JP2008243419A - Manufacturing method for fluorine-based nonwoven fabric, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for solid polymer fuel cell, and membrane electrode assembly - Google Patents

Manufacturing method for fluorine-based nonwoven fabric, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for solid polymer fuel cell, and membrane electrode assembly Download PDF

Info

Publication number
JP2008243419A
JP2008243419A JP2007078743A JP2007078743A JP2008243419A JP 2008243419 A JP2008243419 A JP 2008243419A JP 2007078743 A JP2007078743 A JP 2007078743A JP 2007078743 A JP2007078743 A JP 2007078743A JP 2008243419 A JP2008243419 A JP 2008243419A
Authority
JP
Japan
Prior art keywords
fluorine
nonwoven fabric
polymer electrolyte
solid polymer
based nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078743A
Other languages
Japanese (ja)
Other versions
JP5157211B2 (en
Inventor
Hiroshi Uyama
浩 宇山
Chie Matsubara
千恵 松原
Shogo Kodera
省吾 小寺
Ichiro Terada
一郎 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007078743A priority Critical patent/JP5157211B2/en
Publication of JP2008243419A publication Critical patent/JP2008243419A/en
Application granted granted Critical
Publication of JP5157211B2 publication Critical patent/JP5157211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a fluorine-based nonwoven fabric, capable of manufacturing fluorine-based nonwoven fabric by an electric field spinning method using undiluted spinning liquid containing polymer containing fluorine with aliphatic ring structure in a principal chain and solvent without using water soluble resin or electrolyte, to provide a solid polymer electrolyte membrane for the solid polymer fuel cell using the fluorine-based nonwoven fabric, and to provide the membrane electrode assembly for the solid polymer fuel cell. <P>SOLUTION: The solvent with a boiling point of 110°C or more is used as the solvent in the manufacturing method for the fluorine-based unwoven fabric manufacturing by the electric field spinning method using the undiluted spinning liquid containing the fluorine containing solid polymer with the aliphatic ring structure in the principal chain and the solvent. The fluorine-based unwoven fabric has fiber density of 7.5 cm<SP>3</SP>/m<SP>2</SP>or less and thickness of 23 μm or less. The solid polymer electrolyte membrane 25 contains the fluorine-based unwoven fabric. In addition, the polymer electrolyte membrane 25 is installed between an anode 23 and a cathode 24 in the membrane electrode assembly 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フッ素系不織布の製造方法、フッ素系不織布、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体に関する。   The present invention relates to a method for producing a fluorine-based nonwoven fabric, a fluorine-based nonwoven fabric, a solid polymer electrolyte membrane for a polymer electrolyte fuel cell, and a membrane electrode assembly.

固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックしたものである。膜電極接合体は、触媒層を有するアノードおよびカソードと、アノードとカソードとの間に配置される固体高分子電解質膜とから構成される。固体高分子電解質膜には、通常、スルホン酸基を有するパーフルオロカーボンポリマー(以下、スルホン酸型パーフルオロカーボンポリマーと記す。)等のフッ素系プロトン伝導性ポリマーが用いられる。そして、該固体高分子電解質膜には、電気抵抗が低いことが求められている。   In the polymer electrolyte fuel cell, for example, a cell is formed by sandwiching a membrane electrode assembly between two separators, and a plurality of cells are stacked. The membrane electrode assembly includes an anode and a cathode having a catalyst layer, and a solid polymer electrolyte membrane disposed between the anode and the cathode. For the solid polymer electrolyte membrane, a fluorine-based proton conductive polymer such as a perfluorocarbon polymer having a sulfonic acid group (hereinafter referred to as a sulfonic acid type perfluorocarbon polymer) is usually used. The solid polymer electrolyte membrane is required to have low electrical resistance.

固体高分子電解質膜の電気抵抗を低減させるためには、固体高分子電解質膜を薄くすればよい。しかし、固体高分子電解質膜を薄くすると、該膜の機械的強度が低下し、膜電極接合体を製造する際に、加工しにくくなったり、取り扱いにくくなったりする。   In order to reduce the electrical resistance of the solid polymer electrolyte membrane, the solid polymer electrolyte membrane may be thinned. However, when the solid polymer electrolyte membrane is thinned, the mechanical strength of the membrane is lowered, and it becomes difficult to process or handle when manufacturing a membrane electrode assembly.

また、固体高分子電解質膜は、含水時に該膜の長さ方向に寸法が増大しやすく、さまざまな弊害を生じやすい。たとえば、反応により生成した水、燃料ガスとともに供給される水蒸気等により固体高分子電解質膜が膨潤し、寸法が増大すると、電極も固体高分子電解質膜の寸法変化に追従する。しかし、膜電極接合体は、セパレータ等で拘束されているため、固体高分子電解質膜の寸法増大分は「しわ」となる。そして、該しわが、セパレータの溝を埋めてガスの流れを阻害することがある。   In addition, the solid polymer electrolyte membrane is likely to increase in size in the length direction of the membrane when it contains water, and various problems are likely to occur. For example, when the solid polymer electrolyte membrane swells due to water generated by the reaction, water vapor supplied with the fuel gas, etc., and the size increases, the electrode follows the dimensional change of the solid polymer electrolyte membrane. However, since the membrane electrode assembly is constrained by a separator or the like, the dimension increase of the solid polymer electrolyte membrane becomes “wrinkles”. And this wrinkle may fill the groove | channel of a separator and may inhibit the flow of gas.

薄くても機械的強度が高く、かつ含水時の寸法安定性に優れた固体高分子電解質膜としては、下記固体高分子電解質膜が提案されている。
(1)メルトブローン法によって製造されたフッ素系不織布で補強された固体高分子電解質膜(特許文献1)。
該フッ素系不織布には、固体高分子電解質膜の電気抵抗を低減させるために、できるだけ薄いことが求められる。そのためには、フッ素系不織布を構成する連続繊維のさらなる細径化が必要である。
The following solid polymer electrolyte membranes have been proposed as solid polymer electrolyte membranes that are thin but have high mechanical strength and excellent dimensional stability when containing water.
(1) A solid polymer electrolyte membrane reinforced with a fluorine-based nonwoven fabric produced by a melt blown method (Patent Document 1).
The fluorine-based nonwoven fabric is required to be as thin as possible in order to reduce the electric resistance of the solid polymer electrolyte membrane. For this purpose, it is necessary to further reduce the diameter of the continuous fibers constituting the fluorine-based nonwoven fabric.

極細の連続繊維から構成される不織布の製造方法としては、電界紡糸法が知られている。しかし、含フッ素ポリマーをパーフルオロ溶媒に溶解した紡糸原液を用い、電界紡糸法にてフッ素系不織布を製造しようとしても、該紡糸原液の極性が低いため、連続繊維を形成できず、不織布が得られないとされている。   An electrospinning method is known as a method for producing a nonwoven fabric composed of ultrafine continuous fibers. However, using a spinning stock solution in which a fluoropolymer is dissolved in a perfluoro solvent and trying to produce a fluorine-based nonwoven fabric by electrospinning, the spinning stock solution has a low polarity, so that a continuous fiber cannot be formed and a nonwoven fabric is obtained. It is said that it cannot be done.

そこで、電界紡糸法にてフッ素系不織布を製造する方法としては、下記方法が提案されている。
(2)非晶質含フッ素ポリマーと、水溶性樹脂または電解質と、パーフルオロ溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造する方法(特許文献2)。
Then, the following method is proposed as a method of manufacturing a fluorine-type nonwoven fabric by an electrospinning method.
(2) A method for producing a fluorine-based nonwoven fabric by an electrospinning method using a spinning stock solution containing an amorphous fluorine-containing polymer, a water-soluble resin or an electrolyte, and a perfluoro solvent (Patent Document 2).

(2)の方法においては、非晶質含フッ素ポリマーとしてサイトップ(旭硝子社製、主鎖に脂肪族環構造を有する含フッ素ポリマー)、水溶性樹脂としてポリビニルアルコール、電解質としてフッ素系プロトン伝導性ポリマー、パーフルオロ溶媒としてCT−solv.(旭硝子社製、沸点100℃)が実際に用いられている。   In the method (2), Cytop (produced by Asahi Glass Co., Ltd., fluorine-containing polymer having an aliphatic ring structure in the main chain) as an amorphous fluorine-containing polymer, polyvinyl alcohol as a water-soluble resin, and fluorine-based proton conductivity as an electrolyte. As a polymer and a perfluoro solvent, CT-solv. (Asahi Glass Co., Ltd., boiling point 100 ° C.) is actually used.

しかし、(2)の方法で製造されたフッ素系不織布は、水溶性樹脂または電解質を含んでいるため、フッ素系不織布自体が膨潤しやすく、寸法安定性が悪い。また、ポリビニルアルコール等の非フッ素系化合物を含む場合、化学的な耐久性が不充分となる。
そのため、(2)の方法で製造されたフッ素系不織布は、固体高分子形燃料電池用固体高分子電解質膜を補強するためのフッ素系不織布に適していない。
米国特許出願公開第2006/0159973号明細書 特開2006−144138号公報
However, since the fluorine-based nonwoven fabric produced by the method (2) contains a water-soluble resin or an electrolyte, the fluorine-based nonwoven fabric itself easily swells and has poor dimensional stability. Moreover, when non-fluorine-type compounds, such as polyvinyl alcohol, are included, chemical durability becomes inadequate.
Therefore, the fluorine-based nonwoven fabric produced by the method (2) is not suitable as a fluorine-based nonwoven fabric for reinforcing the solid polymer electrolyte membrane for a polymer electrolyte fuel cell.
US Patent Application Publication No. 2006/0159973 JP 2006-144138 A

本発明は、水溶性樹脂または電解質を用いることなく、主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造できるフッ素系不織布の製造方法;電気抵抗が低く、機械的強度が高く、含水時の寸法安定性に優れる固体高分子電解質膜を得ることができ、化学的な耐久性に優れるフッ素系不織布;電気抵抗が低く、機械的強度が高く、含水時の寸法安定性に優れる固体高分子形燃料電池用固体高分子電解質膜;および、出力が高く、かつ耐久性に優れる固体高分子形燃料電池用膜電極接合体を提供する。   The present invention relates to a fluorine-based nonwoven fabric capable of producing a fluorine-based nonwoven fabric by an electrospinning method using a spinning solution containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent without using a water-soluble resin or an electrolyte. A fluorine-based non-woven fabric having a low electrical resistance, high mechanical strength, excellent dimensional stability when containing water, and excellent chemical durability; A solid polymer electrolyte membrane for a polymer electrolyte fuel cell with high mechanical strength and excellent dimensional stability when containing water; and a membrane electrode assembly for a polymer electrolyte fuel cell with high output and excellent durability provide.

本発明のフッ素系不織布の製造方法は、主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造する方法において、前記溶媒として、沸点が110℃以上の溶媒を含むものを用いることを特徴とする。
本発明のフッ素系不織布は、主鎖に脂肪族環構造を有する含フッ素ポリマーの連続繊維からなり、目付量が7.5cm/m以下であり、厚さが23μm以下であることを特徴とする。
The method for producing a fluorine-based nonwoven fabric of the present invention is a method for producing a fluorine-based nonwoven fabric by an electrospinning method using a spinning solution containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent. In addition, a solvent containing a solvent having a boiling point of 110 ° C. or higher is used.
The fluorine-based nonwoven fabric of the present invention comprises continuous fibers of a fluorine-containing polymer having an aliphatic ring structure in the main chain, has a basis weight of 7.5 cm 3 / m 2 or less, and a thickness of 23 μm or less. And

本発明の固体高分子形燃料電池用固体高分子電解質膜は、本発明のフッ素系不織布を含むことを特徴とする。
本発明の固体高分子形燃料電池用膜電極接合体は、本発明の固体高分子形燃料電池用固体高分子電解質膜が、アノードとカソードとの間に配置されたものである。
The solid polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention comprises the fluorine-based nonwoven fabric of the present invention.
The membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention is obtained by arranging the polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention between an anode and a cathode.

本発明のフッ素系不織布の製造方法によれば、水溶性樹脂または電解質を用いることなく、主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造できる。
本発明のフッ素系不織布によれば、電気抵抗が低く、機械的強度が高く、含水時の寸法安定性に優れる固体高分子電解質膜を得ることができる。また、本発明のフッ素系不織布は、化学的な耐久性に優れる。
According to the method for producing a fluorine-based nonwoven fabric of the present invention, without using a water-soluble resin or an electrolyte, an electrospinning method using a spinning stock solution containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent is used. Fluorine-based nonwoven fabric can be manufactured.
According to the fluorine-based nonwoven fabric of the present invention, it is possible to obtain a solid polymer electrolyte membrane having low electric resistance, high mechanical strength, and excellent dimensional stability when containing water. Moreover, the fluorine-type nonwoven fabric of this invention is excellent in chemical durability.

本発明の固体高分子形燃料電池用固体高分子電解質膜は、電気抵抗が低く、機械的強度が高く、含水時の寸法安定性に優れる。
本発明の固体高分子形燃料電池用膜電極接合体は、出力が高く、かつ耐久性に優れる。
The solid polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention has low electrical resistance, high mechanical strength, and excellent dimensional stability when containing water.
The membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention has high output and excellent durability.

本明細書においては、式(α)で表される繰り返し単位を繰り返し単位(α)と記す。他の式で表される基も同様に記す。また、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。   In this specification, the repeating unit represented by the formula (α) is referred to as a repeating unit (α). Groups represented by other formulas are also described in the same manner. Moreover, the compound represented by Formula (1) is described as a compound (1). The same applies to compounds represented by other formulas.

<フッ素系不織布>
本発明のフッ素系不織布は、主鎖に脂肪族環構造を有する含フッ素ポリマーの連続繊維からなり、目付量が7.5cm/m以下であり、厚さが23μm以下である。
<Fluorine-based nonwoven fabric>
The fluorine-based nonwoven fabric of the present invention is composed of continuous fibers of a fluorine-containing polymer having an aliphatic ring structure in the main chain, has a basis weight of 7.5 cm 3 / m 2 or less, and a thickness of 23 μm or less.

主鎖に脂肪族環構造を有する含フッ素ポリマーとは、脂肪族環構造を構成する炭素原子の1個以上が該含フッ素ポリマーの主鎖を構成する炭素原子であるものをいう。主鎖の炭素原子は、該含フッ素ポリマーを構成するモノマーの重合性二重結合の2個の炭素原子に由来するか、または、2個の重合性二重結合を有するモノマーを環化重合させて得た含フッ素ポリマーの場合は2個の重合性二重結合の4個の炭素原子に由来する。脂肪族環構造を構成する原子として、炭素原子以外に酸素原子、窒素原子等を含んでもよい。脂肪族環構造としては、1〜2個の酸素原子を有するパーフルオロ脂肪族環構造が好ましい。脂肪族環構造を構成する原子の数は4〜7個が好ましい。重合性二重結合としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基が好ましい。
主鎖に脂肪族環構造を有する含フッ素ポリマーは、該構造に起因するねじれにより結晶化しにくく、溶媒に可溶である。主鎖に脂肪族環構造を有する含フッ素ポリマーとしては、繰り返し単位(α)〜(ζ)を有するポリマーが挙げられる。
The fluorine-containing polymer having an aliphatic ring structure in the main chain refers to a polymer in which one or more carbon atoms constituting the aliphatic ring structure are carbon atoms constituting the main chain of the fluorine-containing polymer. The carbon atom of the main chain is derived from two carbon atoms of the polymerizable double bond of the monomer constituting the fluorine-containing polymer, or the monomer having two polymerizable double bonds is subjected to cyclopolymerization. In the case of the fluorine-containing polymer obtained in this way, it is derived from 4 carbon atoms of 2 polymerizable double bonds. As atoms constituting the aliphatic ring structure, oxygen atoms, nitrogen atoms, and the like may be included in addition to carbon atoms. As the aliphatic ring structure, a perfluoroaliphatic ring structure having 1 to 2 oxygen atoms is preferable. The number of atoms constituting the aliphatic ring structure is preferably 4-7. As the polymerizable double bond, a vinyl group, an allyl group, an acryloyl group, and a methacryloyl group are preferable.
The fluorine-containing polymer having an aliphatic ring structure in the main chain is hardly crystallized due to the twist caused by the structure and is soluble in a solvent. Examples of the fluorine-containing polymer having an aliphatic ring structure in the main chain include polymers having repeating units (α) to (ζ).

Figure 2008243419
Figure 2008243419

ただし、kは、1〜4の整数であり、Rは、炭素数1〜8のパーフルオロアルキル基または炭素数1〜8のパーフルオロアルコキシ基であり、X、Xは、それぞれフッ素原子またはトリフルオロメチル基である。また、(CXにおいて、kが2以上の場合、炭素原子ごとにXとXとの組み合わせは異なっていてもよい。
主鎖に脂肪族環構造を有する含フッ素ポリマーとしては、繰り返し単位(β1)または(ε1)を有するポリマーが好ましい。
Here, k is an integer from 1 to 4, R f is perfluoroalkoxy groups perfluoroalkyl group or C1-8 1 to 8 carbon atoms, X 1, X 2 are each fluorine An atom or a trifluoromethyl group. In (CX 1 X 2 ) k , when k is 2 or more, the combination of X 1 and X 2 may be different for each carbon atom.
As the fluorine-containing polymer having an aliphatic ring structure in the main chain, a polymer having a repeating unit (β1) or (ε1) is preferable.

Figure 2008243419
Figure 2008243419

主鎖に脂肪族環構造を有する含フッ素ポリマーは、寸法安定性の点から、イオン性基を実質的に有さないことが好ましい。イオン性基を実質的に有さないとは、スルホン酸基、リン酸基、カルボキシル基、スルフォイミド基、アンモニア基等のイオン性官能基をその分子中に含まないことを意味する。   The fluorine-containing polymer having an aliphatic ring structure in the main chain preferably has substantially no ionic group from the viewpoint of dimensional stability. Having substantially no ionic group means that the molecule does not contain an ionic functional group such as a sulfonic acid group, a phosphoric acid group, a carboxyl group, a sulfoimide group, or an ammonia group.

連続繊維とは、アスペクト比が10000以上の繊維を意味する。繊維長は、20mm以上が好ましい。
連続繊維の繊維径(直径)は、0.01〜5μmが好ましく、0.01〜0.5μmがより好ましい。繊維径が0.01μm以上であれば、繊維1本あたりの引張強度が充分となり、ハンドリング性が良好となる。繊維径が5μm以下であれば、プロトン移動が円滑に行われるため、フッ素系不織布による電気抵抗の上昇を抑制できる。また、厚さあたりの繊維間の交点が増えるため、固体高分子電解質膜の機械的強度および寸法安定性が向上する。
連続繊維の繊維径は、断面の顕微鏡写真から測定する。
The continuous fiber means a fiber having an aspect ratio of 10,000 or more. The fiber length is preferably 20 mm or more.
The fiber diameter (diameter) of the continuous fiber is preferably 0.01 to 5 μm, and more preferably 0.01 to 0.5 μm. If the fiber diameter is 0.01 μm or more, the tensile strength per fiber is sufficient, and the handling properties are good. If the fiber diameter is 5 μm or less, proton transfer is performed smoothly, so that an increase in electrical resistance due to the fluorine-based nonwoven fabric can be suppressed. Moreover, since the number of intersections between fibers per thickness increases, the mechanical strength and dimensional stability of the solid polymer electrolyte membrane are improved.
The fiber diameter of the continuous fiber is measured from a cross-sectional micrograph.

フッ素系不織布の厚さは、固体高分子電解質膜の電気抵抗の点から、23μm以下であり、19μm以下が好ましく、14μm以下がより好ましく、9μm以下がさらに好ましい。
フッ素系不織布の厚さは、固体高分子電解質膜の機械的強度の点から、構成される繊維の径の2倍以上が好ましく、3倍以上がより好ましい。繊維径に対して充分な厚さがないということは、得られる不織布において、その構成する繊維同士が充分な交点を有していないことを意味しており、その結果、良好な機械的強度を発現し得ない。
フッ素系不織布の厚さは、断面の顕微鏡写真から測定し、その最大値とする。
The thickness of the fluorine-based nonwoven fabric is 23 μm or less, preferably 19 μm or less, more preferably 14 μm or less, and even more preferably 9 μm or less, from the viewpoint of the electric resistance of the solid polymer electrolyte membrane.
From the viewpoint of the mechanical strength of the solid polymer electrolyte membrane, the thickness of the fluorine-based nonwoven fabric is preferably at least twice the diameter of the constituted fiber, more preferably at least three times. That there is not enough thickness with respect to the fiber diameter means that in the obtained nonwoven fabric, the constituent fibers do not have sufficient intersections, and as a result, good mechanical strength is achieved. It cannot be expressed.
The thickness of the fluorine-based nonwoven fabric is measured from a micrograph of the cross section, and is the maximum value.

フッ素系不織布の開口率は、66〜80%が好ましい。フッ素系不織布の開口率が該範囲にあれば、電解質膜内に補強体を挿入することによる厚さ方向の電気抵抗増加を著しく増大せしめることなく、補強された高分子電解質膜を得ることができる。
フッ素系不織布の開口率は、下記式から算出する。
開口率(%)=100−A×100/(B×C)。
ただし、Aは、フッ素系不織布の材料である含フッ素ポリマーの目付量(g/m)であり、Bは、不織布の材料である含フッ素ポリマーの密度(g/m)であり、Cは、不織布の厚さ(m)である。
The opening ratio of the fluorine-based nonwoven fabric is preferably 66 to 80%. If the aperture ratio of the fluorine-based nonwoven fabric is within this range, a reinforced polymer electrolyte membrane can be obtained without significantly increasing the increase in electrical resistance in the thickness direction due to the insertion of the reinforcing body into the electrolyte membrane. .
The aperture ratio of the fluorine-based nonwoven fabric is calculated from the following formula.
Opening ratio (%) = 100−A × 100 / (B × C).
However, A is the basis weight (g / m 2 ) of the fluorine-containing polymer that is the material of the fluorine-based nonwoven fabric, B is the density (g / m 3 ) of the fluorine-containing polymer that is the material of the nonwoven fabric, and C Is the thickness (m) of the nonwoven fabric.

上述の不織布の厚さに関する制約と開口率に関する制約とを勘案することにより、実質上、不織布の目付量という特性値に好ましい範囲が存在することは自明である。これらより、フッ素系不織布の目付量は、固体高分子電解質膜の電気抵抗の点から、7.5cm/m以下であり、6.3cm/m以下が好ましく、4.7cm/m以下がより好ましい。また、フッ素系不織布のハンドリング性の点から1cm/m以上が好ましい。
フッ素系不織布の目付量は、25℃において、フッ素系不織布に粘着剤付きのポリエチレンテレフタレート(以下、PETと記す。)フィルムを押し付け、該フィルムにフッ素系不織布を移しとり、移しとられたフッ素系不織布の面積と、PETフィルムの質量増加とからフッ素系不織布の目付量(g/m)を求め、さらに、主鎖に脂肪族環構造を有する含フッ素ポリマーの25℃における密度(g/cm)から、目付量(cm/m)を求める。
By taking into account the above-described restrictions on the thickness of the nonwoven fabric and the restrictions on the aperture ratio, it is obvious that there is substantially a preferable range in the characteristic value of the basis weight of the nonwoven fabric. From these, the basis weight of the fluorine-based nonwoven fabric, from the viewpoint of the electrical resistance of the solid polymer electrolyte membrane, and a 7.5 cm 3 / m 2 or less, preferably 6.3 cm 3 / m 2 or less, 4.7 cm 3 / m 2 or less is more preferable. Moreover, 1 cm < 3 > / m < 2 > or more is preferable from the handling point of a fluorine-type nonwoven fabric.
The basis weight of the fluorine-based nonwoven fabric was 25 ° C. A polyethylene terephthalate (hereinafter referred to as PET) film with an adhesive was pressed against the fluorine-based nonwoven fabric, and the fluorine-based nonwoven fabric was transferred to the film. The basis weight (g / m 2 ) of the fluorine-based nonwoven fabric is obtained from the area of the nonwoven fabric and the mass increase of the PET film, and the density of the fluorine-containing polymer having an aliphatic ring structure in the main chain at 25 ° C. (g / cm 3 ) From the weight per unit area (cm 3 / m 2 ) is obtained.

<フッ素系不織布の製造方法>
本発明においては、電界紡糸法にてフッ素系不織布を製造する。
電界紡糸法とは、紡糸原液に高電圧を印加することによって電気的に繊維を紡糸する方法である。
<Method for producing fluorine-based nonwoven fabric>
In the present invention, a fluorine-based nonwoven fabric is produced by an electrospinning method.
The electrospinning method is a method of spinning fibers electrically by applying a high voltage to the spinning dope.

電界紡糸法は、下記特徴を有する。
(i)他の方法に比べ、簡便な装置で製造できる。
不織布を製造する方法としては、メルトブローン法、スパンボンド法、抄紙法等が知られているが、いずれも大掛かりな不織布製造装置が必要となる、原料繊維を準備するために別に繊維製造装置が必要である等、装置コストがかかる。
(ii)極細の連続繊維の集積体が得られる。
通常の不織布設備を用いて極細の繊維で構成される不織布を製造することは、条件的にも厳しく、原料の粘度、延伸性等、多くの制約がある。一方、電界紡糸法は、溶液を用いた紡糸法であるため、その乾燥過程において体積収縮が起こること、および原料自体が低粘度あるため、極細ノズルでの成形が可能であることにより、極細の連続繊維を得やすい。
(iii)繊維集積体は、通常、繊維同志が結合した不織布として得られる。
電界紡糸法においては、溶液からの固化と延伸による紡糸とが同時に、または、逐次的に起こるため、繊維集積体は、繊維同士が結合した不織布として得られる。
The electrospinning method has the following characteristics.
(I) Compared with other methods, it can be manufactured with a simple apparatus.
Known methods for producing nonwoven fabrics include meltblown, spunbond, and papermaking methods, all of which require large-scale nonwoven fabric production equipment, and separate fiber production equipment is required to prepare the raw material fibers. The device cost is high.
(Ii) An ultrafine continuous fiber aggregate is obtained.
Manufacturing a non-woven fabric composed of ultrafine fibers using a normal non-woven fabric facility is severe in terms of conditions and has many limitations such as the viscosity of the raw material and stretchability. On the other hand, since the electrospinning method is a spinning method using a solution, volume shrinkage occurs in the drying process, and since the raw material itself has a low viscosity, molding with an ultrafine nozzle is possible. Easy to obtain continuous fiber.
(Iii) The fiber assembly is usually obtained as a nonwoven fabric in which fibers are combined.
In the electrospinning method, since solidification from a solution and spinning by stretching occur simultaneously or sequentially, the fiber assembly is obtained as a nonwoven fabric in which fibers are bonded to each other.

図1は、電界紡糸法による不織布製造装置の一例を示す概略構成図である。不織布製造装置10は、紡糸原液が充填されるシリンジ12と、シリンジ12の針14に対向するように設置された、回転自在のドラム16と、針14とドラム16との間に高電圧を印加する高電圧電源18と、シリンジ12のプランジャー部分を吐出方向に一定速度で動かすことで一定の流量で紡糸原液をシリンジから吐出させるシリンジポンプ(図示略)とを具備する。   FIG. 1 is a schematic configuration diagram illustrating an example of a nonwoven fabric manufacturing apparatus using an electrospinning method. The nonwoven fabric manufacturing apparatus 10 applies a high voltage between the syringe 12 filled with the spinning dope, the rotatable drum 16 disposed so as to face the needle 14 of the syringe 12, and the needle 14 and the drum 16. And a syringe pump (not shown) for discharging the spinning solution from the syringe at a constant flow rate by moving the plunger portion of the syringe 12 at a constant speed in the discharge direction.

まず、シリンジ12内に紡糸原液を充填する。ドラム16を回転させながら、高電圧電源18によって針14とドラム16との間に高電圧を印加する。シリンジポンプを作動させ、シリンジ12の先の針14から紡糸原液を一定の速度で吐出させる。針14の先端に電圧を印加した際、静電的な引力が紡糸原液の表面張力を超えると、紡糸原液が針14の先端においてTaylor coneと呼ばれる円錐状に変形し、さらに該coneの先端は引き伸ばされる。引き伸ばされた紡糸原液は、正に帯電した紡糸原液の静電反発により微細化する。微細化した紡糸原液から溶媒が瞬時に蒸発し、極細の繊維が形成される。正に帯電した繊維は、負に帯電したドラム16に付着する。該繊維が回転するドラム16上にしだいに堆積することにより、ドラム16上にフッ素系不織布が形成される。   First, the spinning solution is filled into the syringe 12. While rotating the drum 16, a high voltage is applied between the needle 14 and the drum 16 by the high voltage power source 18. The syringe pump is operated, and the spinning solution is discharged from the needle 14 at the tip of the syringe 12 at a constant speed. When a voltage is applied to the tip of the needle 14 and the electrostatic attractive force exceeds the surface tension of the spinning stock solution, the spinning stock solution is deformed into a conical shape called Taylor cone at the tip of the needle 14, and the tip of the cone Stretched. The stretched spinning dope is refined by electrostatic repulsion of the positively charged spinning dope. The solvent instantly evaporates from the refined spinning dope, and ultrafine fibers are formed. Positively charged fibers adhere to the negatively charged drum 16. As the fibers gradually accumulate on the rotating drum 16, a fluorine-based nonwoven fabric is formed on the drum 16.

紡糸原液は、主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む溶液である。該溶媒は、沸点が110℃以上の溶媒を含む溶媒である。該沸点は、130℃以上が好ましく、160℃以上がより好ましい。該沸点は、電界延伸プロセスが溶液紡糸時に溶液からのポリマー成分の固化・乾燥を必要とすることから、高過ぎることは好ましくなく、220℃以下が好ましい。溶媒の沸点は、大気圧での値を用いる。   The spinning dope is a solution containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent. The solvent is a solvent containing a solvent having a boiling point of 110 ° C. or higher. The boiling point is preferably 130 ° C. or higher, and more preferably 160 ° C. or higher. The boiling point is not preferably too high and is preferably 220 ° C. or lower because the electric field drawing process requires solidification and drying of the polymer component from the solution during solution spinning. The boiling point of the solvent is a value at atmospheric pressure.

沸点が110℃以上の溶媒としては、含フッ素系ポリマーの溶解度の点から、パーフルオロ溶媒が好ましい。
沸点が110℃以上の溶媒の市販品としては、CT−solv.180(旭硝子社製、パーフルオロ溶媒、沸点:180℃)等が挙げられる。また、下記の溶媒も入手可能である。
含フッ素脂環式炭化水素類:ペルフルオロデカリン(bp142℃)、ペルフルオロ(1,3,5−トリメチルシクロヘキサン)(bp125℃)、パーフルオロテトラデカヒドロフェナントレン(bp215℃)等。
含フッ素アルキルアミン類:ペルフルオロトリプロピルアミン(bp130℃)、ペルフルオロトリブチルアミン(bp178℃)、ペルフルオロトリペンチルアミン(減圧蒸留沸点の常圧換算bp200℃程度、計算からの予想bp230−240℃くらい)等。
含フッ素脂肪族炭化水素類:ペルフルオロノナン(bp123℃)、ペルフルオロデカン(bp144℃)、ペルフルオロドデカン(bp178℃)、1H−ペルフルオロデカン(bp160−170℃くらい)、1H−ペルフルオロオクタン(bp120−130℃)、1H,1H,1H,2H,2H−ペルフルオロオクタン(bp150−160℃)等。
含フッ素エーテル類:メチルパーフルオロオクチルエーテル(常圧換算bp150−160℃)、メチルパーフルオロノニルエーテル(常圧換算bp175℃)等。
The solvent having a boiling point of 110 ° C. or higher is preferably a perfluoro solvent from the viewpoint of the solubility of the fluorine-containing polymer.
Examples of commercially available solvents having a boiling point of 110 ° C. or higher include CT-solv. 180 (Asahi Glass Co., Ltd., perfluoro solvent, boiling point: 180 ° C.). The following solvents are also available.
Fluorine-containing alicyclic hydrocarbons: perfluorodecalin (bp 142 ° C.), perfluoro (1,3,5-trimethylcyclohexane) (bp 125 ° C.), perfluorotetradecahydrophenanthrene (bp 215 ° C.) and the like.
Fluorine-containing alkylamines: perfluorotripropylamine (bp 130 ° C.), perfluorotributylamine (bp 178 ° C.), perfluorotripentylamine (normal pressure conversion bp of reduced pressure distillation boiling point about 200 ° C., expected bp 230-240 ° C. from calculation), etc. .
Fluorinated aliphatic hydrocarbons: perfluorononane (bp 123 ° C.), perfluorodecane (bp 144 ° C.), perfluorododecane (bp 178 ° C.), 1H-perfluorodecane (bp 160-170 ° C.), 1H-perfluorooctane (bp 120-130 ° C.) ) 1H, 1H, 1H, 2H, 2H-perfluorooctane (bp 150-160 ° C.) and the like.
Fluorinated ethers: methyl perfluorooctyl ether (normal pressure conversion bp 150-160 ° C.), methyl perfluorononyl ether (normal pressure conversion bp 175 ° C.), and the like.

溶媒は、沸点が110℃以上の溶媒を除く、他の溶媒を含んでいてもよい。
他の溶媒としては、パーフルオロベンゼン、トリフルオロエタン、パーフルオロ(2−ブチルテトラヒドロフラン)等が挙げられる。
他の溶媒の市販品としては、フロリナートFC−77(3M社製、パーフルオロ溶媒、沸点:100℃)、CT−solv.100(旭硝子社製、パーフルオロ溶媒、沸点:100℃、AK−225等の代替フロン等が挙げられる。
The solvent may contain other solvents except for a solvent having a boiling point of 110 ° C. or higher.
Examples of the other solvent include perfluorobenzene, trifluoroethane, perfluoro (2-butyltetrahydrofuran) and the like.
Other commercially available solvents include Fluorinert FC-77 (manufactured by 3M, perfluoro solvent, boiling point: 100 ° C.), CT-solv. 100 (Asahi Glass Co., Ltd., perfluoro solvent, boiling point: 100 ° C., substitute chlorofluorocarbons such as AK-225, etc.).

沸点が110℃以上の溶媒の割合は、溶媒(100質量%)のうち、10〜100質量%が好ましく、25〜100質量%がより好ましく、50〜100質量%が特に好ましい。沸点が110℃以上の溶媒の割合が10質量%以上であれば、連続繊維を確実に形成できる。   The proportion of the solvent having a boiling point of 110 ° C. or higher is preferably 10 to 100% by mass, more preferably 25 to 100% by mass, and particularly preferably 50 to 100% by mass in the solvent (100% by mass). If the proportion of the solvent having a boiling point of 110 ° C. or higher is 10% by mass or more, continuous fibers can be reliably formed.

主鎖に脂肪族環構造を有する含フッ素ポリマーの割合は、紡糸原液(100質量%)のうち、2.0〜15.0質量%が好ましい。
紡糸原液の吐出量は、0.1〜50mL/時が好ましい。
針14の先端の内径は、0.1〜2mmが好ましい。
針14の先端からドラム16までの距離は、5〜40cmが好ましい。
針14とドラム16との間に印加する電圧は、1〜40kVが好ましい。
The ratio of the fluorine-containing polymer having an aliphatic ring structure in the main chain is preferably 2.0 to 15.0% by mass in the spinning dope (100% by mass).
The discharge amount of the spinning dope is preferably 0.1 to 50 mL / hour.
The inner diameter of the tip of the needle 14 is preferably 0.1 to 2 mm.
The distance from the tip of the needle 14 to the drum 16 is preferably 5 to 40 cm.
The voltage applied between the needle 14 and the drum 16 is preferably 1 to 40 kV.

<固体高分子電解質膜>
本発明の固体高分子形燃料電池用固体高分子電解質膜(以下、固体高分子電解質と記す。)は、プロトン伝導性ポリマーとフッ素系不織布とを含む膜である。
<Solid polymer electrolyte membrane>
The solid polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a solid polymer electrolyte) is a membrane containing a proton conductive polymer and a fluorine-based nonwoven fabric.

固体高分子電解質膜の厚さは、25μm以下が好ましく、20μm以下がより好ましく、15μm以下が特に好ましい。また、固体高分子電解質膜の厚さは、10μm以上が好ましく、12μm以上がより好ましい。固体高分子電解質膜の厚さが25μm以下であれば、固体高分子電解質膜の電気抵抗を充分に低くできる。また、カソード側で生成する生成水の逆拡散を起こしやすい。固体高分子電解質膜の厚さが10μm以上であれば、機械的強度が高くなり、ガス漏れ等の障害が起こりにくい。   The thickness of the solid polymer electrolyte membrane is preferably 25 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less. Further, the thickness of the solid polymer electrolyte membrane is preferably 10 μm or more, and more preferably 12 μm or more. When the thickness of the solid polymer electrolyte membrane is 25 μm or less, the electric resistance of the solid polymer electrolyte membrane can be sufficiently lowered. In addition, it tends to cause reverse diffusion of generated water generated on the cathode side. If the thickness of the solid polymer electrolyte membrane is 10 μm or more, the mechanical strength becomes high and troubles such as gas leakage hardly occur.

固体高分子電解質膜は、固体高分子電解質膜と電極との接合部における電気抵抗を低下できる点から、フッ素系不織布で補強された層(以下、補強層と記す。)の少なくとも片面にフッ素系不織布で補強されていない層(以下、非補強層と記す。)を有することが好ましく、補強層の両面に非補強層を有することがより好ましい。   The solid polymer electrolyte membrane has a fluorine-based material on at least one surface of a layer reinforced with a fluorine-based nonwoven fabric (hereinafter referred to as a reinforcing layer) from the viewpoint that electric resistance at the joint between the solid polymer electrolyte membrane and the electrode can be reduced. It is preferable to have a layer that is not reinforced with a nonwoven fabric (hereinafter referred to as a non-reinforcing layer), and it is more preferable to have a non-reinforcing layer on both sides of the reinforcing layer.

非補強層のプロトン伝導性ポリマーは、補強層のプロトン伝導性ポリマーと同じであってもよく、異なっていてもよい。
非補強層は、電気抵抗を上昇させない範囲で、フッ素系不織布を除く他の成分を含んでいてもよい。
The proton conductive polymer of the non-reinforcing layer may be the same as or different from the proton conductive polymer of the reinforcing layer.
The non-reinforcing layer may contain other components excluding the fluorine-based nonwoven fabric as long as the electrical resistance is not increased.

非補強層の厚さは、燃料ガスのバリアー性に優れ、かつ電気抵抗を抑えることができる点から、片側につき1〜5μmが好ましく、1〜3μmがより好ましい。
非補強層の厚さは、固体高分子電解質膜表面からフッ素系不織布までの最短距離であり、光学顕微鏡、レーザー顕微鏡、SEM等による断面観察より測定できる。
The thickness of the non-reinforcing layer is preferably 1 to 5 μm and more preferably 1 to 3 μm on one side from the viewpoint that the fuel gas barrier property is excellent and electric resistance can be suppressed.
The thickness of the non-reinforcing layer is the shortest distance from the surface of the solid polymer electrolyte membrane to the fluorine-based nonwoven fabric, and can be measured by cross-sectional observation using an optical microscope, laser microscope, SEM or the like.

(プロトン伝導性ポリマー)
プロトン伝導性ポリマーとしては、フッ素系プロトン伝導性ポリマー、炭化水素系プロトン伝導性ポリマー等が挙げられ、耐久性の点から、フッ素系プロトン伝導性ポリマーが好ましい。
(Proton conducting polymer)
Examples of the proton conductive polymer include a fluorine-based proton conductive polymer, a hydrocarbon-based proton conductive polymer, and the like. From the viewpoint of durability, a fluorine-based proton conductive polymer is preferable.

フッ素系プロトン伝導性ポリマーとしては、スルホン酸型パーフルオロカーボンポリマーが挙げられる。
スルホン酸型パーフルオロカーボンポリマーとしては、パーフルオロオレフィン(テトラフルオロエチレン(以下、TFEと記す。)、ヘキサフルオロプロピレン等。)、クロロトリフルオロエチレン、およびパーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上に基づく繰り返し単位と、スルホン酸基を有する繰り返し単位とを有する共重合体が好ましく、TFEに基づく繰り返し単位と、スルホン酸基を有する繰り返し単位とを有する共重合体Hが特に好ましい。スルホン酸基を有する繰り返し単位としては、下式(A)で表される繰り返し単位がより好ましい。
Examples of the fluorine-based proton conductive polymer include sulfonic acid type perfluorocarbon polymers.
The sulfonic acid type perfluorocarbon polymer is selected from the group consisting of perfluoroolefins (tetrafluoroethylene (hereinafter referred to as TFE), hexafluoropropylene, etc.), chlorotrifluoroethylene, and perfluoro (alkyl vinyl ether). A copolymer having a repeating unit based on one or more types and a repeating unit having a sulfonic acid group is preferable, and a copolymer H having a repeating unit based on TFE and a repeating unit having a sulfonic acid group is particularly preferable. As the repeating unit having a sulfonic acid group, a repeating unit represented by the following formula (A) is more preferable.

Figure 2008243419
Figure 2008243419

ただし、Xはフッ素原子またはトリフルオロメチル基であり、mは0〜3の整数であり、nは1〜12の整数であり、pは0または1である。   However, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1.

共重合体Hは、TFEおよび−SOF基を有する化合物を含む単量体混合物を重合して前駆体ポリマーFを得た後、前駆体ポリマーF中の−SOF基をスルホン酸基に変換することにより得られる。−SOF基のスルホン酸基への変換は、加水分解および酸型化処理により行われる。 Copolymer H after obtaining a precursor polymer F by polymerizing a monomer mixture containing a compound having a TFE and -SO 2 F group, a sulfonic acid group -SO 2 F groups in the precursor polymer F Can be obtained by converting to Conversion of the —SO 2 F group into a sulfonic acid group is performed by hydrolysis and acidification treatment.

−SOF基を有する化合物としては、化合物(1)が好ましい。
CF=CF−(OCFCFX)−O−(CF−SOF ・・・(1)。
ただし、Xはフッ素原子またはトリフルオロメチル基であり、mは0〜3の整数であり、nは1〜12の整数であり、pは0または1である。
As the compound having a —SO 2 F group, the compound (1) is preferable.
CF 2 = CF- (OCF 2 CFX ) m -O p - (CF 2) n -SO 2 F ··· (1).
However, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1.

化合物(1)としては、化合物(11)〜(14)が好ましい。
CF=CFO(CFSOF ・・・(11)、
CF=CFOCFCF(CF)O(CFSOF ・・・(12)、
CF=CF(CFSOF ・・・(13)、
CF=CF(OCFCF(CF))O(CFSOF ・・・(14)。
ただし、qは、1〜8の整数であり、rは、1〜8の整数であり、sは、1〜8の整数であり、tは、1〜5の整数である。
As the compound (1), compounds (11) to (14) are preferable.
CF 2 = CFO (CF 2 ) q SO 2 F (11),
CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) r SO 2 F (12),
CF 2 = CF (CF 2 ) s SO 2 F (13),
CF 2 = CF (OCF 2 CF (CF 3)) t O (CF 2) 2 SO 2 F ··· (14).
However, q is an integer of 1-8, r is an integer of 1-8, s is an integer of 1-8, and t is an integer of 1-5.

炭化水素系プロトン伝導性ポリマーとしては、スルホン化ポリアリーレン、スルホン化ポリベンゾオキサゾール、スルホン化ポリベンゾチアゾール、スルホン化ポリベンゾイミダゾール、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリフェニレンスルホン、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルホキシド、スルホン化ポリフェニレンサルファイド、スルホン化ポリフェニレンスルフィドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等が挙げられる。   Hydrocarbon proton conductive polymers include sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, Sulfonated polyphenylene sulfone, sulfonated polyphenylene oxide, sulfonated polyphenylene sulfoxide, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyether ketone ketone, sulfonated polyimide, etc. Is mentioned.

プロトン伝導性ポリマーのイオン交換容量は、0.5〜2.0ミリ当量/グラム乾燥樹脂が好ましく、0.7〜1.6ミリ当量/グラム乾燥樹脂がより好ましい。イオン交換容量が0.5ミリ当量/グラム乾燥樹脂以上であれば、固体高分子電解質膜の電気抵抗を充分に低くできる。イオン交換容量が2.0ミリ当量/グラム乾燥樹脂以下であれば、ポリマーの親水性が抑えられ、発電時に固体高分子電解質膜が溶解することがない。   The ion exchange capacity of the proton conducting polymer is preferably 0.5 to 2.0 meq / g dry resin, and more preferably 0.7 to 1.6 meq / g dry resin. If the ion exchange capacity is 0.5 meq / g dry resin or more, the electric resistance of the solid polymer electrolyte membrane can be sufficiently lowered. When the ion exchange capacity is 2.0 meq / g dry resin or less, the hydrophilicity of the polymer is suppressed, and the solid polymer electrolyte membrane does not dissolve during power generation.

(固体高分子電解質膜の製造方法)
固体高分子電解質膜の製造方法としては、たとえば、下記方法が挙げられる。
(a−1)フッ素系不織布に、プロトン伝導性ポリマーを含む溶液または分散液を塗布または含浸させた後、乾燥し、造膜するキャスト法。
(a−2)フッ素系不織布に、あらかじめ成形したプロトン伝導性ポリマーを含む膜状物を積層して一体化する方法。
必要に応じて、延伸処理等によって固体高分子電解質膜を強化してもよい。
(Method for producing solid polymer electrolyte membrane)
As a manufacturing method of a solid polymer electrolyte membrane, the following method is mentioned, for example.
(A-1) A casting method in which a fluorine-based nonwoven fabric is coated or impregnated with a solution or dispersion containing a proton conductive polymer, and then dried to form a film.
(A-2) A method of laminating and integrating a film-like material containing a proton-conductive polymer previously formed on a fluorine-based nonwoven fabric.
If necessary, the solid polymer electrolyte membrane may be reinforced by stretching or the like.

補強層の少なくとも片面に非補強層を有する場合、固体高分子電解質膜の製造方法としては、たとえば、下記方法が挙げられる。
(b−1)前記(a−1)または(a−2)の方法によって固体高分子電解質膜を形成した時点で、非補強層を同時に形成させる方法。
(b−2)前記(a−1)または(a−2)の方法によって得られた固体高分子電解質膜(補強層)の表面に、プロトン伝導性ポリマーを含む溶液または分散液を塗布する方法。
(b−3)前記(a−1)または(a−2)の方法によって得られた固体高分子電解質膜(補強層)の表面に、あらかじめ成形したプロトン伝導性ポリマーを含む膜状物(非補強層)を積層して一体化する方法。
When the non-reinforcing layer is provided on at least one side of the reinforcing layer, examples of the method for producing the solid polymer electrolyte membrane include the following methods.
(B-1) A method in which a non-reinforcing layer is simultaneously formed when a solid polymer electrolyte membrane is formed by the method of (a-1) or (a-2).
(B-2) A method of applying a solution or dispersion containing a proton conductive polymer to the surface of the solid polymer electrolyte membrane (reinforcing layer) obtained by the method of (a-1) or (a-2) .
(B-3) A membrane-like material containing a proton-conducting polymer previously formed on the surface of the solid polymer electrolyte membrane (reinforcing layer) obtained by the method (a-1) or (a-2) (Reinforcement layer) is laminated and integrated.

<膜電極接合体>
図2は、本発明の固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)の一例を示す断面図である。膜電極接合体20は、触媒層21およびガス拡散層22を有するアノード23と、触媒層21およびガス拡散層22を有するカソード24と、アノード23とカソード24との間に、触媒層21に接した状態で配置される固体高分子電解質膜25とを具備する。
<Membrane electrode assembly>
FIG. 2 is a cross-sectional view showing an example of a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane electrode assembly). The membrane electrode assembly 20 is in contact with the catalyst layer 21 between the anode 23 having the catalyst layer 21 and the gas diffusion layer 22, the cathode 24 having the catalyst layer 21 and the gas diffusion layer 22, and the anode 23 and the cathode 24. And a solid polymer electrolyte membrane 25 arranged in the above state.

(固体高分子電解質膜)
固体高分子電解質膜25は、上述した、プロトン伝導性ポリマーとフッ素系不織布とを含む膜である。
(Solid polymer electrolyte membrane)
The solid polymer electrolyte membrane 25 is a membrane containing the proton conductive polymer and the fluorine-based nonwoven fabric described above.

(触媒層)
触媒層21は、触媒とプロトン伝導性ポリマーとを含む層である。
触媒としては、カーボン担体に白金または白金合金を担持した担持触媒が挙げられる。カソード24の触媒としては、耐久性の点から、カーボン担体に白金−コバルト系合金を担持した担持触媒が好ましい。
カーボン担体としては、カーボンブラック粉末が挙げられ、耐久性の点から、熱処理等でグラファイト化したカーボンブラック粉末が好ましい。
プロトン伝導性ポリマーとしては、フッ素系プロトン伝導性ポリマー、炭化水素系重合体等が挙げられ、耐久性の点から、フッ素系プロトン伝導性ポリマーが好ましい。
(Catalyst layer)
The catalyst layer 21 is a layer containing a catalyst and a proton conductive polymer.
Examples of the catalyst include a supported catalyst in which platinum or a platinum alloy is supported on a carbon support. The catalyst for the cathode 24 is preferably a supported catalyst in which a platinum-cobalt alloy is supported on a carbon support from the viewpoint of durability.
Examples of the carbon carrier include carbon black powder. From the viewpoint of durability, carbon black powder graphitized by heat treatment or the like is preferable.
Examples of the proton conductive polymer include a fluorine-based proton conductive polymer and a hydrocarbon polymer. From the viewpoint of durability, a fluorine-based proton conductive polymer is preferable.

触媒層21は、フラッディングの抑制効果が高まる点から、撥水化剤を含んでいてもよい。撥水化剤としては、TFEとヘキサフルオロプロピレンとの共重合体、TFEとパーフルオロ(アルキルビニルエーテル)との共重合体(以下、PFAと記す。)、ポリテトラフルオロエチレン(以下、PTFEと記す。)等が挙げられる。撥水化剤としては、触媒層21を撥水化処理しやすい点から、溶媒に溶解できる含フッ素ポリマーが好ましい。撥水化剤の割合は、触媒層21(100質量%)のうち、0.01〜30質量%が好ましい。   The catalyst layer 21 may contain a water repellent agent from the viewpoint of increasing the effect of suppressing flooding. As a water repellent, a copolymer of TFE and hexafluoropropylene, a copolymer of TFE and perfluoro (alkyl vinyl ether) (hereinafter referred to as PFA), polytetrafluoroethylene (hereinafter referred to as PTFE). Etc.). As the water repellent, a fluorine-containing polymer that can be dissolved in a solvent is preferable because the catalyst layer 21 can be easily subjected to water repellent treatment. The ratio of the water repellent agent is preferably 0.01 to 30% by mass in the catalyst layer 21 (100% by mass).

(ガス拡散層)
ガス拡散層22としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。
ガス拡散層22は、PTFE等によって撥水化処理されていることが好ましい。
(Gas diffusion layer)
Examples of the gas diffusion layer 22 include carbon paper, carbon cloth, and carbon felt.
The gas diffusion layer 22 is preferably subjected to a water repellent treatment with PTFE or the like.

(カーボン層)
膜電極接合体20は、図3に示すように、触媒層21とガス拡散層22との間にカーボン層26を有していてもよい。カーボン層26を配置することにより、触媒層21の表面のガス拡散性が向上し、固体高分子形燃料電池の発電性能が大きく向上する。
(Carbon layer)
The membrane electrode assembly 20 may have a carbon layer 26 between the catalyst layer 21 and the gas diffusion layer 22 as shown in FIG. By disposing the carbon layer 26, the gas diffusibility on the surface of the catalyst layer 21 is improved, and the power generation performance of the polymer electrolyte fuel cell is greatly improved.

カーボン層26は、カーボンと非イオン性含フッ素ポリマーとを含む層である。
カーボンとしては、繊維径1〜1000nm、繊維長1000μm以下のカーボンナノファイバーが好ましい。
非イオン性含フッ素ポリマーとしては、PTFE等が挙げられる。
The carbon layer 26 is a layer containing carbon and a nonionic fluorine-containing polymer.
As carbon, carbon nanofibers having a fiber diameter of 1 to 1000 nm and a fiber length of 1000 μm or less are preferable.
Examples of the nonionic fluorine-containing polymer include PTFE.

(膜電極接合体の製造方法)
膜電極接合体20は、たとえば、下記方法にて製造される。
(x−1)固体高分子電解質膜25上に触媒層21を形成して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層22で挟み込む方法。
(x−2)ガス拡散層22上に触媒層21を形成して電極(アノード23、カソード24)とし、固体高分子電解質膜25を該電極で挟み込む方法。
(Method for producing membrane electrode assembly)
The membrane electrode assembly 20 is manufactured by the following method, for example.
(X-1) A method in which the catalyst layer 21 is formed on the solid polymer electrolyte membrane 25 to form a membrane catalyst layer assembly, and the membrane catalyst layer assembly is sandwiched between the gas diffusion layers 22.
(X-2) A method in which the catalyst layer 21 is formed on the gas diffusion layer 22 to form electrodes (anode 23, cathode 24), and the solid polymer electrolyte membrane 25 is sandwiched between the electrodes.

膜電極接合体20がカーボン層26を有する場合、膜電極接合体20は、たとえば、下記方法にて製造される。
(y−1)基材フィルム上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層26を形成し、カーボン層26上に触媒層21を形成し、触媒層21と固体高分子電解質膜25とを貼り合わせ、基材フィルムを剥離して、カーボン層26を有する膜触媒層接合体とし、該膜触媒層接合体をガス拡散層22で挟み込む方法。
(y−2)ガス拡散層22上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層26を形成し、前記(x−1)の方法における膜触媒層接合体を、カーボン層26を有するガス拡散層22で挟み込む方法。
When membrane electrode assembly 20 has carbon layer 26, membrane electrode assembly 20 is manufactured by the following method, for example.
(Y-1) A dispersion containing carbon and a nonionic fluorine-containing polymer is applied on a base film and dried to form a carbon layer 26, and a catalyst layer 21 is formed on the carbon layer 26. A method in which the layer 21 and the solid polymer electrolyte membrane 25 are bonded together, the base film is peeled off to form a membrane catalyst layer assembly having a carbon layer 26, and the membrane catalyst layer assembly is sandwiched between the gas diffusion layers 22.
(Y-2) A dispersion containing carbon and a nonionic fluoropolymer is applied on the gas diffusion layer 22 and dried to form a carbon layer 26. The membrane catalyst layer in the method (x-1) A method in which a joined body is sandwiched between gas diffusion layers 22 each having a carbon layer 26.

触媒層21の形成方法としては、下記方法が挙げられる。
(z−1)触媒層形成用液を、固体高分子電解質膜25、ガス拡散層22、またはカーボン層26上に塗布し、乾燥させる方法。
(z−2)触媒層形成用液を基材フィルム上に塗布し、乾燥させ触媒層21を形成し、該触媒層21を固体高分子電解質膜25上に転写する方法。
Examples of the method for forming the catalyst layer 21 include the following methods.
(Z-1) A method of applying the catalyst layer forming liquid on the solid polymer electrolyte membrane 25, the gas diffusion layer 22, or the carbon layer 26 and drying it.
(Z-2) A method in which a catalyst layer forming solution is applied onto a substrate film, dried to form a catalyst layer 21, and the catalyst layer 21 is transferred onto a solid polymer electrolyte membrane 25.

触媒層形成用液は、プロトン伝導性ポリマーおよび触媒を分散媒に分散させた液である。触媒層形成用液は、たとえば、後述する液状組成物と、触媒の分散液とを混合することにより調製できる。
触媒層形成用液は、触媒層21の形成方法によって粘度が異なるため、数十cP程度の分散液であってもよく、20000cP程度のペーストであってもよい。
触媒層形成用液は、粘度を調節するために、増粘剤を含んでいてもよい。増粘剤としては、エチルセルロース、メチルセルロース、セロソルブ系増粘剤、フッ素系溶媒(5フッ化プロパノール、フロン等。)が挙げられる。
The catalyst layer forming liquid is a liquid in which a proton conductive polymer and a catalyst are dispersed in a dispersion medium. The liquid for forming a catalyst layer can be prepared, for example, by mixing a liquid composition described later and a catalyst dispersion.
Since the viscosity of the catalyst layer forming liquid varies depending on the method of forming the catalyst layer 21, it may be a dispersion of about several tens of cP or a paste of about 20,000 cP.
The catalyst layer forming liquid may contain a thickener in order to adjust the viscosity. Examples of the thickener include ethyl cellulose, methyl cellulose, cellosolve thickener, and fluorinated solvents (pentafluoropropanol, chlorofluorocarbon, etc.).

液状組成物は、プロトン伝導性ポリマーを、水酸基を有する有機溶媒および水を含む分散媒に分散させた分散液である。
水酸基を有する有機溶媒としては、主鎖の炭素数が1〜4の有機溶媒が好ましく、たとえば、メタノール、エタノール、n−プロパノール、イソプロパノール、tert−ブタノール、n−ブタノール等が挙げられる。水酸基を有する有機溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The liquid composition is a dispersion in which a proton conductive polymer is dispersed in a dispersion medium containing an organic solvent having a hydroxyl group and water.
The organic solvent having a hydroxyl group is preferably an organic solvent having 1 to 4 carbon atoms in the main chain, and examples thereof include methanol, ethanol, n-propanol, isopropanol, tert-butanol, and n-butanol. The organic solvent which has a hydroxyl group may be used individually by 1 type, and 2 or more types may be mixed and used for it.

水の割合は、分散媒(100質量%)のうち、10〜99質量%が好ましく、40〜99質量%がより好ましい。水の割合を増やすことにより、分散媒に対するプロトン伝導性ポリマーの分散性を向上できる。
水酸基を有する有機溶媒の割合は、分散媒(100質量%)のうち、1〜90質量%が好ましく、1〜60質量%がより好ましい。
分散媒は、含フッ素溶媒を含んでいてもよい。含フッ素溶媒としては、たとえば、ヒドロフルオロカーボン、フルオロカーボン、ヒドロクロロフルオロカーボン、フルオロエーテル、含フッ素アルコール等が挙げられる。
プロトン伝導性ポリマーの割合は、液状組成物(100質量%)のうち、1〜50質量%が好ましく、3〜30質量%がより好ましい。
The proportion of water is preferably 10 to 99% by mass and more preferably 40 to 99% by mass in the dispersion medium (100% by mass). By increasing the proportion of water, the dispersibility of the proton conductive polymer in the dispersion medium can be improved.
The proportion of the organic solvent having a hydroxyl group is preferably from 1 to 90 mass%, more preferably from 1 to 60 mass%, in the dispersion medium (100 mass%).
The dispersion medium may contain a fluorine-containing solvent. Examples of the fluorine-containing solvent include hydrofluorocarbon, fluorocarbon, hydrochlorofluorocarbon, fluoroether, fluorine-containing alcohol, and the like.
The proportion of the proton conductive polymer is preferably 1 to 50% by mass and more preferably 3 to 30% by mass in the liquid composition (100% by mass).

<固体高分子形燃料電池>
本発明の膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックすることにより製造される。
セパレータとしては、燃料ガスまたは酸素を含む酸化剤ガス(空気、酸素等。)の通路となる溝が形成された導電性カーボン板等が挙げられる。
固体高分子形燃料電池の種類としては、水素/酸素型燃料電池、直接メタノール型燃料電池(DMFC)等が挙げられる。
<Solid polymer fuel cell>
The membrane electrode assembly of the present invention is used for a polymer electrolyte fuel cell. A polymer electrolyte fuel cell is manufactured, for example, by forming a cell by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells.
Examples of the separator include a conductive carbon plate in which a groove serving as a passage for a fuel gas or an oxidizing gas containing oxygen (air, oxygen, etc.) is formed.
Examples of the polymer electrolyte fuel cell include a hydrogen / oxygen fuel cell and a direct methanol fuel cell (DMFC).

以上説明した本発明のフッ素系不織布の製造方法にあっては、主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造する方法において、前記溶媒として、沸点が110℃以上の溶媒を含むものを用いるため、水溶性樹脂または電解質を用いることなく、主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造できる。   In the method for producing a fluorine-based nonwoven fabric of the present invention described above, the fluorine-based nonwoven fabric is produced by an electrospinning method using a spinning solution containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent. In the method, since a solvent containing a solvent having a boiling point of 110 ° C. or higher is used as the solvent, a stock solution for spinning containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent without using a water-soluble resin or an electrolyte. A fluorine-based nonwoven fabric can be produced by an electrospinning method using

また、以上説明した本発明のフッ素系不織布にあっては、主鎖に脂肪族環構造を有する含フッ素ポリマーの連続繊維からなり、目付量7.5cm/m以下であり、厚さが23μm以下であるため、電気抵抗が低く、機械的強度が高く、含水時の寸法安定性に優れる固体高分子電解質膜を得ることができる。また、本発明のフッ素系不織布は、水溶性樹脂または電解質を含まないため、化学的な耐久性に優れ、フッ素系不織布自体の寸法安定性に優れる。 The fluorine-based nonwoven fabric of the present invention described above is composed of continuous fibers of a fluorine-containing polymer having an aliphatic ring structure in the main chain, and has a basis weight of 7.5 cm 3 / m 2 or less, and has a thickness of Since the thickness is 23 μm or less, a solid polymer electrolyte membrane having low electrical resistance, high mechanical strength, and excellent dimensional stability when containing water can be obtained. Moreover, since the fluorine-type nonwoven fabric of this invention does not contain water-soluble resin or electrolyte, it is excellent in chemical durability, and is excellent in the dimensional stability of fluorine-type nonwoven fabric itself.

また、以上説明した本発明の固体高分子電解質膜にあっては、本発明のフッ素系不織布を含むため、電気抵抗を低くするために、厚さを薄くしても、機械的強度が高く、含水時の寸法安定性に優れる。
また、以上説明した本発明の膜電極接合体にあっては、固体高分子電解質膜として、電気抵抗を低くするために、厚さを薄くしても、機械的強度が高く、含水時の寸法安定性に優れる本発明の固体高分子電解質膜を備えているため、出力が高く、かつ耐久性に優れる。
Further, in the solid polymer electrolyte membrane of the present invention described above, since it includes the fluorine-based nonwoven fabric of the present invention, in order to reduce the electrical resistance, even if the thickness is reduced, the mechanical strength is high, Excellent dimensional stability when containing water.
Further, in the membrane electrode assembly of the present invention described above, the solid polymer electrolyte membrane has a high mechanical strength even when the thickness is reduced in order to reduce the electric resistance, and the dimensions when containing water. Since the solid polymer electrolyte membrane of the present invention having excellent stability is provided, the output is high and the durability is excellent.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
例1は、実施例であり、例2〜4は、比較例である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Example 1 is an example, and Examples 2 to 4 are comparative examples.

(連続繊維の繊維径)
レーザー顕微鏡によって、フッ素系不織布の断面を観察し、フッ素系不織布の断面に現れた連続繊維の繊維径を測定した。
(Fiber diameter of continuous fiber)
The cross section of the fluorine-based nonwoven fabric was observed with a laser microscope, and the fiber diameter of the continuous fibers that appeared on the section of the fluorine-based nonwoven fabric was measured.

(フッ素系不織布の厚さ)
レーザー顕微鏡によって、フッ素系不織布の断面を観察し、最も厚い部分の厚さを測定した。
(Thickness of fluorine-based nonwoven fabric)
The cross section of the fluorine-based nonwoven fabric was observed with a laser microscope, and the thickness of the thickest part was measured.

(フッ素系不織布の目付量)
フッ素系不織布の目付量は、25℃において、フッ素系不織布に粘着剤付きのPETフィルムを押し付け、該フィルムにフッ素系不織布を移しとり、移しとられたフッ素系不織布の面積と、PETフィルムの質量増加とからフッ素系不織布の目付量(g/m)を求め、さらに、フッ素系不織布の材料である含フッ素ポリマーの25℃における密度(g/cm)から、目付量(cm/m)を求めた。
(Amount of fluorine-based non-woven fabric)
The weight per unit area of the fluorine-based nonwoven fabric is 25 ° C. The pressure-sensitive PET film with an adhesive is pressed against the fluorine-based nonwoven fabric, the fluorine-based nonwoven fabric is transferred to the film, the area of the transferred fluorine-based nonwoven fabric, and the mass of the PET film From the increase, the basis weight (g / m 2 ) of the fluorine-based nonwoven fabric is obtained, and further, the basis weight (cm 3 / m 3 ) is calculated from the density (g / cm 3 ) at 25 ° C. of the fluoropolymer that is the material of the fluorine-based nonwoven fabric. 2 ) was obtained.

(フッ素系不織布の開口率)
フッ素系不織布の開口率を下記式から算出した。
開口率(%)=100−A×100/(B×C)。
ただし、Aは、フッ素系不織布の材料である含フッ素ポリマーの目付量(g/m)であり、Bは、不織布の材料である含フッ素ポリマーの密度(g/m)であり、Cは、不織布の厚さ(cm)である。
(Opening ratio of fluorine-based nonwoven fabric)
The opening ratio of the fluorine-based nonwoven fabric was calculated from the following formula.
Opening ratio (%) = 100−A × 100 / (B × C).
However, A is the basis weight (g / m 2 ) of the fluorine-containing polymer that is the material of the fluorine-based nonwoven fabric, B is the density (g / m 3 ) of the fluorine-containing polymer that is the material of the nonwoven fabric, and C Is the thickness (cm) of the nonwoven fabric.

(非補強層の厚さ)
レーザー顕微鏡によって、固体高分子電解質膜の断面を観察し、固体高分子電解質膜表面からフッ素系不織布までの最短距離を測定した。
(Non-reinforcing layer thickness)
The cross section of the solid polymer electrolyte membrane was observed with a laser microscope, and the shortest distance from the surface of the solid polymer electrolyte membrane to the fluorine-based nonwoven fabric was measured.

(含水時の寸法変化率)
固体高分子電解質膜から、200mm角のサンプルを切り出した。サンプルを温度25℃、相対湿度50%の雰囲気に16時間さらし、サンプルの縦と横の長さを測定した。ついで、25℃のイオン交換水にサンプルを1時間浸漬した後、同様にして長さを測定した。サンプルの縦方向の伸びおよび横方向の伸びの平均値を求め、寸法変化率とした。
(Dimensional change rate when containing water)
A 200 mm square sample was cut out from the solid polymer electrolyte membrane. The sample was exposed to an atmosphere at a temperature of 25 ° C. and a relative humidity of 50% for 16 hours, and the length and width of the sample were measured. Then, after immersing the sample in ion exchange water at 25 ° C. for 1 hour, the length was measured in the same manner. The average value of the elongation in the vertical direction and the horizontal direction of the sample was determined and used as the dimensional change rate.

(初期セル電圧)
セパレータとして、ガス通路用の細溝がジグザグ状に切削加工されたカーボン板(溝幅1mm、ランド部1mm)を用意した。
膜電極接合体の両外側にセパレータを配置し、さらにセパレータの外側にヒータを配置して、有効膜面積25cmの固体高分子形燃料電池を組み立てた。
(Initial cell voltage)
As a separator, a carbon plate (groove width 1 mm, land portion 1 mm) in which narrow grooves for gas passage were cut into a zigzag shape was prepared.
A separator was disposed on both outer sides of the membrane electrode assembly, and a heater was further disposed on the outer side of the separator to assemble a polymer electrolyte fuel cell having an effective membrane area of 25 cm 2 .

固体高分子形燃料電池の温度を80℃に保ち、カソードに空気、アノードに水素を、それぞれ0.15MPaで供給した。各ガスは、加湿器を用いて相対湿度50%に加湿した状態で各電極へ供給した。電流密度0.1A/cmおよび1A/cmのときのセル電圧をそれぞれ測定した。 The temperature of the polymer electrolyte fuel cell was maintained at 80 ° C., and air was supplied to the cathode and hydrogen was supplied to the anode at 0.15 MPa, respectively. Each gas was supplied to each electrode while being humidified to a relative humidity of 50% using a humidifier. The cell voltage at a current density of 0.1 A / cm 2 and 1A / cm 2 were measured.

また、厚さ方向の電解質膜のΩ損の差を明確にするために、例1、2の補強された固体高分子電解質膜を用いた場合の固体高分子型燃料電池のセル電圧と、例3の無補強の固体高分子電解質膜を用いた場合の固体高分子型燃料電池のセル電圧との差を下式から計算した。
電圧差=補強された固体高分子電解質膜を用いた場合の固体高分子型燃料電池のセル電圧−無補強の固体高分子電解質膜を用いた場合の固体高分子型燃料電池のセル電圧。
2種類の固体高分子型燃料電池において、固体高分子電解質膜のみが異なり、電極(触媒層およびガス拡散層)およびセパレータが同一であれば、セル電圧の差は、固体高分子電解質膜の厚さ方向のプロトン伝導性の差に由来する電圧ロスを示していると考えてよい。該電圧差は、補強体が挿入されることによって生じる余分なプロトン伝導抵抗と考えられ、0に近いことが望ましい。
In addition, in order to clarify the difference in Ω loss of the electrolyte membrane in the thickness direction, the cell voltage of the polymer electrolyte fuel cell when the reinforced solid polymer electrolyte membrane of Examples 1 and 2 was used, and an example The difference from the cell voltage of the polymer electrolyte fuel cell in the case of using 3 unreinforced solid polymer electrolyte membrane was calculated from the following equation.
Voltage difference = cell voltage of a solid polymer fuel cell when a reinforced solid polymer electrolyte membrane is used−cell voltage of a solid polymer fuel cell when an unreinforced solid polymer electrolyte membrane is used.
In the two types of polymer electrolyte fuel cells, if only the polymer electrolyte membrane is different and the electrodes (catalyst layer and gas diffusion layer) and separator are the same, the difference in cell voltage is the thickness of the polymer electrolyte membrane. It can be considered that the voltage loss is derived from the difference in proton conductivity in the vertical direction. The voltage difference is considered to be an extra proton conduction resistance caused by inserting the reinforcing body, and is preferably close to zero.

〔例1〕
フッ素系不織布の製造:
繰り返し単位(ε1)を有する含フッ素ポリマーの溶液(旭硝子社製、サイトップCTL−107S、溶媒:フロリナートFC−77(3M社製、沸点:100℃、固形分:7質量%)に、CT−solv.180(旭硝子社製、沸点:180℃)を加え、紡糸原液を調製した。
主鎖に脂肪族環構造を有する含フッ素ポリマーの割合は、紡糸原液(100質量%)のうち、7質量%であり、沸点が110℃以上の溶媒の割合は、溶媒(100質量%)のうち、15質量%であった。
[Example 1]
Production of fluorine-based nonwoven fabric:
To a solution of a fluorine-containing polymer having a repeating unit (ε1) (Asahi Glass Co., Ltd., Cytop CTL-107S, solvent: Fluorinert FC-77 (manufactured by 3M, boiling point: 100 ° C., solid content: 7% by mass)) sol.180 (Asahi Glass Co., Ltd., boiling point: 180 ° C.) was added to prepare a spinning dope.
The proportion of the fluorine-containing polymer having an aliphatic ring structure in the main chain is 7% by mass in the spinning solution (100% by mass), and the proportion of the solvent having a boiling point of 110 ° C. or higher is that of the solvent (100% by mass). Of these, it was 15% by mass.

電界紡糸法による不織布製造装置(井内製作所社製)を用意した。容量10mLのディスポーザブルシリンジの先端に25G(内径:0.25mm、外径:0.5mm、長さ5cm)のステンレス製注射針を装着した。
前記不織布製造装置および紡糸原液を用い、針の先端からドラムまでの距離:7.5cm、印加電圧:20kV、吐出量:0.20mL/時の条件で電界紡糸を行った。ドラム上に繊維径0.4〜5.0μmの連続繊維で構成されるフッ素系不織布Aを得た。連続繊維のアスペクト比は、すべて10000以上であった。フッ素系不織布Aの2.6cm×2.6cmの面積を顕微鏡にて観察したところ、繊維長13mm以下の繊維は観察されなかった。
フッ素系不織布Aの厚さ、目付量、開口率を測定した。結果を表1に示す。なお、主鎖に脂肪族環構造を有する含フッ素ポリマーの25℃における密度は2.0g/cmであった。
A non-woven fabric production apparatus (manufactured by Iuchi Seisakusho Co., Ltd.) was prepared by electrospinning. A stainless syringe needle of 25 G (inner diameter: 0.25 mm, outer diameter: 0.5 mm, length 5 cm) was attached to the tip of a disposable syringe with a capacity of 10 mL.
Using the nonwoven fabric manufacturing apparatus and the spinning solution, electrospinning was performed under the conditions of the distance from the tip of the needle to the drum: 7.5 cm, the applied voltage: 20 kV, and the discharge rate: 0.20 mL / hour. A fluorine-based nonwoven fabric A composed of continuous fibers having a fiber diameter of 0.4 to 5.0 μm was obtained on a drum. The aspect ratios of continuous fibers were all 10,000 or more. When an area of 2.6 cm × 2.6 cm of the fluorine-based nonwoven fabric A was observed with a microscope, fibers having a fiber length of 13 mm or less were not observed.
The thickness, basis weight, and aperture ratio of the fluorinated nonwoven fabric A were measured. The results are shown in Table 1. The density of the fluoropolymer having an aliphatic ring structure in the main chain at 25 ° C. was 2.0 g / cm 3 .

固体高分子電解質膜の製造:
TFEに基づく繰り返し単位と下式(A−1)で表される繰り返し単位とからなる共重合体H1(イオン交換容量:1.1ミリ当量/グラム乾燥樹脂)の溶液A(溶媒:エタノール、固形分:5質量%)を用意した。
Production of solid polymer electrolyte membrane:
Solution A (solvent: ethanol, solid) of copolymer H1 (ion exchange capacity: 1.1 meq / g dry resin) composed of a repeating unit based on TFE and a repeating unit represented by the following formula (A-1) Min: 5% by mass).

Figure 2008243419
Figure 2008243419

フッ素系不織布Aの縁を拘束した状態で、フッ素系不織布Aを溶液Aに浸漬し、毎分100mmの速度で引き上げ、溶液Aをフッ素系不織布Aに含浸させた。該含浸の操作を3回繰り返した後、フッ素系不織布Aを拘束した状態で、55℃で1時間乾燥し、補強層用フィルムを得た。   With the edge of the fluorine-based nonwoven fabric A restrained, the fluorine-based nonwoven fabric A was immersed in the solution A, pulled up at a rate of 100 mm per minute, and the solution A was impregnated with the fluorine-based nonwoven fabric A. After the impregnation operation was repeated three times, the film was dried at 55 ° C. for 1 hour in a state where the fluorine-based nonwoven fabric A was constrained to obtain a reinforcing layer film.

溶液Aをダイコート法でPET上に塗布し、140℃で1時間乾燥し、厚さ3μmの非補強層用フィルムを得た。
補強層用フィルムの両側に非補強層用フィルムを配し、熱プレス法(180℃、5Pa、15分)により厚さ21μmの固体高分子電解質膜Aを得た。非補強層の厚さは、片側につき3μmであった。
固体高分子電解質膜Aの寸法変化率を測定した。結果を表2に示す。
Solution A was applied on PET by a die coating method and dried at 140 ° C. for 1 hour to obtain a film for a non-reinforcing layer having a thickness of 3 μm.
A non-reinforcing layer film was disposed on both sides of the reinforcing layer film, and a solid polymer electrolyte membrane A having a thickness of 21 μm was obtained by a hot press method (180 ° C., 5 Pa, 15 minutes). The thickness of the non-reinforcing layer was 3 μm per side.
The dimensional change rate of the solid polymer electrolyte membrane A was measured. The results are shown in Table 2.

膜電極接合体の製造:
共重合体Aを、エタノールおよび水の混合溶媒(エタノール/水=1/1質量比)に入れ、還流機能を備えたフラスコ内にて、60℃で16時間撹拌して溶解し、液状組成物(固形分:9質量%)を得た。
これとは別に、白金担持カーボンに、水およびエタノールをこの順で加え、エタノールおよび水の混合分散媒(エタノール/水=1/1質量比)に分散した触媒分散液(固形分:9質量%)を得た。
Manufacture of membrane electrode assembly:
Copolymer A was placed in a mixed solvent of ethanol and water (ethanol / water = 1/1 mass ratio) and dissolved by stirring in a flask equipped with a reflux function at 60 ° C. for 16 hours. (Solid content: 9% by mass) was obtained.
Separately, water and ethanol were added to platinum-supported carbon in this order, and a catalyst dispersion (solid content: 9% by mass) dispersed in a mixed dispersion medium of ethanol and water (ethanol / water = 1/1 mass ratio). )

液状組成物と触媒分散液とを、液状組成物/触媒分散液=11/3(質量比)で混合し、触媒層形成用液を調製した。
触媒層形成用液を固体高分子電解質膜Aの両面にダイコート法で塗布し、乾燥して、厚さ10μm、白金担持量0.5mg/cmの触媒層を形成した。該触媒層の両外側にカーボンクロスをガス拡散層として配置することにより、膜電極接合体Aを得た。
膜電極接合体Aを用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定を行った。結果を表3に示す。
The liquid composition and the catalyst dispersion were mixed at a liquid composition / catalyst dispersion = 11/3 (mass ratio) to prepare a catalyst layer forming liquid.
The catalyst layer forming solution was applied to both surfaces of the solid polymer electrolyte membrane A by a die coating method and dried to form a catalyst layer having a thickness of 10 μm and a platinum loading of 0.5 mg / cm 2 . Membrane electrode assembly A was obtained by disposing carbon cloth as a gas diffusion layer on both outer sides of the catalyst layer.
Using the membrane electrode assembly A, a polymer electrolyte fuel cell was produced, and the initial cell voltage was measured. The results are shown in Table 3.

〔例2〕
フッ素系不織布の製造:
メルトブローン不織布製造装置(日本ノズル社製)を用い、PFA(旭硝子社製、フルオンPFA P−61XP、メルトフローレート:40g/10分)を用い、紡糸ノズル温度:380℃、延伸用ホットエアー温度:400℃の条件で、吸引能力を有するコンベアー上にフッ素系不織布Bを形成した。
[Example 2]
Production of fluorine-based nonwoven fabric:
Using a melt blown nonwoven fabric manufacturing apparatus (manufactured by Nippon Nozzle Co., Ltd.), using PFA (manufactured by Asahi Glass Co., Ltd., full-on PFA P-61XP, melt flow rate: 40 g / 10 min), spinning nozzle temperature: 380 ° C., hot air temperature for stretching: Under the condition of 400 ° C., a fluorine-based nonwoven fabric B was formed on a conveyor having suction capability.

フッ素系不織布Bを熱プレス法(290℃、10MPa)により、圧密化した。フッ素系不織布Bを構成するPFAは繊維径0.5μmの連続繊維であり、アスペクト比はすべて10000以上であった。フッ素系不織布Bの2.6cm×2.6cmの面積を顕微鏡にて観察したところ、繊維長13mm以下の繊維は観察されなかった。
フッ素系不織布Bの厚さ、目付量、開口率を測定した。結果を表1に示す。なお、PFAの25℃における密度は2.0g/cmであった。
The fluorine-based nonwoven fabric B was consolidated by a hot press method (290 ° C., 10 MPa). The PFA constituting the fluorine-based nonwoven fabric B was a continuous fiber having a fiber diameter of 0.5 μm, and all the aspect ratios were 10,000 or more. When an area of 2.6 cm × 2.6 cm of the fluorine-based nonwoven fabric B was observed with a microscope, fibers having a fiber length of 13 mm or less were not observed.
The thickness, basis weight, and aperture ratio of the fluorinated nonwoven fabric B were measured. The results are shown in Table 1. The density of PFA at 25 ° C. was 2.0 g / cm 3 .

固体高分子電解質膜の製造:
フッ素系不織布Aの代わりにフッ素系不織布Bを用いた以外は、例1と同様にして固体高分子電解質膜Bを得た。
固体高分子電解質膜Bの寸法変化率を測定した。結果を表2に示す。
Production of solid polymer electrolyte membrane:
A solid polymer electrolyte membrane B was obtained in the same manner as in Example 1 except that the fluorine-based nonwoven fabric B was used instead of the fluorine-based nonwoven fabric A.
The dimensional change rate of the solid polymer electrolyte membrane B was measured. The results are shown in Table 2.

膜電極接合体の製造:
固体高分子電解質膜Aの代わりに固体高分子電解質膜Bを用いた以外は、例1と同様にして膜電極接合体Bを得た。
膜電極接合体Bを用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定を行った。結果を表3に示す。表2、表3から、例2の寸法変化率は例1よりも高く、初期セル特性も低いことがわかる。
Manufacture of membrane electrode assembly:
A membrane / electrode assembly B was obtained in the same manner as in Example 1 except that the solid polymer electrolyte membrane B was used instead of the solid polymer electrolyte membrane A.
Using the membrane electrode assembly B, a polymer electrolyte fuel cell was produced, and the initial cell voltage was measured. The results are shown in Table 3. From Tables 2 and 3, it can be seen that the dimensional change rate of Example 2 is higher than that of Example 1, and the initial cell characteristics are also low.

〔例3〕
無補強の固体高分子電解質膜の製造:
市販のフッ素系プロトン伝導性ポリマー(Dupont社製、Nafion R)の溶液(固形分:20質量%)を用い、キャスト法によってフィルムを得た。該フィルムを無補強の固体高分子電解質膜Cとした。
Nafion Rを構成するフッ素系プロトン伝導性ポリマーは、式(A−1)で表される繰り返し単位を有する。
該固体高分子電解質膜Cの寸法変化率を測定した。結果を表2に示す。表2から、寸法変化率が例1に比較して極めて大きいことがわかった。
[Example 3]
Production of unreinforced solid polymer electrolyte membrane:
A film was obtained by a casting method using a solution (solid content: 20% by mass) of a commercially available fluorine-based proton conductive polymer (manufactured by Dupont, Nafion R). The film was used as an unreinforced solid polymer electrolyte membrane C.
The fluorine-based proton conductive polymer constituting Nafion R has a repeating unit represented by the formula (A-1).
The dimensional change rate of the solid polymer electrolyte membrane C was measured. The results are shown in Table 2. From Table 2, it was found that the dimensional change rate was extremely large as compared with Example 1.

膜電極接合体の製造:
固体高分子電解質膜Aの代わりに固体高分子電解質膜Cを用いた以外は、例1と同様にして膜電極接合体Cを得た。
膜電極接合体Cを用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定を行った。結果を表3に示す。
Manufacture of membrane electrode assembly:
A membrane / electrode assembly C was obtained in the same manner as in Example 1 except that the solid polymer electrolyte membrane C was used instead of the solid polymer electrolyte membrane A.
Using the membrane / electrode assembly C, a polymer electrolyte fuel cell was prepared, and the initial cell voltage was measured. The results are shown in Table 3.

〔例4〕
フッ素系不織布の製造:
繰り返し単位(ε1)を有する含フッ素ポリマーの溶液(旭硝子社製、サイトップCTL−107S、溶媒:フロリナートFC−77(3M社製、沸点:100℃)、固形分:7質量%)をそのまま紡糸原液として用い、例1と同様にして電界紡糸を試みた。開始1分後に針の先が目詰まりを起こし、紡糸原液を吐出できなくなり、不織布は得られなかった。
[Example 4]
Production of fluorine-based nonwoven fabric:
A fluorine-containing polymer solution having a repeating unit (ε1) (Asahi Glass Co., Cytop CTL-107S, solvent: Fluorinert FC-77 (manufactured by 3M, boiling point: 100 ° C.), solid content: 7% by mass) is spun as it is. Electrospinning was attempted in the same manner as in Example 1 using as a stock solution. One minute after the start, the tip of the needle was clogged, and the spinning solution could not be discharged, and no nonwoven fabric was obtained.

Figure 2008243419
Figure 2008243419

Figure 2008243419
Figure 2008243419

Figure 2008243419
Figure 2008243419

本発明のフッ素系不織布、固体高分子電解質膜および膜電極接合体を用いることにより、高出力、かつ長寿命の固体分子形燃料電池が得られる。   By using the fluorine-based nonwoven fabric, the solid polymer electrolyte membrane and the membrane electrode assembly of the present invention, a high output and long life solid molecular fuel cell can be obtained.

電界紡糸法による不織布製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the nonwoven fabric manufacturing apparatus by an electrospinning method. 本発明の膜電極接合体の一例を示す断面図である。It is sectional drawing which shows an example of the membrane electrode assembly of this invention. 本発明の膜電極接合体の他の例を示す断面図である。It is sectional drawing which shows the other example of the membrane electrode assembly of this invention.

符号の説明Explanation of symbols

20 膜電極接合体
21 触媒層
23 アノード
24 カソード
25 固体高分子電解質膜
20 Membrane / Electrode Assembly 21 Catalyst Layer 23 Anode 24 Cathode 25 Solid Polymer Electrolyte Membrane

Claims (4)

主鎖に脂肪族環構造を有する含フッ素ポリマーと溶媒とを含む紡糸原液を用いた電界紡糸法にてフッ素系不織布を製造する方法において、
前記溶媒として、沸点が110℃以上の溶媒を含むものを用いることを特徴とする、フッ素系不織布の製造方法。
In a method for producing a fluorine-based nonwoven fabric by electrospinning using a spinning dope containing a fluorine-containing polymer having an aliphatic ring structure in the main chain and a solvent,
A method for producing a fluorine-based nonwoven fabric, comprising using a solvent having a boiling point of 110 ° C. or higher as the solvent.
主鎖に脂肪族環構造を有する含フッ素ポリマーの連続繊維からなり、
目付量が7.5cm/m以下であり、厚さが23μm以下である、フッ素系不織布。
Consisting of continuous fibers of a fluoropolymer having an aliphatic ring structure in the main chain,
A fluorine-based nonwoven fabric having a basis weight of 7.5 cm 3 / m 2 or less and a thickness of 23 μm or less.
請求項2に記載のフッ素系不織布を含む、固体高分子形燃料電池用固体高分子電解質膜。   A solid polymer electrolyte membrane for a polymer electrolyte fuel cell, comprising the fluorine-based nonwoven fabric according to claim 2. 請求項2に記載のフッ素系不織布を含む固体高分子電解質膜が、アノードとカソードとの間に配置された、固体高分子形燃料電池用膜電極接合体。   A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the polymer electrolyte membrane comprising the fluorine-based nonwoven fabric according to claim 2 is disposed between an anode and a cathode.
JP2007078743A 2007-03-26 2007-03-26 Fluorine-based nonwoven fabric manufacturing method, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane electrode assembly Expired - Fee Related JP5157211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078743A JP5157211B2 (en) 2007-03-26 2007-03-26 Fluorine-based nonwoven fabric manufacturing method, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078743A JP5157211B2 (en) 2007-03-26 2007-03-26 Fluorine-based nonwoven fabric manufacturing method, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2008243419A true JP2008243419A (en) 2008-10-09
JP5157211B2 JP5157211B2 (en) 2013-03-06

Family

ID=39914531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078743A Expired - Fee Related JP5157211B2 (en) 2007-03-26 2007-03-26 Fluorine-based nonwoven fabric manufacturing method, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5157211B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013578A1 (en) * 2009-07-31 2011-02-03 旭硝子株式会社 Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell
CN102787444A (en) * 2012-08-18 2012-11-21 东华大学 Preparation method of porous network structure fiber membrane of nano cellulose/silicon dioxide
JP2016532014A (en) * 2013-07-15 2016-10-13 ソルヴェイ(ソシエテ アノニム) Fluoropolymer fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256973A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2006144138A (en) * 2004-11-16 2006-06-08 Gunze Ltd Method for producing fluorine nonwoven fabric and fluorine nonwoven fabric
JP2007018995A (en) * 2004-12-22 2007-01-25 Asahi Glass Co Ltd Electrolyte membrane, its production process, and membrane-electrode assembly for solid polymer type fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256973A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2006144138A (en) * 2004-11-16 2006-06-08 Gunze Ltd Method for producing fluorine nonwoven fabric and fluorine nonwoven fabric
JP2007018995A (en) * 2004-12-22 2007-01-25 Asahi Glass Co Ltd Electrolyte membrane, its production process, and membrane-electrode assembly for solid polymer type fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013578A1 (en) * 2009-07-31 2011-02-03 旭硝子株式会社 Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell
US8597855B2 (en) 2009-07-31 2013-12-03 Asahi Glass Company, Limited Electrolyte material, liquid composition and membrane/electrode assembly for polymer electrolyte fuel cell
JP5609874B2 (en) * 2009-07-31 2014-10-22 旭硝子株式会社 Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
CN102787444A (en) * 2012-08-18 2012-11-21 东华大学 Preparation method of porous network structure fiber membrane of nano cellulose/silicon dioxide
JP2016532014A (en) * 2013-07-15 2016-10-13 ソルヴェイ(ソシエテ アノニム) Fluoropolymer fiber
US10364514B2 (en) 2013-07-15 2019-07-30 Solvay Sa Fluoropolymer fibre

Also Published As

Publication number Publication date
JP5157211B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
US8007953B2 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell
JP6235554B2 (en) POLYMER ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME
US8147745B2 (en) Process for producing fiber and method for producing catalyst layer
JP5375022B2 (en) Method for producing fiber and method for producing catalyst layer
JP5251515B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for polymer electrolyte fuel cell
JP2006114502A (en) Polymer electrolyte film for direct oxidation type fuel cell, its manufacturing method, and direct oxidation type fuel cell system including this
JP2009245639A (en) Electrolyte membrane for polymer electrolyte fuel cell, method for manufacturing thereof, and membrane-electrode assembly for polymer electrolyte fuel cell
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
CN1707832A (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP2010146965A (en) Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell
WO2009151013A1 (en) Membrane electrode assembly for polymer fuel cell
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
JP2020526002A (en) Electrolyte membrane for fuel cells containing nanofiber spinning layer
JP2004259661A (en) Membrane/electrode jointed body and its manufacturing method
JP2007200762A (en) Membrane electrode assembly for solid polymer fuel cell, and manufacturing method therefor
JP2008243420A (en) Manufacturing method for fluorine-based nonwoven fabric, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for solid polymer fuel cell, and membrane electrode assembly
JP5233153B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
KR20070019868A (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
JP2018106957A (en) Method for manufacturing solid polymer electrolyte film, method for manufacturing membrane-electrode assembly, and method for manufacturing solid polymer fuel cell
JP5157211B2 (en) Fluorine-based nonwoven fabric manufacturing method, fluorine-based nonwoven fabric, solid polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane electrode assembly
KR20170036632A (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP5181717B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
KR102367411B1 (en) Reinforced composite electrolyte membrane and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees