JP2008243063A - Design support system for vehicle - Google Patents

Design support system for vehicle Download PDF

Info

Publication number
JP2008243063A
JP2008243063A JP2007085848A JP2007085848A JP2008243063A JP 2008243063 A JP2008243063 A JP 2008243063A JP 2007085848 A JP2007085848 A JP 2007085848A JP 2007085848 A JP2007085848 A JP 2007085848A JP 2008243063 A JP2008243063 A JP 2008243063A
Authority
JP
Japan
Prior art keywords
temperature
heat
exhaust pipe
heat source
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007085848A
Other languages
Japanese (ja)
Other versions
JP4967752B2 (en
Inventor
Yoriaki Kondo
自明 近藤
Hiroshi Tanaka
洋 田中
Yosuke Iwasaki
陽介 岩▲崎▼
Yoshinori Ikeda
義典 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007085848A priority Critical patent/JP4967752B2/en
Publication of JP2008243063A publication Critical patent/JP2008243063A/en
Application granted granted Critical
Publication of JP4967752B2 publication Critical patent/JP4967752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a design support technique capable of executing a component layout appropriate of the heat-resistant temperature of a component and of the heat insulation countermeasure thereof after comprehending a temperature distribution around a heat source. <P>SOLUTION: The design support system for laying out components around a heat source to be loaded on a vehicle generates body model data around an exhaust pipe in S1, sets a surface temperature of the exhaust pipe and the existence/absence of an insulator in S2, calculates atmospheric temperature around the exhaust pipe in accordance with a distance to the exhaust pipe in S3 to S5, and displays a temperature distribution around the exhaust pipe along with the components around the exhaust pipe by isothermal lines on the basis of the atmospheric temperature in S6 to S10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両に搭載される排気管等の熱源周辺に部品をレイアウトするための設計支援技術に関する。   The present invention relates to a design support technology for laying out components around a heat source such as an exhaust pipe mounted on a vehicle.

従来の車両の設計支援システムとして、特許文献1には、排気管近傍に配置されるエアクリーナの表面色を熱輻射の低い色とする技術が記載されている。また、特許文献2には、排気系部品の遮熱材が記載されている。
特開2004−124922号公報 特開平08−169244号公報
As a conventional vehicle design support system, Patent Document 1 describes a technique for setting the surface color of an air cleaner disposed near an exhaust pipe to a color with low heat radiation. Patent Document 2 describes a heat shielding material for exhaust system parts.
JP 2004-124922 A Japanese Patent Laid-Open No. 08-169244

しかしながら、上記従来の技術では排気系部品に遮熱材を施す場合、排気系部品周辺の温度分布を考慮しておらず、実際の温度分布に対する部品の耐熱温度や適正な遮熱対策が施されているかの検討が十分になされていない。   However, in the above prior art, when a heat shielding material is applied to an exhaust system component, the temperature distribution around the exhaust system component is not taken into consideration, and the heat resistant temperature of the component against the actual temperature distribution and appropriate heat shielding measures are taken. It has not been fully examined.

本発明は、上記課題に鑑みてなされ、その目的は、熱源周辺の温度分布を把握した上で、部品の耐熱温度や遮熱対策が適正な部品レイアウトを実施することができる設計支援技術を実現することである。   The present invention has been made in view of the above-mentioned problems, and its purpose is to realize a design support technology capable of implementing a component layout in which the heat-resistant temperature of the component and heat shielding measures are appropriate after grasping the temperature distribution around the heat source. It is to be.

上述の課題を解決し、目的を達成するために、本発明に係る第1の形態では、車両に搭載される熱源周辺に部品をレイアウトするための設計支援システムであって、前記熱源の温度を設定する熱源温度設定手段と、前記熱源との距離に応じた熱源周辺の雰囲気温度を算出する雰囲気温度算出手段と、前記雰囲気温度に基づいて、前記熱源周辺の部品と共に、当該熱源周辺の温度分布を等温度線により表示する表示手段と、を有する。第1の形態によれば、熱源周辺の温度分布を把握した上で、部品の耐熱温度や遮熱対策が適正な部品レイアウトを実施することができる。   In order to solve the above-described problems and achieve the object, according to a first embodiment of the present invention, there is provided a design support system for laying out components around a heat source mounted on a vehicle, wherein the temperature of the heat source is set. A heat source temperature setting means for setting; an atmosphere temperature calculating means for calculating an ambient temperature around the heat source according to a distance from the heat source; and a temperature distribution around the heat source together with components around the heat source based on the ambient temperature. Display means for displaying by means of isothermal lines. According to the first embodiment, after grasping the temperature distribution around the heat source, it is possible to implement a component layout in which the heat resistant temperature of the component and the heat shielding measures are appropriate.

また、本発明に係る第2の形態は、前記部品の耐熱温度を設定する耐熱温度設定手段を更に有し、前記表示手段は、設定された耐熱温度以上の領域に配置されている部品を識別可能に表示する。第2の形態によれば、熱源周辺においてレイアウト変更が必要な部品を把握することができる。   The second aspect of the present invention further includes a heat-resistant temperature setting means for setting a heat-resistant temperature of the component, and the display means identifies a component arranged in a region above the set heat-resistant temperature. Display as possible. According to the 2nd form, the components which need a layout change can be grasped | ascertained around a heat source.

また、本発明に係る第3の形態は、前記部品の耐熱温度を設定する耐熱温度設定手段を更に有し、前記表示手段は、部品の耐熱温度を超えない領域を当該部品の配置可能領域として識別可能に表示する。第3の形態によれば、部品の耐熱温度を満足するように熱源周辺に対する部品レイアウトを決定することができる。   Moreover, the 3rd form which concerns on this invention further has a heat-resistant temperature setting means to set the heat-resistant temperature of the said component, and the said display means makes the area | region which does not exceed the heat-resistant temperature of a component the area | region which can arrange | position the said component. Display identifiable. According to the third embodiment, the component layout with respect to the periphery of the heat source can be determined so as to satisfy the heat-resistant temperature of the component.

また、本発明に係る第4の形態は、前記熱源は車体下部に配置される排気管であり、前記表示手段は、前記排気管上方の等温度線を境界とした領域を下方より広範囲に表示する。第4の形態によれば、熱が滞留し高温になりやすい熱源上方の等温度領域を熱源下部より広い範囲に設定するので、熱源周辺の実際の温度分布に即した等温度領域に基づく部品レイアウトを実施することができる。   According to a fourth aspect of the present invention, the heat source is an exhaust pipe disposed at a lower part of a vehicle body, and the display means displays a region having an isothermal line above the exhaust pipe as a boundary in a wider range from below. To do. According to the fourth embodiment, since the isothermal region above the heat source where heat is likely to stay and become high temperature is set to a wider range than the lower part of the heat source, the component layout based on the isothermal region conforming to the actual temperature distribution around the heat source Can be implemented.

また、本発明に係る第5の形態は、前記雰囲気温度算出手段は、前記熱源と前記部品のいずれかに遮熱材を設けた状態で前記雰囲気温度を算出する。第5の形態によれば、遮熱対策の有無を考慮した部品レイアウトを実施することができる。   According to a fifth aspect of the present invention, the ambient temperature calculation means calculates the ambient temperature in a state where a heat shield is provided in either the heat source or the component. According to the fifth embodiment, it is possible to implement a component layout in consideration of the presence or absence of a heat shield measure.

尚、本発明は、上記設計支援システムの各手段の機能を実現するためのコンピュータに実行させるためのプログラムや当該プログラムを格納したコンピュータ可読記憶媒体としても適用可能である。   The present invention can also be applied to a program for causing a computer to implement the functions of the respective means of the design support system and a computer-readable storage medium storing the program.

本発明によれば、排気管等の熱源周辺の温度分布を把握した上で、部品の耐熱温度や遮熱対策が適正な部品レイアウトを実施することができる。   According to the present invention, it is possible to implement a component layout in which the heat resistance temperature of the components and the heat shielding measures are appropriate after grasping the temperature distribution around the heat source such as the exhaust pipe.

以下に、本発明の実施の形態について添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

なお、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で下記実施形態を修正又は変形したものに適用可能である。   The embodiment described below is an example as means for realizing the present invention, and the present invention can be applied to a modified or modified embodiment described below without departing from the spirit of the present invention.

[システム構成]
図1は、本発明に係る実施形態の設計支援システムのハードウェア構成を例示する外観図(a)及びブロック図(b)である。
[System configuration]
FIG. 1 is an external view (a) and a block diagram (b) illustrating the hardware configuration of the design support system according to the embodiment of the present invention.

図1において、コンピュータ本体1には、キーボード2やマウス3からなる入力装置、液晶表示(LCD)パネルからなる表示装置4及びハードディスク(HDD)からなる補助記憶装置5が接続されている。コンピュータ本体1は、演算処理を実行するCPU、後述する熱源周辺の温度分布に基づく部品レイアウト適正化処理(以下、部品レイアウト適正化処理)を実行するためのプログラムを格納するROM、データの一時保持及びワークエリアとしてのRAM、周辺装置2〜5との間でデータの授受を実行するI/O回路を備える。3次元CADデータ(以下、単にCADデータともいう)は、ユーザが入力装置2,3及び表示装置4を介して入力し、補助記憶装置5に記憶される。コンピュータ本体1は、ユーザの操作入力によって上記CADデータをRAM内に書き込み、部品レイアウト適正化処理を実行する。この部品レイアウト適正化処理においては、車両の熱源(排気管等の排気系部品やエンジン等の内燃機関)周辺の画像データが温度分布(等温度線)と共に表示装置4に表示される。また、コンピュータ本体1にプリンタを接続すれば、上記画像データをプリント出力することもできる。   In FIG. 1, an input device including a keyboard 2 and a mouse 3, a display device 4 including a liquid crystal display (LCD) panel, and an auxiliary storage device 5 including a hard disk (HDD) are connected to the computer main body 1. The computer main body 1 includes a CPU that executes arithmetic processing, a ROM that stores a program for executing component layout optimization processing (hereinafter, component layout optimization processing) based on a temperature distribution around a heat source, which will be described later, and temporary storage of data And a RAM as a work area, and an I / O circuit for executing data exchange with the peripheral devices 2 to 5. Three-dimensional CAD data (hereinafter also simply referred to as CAD data) is input by the user via the input devices 2 and 3 and the display device 4 and stored in the auxiliary storage device 5. The computer main body 1 writes the CAD data in the RAM by a user operation input, and executes a component layout optimization process. In this component layout optimization process, image data around the heat source of the vehicle (exhaust system components such as exhaust pipes and internal combustion engines such as engines) is displayed on the display device 4 together with the temperature distribution (isothermal lines). If a printer is connected to the computer main body 1, the image data can be printed out.

[部品レイアウト適正化処理]
図2は、図1に示す設計支援システムによる部品レイアウト適正化処理を示すフローチャートである。図3は車体下部のモデルデータを示す図、図4は図3のA−A断面図、図5はインシュレータ有の場合(a)とインシュレータ無の場合(b)の夫々の図3のB−B断面図、図6は図3のC−C断面図(a)及び立体図(b)、図7は図3のD−D断面図である。
[Part layout optimization processing]
FIG. 2 is a flowchart showing component layout optimization processing by the design support system shown in FIG. 3 is a view showing model data of the lower part of the vehicle body, FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3, and FIG. 5 is a cross-sectional view taken along B- in FIG. B sectional view, FIG. 6 is a CC sectional view (a) and a three-dimensional view (b) of FIG. 3, and FIG. 7 is a DD sectional view of FIG.

図2において、先ず、コンピュータ本体1は、補助記憶装置5からCADデータを読み出し、熱源としての排気管周辺の部品を所定のデザインルールによりレイアウトした車体モデルデータを作成する(S1)。ここで、車体モデルデータは、図3乃至図7に示すように、車体下部において車体前後方向に延びる排気管と、排気管周辺に配置された、触媒、インシュレータ、アウタパネル、インナパネル、フロアマット、フューエルパイプ、フューエルタンク、サイレンサー等の各部品の形状データから構成される。尚、熱を遮断する遮熱材(インシュレータ)は、車種等に応じて排気管の表面温度が異なるため、必要に応じて部品側若しくは排気管側に選択的に配置される。   In FIG. 2, first, the computer main body 1 reads CAD data from the auxiliary storage device 5 and creates vehicle body model data in which parts around the exhaust pipe as a heat source are laid out according to a predetermined design rule (S1). Here, as shown in FIGS. 3 to 7, the vehicle body model data includes an exhaust pipe extending in the longitudinal direction of the vehicle body at the lower part of the vehicle body, and a catalyst, an insulator, an outer panel, an inner panel, a floor mat, It consists of shape data of each part such as fuel pipe, fuel tank, silencer and so on. In addition, since the heat insulating material (insulator) which interrupts | blocks heat differs in the surface temperature of an exhaust pipe according to a vehicle model etc., it selectively arrange | positions as needed at the components side or the exhaust pipe side.

次に、コンピュータ本体1は、排気管の表面温度及びインシュレータの有無を設定する(S2)。ここで、排気管の表面温度は、図10に例示するように、車種に応じて400〜800℃の範囲で設定されるが、各表面温度は、急勾配の坂道を登坂した直後にエンジンを停止させた場合のように最高到達温度とされる。ここで、排気管の表面温度は、車種のほか、走行状態、燃料噴射量、点火タイミング等に応じて設定しても良い。また、インシュレータは部品若しくは排気管に対してレイアウトされる。尚、排気管表面温度及びインシュレータの有無は、ユーザが入力装置2,3及び表示装置4に表示されたUI(ユーザインタフェース)画面等を介して設定可能である。   Next, the computer main body 1 sets the surface temperature of the exhaust pipe and the presence / absence of an insulator (S2). Here, as illustrated in FIG. 10, the surface temperature of the exhaust pipe is set in a range of 400 to 800 ° C. according to the vehicle type. Each surface temperature is set immediately after climbing a steep slope. The maximum temperature is reached as in the case of stopping. Here, the surface temperature of the exhaust pipe may be set according to the running state, the fuel injection amount, the ignition timing, etc. in addition to the vehicle type. Insulators are also laid out with respect to parts or exhaust pipes. The exhaust pipe surface temperature and the presence or absence of the insulator can be set by the user via a UI (user interface) screen displayed on the input devices 2 and 3 and the display device 4.

次に、コンピュータ本体1は、S2で設定された排気管表面温度やインシュレータの有無と予め実験等により測定された排気管周辺の各測定点での温度との関係を表す温度マップを参照して、補助記憶装置5からS1で作成された車体モデルデータの各測定点での温度データを読み出す(S3)。ここで、温度マップは、図3乃至図7に示すように、実車に対して車幅方向に平行な複数(例えば、4個)の切断面A〜Dを設定し、これらの切断面上に配置された車体下部の各部品に対応する複数の測定点PA1〜PA5,PB1〜PB8,PC1〜PC6、PD1〜PD3に熱電対を配置し、各測定点での温度測定結果と排気管表面温度との関係によって求められる。   Next, the computer main unit 1 refers to the temperature map representing the relationship between the exhaust pipe surface temperature and the presence or absence of the insulator set in S2 and the temperature at each measurement point around the exhaust pipe measured in advance through experiments or the like. Then, the temperature data at each measurement point of the vehicle body model data created in S1 is read from the auxiliary storage device 5 (S3). Here, as shown in FIGS. 3 to 7, the temperature map sets a plurality of (for example, four) cut surfaces A to D parallel to the vehicle width direction with respect to the actual vehicle, and on these cut surfaces. Thermocouples are arranged at a plurality of measurement points PA1 to PA5, PB1 to PB8, PC1 to PC6, and PD1 to PD3 corresponding to the respective parts at the lower part of the vehicle body, and temperature measurement results and exhaust pipe surface temperatures at each measurement point Is required by the relationship.

次に、コンピュータ本体1は、S3で読み出した各測定点の温度データから、排気管からの距離に応じた排気管周辺の雰囲気温度を表す関数式を算出する(S4)。ここで、上記関数式は、図8に例示するように、S3で読み出した各測定点の温度データ(PB1〜PB8)をグラフ上にプロットし、排気管からの距離に応じて、排気管の上方及び下方の測定点毎に誤差が最小となるような関数(近似曲線)TA,TBを算出する。   Next, the computer main body 1 calculates a functional expression representing the ambient temperature around the exhaust pipe according to the distance from the exhaust pipe from the temperature data of each measurement point read out in S3 (S4). Here, as illustrated in FIG. 8, the above-described function equation plots the temperature data (PB1 to PB8) of each measurement point read in S3 on a graph, and according to the distance from the exhaust pipe, Functions (approximate curves) TA and TB that minimize the error are calculated for each of the upper and lower measurement points.

図8の例では、排気管上方の測定点(PB1,PB5,PB6)に対して近似曲線TA、例えばTA=A0×exp(-A1×L)+T0が求められる。同様に、排気管下方の測定点(PB2,PB3,PB4,PB7,PB8)に対して近似曲線TB、例えばTB=A0×exp(-A2×L)+T0が求められる。   In the example of FIG. 8, an approximate curve TA, for example, TA = A0 × exp (−A1 × L) + T0 is obtained for the measurement point (PB1, PB5, PB6) above the exhaust pipe. Similarly, an approximate curve TB, for example, TB = A0 × exp (−A2 × L) + T0 is obtained for the measurement points (PB2, PB3, PB4, PB7, PB8) below the exhaust pipe.

但し、TA,TB:排気管から距離Lの位置における温度、A0:排気管表面温度より決まる定数、A1,A2:各測定点に対する誤差を最小とする定数、T0:外気温より決まる定数
そして、コンピュータ本体1は、S4で求められた関数を用いて各測定点の予測温度を算出する(S5)。
Where TA, TB: temperature at a distance L from the exhaust pipe, A0: constant determined by the exhaust pipe surface temperature, A1, A2: constant that minimizes the error for each measurement point, T0: constant determined by the outside air temperature and The computer main body 1 calculates the predicted temperature at each measurement point using the function obtained in S4 (S5).

次に、コンピュータ本体1は、S5で算出された各測定点の予測温度と排気管からの距離に応じて排気管周辺の温度分布を表す等温度線を作成する(S6)。ここでは、図4乃至図7に例示するように、S1で作成された車体モデルデータに対して、排気管から近い順に270℃、200℃、130℃の各等温度線T270,T200,T130を設定したデータを作成する。尚、本実施形態では、130℃はブレーキ部品や燃料供給部品の性能を補償するための上限値、200℃は樹脂材料の溶融温度の上限値、270℃はホースやラバー類の発煙温度の上限値として夫々設定されている。   Next, the computer main body 1 creates an isotherm representing the temperature distribution around the exhaust pipe according to the predicted temperature of each measurement point calculated in S5 and the distance from the exhaust pipe (S6). Here, as illustrated in FIGS. 4 to 7, the isothermal lines T270, T200, and T130 of 270 ° C., 200 ° C., and 130 ° C. are arranged in order from the exhaust pipe to the vehicle body model data created in S1. Create the set data. In this embodiment, 130 ° C. is the upper limit value for compensating the performance of the brake component and fuel supply component, 200 ° C. is the upper limit value of the melting temperature of the resin material, and 270 ° C. is the upper limit of the fuming temperature of the hose and rubbers. Each is set as a value.

次に、コンピュータ本体1は、排気管周辺の各部品の耐熱温度TCと当該部品が配置される領域の雰囲気温度T1とを比較する(S7)。尚、各部品の耐熱温度TCは、上記S2において、ユーザが入力装置2,3及び表示装置4に表示されたUI画面を介して入力可能となっている。   Next, the computer main body 1 compares the heat-resistant temperature TC of each part around the exhaust pipe with the ambient temperature T1 in the region where the part is arranged (S7). The heat-resistant temperature TC of each component can be input by the user via the UI screen displayed on the input devices 2 and 3 and the display device 4 in S2.

そして、コンピュータ本体1は、各部品の耐熱温度TCがその領域の雰囲気温度T1を下回る場合には、車体モデルデータに等温度線を設定した画像と共に(図9,図11参照)、当該部品のレイアウトが適正でなく変更が必要であることを報知するための警告表示を表示装置4に出力し、当該部品を識別可能に表示する(S8、図10参照)。ここでは、例えば、図10(c)に示すように、耐熱温度120℃であるフューエルパイプが、130℃の等温度線よりも排気管側に配置されている場合、警告と同時に該当する項目の色を変更して表示する。尚、図10では、排気管表面温度と、部品温度の予測範囲、排気管との距離、インシュレータの有無が同時に表示される。これにより、排気管周辺においてレイアウト変更が必要な部品を把握することができる。また、遮熱対策の有無を考慮した部品レイアウトを実施することができる。   Then, when the heat-resistant temperature TC of each part is lower than the ambient temperature T1 of the region, the computer main body 1 includes an image in which isothermal lines are set in the vehicle body model data (see FIGS. 9 and 11) and A warning display for notifying that the layout is not appropriate and needs to be changed is output to the display device 4 so that the component can be identified (S8, see FIG. 10). Here, for example, as shown in FIG. 10C, when a fuel pipe having a heat-resistant temperature of 120 ° C. is arranged on the exhaust pipe side from the 130 ° C. isothermal line, Change color and display. In FIG. 10, the exhaust pipe surface temperature, the predicted part temperature range, the distance from the exhaust pipe, and the presence / absence of an insulator are displayed at the same time. As a result, it is possible to grasp parts that require layout change around the exhaust pipe. In addition, it is possible to implement a component layout that takes into account the presence or absence of heat shield measures.

また、コンピュータ本体1は、不適とされた部品を適正な位置にレイアウト変更した車体モデルデータを再作成し表示装置4に出力する(S9)。   Further, the computer main body 1 recreates vehicle body model data in which the layout of the inappropriate parts is changed to an appropriate position, and outputs the data to the display device 4 (S9).

また、コンピュータ本体1は、各部品の耐熱温度TCがその領域の雰囲気温度T1以上の場合には、当該部品の耐熱温度を超えない領域をレイアウト可能領域として識別可能に表示する(S10、図9,図11参照)。これにより、部品の耐熱温度を満足するように排気管周辺に対する部品レイアウトを決定することができる。   Further, when the heat-resistant temperature TC of each part is equal to or higher than the ambient temperature T1 of the area, the computer main body 1 displays an area that does not exceed the heat-resistant temperature of the part as a layoutable area (S10, FIG. 9). FIG. 11). Thereby, the component layout with respect to the periphery of the exhaust pipe can be determined so as to satisfy the heat-resistant temperature of the component.

このように、車体モデルデータに重畳して等温度線を表示することにより、ユーザは等温度線を境界線として排気管を中心とした温度分布が識別できるようになる。   Thus, by displaying the isothermal line superimposed on the vehicle body model data, the user can identify the temperature distribution around the exhaust pipe with the isothermal line as the boundary line.

尚、上記S6では、図8の排気管上方の関数式TAから求めた等温度線を境界とした領域が排気管下方の関数式TBに比べて広範囲となるように作成し表示する(図9及び図11参照)。これにより、熱が滞留し高温になりやすい排気管上方の等温度線を境界とした領域が排気管下部より広い範囲に設定されるので、排気管周辺の実際の温度分布に即した部品レイアウトを実施することができる。   In S6, the region with the isothermal line obtained from the function equation TA above the exhaust pipe in FIG. 8 as a boundary is created and displayed so as to be wider than the function equation TB below the exhaust pipe (FIG. 9). And FIG. 11). As a result, the region with the boundary of the isothermal line above the exhaust pipe, where heat is likely to stay and become hot, is set to be wider than the lower part of the exhaust pipe, so the component layout in line with the actual temperature distribution around the exhaust pipe Can be implemented.

尚、上述した設計支援システムによる部品レイアウト適正化処理を実行するコンピュータプログラムが格納された記憶媒体を、上記コンピュータ本体に供給して、当該コンピュータ本体が記憶媒体に格納されたプログラムコードを読み出して、上記処理を実行するようにしてもよい。   Note that a storage medium storing a computer program for executing the component layout optimization processing by the design support system described above is supplied to the computer main body, and the computer main body reads out the program code stored in the storage medium, You may make it perform the said process.

本発明に係る実施形態の設計支援システムのハードウェア構成を例示する外観図(a)及びブロック図(b)である。1A and 1B are an external view and a block diagram illustrating a hardware configuration of a design support system according to an embodiment of the present invention. 図1に示す設計支援システムによる部品レイアウト適正化処理を示すフローチャートである。It is a flowchart which shows the components layout optimization process by the design support system shown in FIG. 車体下部のモデルデータを例示する図である。It is a figure which illustrates the model data of the vehicle body lower part. 図3のA−A断面図である。It is AA sectional drawing of FIG. インシュレータ有の場合(a)とインシュレータ無の場合(b)の夫々の図3のB−B断面図である。FIG. 4 is a cross-sectional view taken along the line B-B in FIG. 3 when the insulator is present (a) and when the insulator is not present (b). 図3のC−C断面図(a)及び立体図(b)である。It is CC sectional drawing (a) and solid figure (b) of FIG. 図3のD−D断面図である。It is DD sectional drawing of FIG. 図2のS4における関数式の算出処理を説明する図である。It is a figure explaining the calculation process of the function type | formula in S4 of FIG. 図2のS6における270℃の場合(a)、200℃の場合(b)、130℃の場合(c)の各等温度線を境界とした排気管下方の領域の表示例を示す図である。It is a figure which shows the example of a display of the area | region below an exhaust pipe in the case of 270 degreeC in S6 of FIG. 2 (a), the case of 200 degreeC (b), and the case of 130 degreeC (c) at the boundary of each isothermal line. . 図9の等温度線を境界とした各領域において、車種毎の排気管表面温度と部品温度との関係を数値で示す図である。It is a figure which shows numerically the relationship between the exhaust pipe surface temperature for every vehicle model, and component temperature in each area | region which used the isothermal line of FIG. 9 as a boundary. 図2のS6における270℃の場合(a)、200℃の場合(b)、130℃の場合(c)の各等温度線を境界とした排気管上方の領域の表示例を示す図である。It is a figure which shows the example of a display of the area | region above an exhaust pipe in the case of 270 degreeC in S6 of FIG. 2 (a), the case of 200 degreeC (b), and the case of 130 degreeC (c). .

符号の説明Explanation of symbols

1 コンピュータ本体
2,3 入力装置
4 表示装置
5 補助記憶装置
1 Computer body 2, 3 Input device 4 Display device 5 Auxiliary storage device

Claims (5)

車両に搭載される熱源周辺に部品をレイアウトするための設計支援システムであって、
前記熱源の温度を設定する熱源温度設定手段と、
前記熱源との距離に応じた熱源周辺の雰囲気温度を算出する雰囲気温度算出手段と、
前記雰囲気温度に基づいて、前記熱源周辺の部品と共に、当該熱源周辺の温度分布を等温度線により表示する表示手段と、を有することを特徴とするシステム。
A design support system for laying out parts around a heat source mounted on a vehicle,
Heat source temperature setting means for setting the temperature of the heat source;
Atmosphere temperature calculating means for calculating the ambient temperature around the heat source according to the distance from the heat source;
And a display means for displaying a temperature distribution around the heat source with isothermal lines together with components around the heat source based on the ambient temperature.
前記部品の耐熱温度を設定する耐熱温度設定手段を更に有し、
前記表示手段は、設定された耐熱温度以上の領域に配置されている部品を識別可能に表示することを特徴とする請求項1に記載のシステム。
It further has heat resistant temperature setting means for setting the heat resistant temperature of the component,
The system according to claim 1, wherein the display unit displays a component arranged in a region having a temperature higher than a set heat-resistant temperature so that the component can be identified.
前記部品の耐熱温度を設定する耐熱温度設定手段を更に有し、
前記表示手段は、部品の耐熱温度を超えない領域を当該部品の配置可能領域として識別可能に表示することを特徴とする請求項1に記載のシステム。
It further has heat resistant temperature setting means for setting the heat resistant temperature of the component,
The system according to claim 1, wherein the display unit displays an area that does not exceed a heat-resistant temperature of a part so as to be identifiable as an area where the part can be arranged.
前記熱源は車体下部に配置される排気管であり、
前記表示手段は、前記排気管上方の等温度線を境界とした領域を下方より広範囲に表示することを特徴とする請求項1に記載のシステム。
The heat source is an exhaust pipe disposed at the lower part of the vehicle body,
2. The system according to claim 1, wherein the display unit displays a region having an isothermal line above the exhaust pipe as a boundary from a lower range.
前記雰囲気温度算出手段は、前記熱源と前記部品のいずれかに遮熱材を設けた状態で前記雰囲気温度を算出することを特徴とする請求項1に記載のシステム。   The system according to claim 1, wherein the ambient temperature calculation unit calculates the ambient temperature in a state where a heat shielding material is provided in either the heat source or the component.
JP2007085848A 2007-03-28 2007-03-28 Vehicle design support system Active JP4967752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085848A JP4967752B2 (en) 2007-03-28 2007-03-28 Vehicle design support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085848A JP4967752B2 (en) 2007-03-28 2007-03-28 Vehicle design support system

Publications (2)

Publication Number Publication Date
JP2008243063A true JP2008243063A (en) 2008-10-09
JP4967752B2 JP4967752B2 (en) 2012-07-04

Family

ID=39914284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085848A Active JP4967752B2 (en) 2007-03-28 2007-03-28 Vehicle design support system

Country Status (1)

Country Link
JP (1) JP4967752B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073670A (en) * 2010-09-27 2012-04-12 Mitsubishi Motors Corp Thermal analysis method
CN105857644A (en) * 2016-03-29 2016-08-17 上海卫星工程研究所 Optimized design method of heat pipe radiator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101150A (en) * 1991-10-04 1993-04-23 Oki Electric Ind Co Ltd Analytic result data display system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101150A (en) * 1991-10-04 1993-04-23 Oki Electric Ind Co Ltd Analytic result data display system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073670A (en) * 2010-09-27 2012-04-12 Mitsubishi Motors Corp Thermal analysis method
CN105857644A (en) * 2016-03-29 2016-08-17 上海卫星工程研究所 Optimized design method of heat pipe radiator

Also Published As

Publication number Publication date
JP4967752B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
ES2843681T3 (en) Residual stress estimation method and residual stress estimation device
Cojocaru et al. A simple numerical method of cycle jumps for cyclically loaded structures
Sarkar et al. A Thermo-mechanical gradient enhanced damage method for fracture
JP4967752B2 (en) Vehicle design support system
JP2013092448A (en) Distortion measuring apparatus, method for measuring coefficient of linear expansion, and method for measuring correction coefficient of thermo-viewer
Yang et al. Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet
CN106217847B (en) Temperature-compensation method for buffer air cushion machine
JP6011473B2 (en) Exhaust system life prediction system
KR102531803B1 (en) Method for monitoring wear of refractory linings of blast furnaces
JP6432192B2 (en) Temperature prediction device for battery packs
JP5659462B2 (en) Refractory lining structure for steelmaking containers
CN111982046B (en) Method for judging heat transfer state of wall structure
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP2002266011A (en) Method for estimating furnace condition in blast furnace
DeLima-Silva Jr et al. A front-tracking BEM formulation for one-phase solidification/melting problems
Liu et al. Free vibration analysis of thin plates with side cracks by the weak form quadrature element method
Wang et al. Numerical simulation of the 3-dimensional combustion of aluminized heterogeneous propellants
JP2003296380A (en) Device, method and program for creating mesh for analysis
Syam et al. Temperature Distribution Analysis and Conduction Simulation in Rotary Furnace Walls Using ANSYS Software
JP5397634B2 (en) Thermal analysis method
US20140190094A1 (en) Method and Apparatus for Insulating Panels
KR101516499B1 (en) Method for modeling exhaust gas temperature to protect a catalyst
JP2017026448A (en) Method and device for estimating temperature in furnace
Silva et al. Numerical analysis of the thermal profile inside the wall of a rotary cement kiln
Mazaheri et al. Re-Entry Aeroheating Analysis of Tile-Repair Augers for the Shuttle Orbiter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150