JP2008243592A - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP2008243592A
JP2008243592A JP2007082467A JP2007082467A JP2008243592A JP 2008243592 A JP2008243592 A JP 2008243592A JP 2007082467 A JP2007082467 A JP 2007082467A JP 2007082467 A JP2007082467 A JP 2007082467A JP 2008243592 A JP2008243592 A JP 2008243592A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
reformer
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082467A
Other languages
Japanese (ja)
Other versions
JP5213345B2 (en
Inventor
Nobuhiko Hachiki
伸彦 鉢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007082467A priority Critical patent/JP5213345B2/en
Publication of JP2008243592A publication Critical patent/JP2008243592A/en
Application granted granted Critical
Publication of JP5213345B2 publication Critical patent/JP5213345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell device capable of easily controlling an igniting heater, and high in ignition reliability. <P>SOLUTION: This fuel cell device is provided with: a storage vessel 1; solid oxide fuel cells 4a stored in the storage vessel 1; a reformer 3 reforming raw fuel to supply fuel gases to the solid oxide fuel cells 4a; an igniting heater 15 stored in the storage vessel 1; and a control part 11 controlling electricity application to the igniting heater 15 wherein the control part 10 applies electricity to the igniting heater 15 during a starting process to ignite and burn a mixture gas comprising surplus fuel gases supplied to fuel electrodes of the fuel cells 4a without having been used for a power generation reaction, and surplus oxygen-containing gases supplied to oxygen electrodes of the fuel cells 4a without having been used for the power generation reaction. The control part 10 continuously applies electricity to the igniting heater 15 during the starting process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池装置に関し、収納容器内に固体酸化物形燃料電池と着火用ヒータを収納し、起動中に着火用ヒータに通電させ、燃料電池の燃料極に供給され発電反応に用いられなかった余剰の燃料ガスと、燃料電池の酸素極に供給され発電反応に用いられなかった余剰の酸素含有ガスとの混合ガスに着火させ燃焼させる燃料電池装置に関する。   The present invention relates to a fuel cell device, which contains a solid oxide fuel cell and an ignition heater in a storage container, energizes the ignition heater during startup, is supplied to the fuel electrode of the fuel cell, and is used for a power generation reaction. The present invention relates to a fuel cell device that ignites and burns a mixed gas of a surplus fuel gas that has not existed and a surplus oxygen-containing gas that has been supplied to the oxygen electrode of the fuel cell and has not been used in a power generation reaction.

次世代エネルギーとして、近年、固体高分子形、リン酸形、溶融炭酸塩形及び固体酸化物形等の燃料電池が提案されている。特に、固体酸化物形燃料電池は、作動温度が高いが、発電効率が高い、排熱利用が可能である等の利点を有しており、研究開発が推し進められている。   In recent years, fuel cells of solid polymer type, phosphoric acid type, molten carbonate type and solid oxide type have been proposed as next-generation energy. In particular, solid oxide fuel cells have advantages such as high operating temperature, high power generation efficiency, and use of exhaust heat, and research and development are being promoted.

従来、固体酸化物形燃料電池の運転方法として、起動工程中に、改質器にて部分酸化改質する際、水蒸気改質する際には、それぞれの時期に着火用ヒータに通電し、燃料電池の燃料極に供給され発電反応に用いられなかった余剰の燃料ガスと、燃料電池の酸素極に供給され発電反応に用いられなかった余剰の酸素含有ガスとの混合ガスに着火して燃焼させることが行なわれている(特許文献1参照)。
特開2006−86016号公報
Conventionally, as a method for operating a solid oxide fuel cell, when partial oxidation reforming is performed by a reformer or steam reforming during a start-up process, the ignition heater is energized at each time to Ignition and combustion of a mixed gas of surplus fuel gas supplied to the fuel electrode of the battery and not used for the power generation reaction and surplus oxygen-containing gas supplied to the oxygen electrode of the fuel cell and not used for the power generation reaction (See Patent Document 1).
JP 2006-86016 A

改質器にて部分酸化改質する際、水蒸気改質する際には、改質器から燃料電池に供給されるガス質、ガス量が変化するため、部分酸化改質する際に着火用ヒータに通電して着火し、その後、通電を停止したとしても、水蒸気改質する際には、再度、着火用ヒータに通電して着火することは、着火信頼性を高める上で望ましい。   When performing partial oxidation reforming with a reformer, when performing steam reforming, the gas quality and amount of gas supplied from the reformer to the fuel cell change, so an ignition heater is used for partial oxidation reforming. In order to improve ignition reliability, it is desirable to energize and ignite the ignition heater again when steam reforming, even if energization is performed and ignition is stopped.

しかしながら、改質器から燃料電池に供給されるガス質、ガス量が変化するたびに、着火用ヒータへの通電を制御することは、制御が複雑になるという問題があった。   However, every time the gas quality or amount of gas supplied from the reformer to the fuel cell changes, controlling the energization to the ignition heater has a problem that the control becomes complicated.

本発明は、着火用ヒータの制御が容易で、かつ着火信頼性の高い燃料電池装置を提供することを目的とする。   An object of the present invention is to provide a fuel cell device that can easily control an ignition heater and has high ignition reliability.

本発明の燃料電池装置は、収納容器と、該収納容器内に収納された固体酸化物形燃料電池と、該固体酸化物形燃料電池に燃料ガスを供給すべく原燃料を改質する改質器と、前記収納容器内に収納された着火用ヒータと、該着火用ヒータへの通電を制御する制御部とを具備するとともに、該制御部は、起動工程中に前記着火用ヒータに通電し、前記燃料電池の燃料極に供給され発電反応に用いられなかった余剰の燃料ガスと、前記燃料電池の酸素極に供給され発電反応に用いられなかった余剰の酸素含有ガスとの混合ガスに着火して燃焼させる燃料電池装置であって、前記制御部は起動工程中継続して前記着火用ヒータに通電することを特徴とする。   The fuel cell device of the present invention includes a storage container, a solid oxide fuel cell stored in the storage container, and reforming for reforming raw fuel to supply fuel gas to the solid oxide fuel cell. And an ignition heater accommodated in the storage container, and a control unit for controlling energization to the ignition heater, the control unit energizing the ignition heater during the starting process. Igniting a mixed gas of surplus fuel gas supplied to the fuel electrode of the fuel cell and not used for power generation reaction and surplus oxygen-containing gas supplied to the oxygen electrode of the fuel cell and not used for power generation reaction In the fuel cell apparatus, the controller continuously energizes the ignition heater during the start-up process.

このような燃料電池装置では、起動工程中に継続して着火用ヒータに通電するため、簡単な制御で、かつ、起動工程中における着火信頼性を向上できる。   In such a fuel cell device, since the ignition heater is energized continuously during the start-up process, the ignition reliability during the start-up process can be improved with simple control.

また、本発明の燃料電池装置は、前記改質器は前記収納容器内に収納されており、前記改質器は燃焼ガスにより加熱されることを特徴とする。このような燃料電池装置では、燃焼ガスにて改質器が加熱され、原燃料の改質が行われるが、上記したように、余剰ガスへの着火信頼性が向上するため、燃焼ガスの発生を容易に制御でき、改質器の加熱制御も容易になり、改質器での改質反応の制御が容易になる。   In the fuel cell device of the present invention, the reformer is stored in the storage container, and the reformer is heated by combustion gas. In such a fuel cell device, the reformer is heated with the combustion gas and the raw fuel is reformed. As described above, the ignition gas is generated in order to improve the ignition reliability of the surplus gas. Can be easily controlled, heating control of the reformer is facilitated, and control of the reforming reaction in the reformer is facilitated.

さらに、本発明の燃料電池装置は、起動工程中に、前記改質器において原燃料の部分酸化改質及び水蒸気改質が行われることを特徴とする。原燃料の部分酸化改質は、例えば、空気と原燃料とを改質器に所定量供給して行われ、また水蒸気改質は、例えば水と原燃料とを改質器に所定量供給して行われ、それぞれの改質で用いられるガス種、ガス量が異なるため、例えば、部分酸化改質時には着火用ヒータにて一旦着火した場合であっても、水蒸気改質時には失火する虞があるが、本発明では、起動工程中継続して着火用ヒータに通電するため、ガス種、ガス量が変化し、失火したとしてもすぐに再着火し、着火信頼性を向上できる。   Furthermore, the fuel cell device of the present invention is characterized in that partial oxidation reforming and steam reforming of the raw fuel are performed in the reformer during the startup process. The partial oxidation reforming of the raw fuel is performed, for example, by supplying a predetermined amount of air and raw fuel to the reformer, and the steam reforming is performed, for example, by supplying a predetermined amount of water and raw fuel to the reformer. Since the gas type and gas amount used in each reforming are different, for example, even if it is ignited once by an ignition heater at the time of partial oxidation reforming, there is a risk of misfire at the time of steam reforming However, in the present invention, since the ignition heater is energized continuously during the start-up process, even if the gas type and gas amount change and misfire occurs, the ignition is immediately re-ignited and the ignition reliability can be improved.

また、本発明の燃料電池装置は、前記制御部は、起動工程中において水蒸気改質が開始された後、一定時間経過後に前記着火用ヒータへの通電を停止することを特徴とする。水蒸気改質は改質特性が最も良好であるため、起動工程が終了した後の燃料電池の定常運転時には水蒸気改質が行われるのが通常であるため、水蒸気改質以降には、ガス種、ガス量はあまり変化せず、失火することは殆どない。従って、起動工程中において水蒸気改質が開始された後、一定時間経過後に着火用ヒータへの通電を停止することにより、着火用ヒータへの無駄な電力供給を行うことがない。   Further, the fuel cell device of the present invention is characterized in that the controller stops energization to the ignition heater after elapse of a certain time after the steam reforming is started during the starting process. Since steam reforming has the best reforming characteristics, steam reforming is usually performed during steady operation of the fuel cell after the start-up process is completed. The amount of gas does not change much and there is almost no misfire. Therefore, after steam reforming is started during the start-up process, power is not supplied to the ignition heater by stopping energization to the ignition heater after a predetermined time has elapsed.

本発明で用いられる着火用ヒータは、セラミックヒータであることが望まし。セラミックヒータは1000℃程度の高温になり着火源として十分機能し、しかも、従来用いられていた点火プラグ等で問題となったようなノイズは発生しないので、周辺機器への影響はなく、燃料電池の着火源として好適に用いることができる。また、着火後、セラミックヒータは高温の燃焼ガス雰囲気に曝されるが、セラミックヒータの外郭は高温雰囲気でも耐食性にすぐれたセラミックスであるため、長時間高温燃焼ガスに曝されても、材料劣化がほとんどなく寿命が長くなり、結果として燃料電池自体の寿命が長くなる。   The ignition heater used in the present invention is preferably a ceramic heater. The ceramic heater becomes a high temperature of about 1000 ° C and functions well as an ignition source. Moreover, since there is no noise that has become a problem with conventional spark plugs, there is no effect on peripheral equipment and fuel. It can be suitably used as a battery ignition source. In addition, after ignition, the ceramic heater is exposed to a high-temperature combustion gas atmosphere. However, since the ceramic heater has excellent corrosion resistance even in a high-temperature atmosphere, even if it is exposed to a high-temperature combustion gas for a long time, material deterioration will occur. There is almost no longer life, resulting in longer life of the fuel cell itself.

本発明の燃料電池装置では、起動工程中に継続して着火用ヒータに通電するため、簡単な制御で、かつ、起動工程中における着火信頼性を向上できる。   In the fuel cell device of the present invention, since the ignition heater is energized continuously during the startup process, the ignition reliability during the startup process can be improved with simple control.

以下、本発明の燃料電池装置の一形態について説明する。図1は燃料電池装置の概要を示す概略構成図である。   Hereinafter, an embodiment of the fuel cell device of the present invention will be described. FIG. 1 is a schematic configuration diagram showing an outline of a fuel cell device.

燃料電池装置は、図1に示すように、収納容器1内に、改質器3及びセルスタック4が収容されて構成されている。セルスタック4は、複数の固体酸化物形燃料電池セル(燃料電池)4aをガスマニホールド4bに立設して構成されている。   As shown in FIG. 1, the fuel cell device is configured such that a reformer 3 and a cell stack 4 are accommodated in a storage container 1. The cell stack 4 is configured by standing a plurality of solid oxide fuel cell (fuel cell) 4a on a gas manifold 4b.

収納容器1の改質器3には、ガスポンプ2により外部から都市ガス、プロパンガス等の原燃料が供給可能とされ、また、水ポンプ7により水が供給可能とされ、さらに、空気ポンプ9により、空気等の酸素含有ガスが供給可能とされている。   The reformer 3 of the storage container 1 can be supplied with raw fuel such as city gas and propane gas from the outside by the gas pump 2, can be supplied with water by the water pump 7, and is further supplied by the air pump 9. In addition, an oxygen-containing gas such as air can be supplied.

改質器3は、原燃料、水、酸素含有ガスにより、部分酸化改質、水蒸気改質可能とされ、改質器3にて改質された燃料ガスがセルスタック4の燃料電池セル4aに供給されるように構成されている。ガスポンプ2、水ポンプ7、空気ポンプ9は、制御部10で制御可能とされている。尚、図1における破線は、制御装置10からの主な信号、又は制御部10への主な信号を示すものである。   The reformer 3 is capable of partial oxidation reforming and steam reforming using raw fuel, water, and oxygen-containing gas, and the fuel gas reformed by the reformer 3 is supplied to the fuel cell 4a of the cell stack 4. It is configured to be supplied. The gas pump 2, the water pump 7, and the air pump 9 can be controlled by the control unit 10. The broken line in FIG. 1 indicates a main signal from the control device 10 or a main signal to the control unit 10.

また、収納容器1内には、発電用としての空気(酸素含有ガス)が空気ブロワ11により空気導入管13を介して供給される。   In addition, air (oxygen-containing gas) for power generation is supplied into the storage container 1 through the air introduction pipe 13 by the air blower 11.

即ち、燃料電池セル4aは、内部に燃料ガスが流通するガス通路を有しており、燃料ガスは、マニホールド4b内から燃料電池セル4aのガス通路を流通して発電反応に用いられ、余剰の燃料ガスがガス通路を介して燃料電池セル4aの上方(燃焼領域F)に放出される。一方、空気は空気ブロワ11により空気導入管13より収納容器1内に供給され、発電反応に用いられなかった空気は、燃料電池セル4aの上方へ向かう。   That is, the fuel cell 4a has a gas passage through which the fuel gas flows. The fuel gas flows from the manifold 4b through the gas passage of the fuel cell 4a and is used for the power generation reaction. The fuel gas is discharged above the fuel battery cell 4a (combustion region F) through the gas passage. On the other hand, air is supplied into the storage container 1 from the air introduction pipe 13 by the air blower 11, and the air that has not been used for the power generation reaction is directed upward of the fuel cell 4a.

そして、この形態では、燃料電池セル4aの上方(燃焼領域F)に放出された余剰の燃料ガス(原燃料の場合もある)が、燃焼用燃料ガスとされている。   And in this form, the surplus fuel gas (it may be raw fuel) discharged | emitted above the fuel cell 4a (combustion area | region F) is made into the fuel gas for combustion.

つまり、この形態では、セルスタック4の上方に放出される余剰の燃料ガスが燃焼する燃焼領域F、言い換えれば、セルスタック4上方には、着火手段としての着火用ヒータ15、燃料ガスの燃焼状態を計測する温度センサ17が設けられており、燃焼領域Fの上方には、改質器3が設けられ、改質器3は、セルスタック4から放出された燃料ガスの燃焼により加熱されるように構成されている。着火用ヒータ15の発熱を燃焼の着火源とするものであり、着火用セラミックヒータ15は1000℃程度の高温になり、着火源として十分機能する。   That is, in this embodiment, the combustion region F in which surplus fuel gas discharged above the cell stack 4 burns, in other words, the ignition heater 15 as ignition means, the combustion state of the fuel gas, above the cell stack 4. Is provided above the combustion region F, and the reformer 3 is heated by the combustion of the fuel gas discharged from the cell stack 4. It is configured. The heat generated by the ignition heater 15 is used as an ignition source for combustion, and the ceramic heater 15 for ignition becomes a high temperature of about 1000 ° C. and functions sufficiently as an ignition source.

温度センサ17としては、1000℃以上の温度を計測でき応答性も速く安価であるK種熱電対を用いることができる。又、温度センサ17は、着火用ヒータ15からの輻射熱をできるだけ検出しないように離して配置されている。従って、セルスタック4から吹き出した燃料ガスに着火用ヒータ15で着火し、燃料ガスを燃焼させて改質器3を昇温させ、原燃料の改質を行う構造としている。燃焼した排ガスは排気管19より収納容器1外部に放出される。温度センサ17からの信号は制御部10に送られ、着火用ヒータ15への通電は制御部10で制御可能とされている。   As the temperature sensor 17, a K-type thermocouple that can measure a temperature of 1000 ° C. or higher and that is fast in response and inexpensive can be used. Further, the temperature sensor 17 is arranged so as not to detect the radiant heat from the ignition heater 15 as much as possible. Therefore, the fuel gas blown out from the cell stack 4 is ignited by the ignition heater 15, the fuel gas is combusted, the temperature of the reformer 3 is increased, and the raw fuel is reformed. The combusted exhaust gas is discharged from the exhaust pipe 19 to the outside of the storage container 1. A signal from the temperature sensor 17 is sent to the control unit 10, and energization of the ignition heater 15 can be controlled by the control unit 10.

着火用ヒータ15は、耐久性という観点からセラミックヒータが望ましく、例えば、W、Mo等からなる発熱体を、アルミナ、炭化珪素、窒化珪素等のセラミックで被覆して構成されている。   The ignition heater 15 is preferably a ceramic heater from the viewpoint of durability. For example, a heating element made of W, Mo or the like is covered with a ceramic such as alumina, silicon carbide, or silicon nitride.

以上のように構成された燃料電池装置の起動方法について、図2に基づいて説明する。先ず、S1において空気ブロワ11を起動し収納容器1内に空気を供給する。ここで、着火動作時は空気ブロワ11による供給量が多いと火炎を吹き消す恐れがある為、流量を少なく(例えば、40L/min)設定しておく。この空気ブロワ11による空気供給が、燃料電池セル4aの上方の燃焼領域Fに達し、燃料電池セル4aの火炎を吹き消すおそれがあるため、空気ブロワ11による空気供給量を減らすことで、燃焼領域Fへの空気供給量を減らすことができる。その後、S2で着火用ヒータ15に通電し、着火用ヒータ7を予熱する。   A method for starting the fuel cell device configured as described above will be described with reference to FIG. First, in S <b> 1, the air blower 11 is activated to supply air into the storage container 1. Here, at the time of ignition operation, if the supply amount by the air blower 11 is large, the flame may be blown out. Therefore, the flow rate is set small (for example, 40 L / min). Since the air supply by the air blower 11 reaches the combustion region F above the fuel battery cell 4a and there is a risk of blowing out the flame of the fuel battery cell 4a, the air supply amount by the air blower 11 is reduced, so that the combustion region The amount of air supplied to F can be reduced. Thereafter, in S2, the ignition heater 15 is energized to preheat the ignition heater 7.

この後、S3でガスポンプ2を駆動し、原燃料を改質器3内に供給し、S4で空気ポンプ9を駆動し、改質器内に空気を供給する。改質器3内で部分酸化改質が行われ、改質された燃料ガスは、マニホールド4bを介して燃料電池セル4aのガス通路を通過し、発電反応に用いられなかった余剰の燃料ガスが燃焼領域Fに放出される。一方、燃料電池セル4aの周囲には、空気ブロワ11により供給された空気が存在するため、余剰の燃料ガスに着火用ヒータ15で着火し、燃焼領域Fで燃焼する。温度センサ11にて温度が検知され、着火用ヒータ15に通電が開始され、一定温度以上となった場合には着火したと制御部10にて判断される。   Thereafter, the gas pump 2 is driven in S3 to supply raw fuel into the reformer 3, and the air pump 9 is driven in S4 to supply air into the reformer. Partial oxidation reforming is performed in the reformer 3, and the reformed fuel gas passes through the gas passage of the fuel cell 4a via the manifold 4b, and surplus fuel gas that has not been used for the power generation reaction is removed. Released into the combustion region F. On the other hand, since the air supplied by the air blower 11 exists around the fuel cell 4a, the surplus fuel gas is ignited by the ignition heater 15 and burned in the combustion region F. When the temperature is detected by the temperature sensor 11, energization of the ignition heater 15 is started, and when the temperature becomes equal to or higher than a certain temperature, the controller 10 determines that the ignition has occurred.

尚、S3でガスポンプ2を起動すると、原燃料が改質されることなく改質器3を通過し、燃料電池セル4aの上方に放出されるが、着火用ヒータ15により着火され、燃焼し、燃焼ガスにより改質器3が加熱され、この後、S4で空気ポンプ9が起動され、そして改質器3内の触媒が所定温度となると部分酸化改質が開始され、改質器3で改質された燃料ガスが燃料電池セル4a内に供給され、発電反応に用いられなかった燃料ガスがセル先端から放出され、燃焼されるようになる。   When the gas pump 2 is started in S3, the raw fuel passes through the reformer 3 without being reformed and is released above the fuel cell 4a, but is ignited and burned by the ignition heater 15. The reformer 3 is heated by the combustion gas, and then the air pump 9 is started in S4, and when the catalyst in the reformer 3 reaches a predetermined temperature, partial oxidation reforming is started. The refined fuel gas is supplied into the fuel cell 4a, and the fuel gas that has not been used for the power generation reaction is released from the cell tip and burned.

この後、S5でオートサーマル改質(ATR)可能か否か判定する。オートサーマル改質とは、部分酸化改質と水蒸気改質の併用運転であり、部分酸化改質から水蒸気改質に直接変更すると、ガス種、ガス量が急激に変化するため、これを防止するため部分酸化改質と水蒸気改質を併用する改質法であり、オートサーマル改質(ATR)可能か否かは、例えば、モジュール温度が200℃以上であり、かつ改質器内部の温度が650℃以上である場合に、可能と判断する。部分酸化改質は発熱反応であるが水蒸気改質は吸熱反応であるため、水蒸気改質に移行してもモジュール温度、改質器温度を維持できるよう、ある一定以上の温度となった場合にオートサーマル改質(ATR)可能と判断する。   Thereafter, it is determined in S5 whether autothermal reforming (ATR) is possible. Autothermal reforming is a combined operation of partial oxidation reforming and steam reforming, and if this is changed directly from partial oxidation reforming to steam reforming, the gas type and amount of gas change abruptly, preventing this. Therefore, it is a reforming method that uses both partial oxidation reforming and steam reforming, and whether or not autothermal reforming (ATR) is possible is, for example, whether the module temperature is 200 ° C. or higher and the temperature inside the reformer is When it is 650 ° C. or higher, it is determined to be possible. Partial oxidation reforming is an exothermic reaction, but steam reforming is an endothermic reaction, so if the temperature rises above a certain level so that the module temperature and reformer temperature can be maintained even after shifting to steam reforming. Judge that autothermal reforming (ATR) is possible.

オートサーマル改質(ATR)可能と判断された場合には、S6で水ポンプ7を駆動し、改質器3に水(水蒸気となる)を供給し、一方で、空気ポンプ9による空気供給量を少なくし、改質器内でオートサーマル改質(ATR)を行う。   If it is determined that autothermal reforming (ATR) is possible, the water pump 7 is driven in S6 to supply water (to become water vapor) to the reformer 3, while the air supply amount by the air pump 9 The autothermal reforming (ATR) is performed in the reformer.

この後、S7で水蒸気改質可能か否か判定する。水蒸気改質は吸熱反応であるため、水蒸気改質可能か否かは、例えば、モジュール温度が400℃以上であり、かつ改質器内部の温度が550℃以上である場合に、可能と判断する。   Thereafter, it is determined whether or not steam reforming is possible in S7. Since steam reforming is an endothermic reaction, whether steam reforming is possible or not is determined as possible, for example, when the module temperature is 400 ° C. or higher and the temperature inside the reformer is 550 ° C. or higher. .

水蒸気改質可能と判断された場合には、S8で空気ポンプ9の駆動を停止し、空気ポンプ9による空気供給を停止する。一方で、水ポンプ7による水供給量を増加し、水蒸気改質を行う。   If it is determined that steam reforming is possible, the drive of the air pump 9 is stopped in S8, and the air supply by the air pump 9 is stopped. On the other hand, the amount of water supplied by the water pump 7 is increased to perform steam reforming.

そして、空気ポンプ9の停止後、一定時間経過後に、着火用ヒータ15への通電を停止する。一定時間とは、モジュール温度が十分に高くなっており、自然発火する温度とされている。   Then, after the air pump 9 is stopped, energization to the ignition heater 15 is stopped after a lapse of a certain time. The fixed time is a temperature at which the module temperature is sufficiently high and spontaneous ignition occurs.

以上のような燃料電池装置では、制御部10は、起動工程中に着火用ヒータ15に通電し、燃料電池セル4aの燃料極に供給され発電反応に用いられなかった余剰の燃料ガス又は原燃料と、燃料電池セル4aの酸素極に供給され発電反応に用いられなかった余剰の酸素含有ガスとの混合ガスに着火して燃焼させるが、制御部10は起動工程中継続して着火用ヒータ15に通電するため、簡単な制御で、かつ、起動工程中における余剰の燃料ガス又は原燃料と酸素含有ガスとの混合ガスへの着火信頼性を向上できる。   In the fuel cell apparatus as described above, the control unit 10 energizes the ignition heater 15 during the start-up process, and is supplied to the fuel electrode of the fuel cell 4a, and excess fuel gas or raw fuel that has not been used for the power generation reaction. And the surplus oxygen-containing gas supplied to the oxygen electrode of the fuel battery cell 4a and not used in the power generation reaction is ignited and burned, but the controller 10 continues the ignition heater 15 during the start-up process. Therefore, the ignition reliability of the surplus fuel gas or the mixed gas of the raw fuel and the oxygen-containing gas during the start-up process can be improved with simple control.

即ち、原燃料の部分酸化改質は、例えば、空気と原燃料とが改質器3に所定量供給されて行われ、また水蒸気改質は、例えば水と原燃料とが改質器に所定量供給されて行われ、それぞれの改質で用いられるガス種、ガス量が異なるため、例えば、部分酸化改質時には着火用ヒータにて一旦着火した場合であっても、オートサーマル改質(ATR)段階や、水蒸気改質段階で失火する虞があるが、本発明では、起動工程中継続して着火用ヒータ15に通電するため、ガス種、ガス量が変化し、失火したとしてもすぐに再着火し、着火信頼性を向上できる。また、起動工程中継続して着火用ヒータ15に通電するため、不完全燃焼が生じることがなく、CO濃度を低減できる。   That is, the partial oxidation reforming of the raw fuel is performed, for example, by supplying a predetermined amount of air and raw fuel to the reformer 3, and the steam reforming is performed by, for example, water and raw fuel being placed in the reformer. Since the gas type and the amount of gas used in each reforming are different, the autothermal reforming (ATR) is performed even if the ignition heater is ignited once during partial oxidation reforming. ) Or in the steam reforming stage, but in the present invention, the ignition heater 15 is energized continuously during the start-up process. Reignition can improve ignition reliability. Further, since the ignition heater 15 is energized continuously during the start-up process, incomplete combustion does not occur and the CO concentration can be reduced.

また、制御部10は、起動工程中において水蒸気改質が開始された後、モジュール温度が十分に高くなり、自然発火する温度となった(一定時間経過)後に、着火用ヒータ15への通電を停止するため、着火用ヒータ15への無駄な電力供給を行うことがない。   In addition, after the steam reforming is started during the start-up process, the control unit 10 energizes the ignition heater 15 after the module temperature becomes sufficiently high and reaches a temperature at which it spontaneously ignites (a certain time has elapsed). Since the operation is stopped, unnecessary power supply to the ignition heater 15 is not performed.

さらに、着火用ヒータ15としてセラミックヒータを用いたため、燃料電池の着火源として好適に用いることができ、長時間高温燃焼ガスに曝されても、材料劣化がほとんどなく寿命が長くなり、結果として燃料電池自体の寿命が長くなる。   Furthermore, since a ceramic heater is used as the ignition heater 15, it can be suitably used as an ignition source for a fuel cell. Even when exposed to a high-temperature combustion gas for a long time, there is almost no material deterioration, resulting in a long life. The life of the fuel cell itself is extended.

以上、添付図面を参照して本発明の好適実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能であることは多言するまでもない。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings. However, the present invention is not limited to such embodiments, and various modifications and corrections can be made without departing from the scope of the present invention. It goes without saying that this is possible.

例えば、上記形態では、セルスタックの上方に特定の改質器を備えた燃料電池装置について説明したが、改質器はセルスタックの上方以外に設けた場合でも、本発明を適用することができる。さらに、上記形態では、改質器を収納容器内に収納した燃料電池装置について説明したが、改質器は収納容器の外側に配置されていても良い。   For example, in the above embodiment, the fuel cell device provided with a specific reformer above the cell stack has been described, but the present invention can be applied even when the reformer is provided other than above the cell stack. . Furthermore, although the fuel cell apparatus which accommodated the reformer in the storage container was demonstrated in the said form, the reformer may be arrange | positioned on the outer side of the storage container.

また、上記形態では、燃料電池セル4aの外面に空気を、内部に燃料ガスを供給する場合について説明したが、本発明は、燃料電池セルの内部に空気を、外部に燃料ガスを供給する場合であっても適用できる。尚、この場合、燃料電池セルの内側には空気極が、外側には燃料極が形成されることは言うまでもない。   Moreover, although the case where air was supplied to the outer surface of the fuel cell 4a and the fuel gas was supplied to the inside was described in the above embodiment, the present invention is a case where air is supplied to the inside of the fuel cell and the fuel gas is supplied to the outside. Even applicable. In this case, it goes without saying that an air electrode is formed inside the fuel cell and a fuel electrode is formed outside.

本発明の燃料電池装置の好適実施形態を示す断面図である。It is sectional drawing which shows suitable embodiment of the fuel cell apparatus of this invention. 本発明の燃料電池装置の起動方法を示すフローチャートである。It is a flowchart which shows the starting method of the fuel cell apparatus of this invention.

符号の説明Explanation of symbols

1・・・収納容器
2・・・ガスポンプ
3・・・改質器
4・・・セルスタック
4a・・・燃料電池セル(燃料電池)
7・・・水ポンプ
9・・・空気ブロワ
10・・・制御部
15・・・着火用ヒータ
17・・・温度センサ
F・・・燃焼領域
DESCRIPTION OF SYMBOLS 1 ... Storage container 2 ... Gas pump 3 ... Reformer 4 ... Cell stack 4a ... Fuel cell (fuel cell)
DESCRIPTION OF SYMBOLS 7 ... Water pump 9 ... Air blower 10 ... Control part 15 ... Ignition heater 17 ... Temperature sensor F ... Combustion area

Claims (4)

収納容器と、該収納容器内に収納された固体酸化物形燃料電池と、該固体酸化物形燃料電池に燃料ガスを供給すべく原燃料を改質する改質器と、前記収納容器内に収納された着火用ヒータと、該着火用ヒータへの通電を制御する制御部とを具備するとともに、該制御部は、起動工程中に前記着火用ヒータに通電し、前記燃料電池の燃料極に供給され発電反応に用いられなかった余剰の燃料ガスと、前記燃料電池の酸素極に供給され発電反応に用いられなかった余剰の酸素含有ガスとの混合ガスに着火して燃焼させる燃料電池装置であって、前記制御部は起動工程中継続して前記着火用ヒータに通電することを特徴とする燃料電池装置。 A storage container, a solid oxide fuel cell stored in the storage container, a reformer for reforming raw fuel to supply fuel gas to the solid oxide fuel cell, and the storage container The ignition heater is housed and a control unit that controls energization of the ignition heater, and the control unit energizes the ignition heater during the start-up process to the fuel electrode of the fuel cell. A fuel cell device that ignites and burns a mixed gas of surplus fuel gas that is supplied and not used for power generation reaction and surplus oxygen-containing gas that is supplied to the oxygen electrode of the fuel cell and is not used for power generation reaction The fuel cell device is characterized in that the controller continuously energizes the ignition heater during the starting process. 前記改質器は前記収納容器内に収納されており、前記改質器は燃焼ガスにより加熱されることを特徴とする請求項1記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the reformer is housed in the housing container, and the reformer is heated by combustion gas. 起動工程中に、前記改質器において原燃料の部分酸化改質及び水蒸気改質が行われることを特徴とする請求項1又は2記載の燃料電池装置。 3. The fuel cell device according to claim 1, wherein partial oxidation reforming and steam reforming of the raw fuel are performed in the reformer during the starting process. 前記制御部は、起動工程中において水蒸気改質が開始された後、一定時間経過後に前記着火用ヒータへの通電を停止することを特徴とする請求項1乃至3のうちいずれかに記載の燃料電池装置。 The fuel according to any one of claims 1 to 3, wherein the control unit stops energization of the ignition heater after a predetermined time has elapsed after the steam reforming is started during the startup process. Battery device.
JP2007082467A 2007-03-27 2007-03-27 Fuel cell device Expired - Fee Related JP5213345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082467A JP5213345B2 (en) 2007-03-27 2007-03-27 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082467A JP5213345B2 (en) 2007-03-27 2007-03-27 Fuel cell device

Publications (2)

Publication Number Publication Date
JP2008243592A true JP2008243592A (en) 2008-10-09
JP5213345B2 JP5213345B2 (en) 2013-06-19

Family

ID=39914679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082467A Expired - Fee Related JP5213345B2 (en) 2007-03-27 2007-03-27 Fuel cell device

Country Status (1)

Country Link
JP (1) JP5213345B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304243A1 (en) * 2009-05-28 2010-12-02 Katsuhisa Tsuchiya Solid oxide fuel cell device
JP2010277844A (en) * 2009-05-28 2010-12-09 Toto Ltd Solid oxide fuel cell
EP2416420A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell
JP2013171636A (en) * 2012-02-17 2013-09-02 Toto Ltd Fuel cell device
JP2015179638A (en) * 2014-03-19 2015-10-08 東芝燃料電池システム株式会社 Combustor, ignition method and accidental fire detection method for combustor, and control method for reformer with combustor
JP2017004763A (en) * 2015-06-10 2017-01-05 アイシン精機株式会社 Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032291A (en) * 2004-07-21 2006-02-02 Kyocera Corp Power generating device
JP2007070130A (en) * 2005-09-05 2007-03-22 Fuji Electric Holdings Co Ltd Hydrogen generating apparatus and power generating system equipped with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032291A (en) * 2004-07-21 2006-02-02 Kyocera Corp Power generating device
JP2007070130A (en) * 2005-09-05 2007-03-22 Fuji Electric Holdings Co Ltd Hydrogen generating apparatus and power generating system equipped with the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416420A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell
EP2416420A4 (en) * 2009-03-31 2014-04-16 Toto Ltd Solid electrolyte fuel cell
US20100304243A1 (en) * 2009-05-28 2010-12-02 Katsuhisa Tsuchiya Solid oxide fuel cell device
JP2010277845A (en) * 2009-05-28 2010-12-09 Toto Ltd Solid electrolyte type fuel battery
JP2010277844A (en) * 2009-05-28 2010-12-09 Toto Ltd Solid oxide fuel cell
JP4692938B2 (en) * 2009-05-28 2011-06-01 Toto株式会社 Solid oxide fuel cell
US8592093B2 (en) 2009-05-28 2013-11-26 Toto Ltd. Solid oxide fuel cell device
JP2013171636A (en) * 2012-02-17 2013-09-02 Toto Ltd Fuel cell device
JP2015179638A (en) * 2014-03-19 2015-10-08 東芝燃料電池システム株式会社 Combustor, ignition method and accidental fire detection method for combustor, and control method for reformer with combustor
JP2017004763A (en) * 2015-06-10 2017-01-05 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP5213345B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP2008243597A (en) Fuel cell device
JP5213345B2 (en) Fuel cell device
JP2008135268A (en) Starting method of fuel cell device
JP2010238624A5 (en)
WO1990001656A1 (en) Catalytic combustion apparatus
JP6023917B2 (en) Solid oxide fuel cell
JP2008108546A (en) Fuel cell system
JP2008273763A (en) Reformer and fuel cell system
JP3882761B2 (en) Fuel cell system
JP4991059B2 (en) Fuel cell and power generation method thereof
JP4640052B2 (en) Hydrogen generator and power generation system provided with the same
JP6776769B2 (en) Fuel cell device
JP2016207308A (en) Solid oxide type fuel battery system and start-up method for the same
JP5309799B2 (en) Reformer and fuel cell system
JP2004116934A (en) Method of igniting reforming unit burner for fuel cell, and fuel cell system using the same
JP2007220424A (en) Reformer and fuel cell system
JP2008105861A (en) Reforming apparatus
JP2021125464A (en) Fuel cell system
US10700368B2 (en) High-temperature operation fuel cell system
JP6101653B2 (en) Combustor ignition method
JP2008105900A (en) Reforming apparatus
WO2012132409A1 (en) Hydrogen producing device and method for operating same
JP2010218790A (en) Fuel cell power generation system
JP2016012521A (en) Fuel cell system
JP2010257823A (en) Combustion device of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees