used as makeup water for the cooling water system.

このような冷却用水系では、一部は蒸発で失われるが、水資源の不足や有効利用の観点から、冷却用水の使用量節減のために大部分は循環利用される。この冷却用水の高度利用のため、塩類等が濃縮し、水質を悪化させ、菌類や藻類が繁殖しやすくなる。また、それらの菌類や藻類、微生物と空気中のごみが一緒になることで、スライムと呼ばれる粘状物質を生成しやすい環境となる。   In such a cooling water system, a part is lost due to evaporation, but from the viewpoint of lack of water resources and effective use, most of the water is circulated to reduce the amount of cooling water used. Due to the advanced use of this cooling water, salts and the like are concentrated, the water quality is deteriorated, and fungi and algae are easily propagated. Moreover, when these fungi, algae, and microorganisms are combined with dust in the air, it becomes an environment in which a viscous substance called slime is easily generated.

このようにスライムが発生し、冷却塔1および循環管路に付着した場合には、熱交換率の低下を招くだけではなく、管が閉塞し通水の悪化を引き起こすことになる。そのため、固形薬剤の投入や、付帯設備としての薬注装置6が設けられ、除菌剤、殺藻剤などの薬剤が添加される。   Thus, when slime is generated and adheres to the cooling tower 1 and the circulation pipe, not only the heat exchange rate is lowered, but also the pipe is blocked to cause deterioration of water flow. For this reason, a solid medicine is charged and a chemical injection device 6 as ancillary equipment is provided, and a medicine such as a disinfectant and an algicide is added.

その除菌剤、殺藻剤としては、例えば次亜塩素酸や次亜塩素酸塩が用いられている。殺菌方法としては、オゾン殺菌装置が提案されている(特許文献1)。スライムに対しては、例えば塩素または塩素化合物が使用されている(特許文献2)。   For example, hypochlorous acid or hypochlorite is used as the disinfectant and algicide. As a sterilization method, an ozone sterilization apparatus has been proposed (Patent Document 1). For slime, for example, chlorine or a chlorine compound is used (Patent Document 2).

一方、冷却塔1には蒸発水や飛散水により塔外へ排出される水に対応する量を補うために、補給水導入管7より常に新しい水が補給されるが、補給水中にも塩類などの不純物が含まれており、長時間の運転によって冷却用水中の不純物は濃縮される。また、送風機8による塔内への外気の取り込みにより、大気中の粉塵や有害物質等が循環水中に混入することになり、それを解消する為にも一定量の水はブロー水としてブロー配管9より系外に排出され、新たな水と入れ替えられる。   On the other hand, the cooling tower 1 is always replenished with fresh water from the make-up water introduction pipe 7 in order to supplement the amount corresponding to the water discharged to the outside of the tower by evaporating water or splashed water. The impurities in the cooling water are concentrated by long-time operation. In addition, dust and harmful substances in the atmosphere are mixed into the circulating water due to the outside air being taken into the tower by the blower 8, and in order to eliminate this, a certain amount of water is blown as the blow water 9 It is discharged out of the system and replaced with new water.

しかし、この排水には殺菌、殺藻に添加された多量の薬剤が含まれており、このまま放流する場合には環境汚染の弊害を伴うことになる。   However, this waste water contains a large amount of chemicals added to sterilization and algaecidal, and if discharged as it is, it will cause environmental pollution.

そのため、排水においては薬剤による中和処理が施さている。しかし、これらには多くの時間とコストを要するという問題がある。そこで、循環式冷却用水の処理においては、環境への負荷、薬品添加に付随する手間、コスト、薬剤の取り扱いの危険性などの問題を解消することのできる、より簡便で安価な手段が望まれていた。
特開平11−347563号公報 特開昭53−028948号公報
Therefore, the waste water is neutralized with chemicals. However, these have the problem of requiring a lot of time and cost. Therefore, in the treatment of circulating cooling water, a simpler and cheaper means that can solve problems such as environmental burden, labor associated with adding chemicals, cost, and danger of handling chemicals is desired. It was.
Japanese Patent Laid-Open No. 11-347563 JP-A-53-028948

本発明は、上記課題を解決し、殺菌及びまたは殺藻のための薬剤の添加を要することなく、循環式冷却用水系の菌類及びまたは藻類の発生を抑制することの可能な簡便で安価な循環式冷却用水の処理方法を提供することにある。   The present invention solves the above-mentioned problems and is a simple and inexpensive circulation capable of suppressing generation of fungi and / or algae in a cooling water system without requiring the addition of a sterilizing and / or algicidal agent. An object of the present invention is to provide a method for treating the cooling water.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、光エネルギーによって有機物を分解可能な物質を冷却塔に備え付けることから、薬剤を使用することなく、循環冷却用水中の菌類及びまたは藻類の発生を抑制する手段を見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive research to solve the above problems, the present inventors provide a cooling tower with a substance capable of decomposing organic matter by light energy. Or the means which suppresses generation | occurrence | production of algae was discovered, and it came to complete this invention based on this knowledge.

本願の請求項1は、循環式冷却用水系の系内において、菌類及びまたは藻類の発生を抑止するための水処理方法であって、冷却用水の水流により、光源に対して表面を常に更新可能な機能を有する均質に光触媒を含有した固形物を冷却塔の塔内に配置し、冷却用水を該固形物と接触させて有機物の分解処理を行うようにしたことを特徴とする。   Claim 1 of the present application is a water treatment method for suppressing the generation of fungi and / or algae in a circulating cooling water system, and the surface of the light source can always be updated by the flow of cooling water. A solid material containing a homogeneous photocatalyst having various functions is placed in the tower of a cooling tower, and cooling water is brought into contact with the solid material to decompose organic matter.

本願の請求項2は、光源に対して表面を常に更新可能な機能を有する固形物として、酸化チタンを結晶質石英に担持させた物質を含む固形物を備えるようにしたことを特徴とする。   Claim 2 of the present application is characterized in that as a solid material having a function capable of constantly updating the surface with respect to the light source, a solid material containing a substance in which titanium oxide is supported on crystalline quartz is provided.

本願の請求項3は、光源に対して表面を常に更新可能な機能を有する固形物として、酸化チタンを結晶質石英に担持させた物質と、ガラス粉末及び可塑剤の粘土鉱物とを混練成形し、600℃以上,好ましくは900〜1200℃以下の領域で焼成した固形物を備えるようにしたことを特徴とする。   Claim 3 of the present application kneads and molds a substance in which titanium oxide is supported on crystalline quartz, a glass powder and a clay mineral of plasticizer as a solid having a function capable of constantly updating the surface with respect to the light source. , 600 ° C. or higher, preferably 900 to 1200 ° C. or lower.

本願の請求項4は、菌類及びまたは藻類の発生を抑止するにあたり、太陽光等の紫外線を含む光源を利用するようにしたことを特徴とする。   Claim 4 of the present application is characterized in that a light source including ultraviolet rays such as sunlight is used to suppress generation of fungi and / or algae.

本願の請求項5は、水中の菌類及びまたは藻類を連続的に測定監視する装置を冷却用水の循環系内に配設し、試料水の採取、濾過、抽出、冷蔵、遠心分離を自動連続的に行うようにしたことを特徴とする。   Claim 5 of this application arrange | positions the apparatus which continuously measures and monitors the fungi and / or algae in water in the circulation system of the cooling water, and automatically collects, filters, extracts, refrigerates, and centrifuges the sample water. It is characterized by the fact that it was performed in

本願の請求項1に係る循環式冷却用水の処理方法によれば、有機物を分解する均質に光触媒を含有した固形物が、冷却用水の水流により、光源に対して表面を常に更新可能な機能を有するため、薬剤を使用することなく、菌類及びまたは藻類の発生を抑制することができ、仮に既に存在していたとしても分解除去することができる。また、薬剤の使用がないため、系外に排出されるブロー水についても環境への弊害を帰することがない。   According to the circulating cooling water treatment method according to claim 1 of the present application, the solid matter containing the photocatalyst that decomposes the organic matter has the function of constantly updating the surface with respect to the light source by the water flow of the cooling water. Therefore, generation of fungi and / or algae can be suppressed without using a drug, and even if it already exists, it can be decomposed and removed. In addition, since there is no use of chemicals, blow water discharged outside the system does not cause adverse effects on the environment.

本願の請求項2に係る循環式冷却用水の処理方法によれば、光源に対して表面を常に更新可能な機能を有する固形物として、酸化チタンを結晶質石英に担持させた物質を含む固形物を備えるため、光透過性の高い固形物により有機物の分解機能を十分に発揮でき、菌類及びまたは藻類の発生を確実に抑制することができる。   According to the method for treating circulating cooling water according to claim 2 of the present application, as a solid having a function capable of constantly updating the surface with respect to the light source, a solid including a substance in which titanium oxide is supported on crystalline quartz Therefore, the organic substance decomposition function can be sufficiently exerted by the highly transparent solid substance, and the generation of fungi and / or algae can be reliably suppressed.

本願の請求項3に係る循環式冷却用水の処理方法によれば、光源に対して表面を常に更新可能な機能を有する固形物として、酸化チタンを結晶質石英に担持させた物質と、ガラス粉末及び可塑剤の粘土鉱物とを混練成形し、600℃以上,好ましくは900〜1200℃以下の領域で焼成した固形物を備えるため、保形性の良好な固形物で取扱い易く、有機物の分解機能も持続化するようにできる。   According to the method for treating circulating cooling water according to claim 3 of the present application, a substance in which titanium oxide is supported on crystalline quartz as a solid having a function capable of constantly updating the surface with respect to a light source, and glass powder And a plasticizer clay mineral, and a solid material fired in the region of 600 ° C. or higher, preferably 900 to 1200 ° C. or lower. Can also be sustained.

本願の請求項4に係る循環式冷却用水の処理方法によれば、菌類及びまたは藻類の発生を抑止するにあたり、太陽光等の紫外線を含む光源利用するため、菌類及びまたは藻類の発生を効率よく確実に抑制することができる。   According to the method for treating circulating cooling water according to claim 4 of the present application, in order to suppress the generation of fungi and / or algae, a light source containing ultraviolet rays such as sunlight is used, so that the generation of fungi and / or algae is efficiently performed. It can be surely suppressed.

本願の請求項5に係る循環式冷却水の処理方法によれば、冷却用水中の菌類及びまたは藻類を連続的に測定監視することから、冷却水の保守,管理を的確に行うことができる。   According to the circulating cooling water treatment method according to claim 5 of the present application, since the fungi and / or algae in the cooling water are continuously measured and monitored, maintenance and management of the cooling water can be performed accurately.

以下、図1〜9を参照して説明すると、図1は本発明に係る循環式冷却水の処理方法を実施する循環装置の一例を示す。この循環装置は、冷凍機を備えた空調・工業用冷却設備に適用されるものであり、冷却用水(以下、「循環水」という。)を冷却処理する冷却塔1、熱交換器4を備えて構成されている。同図中、図10と共通の構成部は同じ符号で示す。   Hereinafter, with reference to FIGS. 1 to 9, FIG. 1 shows an example of a circulation device that implements the method for treating circulating cooling water according to the present invention. The circulation device is applied to an air conditioning / industrial cooling facility equipped with a refrigerator, and includes a cooling tower 1 and a heat exchanger 4 for cooling cooling water (hereinafter referred to as “circulated water”). Configured. In the figure, components common to those in FIG. 10 are denoted by the same reference numerals.

図2は、冷却塔1の装置全体を概略的に示す。この冷却塔1は、両側面のルーバー10a,10bから外気を取り込み、上方より排出するという流れで構成されており、上部側には送風機8が設けられている。装置全体は架台1a,1bで設置され、下部側には貯水槽11が配置されている。貯水槽11に保水された循環水は、送り配管2により循環ポンプ3で熱交換器4へ送水される。続いて、熱交換器4から戻り配管5で冷却塔1へ返送され、装置の上部両側に配置された上部散水槽12a,12bに送られる。   FIG. 2 schematically shows the entire apparatus of the cooling tower 1. This cooling tower 1 is constituted by a flow of taking outside air from the louvers 10a, 10b on both sides and discharging it from above, and a blower 8 is provided on the upper side. The entire apparatus is installed on the gantry 1a, 1b, and a water storage tank 11 is arranged on the lower side. The circulating water retained in the water storage tank 11 is sent to the heat exchanger 4 by the circulation pump 3 through the feed pipe 2. Subsequently, it is returned from the heat exchanger 4 to the cooling tower 1 via the return pipe 5 and sent to the upper watering tanks 12a and 12b arranged on both sides of the upper part of the apparatus.

上部散水槽12a,12bには、図3で示すように直径9〜10mm程の散水孔13が底部面に略均等に点在させて設けられている。上部散水槽12a,12bは水深を5cm程度に保ち、循環水は散水孔13より充填材14a,14b(図2参照)に滴下されて貯水槽3に落下する。この間に、循環水は送風機8の回転により吸引された系外の空気と接触することで冷却される。図3中、符号15は配水箱、16は流出口を示す。   As shown in FIG. 3, water spray holes 13 having a diameter of about 9 to 10 mm are provided in the upper water tanks 12 a and 12 b so as to be scattered substantially evenly on the bottom surface. The upper water tanks 12a and 12b maintain a water depth of about 5 cm, and the circulating water is dropped into the fillers 14a and 14b (see FIG. 2) from the water holes 13 and falls into the water tank 3. During this time, the circulating water is cooled by coming into contact with outside air sucked by the rotation of the blower 8. In FIG. 3, the code | symbol 15 shows a water distribution box and 16 shows an outflow port.

循環水の管路(図1参照)としては、上述した冷却塔1から熱交換器4へ送る送り配管2と、熱交換器4から冷却塔1へ返送される戻り配管5の他に、補給水導入管7と、ブロー水配管9とが備えられている。また、循環ポンプ3から熱交換器4に至る系内には菌類及びまたは藻類の連続測定監視装置17が配設されている。この装置17は、試料水の採取、濾過、抽出、冷蔵、遠心分離を自動連続的に行って測定するよう設けられている。   As the circulating water pipe (see FIG. 1), in addition to the above-described feed pipe 2 sent from the cooling tower 1 to the heat exchanger 4 and the return pipe 5 sent back from the heat exchanger 4 to the cooling tower 1, replenishment A water introduction pipe 7 and a blow water pipe 9 are provided. In addition, a continuous measurement monitoring device 17 for fungi and / or algae is disposed in the system from the circulation pump 3 to the heat exchanger 4. This device 17 is provided so as to perform measurement by automatically and continuously collecting sample water, filtering, extraction, refrigeration and centrifugation.

配水箱15を介して両側の上部散水層12a,12bには、図4で示すように菌類及びまたは藻類の発生を抑制する、均質に光触媒を含有する固形物(以下、単に「固形物」という。)Pが装填されている。その固形物Pは、後述するような酸化チタンの持つ光反応性を利用することから、自然光の受光性が最も高い上部散水槽12a,12bに設置するのが好ましい。但し、高い水接触性を有している冷却塔1のいずれか塔内に備えてもよく、人工的な紫外線の照射により照射処理するようにしてもよい。図4中、符号8aは送風機8の駆動用ベルトを収容するベルトカバー、8bはファンサポート、8cはファンカバーを示す。   As shown in FIG. 4, the upper watering layers 12a and 12b on both sides via the water distribution box 15 are homogeneously solid containing a photocatalyst that suppresses the generation of fungi and / or algae (hereinafter simply referred to as “solid”). .) P is loaded. Since the solid P uses the photoreactivity of titanium oxide as described later, it is preferable to install the solid P in the upper watering tanks 12a and 12b having the highest natural light receiving ability. However, it may be provided in any one of the cooling towers 1 having high water contact property, or may be irradiated by artificial ultraviolet irradiation. In FIG. 4, reference numeral 8 a denotes a belt cover that accommodates a driving belt for the blower 8, 8 b denotes a fan support, and 8 c denotes a fan cover.

上部散水槽12a(12b)には、図5で示すように固形物Pが散水孔13を詰まらせないようネット状物質18を敷いた上に1.5cm〜2cmの厚みに敷き詰めるよう装填されている。この固形物Pは、循環水の水流により、光源に対して表面を常に更新可能な機能を有するもので、循環水は固形物Pと常に接触して分解がなされている。これにより、循環式冷却用水系への薬剤投入を不要とするようにできる。   In the upper watering tank 12a (12b), as shown in FIG. 5, the solid material P is laid on the net-like substance 18 so as not to clog the watering holes 13, so that it is spread to a thickness of 1.5 cm to 2 cm. Yes. The solid material P has a function that allows the surface of the light source to be constantly updated by the flow of the circulating water, and the circulating water is always in contact with the solid material P and decomposed. Thereby, the chemical | medical agent injection | pouring to a circulation type cooling water system can be made unnecessary.

固形物Pについて説明すると、酸化チタンを光透過性の高い結晶質石英に担持させた物質と、ガラス粉末及び粘土鉱物等の可塑剤とを混練成形し、ガラス粉末の融点である600℃以上で、好ましくは900℃〜1200℃以下の領域で焼成することにより得られた固形物でなる。   The solid P will be described. A material in which titanium oxide is supported on crystalline quartz having high light transmittance and a plasticizer such as glass powder and clay mineral are kneaded and molded at a melting point of 600 ° C. or higher. Preferably, it is a solid obtained by firing in the region of 900 ° C. to 1200 ° C. or less.

その構成材料である酸化チタンを担持させる材料としては、特に限定されるものではないが、光透過性が高く、また、焼成に耐えうる材料であることが望ましいところから、結晶質石英が好適である。結晶質石英としては、平均粒径15μm以下のものが可塑性に優れて成形性もよい。ガラス粉末は、溶解後冷えると再度固まることから固形物として保形性を安定よく保てる。この固形物Pは混練されて内部まで均質層とされており、表面が磨耗しても、その機能を失うことはない。   The material for supporting titanium oxide, which is a constituent material, is not particularly limited, but crystalline quartz is preferable because it is desirable that the material has high light transmission and can withstand firing. is there. Crystalline quartz having an average particle size of 15 μm or less has excellent plasticity and good moldability. Since the glass powder solidifies again when cooled after melting, the shape retention can be stably maintained as a solid. This solid material P is kneaded to form a homogeneous layer to the inside, and even if the surface is worn, its function is not lost.

酸化チタンによる有機物の分解メカニズムについて説明すると、酸化チタンは3.0〜3.2eVのバンドギャップを有する半導体材料であり、そのバンドギャップ以上のエネルギーを持つ波長の光を照射することにより電子(e)と正孔(h)を結晶内に生成する。 The mechanism of decomposition of organic substances by titanium oxide will be described. Titanium oxide is a semiconductor material having a band gap of 3.0 to 3.2 eV, and electrons (e ) And holes (h + ) are generated in the crystal.

電子(e)は触媒表面に存在する酸素(O)と反応し、スーパーオキサイドイオン(O2−)を生成する。一方、正孔(h)は水のOH基と反応し、ヒドロキシラジカル(・OH)を生成する。このような・OHなどの活性酸素ラジカルが、酸化チタンの表面に接近または吸着した有機物を攻撃し酸化分解する。このような機能の基に、二酸化炭素、水にまで分解できる。 Electrons (e ) react with oxygen (O 2 ) present on the catalyst surface to generate superoxide ions (O 2− ). On the other hand, the hole (h + ) reacts with the OH group of water to generate a hydroxy radical (.OH). Such active oxygen radicals such as .OH attack the organic matter approaching or adsorbed on the surface of titanium oxide and oxidatively decompose. Based on such functions, it can be decomposed into carbon dioxide and water.

実施例1は、冷却塔(空研工業株式会社製、型式SKB−24TR、入口温度40℃、出口温度30℃、循環水量0.4m3/min)と熱交換器とを配管で接続し、循環式冷却用水の処理システムとした。冷却塔系の保有水量は、塔水槽保有水1.44m、配管系保有水約0.49mであり、合計約2m3に保有設定した。 In Example 1, a cooling tower (manufactured by Kuken Kogyo Co., Ltd., model SKB-24TR, inlet temperature 40 ° C., outlet temperature 30 ° C., circulating water volume 0.4 m 3 / min) and a heat exchanger are connected by piping, A circulating cooling water treatment system was adopted. Held water volume of the cooling tower system, the tower aquarium held water 1.44 3, a pipe system possesses water of about 0.49 m 3, were held set to a total of about 2m 3.

実施例1で用いた固形物Pは、平均粒径7μmの結晶質石英に酸化チタンを担持させた物質と、ガラス粉末及び可塑剤として粘土鉱物とを混練し、押し出し成形によりφ8mm、長さ10mmの円柱状固形物として成形後に焼成した。得られた固形物P:2kgを網状の容器に充填し、上部散水槽の4箇所(図4参照)に備え付けた。   The solid material P used in Example 1 was prepared by kneading a material in which titanium oxide was supported on crystalline quartz having an average particle diameter of 7 μm, glass powder, and clay mineral as a plasticizer, and φ8 mm and length 10 mm by extrusion molding. It was fired after molding as a cylindrical solid. The obtained solid P: 2 kg was filled in a net-like container and provided at four locations (see FIG. 4) of the upper watering tank.

上記固形物Pにおける酸化チタンの形態は、アナターゼとルチルの混相であることが確認された。   It was confirmed that the form of titanium oxide in the solid P was a mixed phase of anatase and rutile.

当該冷却塔に補給水を定期的に補給しながら、8週間連続的に運転した(計56日運転)。その間、循環式冷却用水系には薬剤を投与せず、1週間おきに循環水を採取し、クロロフィルaの定量を行うことで、藻の抑制効果および殺藻効果を判断した。クロロフィルaの定量に供する試料は、それぞれ2000mlの循環水を採取し、ガラスフィルターで濾過した後、アセトンで抽出した。これを遠心分離することで測定試料とし、得られた試料水の吸光度を測定した。   The replenishment water was regularly replenished to the cooling tower and operated continuously for 8 weeks (total operation for 56 days). Meanwhile, the drug was not administered to the circulating cooling water system, and circulating water was collected every other week, and chlorophyll a was quantified to determine the algae inhibitory effect and algicidal effect. Samples for quantification of chlorophyll a were each collected 2000 ml of circulating water, filtered through a glass filter, and extracted with acetone. This was centrifuged to obtain a measurement sample, and the absorbance of the obtained sample water was measured.

その結果、図6で示すようにクロロフィルaの濃度は2週間で65%減少し、7週間経過時には減少率が90%を超えていることが確認できた。   As a result, as shown in FIG. 6, it was confirmed that the concentration of chlorophyll a decreased by 65% in 2 weeks, and the decrease rate exceeded 90% after 7 weeks.

実施例2は、冷却塔(空研工業株式会社製、型式SKC−40TR、入口温度35℃、出口温度20℃、循環水量120L/min)の循環水系から一部を抜き取り、図7で示すようにUVランプ付与光触媒水質浄化装置19に通水した後、再度循環水系に戻るよう設置した。冷却塔系の保有水量は、塔水槽保有水約250L、配管系保有水約30Lであり、合計約280Lに保有設定した。 In Example 2, a part is extracted from the circulating water system of the cooling tower (manufactured by Kuken Kogyo Co., Ltd., model SKC-40TR 0 , inlet temperature 35 ° C., outlet temperature 20 ° C., circulating water volume 120 L / min), and is shown in FIG. As described above, the water was passed through the UV-catalyzed photocatalytic water purification device 19 and then returned to the circulating water system. The amount of water held in the cooling tower system was about 250 L in the tower water tank and about 30 L in the piping system, and was set to be about 280 L in total.

実施例2で用いるUVランプ付与光触媒水質浄化装置19は、図8で示すように紫外線ランプ20,石英管ガラス21,固形物を充填したステンレスネット22,流量計23,散気管24,エアーホース25を備えて構成されている。ここでは、固形物:3kgをステンレスネット22の内部に充填し、その充填層の内部を下部より水が通ずるような構造とし、UVランプ付与光触媒水質浄化装置19の内部における通水流量は12L/minに設定した。   As shown in FIG. 8, the UV lamp-provided photocatalyst water purification device 19 used in Example 2 includes an ultraviolet lamp 20, a quartz tube glass 21, a stainless steel net 22 filled with solids, a flow meter 23, a diffuser tube 24, and an air hose 25. It is configured with. Here, solid material: 3 kg is filled in the stainless steel net 22 and the inside of the packed bed is structured so that water can pass from the lower part, and the water flow rate inside the UV lamp-providing photocatalyst water purification device 19 is 12 L / Set to min.

UVランプ付与光触媒水質浄化装置19に使用した紫外線ランプ20は、東西電機産業株式会社製GL−30であり、波長253.7nm、定格電力30Wのランプを装備した。   The UV lamp 20 used in the UV lamp-providing photocatalyst water purification device 19 was GL-30 manufactured by Tozai Denki Sangyo Co., Ltd., and was equipped with a lamp with a wavelength of 253.7 nm and a rated power of 30 W.

当該冷却塔に補給水を定期的に補給しながら、28日間連続的に運転した。その間、循環式冷却用水系には薬剤を投与せず、4時間毎に紫外線ランプのON−OFFを繰り返した。定期的に循環水を採水し、クロロフィルaの定量を行うことで、藻の抑制効果および殺藻効果を判断した。クロロフィルaの定量に供する試料は、それぞれ2000mlの循環水を採取し、ガラスフィルターで濾過した後、アセトンで抽出した。これを遠心分離することで測定試料とし、得られた試料水の吸光度を測定した。   The cooling tower was continuously operated for 28 days while supplying replenishing water regularly. In the meantime, no chemical was administered to the circulating cooling water system, and the UV lamp was repeatedly turned on and off every 4 hours. Circulating water was collected periodically and chlorophyll a was quantified to determine the algae inhibitory effect and algicidal effect. Samples for quantification of chlorophyll a were each collected 2000 ml of circulating water, filtered through a glass filter, and extracted with acetone. This was centrifuged to obtain a measurement sample, and the absorbance of the obtained sample water was measured.

その結果、図9で示すようにクロロフィルaの濃度は50時間程度で約60%減少し、200時間経過時には減少率が約75%となり、その後もほぼ一定の濃度を維持していることを確認した。   As a result, as shown in FIG. 9, the concentration of chlorophyll a decreased by about 60% in about 50 hours, and the decrease rate reached about 75% after 200 hours, and it was confirmed that the concentration was maintained almost constant thereafter. did.

本装置は図7に示す設置方法の他、冷却塔装置の内部に組み込むことも可能である。   In addition to the installation method shown in FIG. 7, the present apparatus can be incorporated into the cooling tower apparatus.

また、ステンレスネット22に充填した固形物Pを効率よく揺動させるため、水流が不十分な場合にはエアーホース25よりエアーを挿入しても良い。   Further, in order to efficiently swing the solid matter P filled in the stainless steel net 22, air may be inserted from the air hose 25 when the water flow is insufficient.

上述した実施例は具体例を示すものであり、本発明はこの実施例により何ら限定されるものではない。   The embodiment described above shows a specific example, and the present invention is not limited to this embodiment.

本発明の一例に係る循環式冷却用水の循環系統を示す説明図である。It is explanatory drawing which shows the circulation system of the circulating cooling water which concerns on an example of this invention. 図1の冷却塔を概略的に示す説明図である。It is explanatory drawing which shows the cooling tower of FIG. 1 schematically. 図1の上部散水槽を概略的に示す説明図である。It is explanatory drawing which shows roughly the upper watering tank of FIG. 図1の冷却塔を概略的に示す俯瞰図である。FIG. 2 is an overhead view schematically showing the cooling tower of FIG. 1. 図1の上部散水槽を概略的に示す断面図である。It is sectional drawing which shows the upper watering tank of FIG. 1 schematically. 本発明の実施例1に係る循環式冷却用水の処理方法によるクロロフィルaの減少結果を示すグラフである。It is a graph which shows the reduction | decrease result of the chlorophyll a by the processing method of the circulating cooling water which concerns on Example 1 of this invention. 本発明の別例に係る循環式冷却用水の循環系統を示す説明図である。It is explanatory drawing which shows the circulation system of the circulating type cooling water which concerns on another example of this invention. 図7のUVランプ付与光触媒水質浄化装置を概略的に示す断面図である。It is sectional drawing which shows roughly the UV lamp provision photocatalyst water purification apparatus of FIG. 本発明の実施例2に係る循環式冷却用水の処理方法によるクロロフィルaの減少結果を示すグラフである。It is a graph which shows the reduction | decrease result of the chlorophyll a by the processing method of the circulating cooling water which concerns on Example 2 of this invention. 一般例に係る代表的な循環式冷却用水の循環系統を示す説明図である。It is explanatory drawing which shows the typical circulation system of the circulating cooling water which concerns on a general example.

符号の説明Explanation of symbols

P 均質に光触媒を含有する固形物
1 冷却塔
2 送り配管
3 循環ポンプ
4 熱交換器
5 戻り配管
7 補給水導入管
8 送風機
9 ブロー水配管
10a,10b ルーバー
11 貯水槽
12a,12b 上部散水槽
13 散水孔
14a,14b 充填材
15 配水箱
16 流出口
17 連続測定監視装置
18 ネット状物質
19 UVランプ付与光触媒水質浄化装置
20 紫外線ランプ
21 石英管ガラス
22 ステンレスネット(固形物P充填)
23 流量計
24 散気管
25 エアーホース
P Solid matter containing photocatalyst 1 Cooling tower 2 Feeding pipe 3 Circulating pump 4 Heat exchanger 5 Return pipe 7 Makeup water introduction pipe 8 Blower 9 Blow water pipe 10a, 10b Louver 11 Reservoir 12a, 12b Upper sprinkler 13 Sprinkling holes 14a, 14b Filler 15 Distribution box 16 Outlet 17 Continuous measurement monitoring device 18 Net substance 19 UV lamp-provided photocatalytic water purification device 20 UV lamp 21 Quartz tube glass 22 Stainless steel net (solid P filling)
23 Flow meter 24 Diffuser 25 Air hose

Claims (5)

循環式冷却水系の系内において、菌類及びまたは藻類の発生を抑止するための水処理方法であって、冷却用水の水流により、光源に対して表面を常に更新可能な機能を有する均質に光触媒を含有した固形物を冷却塔の塔内に配置し、冷却用水を該固形物と接触させて有機物の分解処理を行うようにしたことを特徴とする循環式冷却用水の処理方法。   A water treatment method for suppressing the generation of fungi and / or algae in a circulating cooling water system, wherein a homogeneous photocatalyst having a function capable of constantly renewing the surface with respect to a light source by a flow of cooling water is provided. A treatment method for circulating cooling water, wherein the contained solid matter is disposed in a tower of a cooling tower, and the cooling water is brought into contact with the solid matter to decompose the organic matter. 光源に対して表面を常に更新可能な機能を有する固形物として、酸化チタンを結晶質石英に担持させた物質を含む固形物を備えるようにしたことを特徴とする請求項1に記載の循環式冷却用水の処理方法。   2. The circulation system according to claim 1, wherein a solid material including a substance in which titanium oxide is supported on crystalline quartz is provided as a solid material having a function capable of constantly updating the surface of the light source. Cooling water treatment method. 光源に対して表面を常に更新可能な機能を有する固形物として、酸化チタンを結晶質石英に担持させた物質と、ガラス粉末及び可塑剤の粘土鉱物とを混練成形し、600℃以上,好ましくは900〜1200℃以下の領域で焼成した固形物を備えるようにしたことを特徴とする請求項1または2に記載の循環式冷却用水の処理方法。   As a solid having a function capable of constantly renewing the surface with respect to the light source, a material in which titanium oxide is supported on crystalline quartz, glass powder, and clay mineral of plasticizer are kneaded and molded, and the temperature is 600 ° C. or higher, preferably The method for treating circulating cooling water according to claim 1 or 2, wherein a solid material fired in a region of 900 to 1200 ° C or lower is provided. 菌類及びまたは藻類の発生を抑止するにあたり、太陽光等の紫外線を含む光源を利用するようにしたことを特徴とする請求項1〜3のいずれかに記載の循環式冷却用水の処理方法。   The method for treating circulating cooling water according to any one of claims 1 to 3, wherein a light source containing ultraviolet rays such as sunlight is used to suppress generation of fungi and / or algae. 水中の菌類及びまたは藻類を連続的に測定監視する装置を冷却用水の循環系内に配設し、試料水の採取、濾過、抽出、冷蔵、遠心分離を自動連続的に行うようにしたことを特徴とする請求項1〜4のいずれかに記載の循環式冷却用水の処理方法。   A device that continuously measures and monitors fungi and / or algae in water is installed in the cooling water circulation system so that sample water can be collected, filtered, extracted, refrigerated, and centrifuged automatically and continuously. The method for treating circulating cooling water according to any one of claims 1 to 4.
JP2008041161A 2007-03-02 2008-02-22 Treatment method of circulation type cooling water Withdrawn JP2008246471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041161A JP2008246471A (en) 2007-03-02 2008-02-22 Treatment method of circulation type cooling water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007052401 2007-03-02
JP2008041161A JP2008246471A (en) 2007-03-02 2008-02-22 Treatment method of circulation type cooling water

Publications (1)

Publication Number Publication Date
JP2008246471A true JP2008246471A (en) 2008-10-16

Family

ID=39972049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041161A Withdrawn JP2008246471A (en) 2007-03-02 2008-02-22 Treatment method of circulation type cooling water

Country Status (1)

Country Link
JP (1) JP2008246471A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043836A (en) * 2008-07-15 2010-02-25 Kurita Water Ind Ltd Solar energy collecting method and device
JP2017018862A (en) * 2015-07-07 2017-01-26 国立大学法人 長崎大学 photocatalyst
CN113003758A (en) * 2021-01-19 2021-06-22 北京朗新明环保科技有限公司 Intelligent digital management system and method for circulating cooling water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043836A (en) * 2008-07-15 2010-02-25 Kurita Water Ind Ltd Solar energy collecting method and device
JP2017018862A (en) * 2015-07-07 2017-01-26 国立大学法人 長崎大学 photocatalyst
CN113003758A (en) * 2021-01-19 2021-06-22 北京朗新明环保科技有限公司 Intelligent digital management system and method for circulating cooling water

Similar Documents

Publication Publication Date Title
EP1946781B1 (en) A combined labyrinthine fluid sterilizing apparatus
US7481935B2 (en) Waste water treatment process
KR100901756B1 (en) A system and method for removing bad smell of a pigpen
KR102188049B1 (en) ethylene removal apparatus to retain freshness
CN102641644A (en) Waste gas treatment air purification device
KR101042489B1 (en) Environmentally friendly purifying apparatus stinking gas and volatile organic compound
US20140328720A1 (en) Purification device and purification method
CN211198876U (en) Sewage treatment plant for environmental engineering
CN211153311U (en) Poultry is raised disinfection and sterilization device for farming house
JP2011050702A (en) Method and device for sterilization and deodorization
KR20190016426A (en) Deodorizing device cleaning water purification system of closed type compost fermenter
CN105601064A (en) Sludge reduction disinfection treatment method
JP2008246471A (en) Treatment method of circulation type cooling water
JP2007069124A (en) Water treatment apparatus
KR101797212B1 (en) Waste nutrient solution recycling system
KR101944759B1 (en) Apparatus for Purification Air of Washing Type
KR100875454B1 (en) Specie device equiped to aquarium
JP3858734B2 (en) Water treatment equipment
AU2016404510A1 (en) Freezer for biosanitary and cytotoxic waste
JP2011206123A (en) Air cleaning apparatus
JP2005193216A (en) Contaminant removing apparatus
CN112250223A (en) Water source filtering device for building safety water supply control system
JP2731125B2 (en) Ozone removal method
CN101791596A (en) micro-irrigation emitter
JP2007285663A (en) Sterilization mechanism for cooling tower

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510