JP2008244486A - Non-volatile memory element, manufacturing method thereof and semiconductor chip - Google Patents

Non-volatile memory element, manufacturing method thereof and semiconductor chip Download PDF

Info

Publication number
JP2008244486A
JP2008244486A JP2008084147A JP2008084147A JP2008244486A JP 2008244486 A JP2008244486 A JP 2008244486A JP 2008084147 A JP2008084147 A JP 2008084147A JP 2008084147 A JP2008084147 A JP 2008084147A JP 2008244486 A JP2008244486 A JP 2008244486A
Authority
JP
Japan
Prior art keywords
semiconductor pillar
layer
doping layer
memory device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008084147A
Other languages
Japanese (ja)
Inventor
Jeong-Hee Han
禎 希 韓
Ji-Young Kim
志 永 金
Chung-Woo Kim
▲てい▼ 雨 金
Kang Long Wang
ロン ワン カン
Siguang Ma
マ シグァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2008244486A publication Critical patent/JP2008244486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0652Bump or bump-like direct electrical connections from substrate to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-volatile memory element which can be easily and highly integrated and has high reliability, and to provide a manufacturing method thereof. <P>SOLUTION: The non-volatile memory element has a first conductivity-type first doping layer 115 formed on a substrate 105; a second conductivity-type semiconductor column 120 extending upward to one surface of the substrate 105 from the first doping layer 115 and having a conductivity type reverse to the first conductivity type; a control gate electrode 150a surrounding the side wall of the semiconductor column 120; an electric charge storage layer 140a interposed between the semiconductor column 120 and the control gate electrode 150a; a first conductivity-type second doping layer 130 disposed on the semiconductor column 120 so as to be electrically coupled to the semiconductor column 120. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体素子に係り、特に、データを保存して読み取りできる不揮発性メモリ素子及びその製造方法に関する。   The present invention relates to a semiconductor device, and more particularly, to a nonvolatile memory device that can store and read data and a method for manufacturing the same.

最近、大容量の携帯用電子装置として、例えば、デジタルカメラ、MP3プレーヤーなどの電子装置が注目されている。このような電子装置は、小型化及び高容量化がさらに要求されている。電子装置の小型化及び高容量化は、これらの電子装置に利用される不揮発性メモリ素子の高集積化及び高容量化によって達成することができる。   Recently, electronic devices such as digital cameras and MP3 players have attracted attention as large-capacity portable electronic devices. Such electronic devices are further required to be smaller and have higher capacity. Miniaturization and high capacity of electronic devices can be achieved by high integration and high capacity of nonvolatile memory elements used in these electronic devices.

しかし、高集積パターンの形成を通じての不揮発性メモリ素子の高集積化は、工程技術の限界によってその限界に到達してしまった。また、通例的な平面型の不揮発性メモリ素子は、その集積度の上昇につれて、短チャンネル効果による性能低下が問題になりうる。したがって、平面型の不揮発性メモリ素子の高集積化には、信頼性低下を招く恐れがある。   However, the high integration of nonvolatile memory devices through the formation of highly integrated patterns has reached its limit due to the limitations of process technology. In addition, in a typical planar nonvolatile memory device, performance degradation due to the short channel effect may become a problem as the degree of integration increases. Therefore, high integration of the planar nonvolatile memory element may cause a decrease in reliability.

本発明が解決しようとする技術的課題は、高集積化が容易であり、かつ、高い信頼性を有する不揮発性メモリ素子を提供するところにある。   The technical problem to be solved by the present invention is to provide a non-volatile memory element that can be easily integrated and has high reliability.

本発明が解決しようとする他の技術的課題は、前記不揮発性メモリ素子の製造方法を提供するところにある。   Another technical problem to be solved by the present invention is to provide a method for manufacturing the nonvolatile memory device.

前記技術的課題を達成するための本発明の一形態による不揮発性メモリ素子が提供される。第1ドーピング層は、基板上に提供され、第1導電型である。半導体柱は、前記第1ドーピング層から前記基板の一面に対して上向き伸長し、前記第1導電型と逆の導電性を有する第2導電型である。制御ゲート電極は、前記半導体柱の側壁を一回り取り囲む。電荷保存層は、前記半導体柱と前記制御ゲート電極との間に介在される。第2ドーピング層は、前記半導体柱と電気的に連結されるように前記半導体柱上に配置され、前記第1導電型である。   In order to achieve the above technical problem, a nonvolatile memory device according to an aspect of the present invention is provided. The first doping layer is provided on the substrate and is of the first conductivity type. The semiconductor pillar is a second conductivity type extending upward from the first doping layer with respect to one surface of the substrate and having a conductivity opposite to the first conductivity type. The control gate electrode surrounds the side wall of the semiconductor pillar. The charge storage layer is interposed between the semiconductor pillar and the control gate electrode. The second doping layer is disposed on the semiconductor pillar so as to be electrically connected to the semiconductor pillar, and is of the first conductivity type.

前記不揮発性メモリ素子の一例において、前記第1ドーピング層は、前記半導体柱の底面の中心部を覆う。さらに、前記第1ドーピング層は、前記半導体柱の底面全体を覆う。
前記不揮発性メモリ素子の他の例において、トンネリング絶縁層は、前記電荷保存層と前記半導体柱との間に介在され、ブロッキング絶縁層は、前記電荷保存層と前記制御ゲート電極との間に介在される。
In one example of the nonvolatile memory device, the first doping layer covers a central portion of the bottom surface of the semiconductor pillar. Further, the first doping layer covers the entire bottom surface of the semiconductor pillar.
In another example of the nonvolatile memory element, a tunneling insulating layer is interposed between the charge storage layer and the semiconductor pillar, and a blocking insulating layer is interposed between the charge storage layer and the control gate electrode. Is done.

前記技術的課題を達成するための本発明の他の形態による不揮発性メモリ素子が提供される。第1ドーピング層は、基板上に提供され、第1導電型である。半導体柱は、前記第1ドーピング層から前記基板の一面に対して上向きに伸長し、前記第1導電型と逆の導電性を有する第2導電型である。制御ゲート電極は、前記半導体柱の側壁を一回り取り囲む。電荷保存層は、前記半導体柱と前記制御ゲート電極との間に介在され、前記制御ゲート電極の上面及び底面を覆う。そして、第2ドーピング層は、前記半導体柱と電気的に連結されるように前記半導体柱上に配置され、前記第1導電型である。   A non-volatile memory device according to another aspect of the present invention for achieving the above technical problem is provided. The first doping layer is provided on the substrate and is of the first conductivity type. The semiconductor pillar is a second conductivity type that extends upward from the first doping layer with respect to one surface of the substrate and has a conductivity opposite to that of the first conductivity type. The control gate electrode surrounds the side wall of the semiconductor pillar. The charge storage layer is interposed between the semiconductor pillar and the control gate electrode, and covers an upper surface and a bottom surface of the control gate electrode. The second doping layer is disposed on the semiconductor pillar so as to be electrically connected to the semiconductor pillar, and is of the first conductivity type.

前記他の技術的課題を達成するための本発明の一形態による不揮発性メモリ素子の製造方法が提供される。基板上に第1導電型の第1ドーピング層を形成する。前記第1ドーピング層から前記基板の一面に対して上向きに伸長するように、前記第1導電型と逆の導電性を有する第2導電型の半導体柱を形成する。前記半導体柱と電気的に連結されるように前記半導体柱上に、前記第1導電型の第2ドーピング層を形成する。前記半導体柱の側壁を一回り取り囲む電荷保存層を形成する。前記半導体柱の反対側の前記電荷保存層上に制御ゲート電極を形成する。   A method for manufacturing a non-volatile memory device according to an aspect of the present invention for achieving the other technical problem is provided. A first doping layer of the first conductivity type is formed on the substrate. A semiconductor column of a second conductivity type having conductivity opposite to that of the first conductivity type is formed so as to extend upward from the first doping layer with respect to one surface of the substrate. A second doping layer of the first conductivity type is formed on the semiconductor pillar so as to be electrically connected to the semiconductor pillar. A charge storage layer surrounding the side wall of the semiconductor pillar is formed. A control gate electrode is formed on the charge storage layer on the opposite side of the semiconductor pillar.

前記不揮発性メモリ素子の製造方法の一例において、前記半導体柱は、ナノワイヤー構造で形成する。   In one example of a method for manufacturing the nonvolatile memory element, the semiconductor pillar is formed with a nanowire structure.

前記不揮発性メモリ素子の製造方法の他の例において、前記第2ドーピング層を形成する前に、前記半導体柱の側壁を取り囲むスペーサ絶縁膜を形成し、前記第2ドーピング層を形成する工程後、前記スペーサ絶縁膜を除去する。前記スペーサ絶縁膜は、前記半導体柱の側壁を熱酸化させて形成する。   In another example of the method for manufacturing the non-volatile memory device, before forming the second doping layer, a spacer insulating film surrounding a side wall of the semiconductor pillar is formed, and after the step of forming the second doping layer, The spacer insulating film is removed. The spacer insulating film is formed by thermally oxidizing the side wall of the semiconductor pillar.

本発明による不揮発性メモリ素子は、半導体柱の高さを調節することによってチャンネル長を容易に延長できる。さらに、半導体柱の直径または幅を縮めることによって、基板上の集積度を高めることができる。したがって、不揮発性メモリ素子は集積度を高めつつ、短チャンネル効果を抑制できる。   The nonvolatile memory device according to the present invention can easily extend the channel length by adjusting the height of the semiconductor pillar. Furthermore, the degree of integration on the substrate can be increased by reducing the diameter or width of the semiconductor pillar. Therefore, the nonvolatile memory device can suppress the short channel effect while increasing the degree of integration.

また、本発明による不揮発性メモリ素子は、半導体柱の高さを調節することによって、これを取り囲んでいる電荷保存層の面積を広げることができる。これにより、データプログラム及びリテンション特性が改善されることで、不揮発性メモリ素子の動作信頼性が高くなる。さらに、電荷保存層を局部に分けてデータプログラムを行うマルチビット動作の信頼性が高くなる。   In the nonvolatile memory device according to the present invention, the area of the charge storage layer surrounding the nonvolatile semiconductor memory device can be increased by adjusting the height of the semiconductor pillar. As a result, the data program and the retention characteristics are improved, and the operation reliability of the nonvolatile memory element is increased. Furthermore, the reliability of the multi-bit operation in which the charge storage layer is locally divided to perform the data program is increased.

以下、添付した図面を参照して本発明の望ましい実施形態を説明することによって本発明を詳細に説明する。しかし、本発明は、以下で開示される実施形態に限定されるものではなく、相異なる多様な形態で具現され、本実施形態は、単に、本発明の開示を完全にし、当業者に発明の範ちゅうを完全に知らせるために提供されるものである。図面において、各構成要素は、説明の便宜のためにその大きさが誇張されている。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be embodied in various different forms. The embodiments are merely a complete disclosure of the present invention and are disclosed to those skilled in the art. It is provided to fully inform the category. In the drawings, the size of each component is exaggerated for convenience of explanation.

図1は、本発明の一実施形態による不揮発性メモリ素子100を示す部分切断された斜視図である。図2は、図1の不揮発性メモリ素子100のII−II’線の断面図であり、図3は、図1の不揮発性メモリ素子100のIII−III’線の断面図である。   FIG. 1 is a partially cut perspective view illustrating a nonvolatile memory device 100 according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line II-II ′ of the nonvolatile memory element 100 of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III ′ of the nonvolatile memory element 100 of FIG.

図1ないし図3を参照すれば、本実施形態の不揮発性メモリ素子100は、第1ドーピング層115と第2ドーピング層130との間に介在された半導体柱120が提供される。第1ドーピング層115及び第2ドーピング層130は第1導電型であって、半導体柱120は第1導電型と逆の導電性を有する第2導電型である。第1導電型及び第2導電型は、n型及びp型でそれぞれ選択された相異なる一つでありうる。例えば、第1ドーピング層115及び第2ドーピング層130は、第1導電型の不純物で高濃度ドーピングされ、半導体柱120は、第2導電型の不純物で低濃度ドーピングされうる。   1 to 3, the nonvolatile memory device 100 of the present embodiment is provided with a semiconductor pillar 120 interposed between a first doping layer 115 and a second doping layer 130. The first doping layer 115 and the second doping layer 130 are of a first conductivity type, and the semiconductor pillar 120 is of a second conductivity type having conductivity opposite to that of the first conductivity type. The first conductivity type and the second conductivity type may be different ones selected for n-type and p-type, respectively. For example, the first doping layer 115 and the second doping layer 130 may be highly doped with a first conductivity type impurity, and the semiconductor pillar 120 may be lightly doped with a second conductivity type impurity.

第1ドーピング層115及び第2ドーピング層130は、不揮発性メモリ素子でソース領域及びドレーン領域として機能する。ソース領域及びドレーン領域は、その機能によって互いに入れ替わって呼ばれるか、混用されてもよい。半導体柱120は、チャンネル領域(図示せず)を限定できる。したがって、半導体柱120は、不揮発性メモリ素子100のオン・オフ動作によって、第1ドーピング層115及び第2ドーピング層130を電気的に連結または開放させる役割を担う。   The first doping layer 115 and the second doping layer 130 function as a source region and a drain region in the nonvolatile memory device. The source region and the drain region may be referred to interchangeably depending on their functions, or may be mixed. The semiconductor pillar 120 may define a channel region (not shown). Accordingly, the semiconductor pillar 120 plays a role of electrically connecting or opening the first doping layer 115 and the second doping layer 130 by the on / off operation of the nonvolatile memory device 100.

第1ドーピング層115は、例えば、基板105の一部分に第1導電型の不純物を高濃度ドーピングして限定される。基板105は半導体物質からなり、単結晶構造からなる。他の例として、第1ドーピング層115は基板105上にエピタキシャル層として提供されうる。この場合、第1ドーピング層115は基板105の格子に合せて形成され、したがって、基板105のような結晶構造を有する。   For example, the first doping layer 115 is limited by doping a part of the substrate 105 with a first conductivity type impurity at a high concentration. The substrate 105 is made of a semiconductor material and has a single crystal structure. As another example, the first doping layer 115 may be provided as an epitaxial layer on the substrate 105. In this case, the first doping layer 115 is formed in conformity with the lattice of the substrate 105, and thus has a crystal structure like the substrate 105.

第1ドーピング層115の側壁は、素子分離膜110で取り囲まれうる。素子分離膜は、例えば、酸化膜、窒化膜または低誘電率膜を用いられる。なお、低誘電率膜とは、酸化膜よりその誘電定数の低い絶縁膜を称する。   A sidewall of the first doping layer 115 may be surrounded by the device isolation layer 110. For example, an oxide film, a nitride film, or a low dielectric constant film is used as the element isolation film. The low dielectric constant film refers to an insulating film whose dielectric constant is lower than that of an oxide film.

半導体柱120は、第1ドーピング層115上から基板105の一面(上面)に対して上向きに伸長して形成される。半導体柱120は、半導体物質が柱状に配置されたものを称する。半導体物質は、例えば、シリコン、シリコンゲルマニウム、またはゲルマニウムを含む。なお、本実施形態では、半導体柱120は、基板105の一面に対して垂直方向に伸長する垂直構造を有するが、本発明の範囲がこれに制限されるものではない。例えば、半導体柱120は、基板105の一面に対して垂直方向から所定の角度を有した方向に傾いて上向きに伸長されてもよい。   The semiconductor pillar 120 is formed to extend upward from the first doping layer 115 to one surface (upper surface) of the substrate 105. The semiconductor pillar 120 refers to a semiconductor substance arranged in a pillar shape. The semiconductor material includes, for example, silicon, silicon germanium, or germanium. In this embodiment, the semiconductor pillar 120 has a vertical structure extending in a direction perpendicular to one surface of the substrate 105, but the scope of the present invention is not limited to this. For example, the semiconductor pillar 120 may be extended upward while being inclined in a direction having a predetermined angle from the vertical direction with respect to one surface of the substrate 105.

半導体柱120は、多様な形態からなることができ、望ましくは、半導体物質のナノワイヤー構造からなることができる。なお、ナノワイヤーとは、ナノメートルスケールの直径を持つ線形態を称する。ナノワイヤーは、ナノテクノロジー分野で通称的に使われ、その断面は円柱以外にも多角形状であってもよい。図1では、半導体柱120は、便宜のために円柱の半分のみ図示されたが、図3は、元来の円形断面を図示した。さらに、半導体柱120の直径または幅は一定なものが望ましいが、本発明の範囲はこれに制限されるものではない。例えば、半導体柱120は、基板105の上面から上へ行くほど直径または幅が大きくなる放射形構造であってもよい。   The semiconductor pillar 120 may have various forms, and preferably may have a nanowire structure of a semiconductor material. Nanowire refers to a line form having a nanometer-scale diameter. Nanowire is commonly used in the field of nanotechnology, and its cross section may be polygonal in addition to a cylinder. In FIG. 1, the semiconductor pillar 120 is shown only half of the cylinder for convenience, but FIG. 3 shows the original circular cross section. Further, it is desirable that the semiconductor pillar 120 has a constant diameter or width, but the scope of the present invention is not limited thereto. For example, the semiconductor pillar 120 may have a radial structure whose diameter or width increases from the upper surface of the substrate 105 upward.

半導体柱120は、第1ドーピング層115上にエピタキシャル層として提供され、底面1201、側壁1202及び上面1203を備える。第1ドーピング層115は、例えば、半導体柱120の底面1201の少なくとも中心付近(中心部)を覆うことができる。望ましくは、第1ドーピング層115は、半導体柱120の底面1201全体を覆うことができる。   The semiconductor pillar 120 is provided as an epitaxial layer on the first doping layer 115 and includes a bottom surface 1201, a sidewall 1202, and a top surface 1203. For example, the first doping layer 115 can cover at least the vicinity (center portion) of the bottom surface 1201 of the semiconductor pillar 120. For example, the first doping layer 115 may cover the entire bottom surface 1201 of the semiconductor pillar 120.

第2ドーピング層130は、半導体柱120上にエピタキシャル層として提供されうる。これにより、第2ドーピング層130、半導体柱120及び第1ドーピング層115は同じ結晶構造からなり、例えば、単結晶構造である。第2ドーピング層130は、半導体柱120の上面1203を覆う。   The second doping layer 130 may be provided as an epitaxial layer on the semiconductor pillar 120. Accordingly, the second doping layer 130, the semiconductor pillar 120, and the first doping layer 115 have the same crystal structure, for example, a single crystal structure. The second doping layer 130 covers the upper surface 1203 of the semiconductor pillar 120.

第2ドーピング層130は、半導体柱120及び第1ドーピング層115より大きい直径または幅を有する。本発明の実施形態において、幅とは、基板105と平行な方向の長さを称する。なお、第2ドーピング層130は、直径または幅が一定なものに限られず、例えば、半導体柱120の上面1203から上に行くほどその半径または幅の大きい放射形構造であってもよい。   The second doping layer 130 has a larger diameter or width than the semiconductor pillar 120 and the first doping layer 115. In the embodiment of the present invention, the width refers to a length in a direction parallel to the substrate 105. The second doping layer 130 is not limited to one having a constant diameter or width, and may be a radial structure whose radius or width increases from the upper surface 1203 of the semiconductor pillar 120 upward, for example.

制御ゲート電極150aは、半導体柱120の側壁1202を少なくとも一回り取り囲んで形成される。制御ゲート電極150aは、基板105の一面に対して上向きに伸長した形状で配置され、底面1501及び上面1503を備える。また、制御ゲート電極150aは、ワードラインの一部として利用されうる。   The control gate electrode 150a is formed so as to surround the side wall 1202 of the semiconductor pillar 120 at least once. The control gate electrode 150a is arranged in a shape extending upward with respect to one surface of the substrate 105, and includes a bottom surface 1501 and a top surface 1503. The control gate electrode 150a can be used as a part of the word line.

電荷保存層140aは、制御ゲート電極150aと半導体柱120との間に介在されうる。トンネリング絶縁層135aは、半導体柱120と電荷保存層140aとの間に介在されうる。ブロッキング絶縁層145aは、電荷保存層140aと制御ゲート電極150aとの間に介在されうる。   The charge storage layer 140a may be interposed between the control gate electrode 150a and the semiconductor pillar 120. The tunneling insulating layer 135a may be interposed between the semiconductor pillar 120 and the charge storage layer 140a. The blocking insulating layer 145a may be interposed between the charge storage layer 140a and the control gate electrode 150a.

トンネリング絶縁層135a、電荷保存層140a及び/またはブロッキング絶縁層145aは、半導体柱120の側壁1202を取り囲むように形成される。さらに、トンネリング絶縁層135a、電荷保存層140a及び/またはブロッキング絶縁層145aは、制御ゲート電極150aの底面1501及び上面1503を覆うようにさらに伸長される。なお、本発明の範囲は、上述した積層構造に制限されず、トンネリング絶縁層135a、電荷保存層140a及びブロッキング絶縁層145aの積層構造は多様に変形されうる。   The tunneling insulating layer 135a, the charge storage layer 140a, and / or the blocking insulating layer 145a are formed so as to surround the sidewall 1202 of the semiconductor pillar 120. Further, the tunneling insulating layer 135a, the charge storage layer 140a, and / or the blocking insulating layer 145a are further extended to cover the bottom surface 1501 and the top surface 1503 of the control gate electrode 150a. Note that the scope of the present invention is not limited to the above-described stacked structure, and the stacked structure of the tunneling insulating layer 135a, the charge storage layer 140a, and the blocking insulating layer 145a can be variously modified.

トンネリング絶縁層135a及びブロッキング絶縁層145aは、例えば、酸化膜、窒化膜または高誘電率膜を備える。高誘電率膜とは、酸化膜及び窒化膜より誘電定数の大きい絶縁膜を称する。電荷保存層140aは、電荷トラップの可能な物質を含む。電荷保存層140aは、例えば、窒化膜、ドット構造及びナノクリスタル構造を備える。ドット構造及びナノクリスタル構造は、導電層、例えば、金属またはシリコンの微細構造を備える。   The tunneling insulating layer 135a and the blocking insulating layer 145a include, for example, an oxide film, a nitride film, or a high dielectric constant film. A high dielectric constant film refers to an insulating film having a larger dielectric constant than oxide and nitride films. The charge storage layer 140a includes a substance capable of charge trapping. The charge storage layer 140a includes, for example, a nitride film, a dot structure, and a nanocrystal structure. The dot structure and the nanocrystal structure comprise a conductive layer, for example a metal or silicon microstructure.

ビットライン電極160は、コンタクトプラグ155を利用して第2ドーピング層130に電気的に連結されうる。例えば、コンタクトプラグ155は第2ドーピング層130上に配置され、ビットライン電極160はコンタクトプラグ155上に配置されうる。   The bit line electrode 160 may be electrically connected to the second doping layer 130 using the contact plug 155. For example, the contact plug 155 may be disposed on the second doping layer 130 and the bit line electrode 160 may be disposed on the contact plug 155.

前述した不揮発性メモリ素子100は、データ記録媒体に利用されうる。データプログラムは、トンネリングまたはチャンネル熱電子注入(Channel Hot Electron Injection;CHEI)を利用して電荷保存層140aに電荷を保存させて行えうる。消去動作は、トンネリングを利用して電荷保存層140aの電荷を除去するように行われうる。   The non-volatile memory device 100 described above can be used as a data recording medium. The data program can be performed by storing charges in the charge storage layer 140a using tunneling or channel hot electron injection (CHEI). The erase operation may be performed so as to remove charges from the charge storage layer 140a using tunneling.

本実施形態の不揮発性メモリ素子100において、電荷の導電通路であるチャンネルは、半導体柱120に沿って垂直に形成されうる。したがって、半導体柱120の高さを調節することによってチャンネル長を容易に長くすることができる。その結果、いわゆる短チャンネル効果が抑制されうる。また、半導体柱120の底面1201の直径または幅を縮めることによって、基板105上の集積度を高めることができる。したがって、不揮発性メモリ素子100は、集積度が高くなれば短チャンネル効果を抑制できる。したがって、本実施形態の不揮発性メモリ素子100は、集積度が高くなれば短チャンネル効果が顕著になる通例的な平面型構造と比較されうる。   In the nonvolatile memory device 100 according to the present embodiment, a channel that is a conductive path for electric charge may be formed vertically along the semiconductor pillar 120. Therefore, the channel length can be easily increased by adjusting the height of the semiconductor pillar 120. As a result, the so-called short channel effect can be suppressed. In addition, the degree of integration on the substrate 105 can be increased by reducing the diameter or width of the bottom surface 1201 of the semiconductor pillar 120. Therefore, the non-volatile memory device 100 can suppress the short channel effect as the integration degree increases. Therefore, the non-volatile memory device 100 of the present embodiment can be compared with a conventional planar structure in which the short channel effect becomes more significant as the degree of integration increases.

さらに、半導体柱120の高さを調節することによって、これを取り囲んでいる電荷保存層140aの面積を大きくすることができる。電荷保存層140aの面積が大きくなるにつれて、保存できる電荷の量が増大する。これにより、データプログラム及びリテンション特性が改善されて、不揮発性メモリ素子100の動作信頼性を高めることができる。さらに、電荷保存層140aを局部に分けてデータプログラムを行うマルチビット動作の信頼性が高まりうる。   Further, by adjusting the height of the semiconductor pillar 120, the area of the charge storage layer 140a surrounding the semiconductor pillar 120 can be increased. As the area of the charge storage layer 140a increases, the amount of charge that can be stored increases. As a result, the data program and the retention characteristics are improved, and the operation reliability of the nonvolatile memory device 100 can be enhanced. Furthermore, the reliability of the multi-bit operation in which the charge storage layer 140a is locally divided to perform data programming can be improved.

図4ないし図9は、本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。   4 to 9 are cross-sectional views illustrating a method of manufacturing a nonvolatile memory device according to an embodiment of the present invention.

図4を参照すれば、まず、基板105上に第1導電型の第1ドーピング層115を形成する。例えば、基板105に浅いトレンチ構造の素子分離膜110を形成して第1ドーピング層115を限定する。素子分離膜110の形成前または形成後に、第1ドーピング層115は、高濃度の第1導電型の不純物でドーピングされうる。   Referring to FIG. 4, first, a first conductivity type first doping layer 115 is formed on a substrate 105. For example, the first doping layer 115 is limited by forming a shallow trench isolation device isolation layer 110 on the substrate 105. The first doping layer 115 may be doped with a high-concentration first conductivity type impurity before or after the isolation layer 110 is formed.

本発明の他の実施形態で、第1ドーピング層115は、エピタキシャル蒸着法を利用して形成してもよい。例えば、基板105上に素子分離膜110を形成し、次いで、素子分離膜110から露出された基板105の表面から第1ドーピング層115を成長させうる。第1ドーピング層115は、成長中または成長後に高濃度の第1導電型の不純物でドーピングされうる。   In other embodiments of the present invention, the first doping layer 115 may be formed using an epitaxial deposition method. For example, the device isolation layer 110 may be formed on the substrate 105, and then the first doping layer 115 may be grown from the surface of the substrate 105 exposed from the device isolation layer 110. The first doping layer 115 may be doped with a high-concentration first conductivity type impurity during or after the growth.

図5を参照すれば、第2導電型の半導体柱120は、第1ドーピング層115から基板105の一面に対して上向きに伸長して形成される。半導体柱120は、例えば、第1ドーピング層115上にエピタキシャル蒸着法を利用して成長できる。半導体柱120は、成長と同時にまたはその成長後に低濃度の第2導電型の不純物でドーピングされうる。   Referring to FIG. 5, the second conductivity type semiconductor pillar 120 is formed to extend upward from the first doping layer 115 with respect to one surface of the substrate 105. The semiconductor pillar 120 can be grown on the first doping layer 115 using an epitaxial deposition method, for example. The semiconductor pillar 120 may be doped with a low-concentration second conductivity type impurity simultaneously with or after the growth.

エピタキシャル蒸着法を利用すれば、半導体柱120は、素子分離膜110からは成長せず、第1ドーピング層115から選択的に成長できる。ただし、エピタキシャル蒸着法による場合にも側面方向への成長は可能なために、半導体柱120は、上へ行くほど幅または直径の大きい放射形構造でありうる。しかし、蒸着条件を制御することによって、半導体柱120の形態は多様に変形されうる。   If the epitaxial deposition method is used, the semiconductor pillar 120 can be selectively grown from the first doping layer 115 without growing from the element isolation film 110. However, since the growth in the lateral direction is possible even in the case of the epitaxial deposition method, the semiconductor pillar 120 may have a radial structure whose width or diameter increases toward the top. However, the shape of the semiconductor pillar 120 can be variously modified by controlling the deposition conditions.

半導体柱120は、例えば、分子ビームエピタクシー(Molecular Beam Epitaxy;MBE)法または高真空化学気相蒸着(Ultra High Vacuum Chemical Vapor Deposition:UHVCVD)法を利用して半導体物質のナノワイヤー構造に成長できる。   The semiconductor pillar 120 can be grown to a nanowire structure of a semiconductor material using, for example, a molecular beam epitaxy (MBE) method or an ultra high vacuum chemical vapor deposition (UHVCVD) method. .

図6を参照すれば、半導体柱120の側壁1202上にスペーサ絶縁膜125を形成する。スペーサ絶縁膜125は、例えば、半導体柱120の側壁1202を熱酸化させて形成する。他の例として、スペーサ絶縁膜125は、半導体柱120の側壁1202上に酸化膜または窒化膜を形成した後、これを異方性エッチングして形成してもよい。   Referring to FIG. 6, a spacer insulating film 125 is formed on the sidewall 1202 of the semiconductor pillar 120. The spacer insulating film 125 is formed, for example, by thermally oxidizing the side wall 1202 of the semiconductor pillar 120. As another example, the spacer insulating film 125 may be formed by forming an oxide film or a nitride film on the sidewall 1202 of the semiconductor pillar 120 and then anisotropically etching it.

図7を参照すれば、半導体柱120上に第1導電型の第2ドーピング層130を形成する。半導体柱120の上面1203は、第2ドーピング層130と電気的に連結されうる。第2ドーピング層130は、例えば、エピタキシャル蒸着法を利用して半導体柱120から成長できる。スペーサ絶縁膜125は、半導体柱120の側壁1202に半導体柱120が成長することを回避できる。半導体柱120は、成長と同時に、またはその後に高濃度の第1導電型の不純物でドーピングされうる。   Referring to FIG. 7, the second doping layer 130 of the first conductivity type is formed on the semiconductor pillar 120. The upper surface 1203 of the semiconductor pillar 120 may be electrically connected to the second doping layer 130. The second doping layer 130 can be grown from the semiconductor pillar 120 using, for example, an epitaxial deposition method. The spacer insulating film 125 can avoid the semiconductor pillar 120 from growing on the side wall 1202 of the semiconductor pillar 120. The semiconductor pillar 120 may be doped with a high-concentration first-conductivity type impurity simultaneously with or after the growth.

第2ドーピング層130は、半導体柱120の上面1203を覆う。第2ドーピング層130は、半導体柱120の上面1203から上へ行くほどその幅または直径が大きくなる。したがって、第2ドーピング層130の幅または直径は、半導体柱120及び第1ドーピング層115の幅または直径より大きい。   The second doping layer 130 covers the upper surface 1203 of the semiconductor pillar 120. The width or diameter of the second doping layer 130 increases as it goes upward from the upper surface 1203 of the semiconductor pillar 120. Accordingly, the width or diameter of the second doping layer 130 is larger than the width or diameter of the semiconductor pillar 120 and the first doping layer 115.

図8を参照すれば、第2ドーピング層130及び半導体柱120を取り囲むように第1物質層135、第2物質層140、第3物質層145、及び第4物質層150を順に形成する。第1物質層135及び第3物質層145は、例えば、絶縁層であって、酸化膜、窒化膜または高誘電率膜を含む。第2物質層140は、電荷トラップの可能な窒化膜、ドット構造またはナノクリスタル構造で形成される。第4物質層150は、導電層、例えば、ポリシリコン、金属、または金属シリサイドを含む。   Referring to FIG. 8, a first material layer 135, a second material layer 140, a third material layer 145, and a fourth material layer 150 are sequentially formed to surround the second doping layer 130 and the semiconductor pillar 120. The first material layer 135 and the third material layer 145 are, for example, insulating layers and include an oxide film, a nitride film, or a high dielectric constant film. The second material layer 140 is formed of a nitride film, a dot structure, or a nanocrystal structure capable of charge trapping. The fourth material layer 150 includes a conductive layer, for example, polysilicon, metal, or metal silicide.

この実施形態で、第4物質層150は、半導体柱120の周辺全体を覆うように十分厚く形成される。しかし、本発明の他の実施形態において、第4物質層150は、半導体柱120を取り囲むように適切な厚さに形成できる。   In this embodiment, the fourth material layer 150 is formed to be sufficiently thick so as to cover the entire periphery of the semiconductor pillar 120. However, in another embodiment of the present invention, the fourth material layer 150 may be formed to an appropriate thickness so as to surround the semiconductor pillar 120.

図9を参照すれば、第2ドーピング層130上の第1物質層135、第2物質層140、第3物質層145及び第4物質層150を除去して、トンネリング絶縁層135a、電荷保存層140a、ブロッキング絶縁層145a及び制御ゲート電極150aをそれぞれ形成する。例えば、第2ドーピング層130が露出されるまで第1物質層135、第2物質層140、第3物質層145及び第4物質層150を平坦化する。平坦化は、化学的機械的平坦化(Chemical Mechanical Planarization:CMP)法またはエッチバックを利用できる。   Referring to FIG. 9, the first material layer 135, the second material layer 140, the third material layer 145, and the fourth material layer 150 on the second doping layer 130 are removed to form a tunneling insulating layer 135a and a charge storage layer. 140a, a blocking insulating layer 145a, and a control gate electrode 150a are formed. For example, the first material layer 135, the second material layer 140, the third material layer 145, and the fourth material layer 150 are planarized until the second doping layer 130 is exposed. As the planarization, a chemical mechanical planarization (CMP) method or an etch back can be used.

次いで、マスクパターンを利用してトンネリング絶縁層135a、電荷保存層140a、ブロッキング絶縁層145a及び制御ゲート電極150aをパターニングする。これにより、トンネリング絶縁層135a、電荷保存層140a、ブロッキング絶縁層145a及び制御ゲート電極150aは、半導体柱120を取り囲み、第2ドーピング層130下に限定されうる。   Next, the tunneling insulating layer 135a, the charge storage layer 140a, the blocking insulating layer 145a, and the control gate electrode 150a are patterned using a mask pattern. Accordingly, the tunneling insulating layer 135a, the charge storage layer 140a, the blocking insulating layer 145a, and the control gate electrode 150a may surround the semiconductor pillar 120 and be limited under the second doping layer 130.

本発明の他の実施形態で、トンネリング絶縁層135a、電荷保存層140a、ブロッキング絶縁層145a及び制御ゲート電極150aは、第2ドーピング層130をエッチングマスクとしてエッチングされてもよい。この場合、トンネリング絶縁層135a、電荷保存層140a、ブロッキング絶縁層145a及び制御ゲート電極150aは、半導体柱120を取り囲むシェル構造を有してもよい。   In other embodiments of the present invention, the tunneling insulating layer 135a, the charge storage layer 140a, the blocking insulating layer 145a, and the control gate electrode 150a may be etched using the second doping layer 130 as an etching mask. In this case, the tunneling insulating layer 135a, the charge storage layer 140a, the blocking insulating layer 145a, and the control gate electrode 150a may have a shell structure surrounding the semiconductor pillar 120.

次いで、第2ドーピング層130上にコンタクトプラグ155を形成する。次いで、コンタクトプラグ155上にビットライン電極160を形成する。コンタクトプラグ155及びビットライン電極160は、導電層、例えば、ポリシリコン、金属または金属シリサイドを含む。   Next, a contact plug 155 is formed on the second doping layer 130. Next, the bit line electrode 160 is formed on the contact plug 155. The contact plug 155 and the bit line electrode 160 include a conductive layer, for example, polysilicon, metal, or metal silicide.

次いで、当業者に周知のように、不揮発性メモリ素子を完成できる。   The non-volatile memory device can then be completed as is well known to those skilled in the art.

以下では、図10ないし図13を参照して、本発明の実施形態による半導体パッケージ200a、200b、200c、及び200dを説明する。なお、半導体チップ205は、図1ないし図3の不揮発性メモリ素子100に対応する。   Hereinafter, semiconductor packages 200a, 200b, 200c, and 200d according to embodiments of the present invention will be described with reference to FIGS. The semiconductor chip 205 corresponds to the nonvolatile memory element 100 of FIGS. 1 to 3.

図10を参照すれば、半導体チップ205は、ソルダーバンプ210を利用して基板220に接合される。一つ以上のソルダーボール230は、半導体チップ205の反対側基板220に付着される。ソルダーボール230は、半導体チップ205と電気的に連結されて外部端子として機能する。モールディング材240は、半導体チップ205を覆うように基板220上に形成される。このような半導体パッケージ200aは、フリップチップBGA(Ball Grid Array)形態と呼ばれうる。   Referring to FIG. 10, the semiconductor chip 205 is bonded to the substrate 220 using solder bumps 210. One or more solder balls 230 are attached to the opposite substrate 220 of the semiconductor chip 205. The solder ball 230 is electrically connected to the semiconductor chip 205 and functions as an external terminal. The molding material 240 is formed on the substrate 220 so as to cover the semiconductor chip 205. Such a semiconductor package 200a may be called a flip chip BGA (Ball Grid Array) form.

他の例として、ソルダーバンプ210が形成されている半導体チップ205を電子装置の主基板に直ちに実装して、ウェーハレベルパッケージ(Wafer Level Package;WLP)を具現してもよい。   As another example, the semiconductor chip 205 on which the solder bumps 210 are formed may be immediately mounted on the main substrate of the electronic device to implement a wafer level package (WLP).

図11を参照すれば、半導体チップ205と基板220とを、ワイヤー215を利用して連結できる。ソルダーボール230は、半導体チップ205が反対側基板220に連結されており、したがって、半導体チップ205はソルダーボール230と電気的に連結されうる。このような半導体パッケージ200bはBGA形態と呼ばれうる。   Referring to FIG. 11, the semiconductor chip 205 and the substrate 220 can be connected using the wire 215. In the solder ball 230, the semiconductor chip 205 is connected to the opposite substrate 220, and thus the semiconductor chip 205 can be electrically connected to the solder ball 230. Such a semiconductor package 200b can be referred to as a BGA configuration.

図12を参照すれば、複数の半導体チップ205を基板220上に積層してMCP(Multi Chip Package)形態の半導体パッケージ200cを形成できる。半導体チップ205はいずれも同じ構造または相異なる構造を持つ。例えば、半導体チップ205のうち、一部のみ上述した不揮発性メモリ素子100と同じ構造を持ち、他の半導体チップ205は異なる構造を有することができる。   Referring to FIG. 12, a plurality of semiconductor chips 205 may be stacked on a substrate 220 to form a semiconductor package 200c in the form of an MCP (Multi Chip Package). All of the semiconductor chips 205 have the same structure or different structures. For example, only a part of the semiconductor chip 205 may have the same structure as the above-described nonvolatile memory element 100, and the other semiconductor chips 205 may have different structures.

図13を参照すれば、基板220上に複数の半導体チップ205を積層し、半導体チップ205に貫通通路217を形成しての積層形態の半導体パッケージ200dを形成できる。貫通通路217を通じて、半導体チップ205は、基板220を経由してソルダーボール230に電気的に連結されうる。   Referring to FIG. 13, a stacked semiconductor package 200 d in which a plurality of semiconductor chips 205 are stacked on a substrate 220 and a through passage 217 is formed in the semiconductor chip 205 can be formed. The semiconductor chip 205 can be electrically connected to the solder ball 230 via the substrate 220 through the through passage 217.

図14は、本発明の一実施形態によるカード300を示す概略図である。   FIG. 14 is a schematic diagram illustrating a card 300 according to an embodiment of the present invention.

図14を参照すれば、制御器310とメモリ320は電気的な信号を交換するように配置されうる。例えば、制御器310から命令を下せば、メモリ320はデータを伝送する。メモリ320は、図1ないし図3の不揮発性メモリ素子100に対応できる。このようなカード300は、マルチメディアカード(Multi Media Card;MMC)または保安デジタル(Secure Digital Card;SD)カードのようなメモリ装置に利用できる。   Referring to FIG. 14, the controller 310 and the memory 320 may be arranged to exchange electrical signals. For example, if an instruction is issued from the controller 310, the memory 320 transmits data. The memory 320 can correspond to the nonvolatile memory device 100 of FIGS. Such a card 300 can be used in a memory device such as a multimedia card (MMC) or a secure digital card (SD) card.

不揮発性メモリ素子100は、例えば、チップ形態であって、ワイヤーボンディングまたはソルダーバンプを利用して主基板と連結されるか、または制御器310に直接連結されうる。他の例として、不揮発性メモリ素子100が前述した半導体パッケージ200a、200b、200c、200dの一つまたはこれと類似した形態で製作されて、主基板に実装されうる。   The nonvolatile memory device 100 may be in the form of a chip, for example, and may be connected to the main substrate using wire bonding or solder bumps, or may be directly connected to the controller 310. As another example, the non-volatile memory device 100 may be manufactured in one of the semiconductor packages 200a, 200b, 200c, and 200d described above or a similar form and mounted on the main substrate.

図15は、本発明の一実施形態によるシステム400を示す概略的なブロック図である。   FIG. 15 is a schematic block diagram illustrating a system 400 according to one embodiment of the invention.

図15を参照すれば、プロセッサー410、入/出力装置420及びメモリ430は、バス440を利用して互いにデータ通信できる。プロセッサー410はプログラムを実行し、システム400を制御する役割を担う。入/出力装置420は、システム400のデータを入力または出力するところに利用できる。メモリ430は、図1ないし図3の不揮発性メモリ素子100に対応できる。メモリ430は、例えば、プロセッサー410の動作のためのコード及びデータを保存する。   Referring to FIG. 15, the processor 410, the input / output device 420, and the memory 430 can communicate data with each other using the bus 440. The processor 410 is responsible for executing programs and controlling the system 400. The input / output device 420 can be used to input or output data of the system 400. The memory 430 may correspond to the nonvolatile memory device 100 of FIGS. The memory 430 stores code and data for the operation of the processor 410, for example.

さらに、システム400は、入/出力装置420を利用して外部装置、例えば、パソコンまたはネットワークに連結されて、相互にデータ交換をすることができる。   Further, the system 400 may be connected to an external device such as a personal computer or a network using the input / output device 420 to exchange data with each other.

このようなシステム400は、例えば、携帯電話、MP3プレーヤー、ナビゲーション、固状ディスク(Solid State Disk;SSD)または家電製品に利用できる。   Such a system 400 can be used, for example, for a mobile phone, an MP3 player, navigation, a solid state disk (SSD), or a home appliance.

発明の特定実施形態についての以上の説明は例示及び説明を目的として提供された。本発明は前記実施形態に限定されず、本発明の技術的思想内で当業者によって前記実施形態を組み合わせて実施するなど、いろいろな多くの修正及び変更が可能であるということは明らかである。   The foregoing descriptions of specific embodiments of the invention have been presented for purposes of illustration and description. The present invention is not limited to the above-described embodiment, and it is apparent that various modifications and changes can be made by those skilled in the art within the technical idea of the present invention.

本発明は、メモリ関連の技術分野に好適に用いられる。   The present invention is suitably used in the technical field related to memory.

本発明の一実施形態による不揮発性メモリ素子を示す部分切断された斜視図である。1 is a partially cut perspective view illustrating a nonvolatile memory device according to an embodiment of the present invention. 図1の不揮発性メモリ素子のII−II’線の断面図である。It is sectional drawing of the II-II 'line | wire of the non-volatile memory element of FIG. 図1の不揮発性メモリ素子のIII−III’線の断面図である。FIG. 3 is a cross-sectional view taken along the line III-III ′ of the nonvolatile memory element of FIG. 1. 本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。1 is a cross-sectional view illustrating a method for manufacturing a nonvolatile memory device according to an embodiment of the present invention. 本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。1 is a cross-sectional view illustrating a method for manufacturing a nonvolatile memory device according to an embodiment of the present invention. 本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。1 is a cross-sectional view illustrating a method for manufacturing a nonvolatile memory device according to an embodiment of the present invention. 本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。1 is a cross-sectional view illustrating a method for manufacturing a nonvolatile memory device according to an embodiment of the present invention. 本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。1 is a cross-sectional view illustrating a method for manufacturing a nonvolatile memory device according to an embodiment of the present invention. 本発明の一実施形態による不揮発性メモリ素子の製造方法を示す断面図である。1 is a cross-sectional view illustrating a method for manufacturing a nonvolatile memory device according to an embodiment of the present invention. 本発明の実施形態による半導体パッケージを示す断面図である。It is sectional drawing which shows the semiconductor package by embodiment of this invention. 本発明の実施形態による半導体パッケージを示す断面図である。It is sectional drawing which shows the semiconductor package by embodiment of this invention. 本発明の実施形態による半導体パッケージを示す断面図である。It is sectional drawing which shows the semiconductor package by embodiment of this invention. 本発明の実施形態による半導体パッケージを示す断面図である。It is sectional drawing which shows the semiconductor package by embodiment of this invention. 本発明の一実施形態によるカードを示す概略的なブロック図である。1 is a schematic block diagram illustrating a card according to an embodiment of the present invention. 本発明の一実施形態によるシステムを示す概略的なブロック図である。1 is a schematic block diagram illustrating a system according to an embodiment of the present invention.

符号の説明Explanation of symbols

100 不揮発性メモリ素子、
105 基板、
110 素子分離膜、
115 第1ドーピング層、
120 半導体柱、
130 第2ドーピング層、
135a トンネリング絶縁層、
140a 電荷保存層、
145a ブロッキング絶縁層、
150a 制御ゲート電極、
155 コンタクトプラグ、
160 ビットライン電極。
100 non-volatile memory device,
105 substrates,
110 element isolation membrane,
115 first doping layer;
120 semiconductor pillar,
130 second doping layer;
135a Tunneling insulating layer,
140a charge storage layer,
145a blocking insulating layer,
150a control gate electrode,
155 contact plug,
160 Bit line electrode.

Claims (26)

基板上に形成され、第1導電型の第1ドーピング層と、
前記第1ドーピング層から前記基板の一面に対して上向きに伸長し、前記第1導電型と逆の導電性を有する第2導電型の半導体柱と、
前記半導体柱の側壁を一回り取り囲む制御ゲート電極と、
前記半導体柱と前記制御ゲート電極との間に介在される電荷保存層と、
前記半導体柱と電気的に連結されるように前記半導体柱上に配置され、前記第1導電型の第2ドーピング層と、
を備えることを特徴とする不揮発性メモリ素子。
A first doping layer of a first conductivity type formed on the substrate;
A semiconductor column of a second conductivity type extending upward from the first doping layer with respect to one surface of the substrate and having a conductivity opposite to the first conductivity type;
A control gate electrode surrounding the side wall of the semiconductor pillar once;
A charge storage layer interposed between the semiconductor pillar and the control gate electrode;
A second doping layer of the first conductivity type disposed on the semiconductor pillar to be electrically connected to the semiconductor pillar;
A non-volatile memory device comprising:
前記第1ドーピング層は、前記半導体柱の底面の中心部を覆うことを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, wherein the first doping layer covers a central portion of a bottom surface of the semiconductor pillar. 前記第1ドーピング層は、前記半導体柱の底面全体を覆うことを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, wherein the first doping layer covers the entire bottom surface of the semiconductor pillar. 前記第1ドーピング層の側壁を取り囲むように、前記基板上に形成された素子分離膜をさらに備えることを特徴とする請求項1に記載の不揮発性メモリ素子。   The non-volatile memory device of claim 1, further comprising an element isolation film formed on the substrate so as to surround a side wall of the first doping layer. 前記第1ドーピング層は、前記基板の一部分に前記第1導電型の不純物がドーピングされて限定されることを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, wherein the first doping layer is limited by doping a portion of the substrate with the impurity of the first conductivity type. 前記第1ドーピング層は、前記基板上のエピタキシャル層として提供されることを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, wherein the first doping layer is provided as an epitaxial layer on the substrate. 前記第2ドーピング層の幅は、前記第1ドーピング層の幅より広いことを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, wherein a width of the second doping layer is wider than a width of the first doping layer. 前記電荷保存層は、前記半導体柱を取り囲み、前記制御ゲート電極の上面及び底面を覆うように伸長して形成されることを特徴とする請求項7に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 7, wherein the charge storage layer is formed to extend so as to surround the semiconductor pillar and cover an upper surface and a bottom surface of the control gate electrode. 前記電荷保存層と前記半導体柱との間のトンネリング絶縁層、及び前記電荷保存層と前記制御ゲート電極との間のブロッキング絶縁層をさらに備えることを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory according to claim 1, further comprising a tunneling insulating layer between the charge storage layer and the semiconductor pillar, and a blocking insulating layer between the charge storage layer and the control gate electrode. element. 前記トンネリング絶縁層及び前記ブロッキング絶縁層は、前記半導体柱を取り囲み、前記制御ゲート電極の上面及び底面を覆うように伸長して形成されることを特徴とする請求項9に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 9, wherein the tunneling insulating layer and the blocking insulating layer are formed to extend so as to surround the semiconductor pillar and cover an upper surface and a bottom surface of the control gate electrode. . 前記半導体柱はナノワイヤー構造からなることを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, wherein the semiconductor pillar has a nanowire structure. 前記第2ドーピング層と電気的に連結されたビットライン電極をさらに備えることを特徴とする請求項1に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 1, further comprising a bit line electrode electrically connected to the second doping layer. 基板上に形成され、第1導電型の第1ドーピング層と、
前記第1ドーピング層から前記基板の一面に対して上向きに伸長し、前記第1導電型と逆の導電性を有する第2導電型の半導体柱と、
前記半導体柱の側壁を一回り取り囲む制御ゲート電極と、
前記半導体柱と前記制御ゲート電極との間に介在され、前記制御ゲート電極の上面及び底面を覆う電荷保存層と、
前記半導体柱と電気的に連結されるように前記半導体柱上に配置され、前記第1導電型の第2ドーピング層と、
を備えることを特徴とする不揮発性メモリ素子。
A first doping layer of a first conductivity type formed on the substrate;
A semiconductor column of a second conductivity type extending upward from the first doping layer with respect to one surface of the substrate and having a conductivity opposite to the first conductivity type;
A control gate electrode surrounding the side wall of the semiconductor pillar once;
A charge storage layer interposed between the semiconductor pillar and the control gate electrode and covering an upper surface and a bottom surface of the control gate electrode;
A second doping layer of the first conductivity type disposed on the semiconductor pillar to be electrically connected to the semiconductor pillar;
A non-volatile memory device comprising:
前記第1ドーピング層は、前記半導体柱の底面を覆うことを特徴とする請求項13に記載の不揮発性メモリ素子。   The nonvolatile memory device of claim 13, wherein the first doping layer covers a bottom surface of the semiconductor pillar. 基板上に第1導電型の第1ドーピング層を形成する工程と、
前記第1ドーピング層から前記基板の一面に対して上向きに伸長するように、前記第1導電型と逆の導電性を有する第2導電型の半導体柱を形成する工程と、
前記半導体柱と電気的に連結されるように前記半導体柱上に、前記第1導電型の第2ドーピング層を形成する工程と、
前記半導体柱の側壁を一回り取り囲む電荷保存層を形成する工程と、
前記半導体柱の反対側の前記電荷保存層上に制御ゲート電極を形成する工程と、
を含むことを特徴とする不揮発性メモリ素子の製造方法。
Forming a first doping layer of a first conductivity type on a substrate;
Forming a semiconductor column of a second conductivity type having conductivity opposite to the first conductivity type so as to extend upward from the first doping layer with respect to one surface of the substrate;
Forming a second doping layer of the first conductivity type on the semiconductor pillar to be electrically connected to the semiconductor pillar;
Forming a charge storage layer surrounding the side wall of the semiconductor pillar once;
Forming a control gate electrode on the charge storage layer opposite the semiconductor pillar;
A method for manufacturing a non-volatile memory device, comprising:
前記第1ドーピング層は、前記基板の一部分に前記第1導電型の不純物をドーピングして形成することを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。   16. The method of claim 15, wherein the first doping layer is formed by doping the first conductivity type impurity into a part of the substrate. 前記第1ドーピング層は、前記基板上にエピタキシャル蒸着法を利用して形成することを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。   16. The method of claim 15, wherein the first doping layer is formed on the substrate using an epitaxial deposition method. 前記第1ドーピング層は、前記基板上の素子分離膜間に限定することを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。   The method of claim 15, wherein the first doping layer is limited between element isolation layers on the substrate. 前記半導体柱は、ナノワイヤー構造で形成することを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。   The method of claim 15, wherein the semiconductor pillar is formed with a nanowire structure. 前記半導体柱は、前記第1ドーピング層上にエピタキシャル蒸着法を利用して形成することを特徴とする請求項19に記載の不揮発性メモリ素子の製造方法。   The method of claim 19, wherein the semiconductor pillar is formed on the first doping layer using an epitaxial deposition method. 前記第2ドーピング層を形成する前に、前記半導体柱の側壁を取り囲むスペーサ絶縁膜を形成する工程と、
前記第2ドーピング層を形成する工程後、前記スペーサ絶縁膜を除去する工程と、
をさらに含むことを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。
Forming a spacer insulating film surrounding a side wall of the semiconductor pillar before forming the second doping layer;
Removing the spacer insulating film after the step of forming the second doping layer;
The method of manufacturing a nonvolatile memory device according to claim 15, further comprising:
前記スペーサ絶縁膜は、前記半導体柱の側壁を熱酸化させて形成することを特徴とする請求項21に記載の不揮発性メモリ素子の製造方法。   The method of claim 21, wherein the spacer insulating film is formed by thermally oxidizing a side wall of the semiconductor pillar. 前記電荷保存層は、前記第2ドーピング層及び前記半導体柱を覆うように形成した後、平坦化及び異方性エッチングを利用して前記半導体柱を取り囲み、前記制御ゲート電極の上面及び底面を覆うように限定することを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。   The charge storage layer is formed to cover the second doping layer and the semiconductor pillar, and then surrounds the semiconductor pillar using planarization and anisotropic etching, and covers the top and bottom surfaces of the control gate electrode. The method of manufacturing a nonvolatile memory device according to claim 15, wherein the method is limited as described above. 前記第2ドーピング層を形成する工程後、
前記半導体柱と前記電荷保存層との間に介在されたトンネリング絶縁層を形成する工程と、
前記電荷保存層と前記制御ゲート電極との間に介在されたブロッキング絶縁層を形成する工程と、
をさらに含むことを特徴とする請求項15に記載の不揮発性メモリ素子の製造方法。
After the step of forming the second doping layer,
Forming a tunneling insulating layer interposed between the semiconductor pillar and the charge storage layer;
Forming a blocking insulating layer interposed between the charge storage layer and the control gate electrode;
The method of manufacturing a nonvolatile memory device according to claim 15, further comprising:
前記トンネリング絶縁層及び前記ブロッキング絶縁層は、前記第2ドーピング層及び前記半導体柱を覆うようにそれぞれ形成した後、平坦化及び異方性エッチングを利用して前記半導体柱を取り囲み、前記制御ゲート電極の上面及び底面を覆うように限定することを特徴とする請求項24に記載の不揮発性メモリ素子の製造方法。   The tunneling insulating layer and the blocking insulating layer are formed so as to cover the second doping layer and the semiconductor pillar, respectively, and surround the semiconductor pillar using planarization and anisotropic etching, and the control gate electrode 25. The method of manufacturing a nonvolatile memory device according to claim 24, wherein the method is limited to cover the upper surface and the bottom surface of the semiconductor memory device. 請求項1に記載の不揮発性メモリ素子を備え、基板上に付着された半導体チップと、
前記半導体チップの反対側の前記基板に付着され、前記半導体チップに電気的に連結された一つ以上のソルダーボールと、を備えることを特徴とする半導体パッケージ。
A semiconductor chip comprising the non-volatile memory element according to claim 1 and attached on a substrate;
One or more solder balls attached to the substrate on the opposite side of the semiconductor chip and electrically connected to the semiconductor chip.
JP2008084147A 2007-03-27 2008-03-27 Non-volatile memory element, manufacturing method thereof and semiconductor chip Pending JP2008244486A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070030048A KR100855991B1 (en) 2007-03-27 2007-03-27 Non-volatile memory device and method of fabricating the same

Publications (1)

Publication Number Publication Date
JP2008244486A true JP2008244486A (en) 2008-10-09

Family

ID=39915356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084147A Pending JP2008244486A (en) 2007-03-27 2008-03-27 Non-volatile memory element, manufacturing method thereof and semiconductor chip

Country Status (3)

Country Link
US (1) US20090001352A1 (en)
JP (1) JP2008244486A (en)
KR (1) KR100855991B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299568B2 (en) 2007-05-25 2016-03-29 Cypress Semiconductor Corporation SONOS ONO stack scaling
US9431549B2 (en) * 2007-12-12 2016-08-30 Cypress Semiconductor Corporation Nonvolatile charge trap memory device having a high dielectric constant blocking region
US8232544B2 (en) * 2008-04-04 2012-07-31 Nokia Corporation Nanowire
KR20100001747A (en) * 2008-06-27 2010-01-06 삼성전자주식회사 Electric structure, method for forming the same, vertical pillar transistor and method for manufacturing the same
JP2010050127A (en) * 2008-08-19 2010-03-04 Toshiba Corp Nonvolatile semiconductor memory device, and manufacturing method therefor
JP2010123600A (en) * 2008-11-17 2010-06-03 Toshiba Corp Nonvolatile semiconductor memory device
JP5421632B2 (en) * 2009-03-27 2014-02-19 伊藤忠商事株式会社 Battery pack
KR101140010B1 (en) 2011-02-28 2012-06-14 에스케이하이닉스 주식회사 Semiconductor device and method for forming the same
TWI549227B (en) * 2015-05-20 2016-09-11 旺宏電子股份有限公司 Memory device and method for fabricating the same
CN112151595B (en) * 2019-06-28 2024-01-26 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853587B2 (en) * 2002-06-21 2005-02-08 Micron Technology, Inc. Vertical NROM having a storage density of 1 bit per 1F2
KR20040047262A (en) * 2002-11-29 2004-06-05 삼성전자주식회사 Magnetic memory using vertical transistors and method of fabricating the same
JP2005268418A (en) * 2004-03-17 2005-09-29 Fujio Masuoka Semiconductor memory and method for manufacturing the same
US20070215931A1 (en) * 2004-10-12 2007-09-20 Sohrab Kianian Non-volatile memory cell in a trench having a first portion deeper than a second portion, an array of such memory cells, and method of manufacturing

Also Published As

Publication number Publication date
US20090001352A1 (en) 2009-01-01
KR100855991B1 (en) 2008-09-02

Similar Documents

Publication Publication Date Title
KR100866966B1 (en) Non-volatile memory device, method of fabricating the same, and semiconductor package
US11201107B2 (en) Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
CN113169182B (en) Bonded three-dimensional memory device and method of manufacturing the same
US11195781B2 (en) Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
JP2008244486A (en) Non-volatile memory element, manufacturing method thereof and semiconductor chip
US20210091063A1 (en) Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
US9530789B2 (en) Semiconductor memory device and method of fabricating the same
KR101640999B1 (en) Self-aligned split gate flash memory
CN110192269A (en) Three dimensional NAND memory part is integrated with multiple functional chips
JP5566675B2 (en) Memory semiconductor device, manufacturing method thereof, and operation method
US9748261B2 (en) Method of fabricating memory device
US20120156848A1 (en) Method of manufacturing non-volatile memory device and contact plugs of semiconductor device
US10910272B1 (en) Reusable support substrate for formation and transfer of semiconductor devices and methods of using the same
CN113707667B (en) NOR type memory device, method of manufacturing the same, and electronic apparatus including the same
JP2008244485A (en) Non-volatile memory element and manufacturing method thereof
CN110828470B (en) 3D memory device and method of manufacturing the same
WO2022188623A1 (en) Nor type memory device and manufacturing method therefor, and electronic device comprising memory device
US20230209821A1 (en) Field effect transistors having concave drain extension region and method of making the same
JP4822792B2 (en) Semiconductor device and manufacturing method thereof
US20100252795A1 (en) Phase change memory device
US7541243B2 (en) Methods of forming integrated circuit devices having gate electrodes formed on non-uniformly thick gate insulating layers
TWI791201B (en) Memory device and method for fabricating the same
KR102591927B1 (en) Three-dimensional memory die comprising stress-compensating slit trench structures or stress-absorbing seal ring structures and method of manufacturing the same
TW201810615A (en) Memory device and method of manufacturing the same
KR20220087526A (en) Bonded three-dimensional memory device and method of manufacturing same by replacing carrier substrate with source layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081014