JP2008246460A - 脱窒素材およびそれを利用した土壌または排水の脱窒素方法 - Google Patents

脱窒素材およびそれを利用した土壌または排水の脱窒素方法 Download PDF

Info

Publication number
JP2008246460A
JP2008246460A JP2007094898A JP2007094898A JP2008246460A JP 2008246460 A JP2008246460 A JP 2008246460A JP 2007094898 A JP2007094898 A JP 2007094898A JP 2007094898 A JP2007094898 A JP 2007094898A JP 2008246460 A JP2008246460 A JP 2008246460A
Authority
JP
Japan
Prior art keywords
bamboo
soil
denitrification
nitrate
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007094898A
Other languages
English (en)
Inventor
Kazunori Nakada
一則 中田
Yoshihiro Satooka
嘉宏 里岡
Akiko Mizozoe
暁子 溝添
Mamiko Jitosho
眞美子 地頭所
Yoshikazu Fujita
芳和 藤田
Akitoshi Yokoyama
明敏 横山
Motoki Nishihara
基樹 西原
Toshihiko Tagami
敏彦 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Prefecture
Original Assignee
Miyazaki Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Prefecture filed Critical Miyazaki Prefecture
Priority to JP2007094898A priority Critical patent/JP2008246460A/ja
Publication of JP2008246460A publication Critical patent/JP2008246460A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】硝酸態窒素を除去して土壌や水質を浄化改良するために使用される脱窒素材および脱窒素方法を提供する。また当該脱窒素材を含有する土壌改質材を提供する。
【解決手段】竹の切削物、特に伐採した後に大気中で放置乾燥した竹の切削物を、脱窒素材および土壌改質材の有効成分とする。また、当該脱窒素材を、硝酸態窒素を含有する土または水と接触させることによって、当該土または水に含まれる硝酸態窒素を脱窒素する。
【選択図】なし

Description

本発明は、硝酸態窒素を過剰に含む土壌の浄化改質;ならびに農業系排水,工業系排水,一般家庭排水および下水処理排水などの排水、地下水,湖沼,河川および海洋などの自然水、養魚用の水槽水などの水質浄化に用いられる脱窒素材、およびこれを使用した硝酸態窒素の脱窒素方法に関する。さらに本発明は、上記脱窒素材を含有する土壌改質材に関する。
近年、有機・無機肥料の過剰使用、生活排水や工場排水の浸透、産業廃棄物の不当投棄および家畜排泄物の不適切な処理によって、硝酸塩や亜硝酸塩などの硝酸性窒素が土壌中に多く残存し、土壌の汚染が進行している。土壌に硝酸性窒素が過剰に存在すると、作物の肉質が硬化したり味が低下するなど、作物の品質低下を招いたり規格外の作物が増加するなどといった問題が生じる。また、土壌から硝酸性窒素が流入することによる地下水汚染も問題となる。
また、農業系排水,工業系排水,一般家庭排水および下水処理排水などの排水には、硝酸性窒素が含まれていることが多く、また最近では湖沼、河川および海洋などの自然水の硝酸性窒素を原因とする富栄養化も問題となっている。
このため、従来からイオン交換法、逆浸透膜処理法および電気透析法などの物理化学的脱窒素法、ならびに微生物を利用した生物学的脱窒素法など、土壌および水を脱窒素処理する方法が種々開発されている(例えば、特許文献1〜3など参照)。
一方、最近、全国的に放置竹林が問題となっており、竹の有効利用が求められている。特に竹は再生が早いため、資源枯渇の面からも注目されている素材である。昨今、竹炭や竹酢液はその特性が解析され、様々な分野に利用されるようになっているが、竹そのものの機能はほとんど知られていないため、その利用も未だ広がっていないのが現状である。
特開平9−300509号公報 特開2001−300509号公報 特開2004−175847号公報
本発明は、土壌や水の硝酸態窒素過剰によって生じる従来の問題を解消するために、硝酸態窒素を除去して土壌や水質を浄化改良するために使用される脱窒素材および脱窒素方法を提供することを目的とする。より詳細には、竹を有効利用するという観点から、竹を利用した脱窒素材および脱窒素方法を提供することを目的とする。さらに本発明は、当該脱窒素材を含有する土壌改質材を提供することを目的とする。
本発明者らは、上記目的を達成すべく日夜鋭意研究を重ねていたところ、竹の切削片および竹を切削するときにでるおが屑(本発明では、これらを総称して「竹の切削物」または「竹切削物」ともいう)を用いることによって、土壌や水を脱窒素処理することが可能であることを見出し、実際に硝酸性窒素を含有する土壌に当該竹切削物を混合するか、または土壌の上に竹切削物を被せること(覆土)によって、土壌中の硝酸性窒素が低減ないしは消失することを確認した。本発明はかかる知見に基づいて完成したものである。
すなわち、本発明は下記の実施態様を包含するものである。
項1.竹の切削物を有効成分とする脱窒素材。
項2.上記竹が、伐採後、大気中で放置乾燥したものである項1記載の脱窒素材。
項3.項1または2に記載する脱窒素材を、硝酸態窒素を含有する土または水と接触させることを特徴とする、当該土または水に含まれる硝酸態窒素の脱窒素方法。
項4.項1または2に記載する脱窒素材を含有する土壌改質材。
本発明の脱窒素材および脱窒素方法によれば、安いコストで土壌中または水中の硝酸性窒素濃度を低減することができると同時に、竹の有効利用を図ることができる。また、本発明の土壌改質材によれば、土壌に混合するか、または土壌に播く若しくは覆土するなどといった簡単な操作で、土壌中の硝酸性窒素濃度を低減することができるため、作物の生育や収穫時期に合わせて土壌中の硝酸性窒素濃度を容易にコントロールすることが可能になる。
(1)脱窒素材
本発明の脱窒素材は、生活環境、特に土壌や水に存在する硝酸性窒素を分子状の窒素化合物(亜酸化窒素や窒素など)にまでに分解する作用を有する材料である。
なお、本発明が対象とする硝酸性窒素には硝酸塩および亜硝酸塩が含まれ、これらは水中でそれぞれ硝酸イオンおよび亜硝酸イオンとして存在している。
本発明の脱窒素材は、竹の切削物を有効成分とすることを特徴とする。
当該竹の切削物とは、竹を切断したり、削ったり、破砕または粉砕することによって得られるものであり、その形状を特に問うものではない。例えば、破砕片、切断片、粉砕物、おが屑、おが粉、および削り片などを制限なく挙げることができる。好ましくは粉砕物、おが屑、おが粉などの粉状のものである。
使用する竹の種類は特に問うものではない。例えば、孟宗竹(Phyllostachys pubescens Maz.ex Houz.de Le)、真竹(Phyllostachys bambusoides Sieb. et Zucc.)、および淡竹(Phyllostachys nigra Munro var. HenonisStapt)といった三大有用竹を始め、亀甲竹、金明孟宗竹、金明竹、絞竹、黒竹、雲紋竹、布袋竹、桂竹、業平竹、唐竹、鈴子業平竹、四方竹、女竹、および矢竹などの日本の竹;Bambusa bambos (L.) Voss、Bambusa nepalensisBambusa oldhami Munro、Bambusa vulgaris Schrader ex Wendland、Bambusa vulgaris Sch. ex Wend. var. striata (Lodd.) Gamble、Dendrocalamus latiflorusDendrocalamus asper(Schultes f.) Backer ex Heyne、Dendrocalamus giganteus Wallich ex Munro、Dendrocalamus strictus(Roxb.) Nees、Gigantocloa apus(J.A. & J.H. Schultes) Kurz、Gigantocloa atrobiolaceae Widjaja、Gigantocloaatter (Hassk.) Kurz、およびThyrsostachys siamensis Gambleなどの海外の竹も含まれる。
竹切削物を調製するために使用する原料竹は、伐採直後の生の竹よりも大気中で乾燥させた竹であることが好ましい。乾燥方法は、特に制限されないが、通常、屋内または屋外で自然乾燥される方法を用いることができる。
また竹切削物も、黴が発生しやすことから、乾燥したものであることが好ましい。竹切削物の乾燥方法も特に問わないが、一例を挙げると、例えば竹を伐採後、すぐに、あるいは屋内または屋外で乾燥させたのち切削し、得られた竹切削物を通風乾燥機(通常、25〜60℃で1〜3日間)で乾燥する方法を挙げることができる。
本発明の脱窒素材は、竹切削物だけからなるものであってもよいが、本発明の効果を妨げないものであれば他成分を含有することもできる。かかる他成分としては、制限されないが、例えば、竹炭、炭酸カルシウム(石灰)、水酸化カルシウム(消石灰)、ベントナイト、ペプトン、肉エキス、およびクエン酸などを挙げることができる。
また脱窒素材の形態も特に問わず、使用場所や使用目的に応じて適宜調整することができる。例えば、竹切削物をそのままの形態で使用してもよいし、ベントナイトなどの他成分と混合し造粒した形態で用いてもよいし、また、それらを通気性や透過性のある袋などの多孔質容器に充填して用いることもできる。
(2)脱窒素方法
本発明の脱窒素方法は、上記竹切削物を有効成分とする脱窒素材を用いて、土壌や水などに含まれる硝酸性窒素濃度を低減または消失するための方法である。具体的には、当該方法は、上記本発明の脱窒素材を、処理対象とする硝酸性窒素を含む被験物、例えば硝酸性窒素を含む土壌や水などと接触させることによって行うことができる。
接触は、処理対象が土壌の場合は、本発明の脱窒素材を被験土壌と混合することによって、または本発明の脱窒素材を被験土壌の上に播くか若しくは覆土することによって行うことができる。また、処理対象が水の場合は、本発明の脱窒素材をいれた多孔性容器内に被験水を通すか(通水)、環流させることによって行うことができる。
接触は、特に制限されないが、通常 5〜50℃、好ましくは20〜40℃の温度条件下で行うことが好ましい。なお、脱窒素材と被験物との接触環境の水分濃度が高いほど、脱窒素速度が早くなることから、土壌を脱窒素処理する場合は、土壌を湿潤状態にしておくことが望ましい。
斯くして土壌や水などに含まれる硝酸性窒素(硝酸イオン、亜硝酸イオン)は、分子状窒素(一酸化窒素、亜酸化窒素、窒素)の状態にまで分解され、その量を低減または消失させることができる。
(3)土壌改質材
上記本発明の脱窒素材は、土壌に対しては土壌改質材として使用することができる。本発明の土壌改質材を用いて土壌中の硝酸性窒素濃度を低減させることにより、土壌に硝酸性窒素が過剰に存在することによって生じる作物の肉質の硬化や味の低下、規格外の作物の増加といった問題を解消することができる。また、本発明の土壌改質材によれば、作物の生育や収穫時期に合わせて土壌中の硝酸性窒素濃度をコントロールでき、その結果、品質の高い作物を作成することができる。
本発明の土壌改質材は、上記本発明の脱窒素材を含有するものであればよく、竹切削物だけからなるものであっても、また土壌改質という目的に反しないものであれば他成分を含有するものであってもよい。かかる他成分としては、制限されないが、例えば、竹炭、炭酸カルシウム(石灰)、水酸化ナトリウム(消石灰)、ベントナイト、ペプトン、肉エキス、およびクエン酸などを挙げることができる。
また土壌改質材の形態も特に問わず、使用目的や土壌の性状に応じて適宜調整することができる。例えば、竹切削物をそのままの形態で使用してもよいし、風による飛散を防止して作業性をよくするためにベントナイトや石灰などの他成分と混合し造粒した形態で用いてもよいし、竹切削物を水に分散した形態で用いてもよいし、また、竹切削物を通気性や透過性のある多孔性のシート状の袋に充填して用いることもできる。
当該土壌改質材は、土壌成分と接触する態様で使用されれば、その使用方法を特に制限するものではない。例えば、土壌に混合して使用する方法、土壌に播くか覆土する方法、または土壌改質材が多孔性シート袋の形態を有するものであれば、土壌に当該シートを敷く方法など、いずれ方法を採用することができる。
以下、実験例を挙げて本発明をより詳細に説明する。但し、本発明はかかる実験例の記載に制限されるものではない。
実験例1
竹切削物の脱窒素効果を下記に示す方法により評価した。また、本発明の効果をより明確にするために、比較被験試料として、シラス、活性炭、コットンリンター、生杉おが屑、乾燥杉おが屑、および圃場土壌を用いて同様に脱窒素効果を評価した。
1.被験試料の調製
(1)竹切削物:
伐採後、1〜30日間、外に放置して外気で乾燥した孟宗竹を、粉状に粉砕したおが粉を用いた。なお、おが粉は、おが粉製造機((株)タイムリー製 OGA―15 )を用いて調製し、試験に際して、予め40℃で1昼夜乾燥させたものを使用した。あるいは、丸鋸で切削により発生したおが屑を、試験に際して、予め40℃で1昼夜乾燥させたものを使用した。
(2)生杉おが屑:
宮崎県内で伐採され、屋外で放置して乾燥させた杉を加工する際に排出されたおが屑を用いた。
(3)乾燥おが屑:
宮崎県内で伐採され、木材乾燥機(宮崎県木材利用技術センター)で乾燥した杉を加工した際に排出されたおが屑を用いた。乾燥処理は、当初の水分含量66〜180%が、10.6〜12.6%程度になるまで90〜110℃で120時間処理することによって行った。
(4)圃場土壌:
宮崎県宮崎市にある総合農業試験場敷地内の圃場(畑地)より採取した黒ボクを用いた。
2.試験方法
(1)硝酸分解試験(液相の硝酸イオン濃度の測定)
30ppmの硝酸カリウム溶液100mlを入れ、これに被験試料(シラス、圃場土壌、コットンリンター、活性炭、生杉おが屑、乾燥杉おが屑、竹切削物)を各々1gの割合で添加し、恒温器内(25℃)に静置し、毎日、液相中の硝酸イオンをイオンクロマトグラフィーで測定した。
(2)硝酸分解試験および脱窒確認試験
バイアル瓶に100ppmの硝酸カリウム溶液100mlを入れ、これに竹切削物1gの割合で添加し、容器内の気相をヘリウム置換を行った後、密栓した。恒温器内(25℃)に静置し、毎日、液相中の硝酸イオンおよび亜硝酸イオンをイオンクロマトグラフィーで測定し、気相中の亜酸化窒素及び窒素をガスクロマトグラフィーで測定した。
3.結果
(1)上記(1)で測定した結果を図1に示す。具体的には、比較被験試料(シラス、圃場土壌、コットンリンター、および活性炭)について、液相中の硝酸イオンの測定結果を図1Aに、本発明の被験試料(竹切削物)および比較被験試料(活性炭、生杉おが屑、乾燥杉おが屑)について、液相中の硝酸イオンの測定結果を図1Bに示す。
この結果から分かるように、シラス、圃場土壌、コットンリンターおよび生杉おが屑には、硝酸イオン吸着能も硝酸イオン分解能も、いずれもないことが明らかになった。活性炭については、硝酸イオン濃度の減少が認められたが、1日経過後にはその低減効果は頭打ちになり、それ以上の減少は見られなかった。これは、活性炭が硝酸イオンを吸着するものの、分解するものではないことを示している。一方、乾燥杉おが屑または竹切削物を使用すると硝酸イオンが有意に減少した。この効果は、特に竹切削物に顕著であり、液相中の硝酸イオンは2日で完全に消失した。
(2)上記の試験方法(2)で測定した結果を図2に示す。具体的には、本発明の被験試料(竹切削物)について液相中の硝酸イオンおよび亜硝酸イオンを測定した結果を図2に示す。
上記(1)と同様、竹切削物の使用により液相中の硝酸イオンは2日で完全に消失した。その際、亜硝酸イオンが発生するものの、直ぐに消失した。これらの結果から、竹切削物による硝酸イオンの低減および消失効果は、単なる吸着によるものではなく、硝酸イオンが分解されていることがわかる。また、この結果は、硝酸イオンが亜硝酸イオン分解を経て、次の段階(一酸化窒素、亜酸化窒素及び窒素)へ移行していることを示唆している。
実験例2
生の竹切削物および乾燥した竹切削物について脱窒素能の違いを、実験例1に記載する硝酸分解試験(液相の硝酸イオン濃度)を用いて評価した。なお、竹として孟宗竹と真竹を使用した。
1.被験試料の調製
(1)生の竹切削物:
伐採して間もない竹(孟宗竹、真竹)を、おが粉製造機((株)タイムリー製、OGA―15)に供して、おが粉(生の竹切削物)を調製した。
(2)乾燥した竹切削物:
伐採後、1〜30日間、外に放置して外気で乾燥した竹(孟宗竹、真竹)を、上記と同様にして、おが粉製造機に供して、おが粉(乾燥した竹切削物)を調製した。また試験に際して、予め40℃で1昼夜乾燥させたものを使用した。
2.試験方法
30ppmの硝酸カリウム溶液100mlを入れ、これに被験試料を各々1gの割合で添加し、恒温器内(25℃)に静置し、毎日、液相中の硝酸イオンをイオンクロマトグラフィーで測定した。
3.試験結果
結果を図3に示す。図3中、Blankは、被験試料を入れない硝酸カリウム溶液の経時的硝酸イオン濃度を示す。この結果、孟宗竹と真竹のいずれにも脱窒素効果が認められたが、孟宗竹の方がその効果に優れていた。また生よりも乾燥したもののほうが、脱窒素効果が高かった。
実験例3
実験例1および2で脱窒素効果が認められた乾燥した孟宗竹のおが粉(乾燥した竹切削物)について、滅菌処理の有無による脱窒能の違いを、実験例1に記載する硝酸分解試験(液相の硝酸イオン濃度)を用いて評価した。なお、滅菌は、孟宗竹のおが粉(乾燥した竹切削物)をオートクレーブ(2気圧、121℃、15分)で処理することによって行った。
1.試験方法
30ppmの硝酸カリウム溶液100mlを入れ、これに被験試料を各々1gの割合で添加し、恒温器内(25℃)に静置し、毎日、液相中の硝酸イオンをイオンクロマトグラフィーで測定した。
2.試験結果
結果を図4に示す。図4に示すように、滅菌しない竹切削物には脱窒素能が認められたのに対して、滅菌した竹切削物には脱窒素能は認められなかった。このことから、竹切削物による脱窒素効果は、微生物による生物脱窒素作用に基づくものであると判断される。すなわち、竹は大気中に存在する脱窒素細菌群の担持体として好適に機能すること、言い換えれば、自然界に存在する竹を、滅菌処理することなく、生または乾燥させて(好ましくは、外気で乾燥させて)使用することによって、脱窒素が可能になることが確認された。
実験例4 土壌中の硝酸イオン分解試験
土壌中の硝酸イオン分解試験を、肥沃度測定のための「土壌養分分析法」(農林省農林水産技術会議事務局監修;土壌養分測定法委員会編1994)のビーカー培養法(びん培養法)に準拠して実施した。
250ml容広口ポリ瓶(内径 60 mm )に、硝酸性窒素を過剰に含む土壌(硝酸イオン濃度:25mg/100g)70gを入れ、この土壌の上に実験例1および2で脱窒素効果が認められた乾燥した孟宗竹のおが粉(乾燥した竹切削物)1.4gを被せて(覆土)、25℃でインキュベートした。インキュベートから7日目、14日目および21日目に土壌を採取して、土壌中の硝酸イオン濃度を測定した。
また、上記の覆土方法に代えて、硝酸性窒素を過剰に含む土壌(硝酸イオン濃度:25mg/100g)70gに乾燥した孟宗竹のおが粉(乾燥した竹切削物)1.4gを添加混合して、同様に25℃でインキュベートして、経時的に土壌中の硝酸イオン濃度を測定した。
結果を図5に示す。図からわかるように、本発明の竹切削物を土壌に混ぜることによって21日目に硝酸性窒素が消失した。また、竹切削物を土壌に混ぜなくても、上に播くだけでも土壌中の硝酸性窒素が顕著に減少した。このことから、本発明の竹切削物は、土壌中の硝酸性窒素を減少および消失させる脱窒素材として、また土壌改良材として有用であることがわかる。
実験例1で測定した液相中の硝酸イオンの測定結果を示す。図Aは比較被験試料(シラス、圃場土壌、コットンリンター、および活性炭)を使用した場合の液相中の硝酸イオンの測定結果であり、図Bは、本発明の被験試料(竹切削物)および比較被験試料(活性炭、生杉おが屑、乾燥杉おが屑)を使用した場合の液相中の硝酸イオンの測定結果である。 実験例2で測定した竹切削物(乾燥物)による液相中の硝酸イオンおよび亜硝酸イオンの測定結果を示す。 実験例3で測定した真竹と孟宗竹の生の切削物と乾燥させた切削物について、脱窒素能を比較した結果を示す。 実験例4で測定した、滅菌処理した竹切削物(乾燥物)と未滅菌の竹切削物(乾燥物)について、脱窒素能を比較した結果を示す。 実験例5で測定した、竹切削物(乾燥物)を土壌に播くか、混合した場合の脱窒素効果を示す結果である。

Claims (4)

  1. 竹の切削物を有効成分とする脱窒素材。
  2. 上記竹が、伐採後、大気中で放置乾燥したものである請求項1記載の脱窒素材。
  3. 請求項1または2に記載する脱窒素材を、硝酸態窒素を含有する土または水と接触させることを特徴とする、当該土または水に含まれる硝酸態窒素の脱窒素方法。
  4. 請求項1または2に記載する脱窒素材を含有する土壌改質材。
JP2007094898A 2007-03-30 2007-03-30 脱窒素材およびそれを利用した土壌または排水の脱窒素方法 Pending JP2008246460A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094898A JP2008246460A (ja) 2007-03-30 2007-03-30 脱窒素材およびそれを利用した土壌または排水の脱窒素方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094898A JP2008246460A (ja) 2007-03-30 2007-03-30 脱窒素材およびそれを利用した土壌または排水の脱窒素方法

Publications (1)

Publication Number Publication Date
JP2008246460A true JP2008246460A (ja) 2008-10-16

Family

ID=39972040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094898A Pending JP2008246460A (ja) 2007-03-30 2007-03-30 脱窒素材およびそれを利用した土壌または排水の脱窒素方法

Country Status (1)

Country Link
JP (1) JP2008246460A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240516A (ja) * 2009-04-01 2010-10-28 Omega:Kk 水処理方法
JP2011507691A (ja) * 2007-12-28 2011-03-10 メルコスール コマーシャル エリテーデーアー. 嫌気的消化によって不純物を除去する工程で微生物コロニーの濃度を増加させる方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233195A (ja) * 1999-02-12 2000-08-29 Kit:Kk 水処理用ろ材
JP2007044034A (ja) * 2005-12-08 2007-02-22 Seisui:Kk ハイブリッドバイオチップ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233195A (ja) * 1999-02-12 2000-08-29 Kit:Kk 水処理用ろ材
JP2007044034A (ja) * 2005-12-08 2007-02-22 Seisui:Kk ハイブリッドバイオチップ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507691A (ja) * 2007-12-28 2011-03-10 メルコスール コマーシャル エリテーデーアー. 嫌気的消化によって不純物を除去する工程で微生物コロニーの濃度を増加させる方法
JP2010240516A (ja) * 2009-04-01 2010-10-28 Omega:Kk 水処理方法

Similar Documents

Publication Publication Date Title
Guo et al. The role of biochar in organic waste composting and soil improvement: A review
Alavi et al. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite
Liu et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil
Qian et al. Biochar-compost as a new option for soil improvement: Application in various problem soils
Ahmad et al. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review
Waqas et al. Untapped potential of zeolites in optimization of food waste composting
Bhatnagar et al. Multidisciplinary approaches to handling wastes in sugar industries
Samaras et al. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime
AU771630B2 (en) Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and adsorbents containing the active components of the culture liquors and utilization of the same
Blackwell et al. Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate
JP5985477B2 (ja) 鉱物放出性コンポストおよびそれを用いた土壌浄化のための方法
Yang et al. An efficient plant–microbe phytoremediation method to remove formaldehyde from air
JP2013540677A5 (ja)
Nguyen et al. White hard clam (Meretrix lyrata) shells media to improve phosphorus removal in lab-scale horizontal sub-surface flow constructed wetlands: Performance, removal pathways, and lifespan
Nakasaki et al. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting
Asemoloye et al. Spent mushroom compost enhances plant response and phytoremediation of heavy metal polluted soil
Zhang et al. Enhanced topsoil P leaching in a short term flooded calcareous soil with combined straw and ammonium nitrogen incorporation
Viana et al. Using rice husks in water purification in Brazil
Majumdar et al. Emission of methane and carbon dioxide and earthworm survival during composting of pharmaceutical sludge and spent mycelia
Twumasi et al. Assessment of the levels of cadmium and lead in soil and vegetable samples from selected dumpsites in the Kumasi Metropolis of Ghana
Erdogan et al. Use of sewage sludge in growth media for ornamental plants and its effects on growth and heavy metal accumulation
Photiou et al. Recovery of phosphates from anaerobic MBR effluent using columns of eggshell and seagrass residues and their final use as a fertilizer
Shan et al. Effects of Mg-modified biochar on the bioavailability of cadmium in soil
JP2008246460A (ja) 脱窒素材およびそれを利用した土壌または排水の脱窒素方法
Murtaza et al. Effects of biotic and abiotic aging techniques on physiochemical and molecular characteristics of biochar and their impacts on environment and agriculture: A Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104