JP2008241607A - Apparatus and method for detecting optical unevenness - Google Patents

Apparatus and method for detecting optical unevenness Download PDF

Info

Publication number
JP2008241607A
JP2008241607A JP2007085295A JP2007085295A JP2008241607A JP 2008241607 A JP2008241607 A JP 2008241607A JP 2007085295 A JP2007085295 A JP 2007085295A JP 2007085295 A JP2007085295 A JP 2007085295A JP 2008241607 A JP2008241607 A JP 2008241607A
Authority
JP
Japan
Prior art keywords
imaging
retardation film
optical
unevenness
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007085295A
Other languages
Japanese (ja)
Inventor
Takashi Murooka
孝 室岡
Masato Morita
正人 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007085295A priority Critical patent/JP2008241607A/en
Publication of JP2008241607A publication Critical patent/JP2008241607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a measurement of a full surface photographing to be carried out easily and precisely in a short time in an unevenness photographing of a cross-nicol configuration, wherein a phase difference film is sandwiched by two polarizers. <P>SOLUTION: An optical unevenness detecting apparatus 100 for detecting an optical unevenness of the phase difference film is provided with: a stage 25 for integrally holding and setting the phase difference film and the polarizers at a desired tilt angle; an illuminating means 27 for illuminating one side of the phase difference film; a photographing means 29 for photographing a transmission light screen of the illumination light from the illuminating means 27 through the polarizer on the other side of the phase difference film; and an unevenness detecting means 31 for detecting a brightness uneven component based on brightness information of a photographed image obtained by the photographing means 29. The photographing means 29 telephotographs from a position which is spaced from the phase difference film such that the angle variation along the photographing direction in a prescribed inspection area of the phase difference film is equal to or less than two degrees. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学ムラを検出する光学ムラ検出装置及び光学ムラ検出方法に関し、特に、位相差フィルムを一対の偏光板によってクロスニコル状態で挟んだ被検査対象に用いて好適なものである。   The present invention relates to an optical unevenness detection device and an optical unevenness detection method for detecting optical unevenness, and is particularly suitable for use in an inspection target in which a retardation film is sandwiched between a pair of polarizing plates in a crossed Nicols state.

例えば液晶パネルには、位相差フィルムを一対の偏光板によってクロスニコル状態で挟んだものがある。この種の液晶パネルでは、位相差フィルムの材料自体に場所的な不均一性がありムラを生じることがあるため、製造過程において表示欠陥が生じていないか等を検査する画像表示検査が行われる。この画像表示検査は、液晶パネルの画像を撮像手段(CCDカメラ等)で撮像して行われたり、観測者が異なる位置から観察すること等により行われる。   For example, some liquid crystal panels have a retardation film sandwiched between a pair of polarizing plates in a crossed Nicols state. In this type of liquid crystal panel, the retardation film material itself has local non-uniformity and may cause unevenness. Therefore, an image display inspection is performed to inspect whether a display defect has occurred in the manufacturing process. . This image display inspection is performed by picking up an image of the liquid crystal panel with an image pickup means (CCD camera or the like), or by observing the observer from a different position.

図10は液晶パネルにおける従来の中央部のみからの輝度ムラ観察を(a)、それによって見えるムラの例を(b)に表した説明図である。
画像表示検査におけるムラ撮像評価は、例えば図10(a)に示すように液晶パネル1から所定の観察距離にある撮像点3による定点撮像で実施され、パネル画面(パネル実装、又は偏光板クロスニコル形態)の中央部のみ見込み角が0度で、中央部から端に近づくに従い見込み角が大きくなる条件での撮像となっていた。
FIG. 10 is an explanatory diagram showing luminance unevenness observation from only the central portion of the liquid crystal panel (a), and an example of unevenness seen thereby (b).
For example, as shown in FIG. 10A, the uneven imaging evaluation in the image display inspection is performed by fixed-point imaging with an imaging point 3 at a predetermined observation distance from the liquid crystal panel 1, and a panel screen (panel mounting or polarizing crossed Nicols). In the central part of the embodiment, the prospective angle is 0 degree, and the imaging is performed under the condition that the prospective angle increases as it approaches the end from the central part.

一般的に観察距離は被検査パネルの高さHの3倍程度の距離に設定され、撮像視野範囲は光学的な制約から60mm角程度で行われた。そして、パネルを黒表示した際に、パネル周囲に発生する高輝度領域(光る領域)を観測することで、ムラ撮像評価がなされていた。目視の場合では、0.1cd程度の輝度差の検出でムラがあったとされた。   In general, the observation distance is set to a distance about three times the height H of the panel to be inspected, and the imaging field of view range is about 60 mm square due to optical restrictions. Then, when the panel is displayed in black, uneven imaging evaluation has been performed by observing a high-luminance region (light-emitting region) generated around the panel. In the case of visual observation, it was assumed that there was unevenness in detection of a luminance difference of about 0.1 cd.

特開2006−242821号公報JP 2006-242821 A

しかしながら、従来のムラ撮像評価は、60mm角程度の撮像視野範囲で行われていたため、例えばスジムラに対しては、視野範囲が狭すぎ、ムラの有無が正確に判断できない問題があった。図11は従来行われた定点観察を(a)、観察者が移動する実際の観察を(b)に表した説明図である。
実際は図11(a)に示す定点観測だけでなく、図11(b)に示すように、観測者1が頭を横に動かして観察する場合、パネルのどの位置に対しても垂直或いは斜めの方向から同時に観察している。ところが、被検査対象の材料毎にムラの見えが角度に依存して異なるため、複数の角度、距離での画像を取得して評価することが必要となった。また、従来のムラ撮像評価は、目でムラの程度を判断しながら、ムラの見えの程度が最も悪い角度を試行錯誤して決めてから撮像する場合もあり、作業効率の悪い問題があった。さらに、材料単体のムラを評価するには、見込み角が被検査対象の任意の位置に対して一定角度である評価も合わせて評価する必要のあることが分かった。
図12に偏光板クロスニコル及び視野角調整フィルム付VAパネルの見込み角と輝度との相関を表したグラフを示した。特に、サンプル形態が実装パネルの場合でなく、偏光板2枚のクロスニコル形態で観察する場合には、図12に示すように、見込み角に相関して、撮像画像の位置による輝度変化が大きく、画像に輝度の勾配ができるためムラの検出を困難にする要因となっていた。
また、図13にテレセントリックレンズを使用した従来の光学ムラ検出方法の模式図を示した。CCDカメラ等の撮像手段を面走査する方法では、平行方向からの撮像のためにテレセントリックレンズ4を使用した光学系5が使用される。しかし、1ショットで撮像できる面積が、縦横幅Wで20mm程度と狭く、被写体となるTVパネルが60インチ以上であると、およそ1000ショット以上必要となり膨大な時間が必要となってしまう問題があった。
本発明は上記状況に鑑みてなされたもので、特に偏光板2枚に位相差フィルムを挟み込んだクロスニコル形態でのムラ撮像において、全面撮像の計測が容易、且つ短時間で、しかも、高精度で行える光学ムラ検出装置及び光学ムラ検出方法を提供することにある。
However, since the conventional uneven imaging evaluation was performed in an imaging field of view of about 60 mm square, for example, for a non-uniform stripe, there was a problem that the field of view was too narrow to accurately determine the presence or absence of unevenness. FIG. 11 is an explanatory view showing the fixed point observation performed conventionally (a) and the actual observation of the observer moving in (b).
Actually, in addition to the fixed point observation shown in FIG. 11A, as shown in FIG. 11B, when the observer 1 moves the head sideways and observes, it is perpendicular or oblique to any position on the panel. Observe from the same direction. However, since the appearance of unevenness differs depending on the angle for each material to be inspected, it is necessary to acquire and evaluate images at a plurality of angles and distances. In addition, in the conventional uneven imaging evaluation, there is a case where imaging is performed after trial and error to determine the angle at which the degree of unevenness is worst while judging the degree of unevenness with the eyes, and there is a problem of poor work efficiency. . Furthermore, in order to evaluate the unevenness of a single material, it has been found that it is necessary to evaluate the evaluation in which the prospective angle is a fixed angle with respect to an arbitrary position of the inspection target.
FIG. 12 shows a graph showing the correlation between the expected angle and the luminance of the polarizing plate crossed Nicol and the VA panel with viewing angle adjusting film. In particular, when the sample form is not a mounting panel but is observed in a crossed Nicols form of two polarizing plates, as shown in FIG. 12, the luminance change due to the position of the captured image is large in correlation with the prospective angle. Since the image has a luminance gradient, it has been a factor that makes it difficult to detect unevenness.
FIG. 13 shows a schematic diagram of a conventional optical unevenness detection method using a telecentric lens. In the method of surface scanning an imaging means such as a CCD camera, an optical system 5 using a telecentric lens 4 is used for imaging from a parallel direction. However, if the area that can be captured in one shot is as narrow as about 20 mm in width and width W, and the TV panel that is the subject is 60 inches or more, there is a problem that about 1000 shots are required and a huge amount of time is required. It was.
The present invention has been made in view of the above situation. In particular, in uneven imaging in a crossed Nicol configuration in which a retardation film is sandwiched between two polarizing plates, it is easy to measure the entire surface, in a short time, and with high accuracy. It is an object to provide an optical unevenness detection device and an optical unevenness detection method.

本発明に係る上記目的は、下記構成により達成される。
(1) 位相差フィルムの光学ムラを検出する光学ムラ検出装置であって、
被検査対象である位相差フィルムを挟んでクロスニコル状態で配置された一対の偏光板と、
前記位相差フィルムと前記偏光板とを一体に保持して所望の傾斜角度に設定するステージと、
前記位相差フィルムの一方の側から照明する照明手段と、
前記位相差フィルムの他方の側から前記偏光板を介して前記照明手段からの照明光の透過光画面を撮像する撮像手段と、
前記撮像手段から得られる撮像画像の輝度情報から輝度ムラ成分を検出するムラ検出手段と、を備え、
前記撮像手段が、前記位相差フィルムの所定の検査領域内における撮像方向の角度変動を2度以内となるように、前記位相差フィルムから離間配置された位置から望遠撮像する光学ムラ検出装置。
The above object of the present invention is achieved by the following configuration.
(1) An optical unevenness detection device for detecting optical unevenness of a retardation film,
A pair of polarizing plates arranged in a crossed Nicols state across the retardation film to be inspected;
A stage for integrally holding the retardation film and the polarizing plate and setting a desired inclination angle;
Illumination means for illuminating from one side of the retardation film;
Imaging means for imaging a transmitted light screen of illumination light from the illumination means via the polarizing plate from the other side of the retardation film,
Unevenness detection means for detecting a brightness unevenness component from brightness information of a captured image obtained from the imaging means,
An optical non-uniformity detection device that performs telephoto imaging from a position spaced from the retardation film so that the imaging means has an angle variation in an imaging direction within a predetermined inspection region of the retardation film within 2 degrees.

この光学ムラ検出装置によれば、従来、近接撮影時に同一撮影方向で被検査対象の各領域を撮影する際、被検査対象に対し撮像手段を走査する必要があったのに対し、撮像手段を走査することなく、撮像方向に対する角度差を抑えながら、被検査対象の全体を略同等の角度で撮影できる。これにより、被検査対象を傾けた場合であっても撮像焦点を合わせることができる。したがって、複数の定点だけでなく、被検査対象と平行な全ての位置からムラ計測が効率的に行えるようになる。   According to this optical unevenness detection device, when photographing each region of the inspection object in the same photographing direction at the time of close-up photographing, it has been necessary to scan the imaging means with respect to the inspection object. Without scanning, the entire object to be inspected can be imaged at substantially the same angle while suppressing the angle difference with respect to the imaging direction. Thereby, even if it is a case where a to-be-inspected object is inclined, an imaging focus can be adjusted. Therefore, unevenness measurement can be efficiently performed not only from a plurality of fixed points but also from all positions parallel to the inspection target.

(2) (1)記載の光学ムラ検出装置であって、
前記撮像手段は、前記位相差フィルムの1回分の撮像領域が少なくとも20cm角の領域を含む光学ムラ検出装置。
(2) The optical unevenness detecting device according to (1),
The said imaging means is an optical nonuniformity detection apparatus in which the imaging area for one time of the said retardation film contains an area | region of at least 20 cm square.

この光学ムラ検出装置によれば、従来の平行撮影のために行われていたテレセントリックレンズを使用した2cm程度の撮像面積に比べ、略平行撮影による撮像情報が大きな撮像面積で得られるようになり、撮像回数を低減させて、処理時間の大幅な短縮が可能となる。   According to this optical unevenness detection apparatus, compared with an imaging area of about 2 cm using a telecentric lens used for conventional parallel photography, imaging information by substantially parallel photography can be obtained with a large imaging area. By reducing the number of imaging operations, the processing time can be greatly shortened.

(3) (1)又は(2)記載の光学ムラ検出装置であって、
前記ステージを駆動して前記位相差フィルムを特定の複数方向からなる代表撮像方向に傾斜させ、前記撮像手段により各代表撮像方向で撮像させる制御手段と、
前記撮像した複数の撮像画像を記憶する記憶手段と、
前記ムラ検出手段が、各代表撮像方向の撮像画像の輝度値から、前記各代表撮像方向の中間の傾斜方向に対する輝度値を補間処理して求め、該補間処理で得られた輝度情報から前記輝度ムラ成分を検出する光学ムラ検出装置。
(3) The optical unevenness detecting device according to (1) or (2),
Control means for driving the stage to incline the retardation film in a representative imaging direction composed of a plurality of specific directions, and for imaging in each representative imaging direction by the imaging means;
Storage means for storing the plurality of captured images;
The unevenness detecting means interpolates a luminance value with respect to an inclination direction intermediate between the representative imaging directions from the luminance value of the captured image in each representative imaging direction, and the luminance information is obtained from the luminance information obtained by the interpolation processing. An optical unevenness detection device that detects unevenness components.

この光学ムラ検出装置によれば、ムラ検出手段が、各代表撮像方向で撮像して得た各代表撮像方向の輝度値から、中間の傾斜方向に対する輝度値を補間処理して求め、実際に撮像した画像と略同等の全体画像が得られる。すなわち、画像合成処理が実施されることにより、任意の見込み角で輝度画像が生成され、ムラ検出が効率的に行えるようになる。   According to this optical unevenness detection device, the unevenness detecting means obtains the brightness value for the intermediate tilt direction from the brightness value of each representative image capturing direction obtained by image capturing in each representative image capturing direction, and actually captures the image. An overall image substantially equivalent to the obtained image is obtained. That is, by performing the image composition processing, a luminance image is generated at an arbitrary prospective angle, and unevenness detection can be performed efficiently.

(4) (1)〜(3)のいずれか1項記載の光学ムラ検出装置であって、
前記ステージが、前記位相差フィルムの法線方向と前記観察方向とのなす角である傾斜角と、前記観察方向を前記位相差フィルム面に垂直投影したときの前記位相差フィルム面内における方位角と、を変更する回動機構を有する光学ムラ検出装置。
(4) The optical unevenness detection device according to any one of (1) to (3),
An inclination angle that is an angle between the normal direction of the retardation film and the observation direction, and an azimuth angle in the retardation film plane when the observation direction is vertically projected on the retardation film surface. And an optical non-uniformity detection device having a rotation mechanism for changing.

この光学ムラ検出装置によれば、望遠撮像により位相差フィルムの全体が略同等の角度で撮影されるのに加え、回動機構の駆動によって、傾斜角及び方位角が変更されることで、撮像手段を走査することなく、位相差フィルムのどの位置に対しても任意の傾斜角及び方位角での観察が可能となる。   According to this optical unevenness detection device, the entire retardation film is imaged at substantially the same angle by telephoto imaging, and the tilt angle and azimuth angle are changed by driving the rotation mechanism, thereby imaging. Observation at any tilt angle and azimuth angle is possible for any position of the retardation film without scanning the means.

(5) 位相差フィルムの光学ムラを検出する光学ムラ検出方法であって、
被検査対象である位相差フィルムをクロスニコル状態で配置された一対の偏光板に挟み込み、所望の傾斜角度に設定し、
前記位相差フィルムの一方の側から照明するとともに、前記位相差フィルムの他方の側から前記偏光板を介して前記照明光の透過光画面を、前記位相差フィルムの所定の検査領域に対して該検査領域内における撮像方向の角度変動を2度以内として望遠撮像し、
得られる撮像画像の輝度情報から輝度変動成分を検出する光学ムラ検出方法。
(5) An optical unevenness detection method for detecting optical unevenness of a retardation film,
The retardation film to be inspected is sandwiched between a pair of polarizing plates arranged in a crossed Nicol state, and set to a desired inclination angle,
Illuminating from one side of the retardation film, the transmitted light screen of the illumination light from the other side of the retardation film via the polarizing plate, the predetermined inspection region of the retardation film Telephoto imaging with the angle fluctuation in the imaging direction within the inspection area within 2 degrees,
An optical unevenness detection method for detecting a luminance fluctuation component from luminance information of a captured image obtained.

この光学ムラ検出方法によれば、被検査対象の全体が略同等の角度で撮影可能となり、被検査対象と平行な全ての位置からのムラ計測が効率的に行えるようになる。これにより、全面撮像の計測が容易、且つ短時間で可能となり、しかも、撮像手段の走査に伴う計測誤差が発生しないのでムラ検出精度も高まる。   According to this optical unevenness detection method, the entire object to be inspected can be photographed at substantially the same angle, and unevenness measurement from all positions parallel to the object to be inspected can be performed efficiently. As a result, it is possible to easily measure the entire surface imaging in a short time, and the measurement error associated with the scanning of the imaging means does not occur, so that the unevenness detection accuracy is increased.

(6) (5)記載の光学ムラ検出方法であって、
前記位相差フィルムを異なる複数の方向から撮像し、各撮像方向に対する撮像画像からそれぞれ輝度変動成分を検出する光学ムラ検出方法。
(6) The optical unevenness detection method according to (5),
An optical unevenness detection method in which the retardation film is imaged from a plurality of different directions, and a luminance variation component is detected from each captured image in each imaging direction.

この光学ムラ検出方法によれば、望遠撮像により位相差フィルムの全体が略同等の角度で撮影されるのに加え、異なる複数の方向からの撮像、すなわち、固定した撮像手段に対して位相差フィルムを変位させた撮像によって、撮像手段を走査することなく、位相差フィルムのどの位置に対しても任意の傾斜角及び方位角での輝度変動成分の検出が可能となる。   According to this optical unevenness detection method, the entire retardation film is photographed at substantially the same angle by telephoto imaging, and in addition, imaging from a plurality of different directions, that is, the retardation film with respect to a fixed imaging means Due to the imaging with the displacement, it is possible to detect a luminance fluctuation component at an arbitrary inclination angle and azimuth angle for any position of the retardation film without scanning the imaging means.

(7) (5)又は(6)記載の光学ムラ検出方法であって、
1回の撮像で前記位相差フィルムの少なくとも20cm角の領域を撮像する光学ムラ検出方法。
(7) The optical unevenness detection method according to (5) or (6),
An optical unevenness detection method for imaging at least a 20 cm square region of the retardation film by one imaging.

この光学ムラ検出方法によれば、従来の平行撮影のために行われていたテレセントリックレンズを使用した2cm程度の撮像面積に比べ、略平行撮影による撮像情報が大きな撮像面積で得られるようになり、撮像回数を低減させて、処理時間の大幅な短縮が可能となる。   According to this optical unevenness detection method, compared with an imaging area of about 2 cm using a telecentric lens that has been used for conventional parallel photography, imaging information by substantially parallel photography can be obtained with a large imaging area. By reducing the number of imaging operations, the processing time can be greatly shortened.

(8) (5)〜(6)又は(7)記載の光学ムラ検出方法であって、
前記位相差フィルムを特定の複数方向からなる代表撮像方向に傾斜させて撮像し、
各代表撮像方向の撮像画像の輝度値から、前記各代表撮像方向の中間の傾斜方向に対する輝度値を補間処理して求め、該補間処理で得られた輝度情報から前記輝度ムラ成分を検出する光学ムラ検出方法。
(8) The optical unevenness detection method according to (5) to (6) or (7),
Inclining the retardation film in a representative imaging direction consisting of a plurality of specific directions, and imaging,
An optical for detecting the luminance unevenness component from the luminance information obtained from the luminance information obtained by the interpolation processing from the luminance value of the captured image in each representative imaging direction to obtain a luminance value with respect to an intermediate inclination direction of each representative imaging direction. Unevenness detection method.

この光学ムラ検出方法によれば、ムラ検出手段が、各代表撮像方向で撮像して得た各代表撮像方向の撮像画像の輝度値から、中間の傾斜方向に対する輝度値を補間処理し、未知の傾斜角における輝度ムラ成分が実際の撮像に依らずに推測可能となる。   According to this optical unevenness detection method, the unevenness detection means interpolates the brightness value for the intermediate tilt direction from the brightness value of the captured image in each representative imaging direction obtained by imaging in each representative imaging direction, and the unknown The luminance unevenness component at the tilt angle can be estimated without depending on actual imaging.

(9) (8)記載の光学ムラ検出方法であって、
前記位相差フィルムに対面する任意の位置で観察される前記照明光の透過光画面を、前記補間処理して得られた輝度情報から合成して作成し、この透過光画面の合成画像の輝度情報から前記輝度ムラ成分を検出する光学ムラ検出方法。
(9) The optical unevenness detection method according to (8),
The transmission light screen of the illumination light observed at an arbitrary position facing the retardation film is synthesized from the luminance information obtained by the interpolation process, and the luminance information of the composite image of the transmission light screen An optical unevenness detecting method for detecting the luminance unevenness component from

この光学ムラ検出方法によれば、中間の傾斜方向に対する輝度値を補間処理して得られた未知の傾斜角における輝度ムラ成分に基づき、画像合成処理が実施されることで、実際に撮像した画像と略同等の全体画像から輝度ムラ成分が短時間で効率的に検出可能となる。   According to this optical unevenness detection method, an image that is actually captured is obtained by performing an image composition process based on a brightness unevenness component at an unknown inclination angle obtained by interpolating a brightness value with respect to an intermediate inclination direction. The luminance unevenness component can be efficiently detected in a short time from the substantially equivalent whole image.

本発明に係る光学ムラ検出装置によれば、被検査対象を所望の傾斜角度に設定するステージと、照明手段からの照明光の透過光画面を撮像する撮像手段と、撮像画像の輝度情報から輝度ムラ成分を検出するムラ検出手段とを備え、撮像手段が、被検査対象の所定の検査領域内における撮像方向の角度変動を2度以内とするように、被検査対象から離間して望遠撮像するので、従来の近接撮影のように同一撮影方向で被検査対象の各領域を撮影する際に、被検査対象に対し撮像手段を走査する必要があったのに比べ、撮像手段を走査することなく、撮像方向に対する角度差を抑えながら、被検査対象の全体を略同等の角度で撮影でき、被検査対象を傾けた場合であっても撮像焦点を安定して合わせることができる。したがって、複数の定点だけでなく、被検査対象の全ての観察方向からのムラ計測を簡単にしかも短時間で行うことができる。また、撮像手段の走査に伴う計測誤差が発生しないのでムラ検出精度も向上させることができる。特に、偏光板2枚に位相差フィルムを挟み込んだクロスニコル形態でのムラ撮像では、光の方向に依存して大きく輝度が変化するため顕著な効果を得ることができる。   According to the optical unevenness detection apparatus according to the present invention, the stage for setting the inspection target to a desired inclination angle, the imaging unit for imaging the transmitted light screen of the illumination light from the illumination unit, and the luminance from the luminance information of the captured image A non-uniformity detection unit that detects a non-uniformity component, and the imaging unit performs telephoto imaging at a distance from the inspection target so that the angle variation in the imaging direction within a predetermined inspection region of the inspection target is within 2 degrees. Therefore, when each region of the inspection object is imaged in the same imaging direction as in the case of the conventional close-up imaging, the imaging means need not be scanned with respect to the inspection object without scanning the imaging means. The entire object to be inspected can be imaged at substantially the same angle while suppressing the angle difference with respect to the image capturing direction, and the imaging focus can be stably adjusted even when the object to be inspected is tilted. Accordingly, not only a plurality of fixed points, but also unevenness measurement from all observation directions of the object to be inspected can be performed easily and in a short time. In addition, since no measurement error due to scanning of the image pickup means occurs, the unevenness detection accuracy can be improved. In particular, in uneven imaging in a crossed Nicol configuration in which a retardation film is sandwiched between two polarizing plates, a significant effect can be obtained because the luminance changes greatly depending on the direction of light.

本発明に係る光学ムラ検出方法によれば、被検査対象を所望の傾斜角度に設定し、被検査対象を一方の側から照明し、他方の側からの照明光の透過光画面を、所定の検査領域に対し、撮像方向の角度変動を2度以内として望遠撮像し、得られる撮像画像の輝度情報から輝度変動成分を検出するので、上記したように、被検査対象の全体を略同等の角度で撮影でき、被検査対象の全ての観察方向からのムラ計測を効率的に行うことができる。これにより、全面撮像の計測が容易、且つ短時間で可能となり、しかも、撮像手段の走査に伴う計測誤差が発生しないのでムラ検出精度も向上させることができる。   According to the optical unevenness detection method according to the present invention, the inspection target is set to a desired inclination angle, the inspection target is illuminated from one side, and the transmitted light screen of the illumination light from the other side is set to a predetermined level. Telescopic imaging is performed with respect to the inspection area with the angle variation in the imaging direction within 2 degrees, and the luminance variation component is detected from the luminance information of the obtained captured image. And unevenness measurement from all the observation directions of the inspection object can be efficiently performed. As a result, it is possible to measure the entire surface image easily and in a short time, and the measurement error associated with the scanning of the image pickup means does not occur, so that the unevenness detection accuracy can be improved.

以下、本発明に係る光学ムラ検出装置及び光学ムラ検出方法の好適な実施の形態について、図面を参照して詳細に説明する。
図1は本発明に係る光学ムラ検出装置の概略の構成を表すブロック図、図2は被検査対象である位相差フィルムを挟んでクロスニコル状態で配置された一対の偏光板の分解斜視図、図3は被検査対象に対する傾斜角及び方位角を例示した説明図である。
本実施の形態の図1に示す光学ムラ検出装置100は、光学パネル19の表示面に設けられた図2の位相差フィルム21の光学ムラを検出するに際し、好適に用いることができる。位相差フィルム21は、クロスニコル状態で配置された一対の偏光板23a,23bとに挟まれて成る。この偏光板23a,23bに挟まれた状態の位相差フィルム21が被検査対象20となって、光学パネル19の表示面に設けられている。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an optical unevenness detection apparatus and an optical unevenness detection method according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an optical unevenness detection apparatus according to the present invention, and FIG. 2 is an exploded perspective view of a pair of polarizing plates arranged in a crossed Nicols state with a retardation film to be inspected interposed therebetween, FIG. 3 is an explanatory diagram illustrating an inclination angle and an azimuth angle with respect to the object to be inspected.
The optical unevenness detection apparatus 100 shown in FIG. 1 of the present embodiment can be suitably used when detecting optical unevenness of the retardation film 21 of FIG. 2 provided on the display surface of the optical panel 19. The retardation film 21 is sandwiched between a pair of polarizing plates 23a and 23b arranged in a crossed Nicol state. The retardation film 21 sandwiched between the polarizing plates 23 a and 23 b is the inspection object 20 and is provided on the display surface of the optical panel 19.

光学パネル19は、背面から光が照射されて表示面に画像が表示される。
光学ムラ検出装置100は、ステージ25と、照明手段27と、撮像手段29と、ムラ検出手段であるムラ評価部31と、制御手段である制御部33と、記憶手段である記憶部35とを、主要な構成として有している。
The optical panel 19 is irradiated with light from the back, and an image is displayed on the display surface.
The optical unevenness detection apparatus 100 includes a stage 25, an illumination unit 27, an imaging unit 29, an unevenness evaluation unit 31 that is an unevenness detection unit, a control unit 33 that is a control unit, and a storage unit 35 that is a storage unit. , Has as a main configuration.

ステージ25には回動機構としての回動移動機構39が設けられ、回動移動機構39は位相差フィルム21と偏光板23a,23bとを一体に(つまり、被検査対象20を設けた光学パネル19を)保持して所望の姿勢に設定可能とする。すなわち、回動移動機構39は、図3に示すように、位相差フィルム21の法線N方向と観察方向Pとのなす角である傾斜角θと、観察方向を位相差フィルム21面に垂直投影したときの位相差フィルム21面内における方位角φとを変更可能とする。   The stage 25 is provided with a rotation movement mechanism 39 as a rotation mechanism, and the rotation movement mechanism 39 integrally includes the retardation film 21 and the polarizing plates 23a and 23b (that is, an optical panel provided with the inspection target 20). 19) and can be set to a desired posture. That is, as shown in FIG. 3, the rotational movement mechanism 39 has an inclination angle θ that is an angle between the normal line N direction of the retardation film 21 and the observation direction P, and the observation direction is perpendicular to the surface of the retardation film 21. The azimuth angle φ in the surface of the retardation film 21 when projected can be changed.

また、回動移動機構39は、光学パネル19を水平方向と垂直方向に移動する機能を有する。この回動移動機構39は、制御部33から制御信号が入力されるステージ駆動部41によって駆動制御される。   The rotational movement mechanism 39 has a function of moving the optical panel 19 in the horizontal direction and the vertical direction. The rotational movement mechanism 39 is driven and controlled by a stage driving unit 41 to which a control signal is input from the control unit 33.

光学パネル19の背面には照明手段27が設けられ、照明手段27は位相差フィルム21の一方の側(背面側)から照明する。照明手段27は、制御部33から制御信号がバックライト制御部37に送出され、このバックライト制御部37から出力される照明制御信号によって点灯制御される。この照明光が光学パネル19、被検査対象20を透過して光学パネル19の表面側となる表示面から観測される。照明手段27には例えば線状光源が用いられる。線状光源としては特に限定されないが、冷陰極管、熱陰極管、線状に配列したLED、LEDと導光体の組合せ等を使用することができる。   An illumination unit 27 is provided on the back surface of the optical panel 19, and the illumination unit 27 illuminates from one side (rear side) of the retardation film 21. The illumination unit 27 is controlled to be turned on by an illumination control signal output from the backlight control unit 37 by sending a control signal from the control unit 33 to the backlight control unit 37. This illumination light passes through the optical panel 19 and the inspection target 20 and is observed from the display surface on the surface side of the optical panel 19. For the illumination means 27, for example, a linear light source is used. Although it does not specifically limit as a linear light source, A cold cathode tube, a hot cathode tube, LED arranged in a line, the combination of LED and a light guide, etc. can be used.

撮像手段29は、光学パネル19からの距離を調整可能とする機能を有する。撮像手段29としては、CCDカメラ(例えばRadiant imaging社Prometric1400)を用いることができる。この撮像手段29に望遠光学系(望遠レンズ)29aを取り付け、光学パネル19を望遠撮像する。望遠光学系29aは、光学パネル19から15〜30mの距離で、CCDカメラの画角領域が、被検査対象20の全領域より狭い範囲に設定可能とする。   The imaging means 29 has a function that allows the distance from the optical panel 19 to be adjusted. As the imaging means 29, a CCD camera (for example, Prometric 1400 from Radiant Imaging) can be used. A telephoto optical system (telephoto lens) 29a is attached to the image pickup means 29, and the optical panel 19 is imaged telephoto. The telephoto optical system 29 a can set the field angle area of the CCD camera to a range narrower than the entire area of the inspection target 20 at a distance of 15 to 30 m from the optical panel 19.

すなわち、撮像手段29は、位相差フィルム21の他方の側から偏光板23a,23bを介して照明手段27からの照明光を透過光画面として撮像するとともに、位相差フィルム21の所定の検査領域内における撮像方向の角度変動を2度以内となるように、位相差フィルム21から離間配置された位置から望遠撮像する。撮像手段29は、撮像方向の角度差を1〜2度に抑えることで、検査領域内に対する撮像が高精度に行える。角度変動が2度より大きくなると、評価の誤差が大きくなり、ムラ検出精度が低下する。   That is, the imaging unit 29 captures the illumination light from the illumination unit 27 as a transmitted light screen from the other side of the retardation film 21 via the polarizing plates 23a and 23b, and within a predetermined inspection region of the retardation film 21. Telephoto imaging is performed from a position spaced from the phase difference film 21 so that the angle fluctuation in the imaging direction is within 2 degrees. The imaging means 29 can perform imaging in the inspection area with high accuracy by suppressing the angle difference in the imaging direction to 1 to 2 degrees. When the angle variation is larger than 2 degrees, the evaluation error increases and the unevenness detection accuracy decreases.

このように光学ムラ検出装置100では、望遠撮像により位相差フィルム21の全体が略同等の角度で撮影されるのに加え、回動移動機構39の駆動によって、傾斜角θ及び方位角φが変更されることで、撮像手段29を走査することなく、位相差フィルム21のどの位置に対しても任意の傾斜角θ及び方位角φでの観察が可能となっている。   As described above, in the optical unevenness detection apparatus 100, the entire retardation film 21 is photographed at substantially the same angle by telephoto imaging, and the tilt angle θ and the azimuth angle φ are changed by driving the rotational movement mechanism 39. As a result, it is possible to observe at any tilt angle θ and azimuth angle φ with respect to any position of the retardation film 21 without scanning the imaging means 29.

より具体的には、撮像手段29は、位相差フィルム21の1回分の撮像領域が、位相差フィルム21の全面積から、少なくとも20cm角の撮像領域を含む領域になるように設定されている。現実的にはA4サイズ(297×210mm)で評価を行うことが好ましい。このようなA4サイズ程度での撮像を行うことで、従来の平行撮影のために行われていたテレセントリックレンズ4(図13参照)を使用した2cm角程度の撮像面積に比べ、略平行撮影による撮像情報が大きな撮像面積で得られるようになり、撮像回数を低減させて、処理時間の大幅な短縮が可能となる。   More specifically, the imaging unit 29 is set so that the imaging area for one time of the retardation film 21 is an area including an imaging area of at least 20 cm square from the total area of the retardation film 21. Practically, it is preferable to perform evaluation with an A4 size (297 × 210 mm). By performing imaging at such an A4 size, imaging by approximately parallel imaging is performed compared to an imaging area of approximately 2 cm square using the telecentric lens 4 (see FIG. 13) that has been performed for conventional parallel imaging. Information can be obtained with a large imaging area, and the number of times of imaging can be reduced, thereby significantly reducing the processing time.

制御部33は、ステージ25を駆動して、位相差フィルム21を特定の複数方向からなる代表撮像方向に傾斜させ、撮像手段29により各代表撮像方向での撮像制御を可能とする。この制御部33としては例えばパーソナルコンピュータを使用することができる。記憶部35は、撮像手段29によって撮像され制御部33へと転送された複数の撮像画像情報を記憶する。この記憶部35としては、パーソナルコンピュータの内部メモリ又は外部記憶装置を使用することができる。   The control unit 33 drives the stage 25 to incline the retardation film 21 in a representative imaging direction including a plurality of specific directions, and enables imaging control in each representative imaging direction by the imaging unit 29. For example, a personal computer can be used as the control unit 33. The storage unit 35 stores a plurality of pieces of captured image information captured by the imaging unit 29 and transferred to the control unit 33. As the storage unit 35, an internal memory or an external storage device of a personal computer can be used.

ムラ評価部31は、各代表撮像方向の撮像画像の輝度値から、各代表撮像方向の中間の傾斜方向に対する輝度値を補間処理して求める。また、ムラ評価部31は、この補間処理で得られた輝度情報から輝度ムラ成分を検出可能とする。ムラ評価部31は、パーソナルコンピュータに格納されたソフトウエアとすることができる。ムラ評価部31は、各代表撮像方向の輝度値から、中間の傾斜方向に対する輝度値を補間処理して求め、実際に撮像した画像と略同等の全体画像を得る。すなわち、画像合成処理を実施することにより、任意の見込み角(θ、φ)で輝度画像を生成し、ムラ検出を効率的に行えるようにしている。   The unevenness evaluation unit 31 interpolates and obtains a luminance value with respect to an intermediate tilt direction of each representative imaging direction from the luminance value of the captured image in each representative imaging direction. The unevenness evaluation unit 31 can detect a luminance unevenness component from the luminance information obtained by this interpolation processing. The unevenness evaluation unit 31 can be software stored in a personal computer. The unevenness evaluation unit 31 interpolates and obtains a luminance value for an intermediate inclination direction from the luminance value in each representative imaging direction, and obtains an overall image that is substantially equivalent to the actually captured image. That is, by performing the image synthesis process, a luminance image is generated at an arbitrary prospective angle (θ, φ), so that unevenness detection can be performed efficiently.

図4はステージ制御によって代表撮像方向に傾斜して撮像される被検査対象の模式図、図5は撮像方向が異なる角度ごとに揃って撮像される被検査対象の一部拡大図である。
制御部33は、撮像手段29、及びステージ25へ撮像制御信号、駆動制御信号を送出することにより、光学パネル19を代表撮像方向に傾斜させて撮像を行う。例えば、図4(a)に示すように、光学パネル19を傾斜させず、撮像方向との傾斜角θ0が0度の撮像と、図4(b)に示すように、光学パネル19をα1傾斜させて、撮像方向との角度が傾斜角θ1となる撮像と、図4(c)に示すように、光学パネル19をα2傾斜させて、撮像方向との角度が傾斜角θ2となる撮像等を連続して行う。
FIG. 4 is a schematic diagram of an object to be inspected that is tilted in the representative imaging direction by stage control, and FIG. 5 is a partially enlarged view of the object to be inspected that is imaged at different angles with different imaging directions.
The control unit 33 sends an image pickup control signal and a drive control signal to the image pickup unit 29 and the stage 25 to incline the optical panel 19 in the representative image pickup direction. For example, as shown in FIG. 4 (a), the optical panel 19 is not tilted, and imaging with an inclination angle θ 0 with respect to the imaging direction is 0 degrees. As shown in FIG. 1 is inclined, and imaging angle of the imaging direction an inclined angle theta 1, as shown in FIG. 4 (c), the optical panel 19 by alpha 2 inclination, the angle between the imaging direction inclination angle theta 2 Continuous imaging is performed.

そして、光学パネル19が撮像手段29によって望遠撮像されることにより、図4(a)に示した光学パネル19を傾斜させない場合、或いは図4(b),(c)に示すように、光学パネル19を傾斜させた撮像においても、図5(a)(b)に示すように、被検査対象20のどの位置でも傾斜角θ0、θaが揃って、同一方向からの撮像が可能となる。 When the optical panel 19 is telephoto picked up by the image pickup means 29, the optical panel 19 shown in FIG. 4A is not tilted, or as shown in FIGS. 4B and 4C, the optical panel 19 Even in the case of imaging with tilted 19, as shown in FIGS. 5A and 5B, the tilt angles θ 0 and θ a are aligned at any position of the inspected object 20 and imaging from the same direction becomes possible. .

このように、光学ムラ検出装置100では、従来、近接撮影時に同一撮影方向で被検査対象20の各領域を撮影する際、被検査対象20に対し撮像手段29を走査する必要があったのに対し、撮像手段29を走査することなく、撮像方向に対する角度差を抑えながら、被検査対象20の全体を略同じの角度で撮影できる。また、被検査対象20を傾けた場合であっても被写界焦点深度が深いため、撮像領域全体を合焦させることができる。したがって、複数の定点だけでなく、任意の被検査対象20の位置に対して、任意の方向からムラ計測のための撮像が良好に行えるようになっている。   As described above, in the optical nonuniformity detection apparatus 100, it has been conventionally necessary to scan the imaging unit 29 with respect to the inspection target 20 when shooting each region of the inspection target 20 in the same shooting direction at the time of close-up shooting. On the other hand, the entire inspection object 20 can be imaged at substantially the same angle while suppressing the angle difference with respect to the imaging direction without scanning the imaging means 29. In addition, even when the inspection target 20 is tilted, the entire imaging region can be focused because the depth of field is deep. Therefore, not only a plurality of fixed points but also the position of an arbitrary inspection object 20 can be favorably imaged for unevenness measurement from an arbitrary direction.

次に、上記の光学ムラ検出装置100による光学ムラ検出方法を説明する。
図6に本発明に係る光学ムラ検出方法の基本的な手順を表すフローチャートを示した。
ここでは、被検査対象20の一部分に対して評価することを例に説明するが、これに限らず、被検査対象20の全面を評価したり、全面を複数の代表領域(例えば四隅と中央など)で複数回評価することとしてもよい。
Next, an optical unevenness detection method using the optical unevenness detection apparatus 100 will be described.
FIG. 6 is a flowchart showing the basic procedure of the optical unevenness detection method according to the present invention.
Here, a case where a part of the inspection target 20 is evaluated will be described as an example. However, the present invention is not limited to this, and the entire surface of the inspection target 20 is evaluated, or the entire surface is divided into a plurality of representative regions (for example, four corners and the center). ) May be evaluated multiple times.

まず、被検査対象20である位相差フィルム21をクロスニコル状態で配置された一対の偏光板23a,23bの間に挟み込み、ステージ25にセットする(S1)。そして、制御部33が送出する駆動制御信号がステージ駆動部41を介してステージ25へ送出され、被検査対象20が所望の傾斜角θ、方位角φに設定される。   First, the retardation film 21 as the inspection target 20 is sandwiched between a pair of polarizing plates 23a and 23b arranged in a crossed Nicol state and set on the stage 25 (S1). Then, a drive control signal sent out by the control unit 33 is sent to the stage 25 through the stage drive unit 41, and the inspection target 20 is set to a desired tilt angle θ and azimuth angle φ.

次いで、制御部33が送出する制御信号がバックライト制御部37を介して照明手段27へ入力され、位相差フィルム21の裏面側から照明がなされるとともに、位相差フィルム21の表示面側から偏光板23a,23bを介して照明光の透過光画面が撮像手段29により望遠撮像される(S2)。この際、位相差フィルム21の所定の検査領域に対し、検査領域内における撮像方向の角度変動が2度以内として望遠撮像がなされる。1回の撮像では位相差フィルム21の少なくとも20cm角の領域、より具体的にはA4サイズの領域が撮像される。この望遠撮像が、予め設定された傾斜角θ及び方位角φの全方向で繰り返される(S3)。   Next, a control signal sent out by the control unit 33 is input to the illumination unit 27 via the backlight control unit 37, and illumination is performed from the back side of the retardation film 21, and polarization is performed from the display surface side of the retardation film 21. The transmitted light screen of the illumination light is telephoto picked up by the image pickup means 29 through the plates 23a and 23b (S2). At this time, telescopic imaging is performed with respect to a predetermined inspection area of the retardation film 21 with an angle variation in the imaging direction within the inspection area being within 2 degrees. In one imaging, an area of at least 20 cm square of the retardation film 21, more specifically, an A4 size area is imaged. This telephoto imaging is repeated in all directions with a preset tilt angle θ and azimuth angle φ (S3).

次いで、得られる撮像画像の輝度情報から輝度変動成分を検出する。撮像画像の輝度情報は、記憶部35に保存される。すなわち、位相差フィルム21を異なる複数の方向である傾斜角θ(0°,30°,40°,50°,…)、方位角φ(0°,45°,90°,…)から撮像した撮像画像データ(例えば256階調)は、図7に示すように、各テーブルに格納される。例えば、方位角φ=45°、傾斜角θ=30°における撮像画像データは、図8のように保存される。   Next, a luminance fluctuation component is detected from the luminance information of the obtained captured image. The brightness information of the captured image is stored in the storage unit 35. That is, the phase difference film 21 was imaged from a plurality of different directions of inclination angles θ (0 °, 30 °, 40 °, 50 °,...) And azimuth angles φ (0 °, 45 °, 90 °,...). The captured image data (for example, 256 gradations) is stored in each table as shown in FIG. For example, captured image data at an azimuth angle φ = 45 ° and an inclination angle θ = 30 ° is stored as shown in FIG.

そして、位相差フィルム21を特定の複数方向からなる代表撮像方向に傾斜させて撮像し、各代表撮像方向の撮像画像データから、各代表撮像方向の中間の傾斜方向に対する輝度値を補間処理して求める(S4)。   Then, the phase difference film 21 is imaged while being tilted in a specific imaging direction composed of a plurality of specific directions, and a luminance value with respect to an intermediate tilt direction of each representative imaging direction is interpolated from the captured image data of each representative imaging direction. Obtain (S4).

具体的には、離散的な傾斜角θ、方位角φに対する撮像画像データの各画素に対して、他の傾斜角θ、方位角φの撮像画像データの輝度値を用いて補間処理し、任意の傾斜角θ、方位角φの画像データを解析的に求める。補間処理は、同一位置の画素に対して傾斜角θの変化、あるいは方位角φの変化から線形補間して求めてもよいが、特定の画素とその周辺の画素の平均的な輝度値に対して傾斜角θ、方位角φの変化による輝度変化を線形補間して求めてもよい。また、線形補間以外にも、適宜な曲線に近似する等して補間処理することであってもよい。   Specifically, for each pixel of the captured image data with respect to the discrete tilt angle θ and azimuth angle φ, interpolation processing is performed using the brightness values of the captured image data with other tilt angles θ and azimuth angles φ, and any The image data of the inclination angle θ and the azimuth angle φ is analytically obtained. The interpolation process may be obtained by linear interpolation from the change in the tilt angle θ or the change in the azimuth angle φ for the pixels at the same position, but for the average luminance value of the specific pixel and the surrounding pixels. Then, the luminance change due to the change in the inclination angle θ and the azimuth angle φ may be obtained by linear interpolation. In addition to linear interpolation, interpolation processing may be performed by approximating an appropriate curve.

次いで、位相差フィルム21に対面する任意の位置で観察される照明光の透過光画面を、補間処理して得られた輝度情報から合成して作成する。この透過光画面の合成画像の輝度情報に基づき、ムラ評価部31が輝度ムラ成分を検出する。つまり、位相差フィルム21の観察方向全てに対する輝度情報を用いてムラの定量評価がなされる(S5)。このときの評価方法としては、ムラの見えの程度が最大になる観察位置を探索し、その観察位置におけるムラの程度、例えば、ウェーバー フェヒナーの法則に基づけば、輝度差/背景輝度をムラの定量評価値として求めることができる。   Next, a transmitted light screen of illumination light observed at an arbitrary position facing the phase difference film 21 is created by synthesizing from luminance information obtained by interpolation processing. Based on the luminance information of the composite image on the transmitted light screen, the unevenness evaluation unit 31 detects a luminance unevenness component. That is, the unevenness is quantitatively evaluated using the luminance information for all the observation directions of the retardation film 21 (S5). As an evaluation method at this time, an observation position where the degree of unevenness is maximized is searched, and based on the degree of unevenness at the observation position, for example, Weber-Fechner's law, the luminance difference / background luminance is quantified. It can be obtained as an evaluation value.

ここで、上記のように任意の観察方向に対する輝度情報を解析的に求めることにより、任意の一定観察方向に対するムラを評価することができる。
また、図9(a)に示す光学パネル19の傾斜角を0度(真正面を法線方向に一致させる方向)とした場合や、図9(b)に示すように任意の角度θとした場合でも、光学パネル19の観察方向を表す傾斜角θ,θL1,θL2,θR1,θR2それぞれに対して輝度情報が解析的に求められているので、それらを合成することで、あたかもその観察位置にいるかのような観察画像が合成できる。したがって、その合成された観察画像を用いれば、任意観察位置におけるムラの評価が可能となる。
Here, unevenness with respect to an arbitrary fixed observation direction can be evaluated by analytically obtaining luminance information with respect to an arbitrary observation direction as described above.
Further, when the inclination angle of the optical panel 19 shown in FIG. 9A is 0 degree (a direction in which the true front faces the normal direction), or an arbitrary angle θ p as shown in FIG. 9B. Even in this case, since luminance information is analytically obtained for each of the tilt angles θ 0 , θ L1 , θ L2 , θ R1 , and θ R2 representing the observation direction of the optical panel 19, by combining them, An observation image as if it were at the observation position can be synthesized. Therefore, if the synthesized observation image is used, it is possible to evaluate unevenness at an arbitrary observation position.

ムラは、その検出を容易にするために画像処理によってコントラストを強調する。その際、従来法では、コントラストを強調すると、中央部のムラが強調されるものの、見込み角が大きい領域は白くつぶれた画像になってしまいムラが見えなくなるが、本手法では、画像全面に渡ってムラが強調されて、ムラの検知が一層容易となる。このようにして、全方向に対する観察画像データに対してムラの定量評価がなされた後、被検査対象20である位相差フィルム単体のムラのレベルが出力され、光学ムラの検出を終了する。   In order to facilitate the detection of unevenness, the contrast is enhanced by image processing. At that time, when the contrast is enhanced in the conventional method, the unevenness in the center is enhanced, but the region with a large prospective angle becomes a white-crushed image and the unevenness becomes invisible. As a result, unevenness is emphasized, and detection of unevenness becomes easier. In this way, after the unevenness is quantitatively evaluated for the observation image data in all directions, the level of unevenness of the single retardation film that is the inspection target 20 is output, and the detection of the optical unevenness is finished.

この光学ムラ検出方法では、被検査対象20の全体が略同等の角度で撮影可能となり、しかも、被検査対象20を観察する全ての方向の輝度情報を実測することなく、離散的な代表撮像方向から測定した結果から解析的に求めることにより、ムラ計測が短時間で容易に行えるようになる。また、撮像手段29の走査に伴う計測誤差が発生しないのでムラ検出精度も高まる。   In this optical unevenness detection method, the entire inspection object 20 can be imaged at substantially the same angle, and the discrete representative imaging directions can be obtained without actually measuring luminance information in all directions in which the inspection object 20 is observed. By obtaining analytically from the results measured from the above, unevenness measurement can be easily performed in a short time. In addition, since no measurement error due to the scanning of the imaging means 29 occurs, the unevenness detection accuracy is also increased.

そして、被写体深度の深い望遠撮像を行うことで、位相差フィルム21の全体が安定して合焦した状態で撮影でき、撮像手段29をきめ細かに調整・設定する必要もない。また、従来の平行撮影のために行われていたテレセントリックレンズを使用した2cm程度の撮像面積に比べ、略平行撮影による撮像情報が大きな撮像面積で得られるようになる。このため、撮像回数を低減させて、処理時間の短縮が可能となる。   Further, by performing telephoto imaging with a deep subject depth, the entire retardation film 21 can be photographed in a stable and in-focus state, and there is no need to finely adjust and set the imaging means 29. In addition, compared with the imaging area of about 2 cm using a telecentric lens that has been used for conventional parallel imaging, imaging information by substantially parallel imaging can be obtained with a large imaging area. For this reason, it is possible to shorten the processing time by reducing the number of times of imaging.

したがって、光学ムラ検出装置100によれば、従来の近接撮影のように同一撮影方向で被検査対象20の各領域を撮影する際に、被検査対象20に対して撮像手段29を走査する必要があったのに比べ、撮像手段29を走査することなく、撮像方向に対する角度差を抑えながら、被検査対象20の全体を略同等の角度で撮影でき、被検査対象20を傾けた場合であっても撮像焦点を確実に合わせることができる。このような構成により、例えば輝度差0.1cd/m2 を精度良く検出することが可能となる。 Therefore, according to the optical unevenness detection device 100, when each region of the inspection target 20 is imaged in the same imaging direction as in conventional close-up imaging, it is necessary to scan the imaging unit 29 with respect to the inspection target 20. Compared to the case, the entire inspection object 20 can be imaged at substantially the same angle while suppressing the angle difference with respect to the imaging direction without scanning the imaging means 29, and the inspection object 20 is tilted. Also, the imaging focus can be reliably adjusted. With such a configuration, for example, a luminance difference of 0.1 cd / m 2 can be detected with high accuracy.

また、特に偏光板2枚に位相差フィルム21を挟み込んだクロスニコル形態でのムラ撮像では、光の方向に依存して大きく輝度が変化するため上記のムラ検出方法によれば、顕著な効果を得ることができる。   In particular, in the uneven imaging in the crossed Nicol configuration in which the retardation film 21 is sandwiched between two polarizing plates, the luminance greatly changes depending on the direction of light. Obtainable.

なお、上記した実施の形態では、被検査対象が光学パネル19に設けられる場合を例に説明したが、本発明に係る光学ムラ検出装置及び光学ムラ検出方法は、この他、液晶パネル(前述の光学パネル19の偏光板23a,23bとの間に液晶セルを介在させた構成)、あるいは、屋外に設置される大型ディスプレイの輝度ムラを計測する場合に対しても適用でき、上記と同様の優れた効果を得ることができる。   In the above-described embodiment, the case where the object to be inspected is provided on the optical panel 19 has been described as an example. However, the optical unevenness detection device and the optical unevenness detection method according to the present invention are also liquid crystal panels (described above). The present invention can also be applied to a case where a liquid crystal cell is interposed between the polarizing plates 23a and 23b of the optical panel 19), or when measuring luminance unevenness of a large display installed outdoors. Effects can be obtained.

本発明に係る光学ムラ検出装置の概略の構成を表すブロック図である。It is a block diagram showing the schematic structure of the optical nonuniformity detection apparatus which concerns on this invention. 被検査対象である位相差フィルムを挟んでクロスニコル状態で配置された一対の偏光板の分解斜視図である。It is a disassembled perspective view of a pair of polarizing plate arrange | positioned in the crossed Nicols state on both sides of the phase difference film which is a test object. 被検査対象に対する傾斜角及び方位角を例示した説明図である。It is explanatory drawing which illustrated the inclination angle and azimuth with respect to to-be-inspected object. ステージ制御によって代表撮像方向に傾斜して撮像される被検査対象の模式図である。It is a schematic diagram of the inspection object imaged by tilting in the representative imaging direction by stage control. 撮像方向が異なる角度ごとに揃って撮像される被検査対象の一部拡大図である。It is a partial enlarged view of a test object to be imaged at different angles with different imaging directions. 本発明に係る光学ムラ検出方法の基本的な手順を表すフローチャートである。It is a flowchart showing the basic procedure of the optical nonuniformity detection method which concerns on this invention. 傾斜角及び方位角ごとの撮像箇所のデータの一部を示す説明図である。It is explanatory drawing which shows a part of data of the imaging location for every inclination | tilt angle and azimuth. 方位角45度、傾斜角30度における代表点における撮像画像の輝度情報の一部を示す説明図である。It is explanatory drawing which shows a part of brightness | luminance information of the captured image in the representative point in azimuth | direction angle 45 degrees and inclination-angle 30 degrees. 光学パネルの傾斜角を0度とした場合(a)、および任意の角度θとした場合(b)の観察方向を示す説明図である。It is explanatory drawing which shows the observation direction when the inclination angle of an optical panel is set to 0 degree | times (a), and when it makes arbitrary angle (theta) p (b). 従来の中央部のみからの輝度ムラ観察を(a)、それによって見えるムラの例を(b)に表した説明図である。It is explanatory drawing which represented the brightness nonuniformity observation only from the conventional center part to (a), and the example of the nonuniformity visible by it is represented to (b). 従来行われた定点観察を(a)、観察者が移動する実際の観察を(b)に表した説明図である。It is explanatory drawing which represented the fixed observation observed conventionally (a) and the actual observation to which an observer moves to (b). 偏光板クロスニコル及び視野角調整フィルム付VAパネルの見込み角と輝度との相関を表したグラフである。It is a graph showing the correlation with the angle of view and the brightness | luminance of polarizing plate cross Nicol and a VA panel with a viewing angle adjustment film. テレセントリックレンズを使用した従来の光学ムラ検出方法の模式図である。It is a schematic diagram of the conventional optical nonuniformity detection method using a telecentric lens.

符号の説明Explanation of symbols

19 光学パネル
20 被検査対象
21 位相差フィルム
23a,23b 偏光板
25 ステージ
27 照明手段
29 撮像手段
31 ムラ評価部(ムラ検出手段)
33 制御部(制御手段)
35 記憶部(記憶手段)
39 回動移動機構
100 光学ムラ検出装置
φ 方位角
θ 傾斜角
DESCRIPTION OF SYMBOLS 19 Optical panel 20 Inspected object 21 Phase difference film 23a, 23b Polarizing plate 25 Stage 27 Illumination means 29 Imaging means 31 Unevenness evaluation part (unevenness detection means)
33 Control unit (control means)
35 storage unit (storage means)
39 Rotating and moving mechanism 100 Optical unevenness detection device φ Azimuth angle θ Inclination angle

Claims (9)

位相差フィルムの光学ムラを検出する光学ムラ検出装置であって、
被検査対象である位相差フィルムを挟んでクロスニコル状態で配置された一対の偏光板と、
前記位相差フィルムと前記偏光板とを一体に保持して所望の傾斜角度に設定するステージと、
前記位相差フィルムの一方の側から照明する照明手段と、
前記位相差フィルムの他方の側から前記偏光板を介して前記照明手段からの照明光の透過光画面を撮像する撮像手段と、
前記撮像手段から得られる撮像画像の輝度情報から輝度ムラ成分を検出するムラ検出手段と、を備え、
前記撮像手段が、前記位相差フィルムの所定の検査領域内における撮像方向の角度変動を2度以内となるように、前記位相差フィルムから離間配置された位置から望遠撮像する光学ムラ検出装置。
An optical unevenness detection device for detecting optical unevenness of a retardation film,
A pair of polarizing plates arranged in a crossed Nicols state across the retardation film to be inspected;
A stage for integrally holding the retardation film and the polarizing plate and setting a desired inclination angle;
Illumination means for illuminating from one side of the retardation film;
Imaging means for imaging a transmitted light screen of illumination light from the illumination means via the polarizing plate from the other side of the retardation film,
Unevenness detection means for detecting a brightness unevenness component from brightness information of a captured image obtained from the imaging means,
An optical non-uniformity detection device that performs telephoto imaging from a position spaced from the retardation film so that the imaging means has an angle variation in an imaging direction within a predetermined inspection region of the retardation film within 2 degrees.
請求項1記載の光学ムラ検出装置であって、
前記撮像手段が、前記位相差フィルムの1回分の撮像領域が少なくとも20cm角の領域を含む光学ムラ検出装置。
The optical unevenness detection device according to claim 1,
An optical unevenness detection apparatus, wherein the imaging means includes an area of at least 20 cm square for one imaging area of the retardation film.
請求項1又は請求項2記載の光学ムラ検出装置であって、
前記ステージを駆動して前記位相差フィルムを特定の複数方向からなる代表撮像方向に傾斜させ、前記撮像手段により各代表撮像方向で撮像させる制御手段と、
前記撮像した複数の撮像画像を記憶する記憶手段と、
前記ムラ検出手段が、各代表撮像方向の撮像画像の輝度値から、前記各代表撮像方向の中間の傾斜方向に対する輝度値を補間処理して求め、該補間処理で得られた輝度情報から前記輝度ムラ成分を検出する光学ムラ検出装置。
The optical unevenness detection device according to claim 1 or 2,
Control means for driving the stage to incline the retardation film in a representative imaging direction composed of a plurality of specific directions, and for imaging in each representative imaging direction by the imaging means;
Storage means for storing the plurality of captured images;
The unevenness detecting means interpolates a luminance value with respect to an inclination direction intermediate between the representative imaging directions from the luminance value of the captured image in each representative imaging direction, and the luminance information is obtained from the luminance information obtained by the interpolation processing. An optical unevenness detection device that detects unevenness components.
請求項1〜請求項3のいずれか1項記載の光学ムラ検出装置であって、
前記ステージが、前記位相差フィルムの法線方向と前記観察方向とのなす角である傾斜角と、前記観察方向を前記位相差フィルム面に垂直投影したときの前記位相差フィルム面内における方位角と、を変更する回動機構を有する光学ムラ検出装置。
The optical unevenness detection device according to any one of claims 1 to 3,
An inclination angle that is an angle between the normal direction of the retardation film and the observation direction, and an azimuth angle in the retardation film plane when the observation direction is vertically projected on the retardation film surface. And an optical non-uniformity detection device having a rotation mechanism for changing.
位相差フィルムの光学ムラを検出する光学ムラ検出方法であって、
被検査対象である位相差フィルムをクロスニコル状態で配置された一対の偏光板に挟み込み、所望の傾斜角度に設定し、
前記位相差フィルムの一方の側から照明するとともに、前記位相差フィルムの他方の側から前記偏光板を介して前記照明光の透過光画面を、前記位相差フィルムの所定の検査領域に対して該検査領域内における撮像方向の角度変動を2度以内として望遠撮像し、
得られる撮像画像の輝度情報から輝度変動成分を検出する光学ムラ検出方法。
An optical unevenness detection method for detecting optical unevenness of a retardation film,
The retardation film to be inspected is sandwiched between a pair of polarizing plates arranged in a crossed Nicol state, and set to a desired inclination angle,
Illuminating from one side of the retardation film, the transmitted light screen of the illumination light from the other side of the retardation film via the polarizing plate, the predetermined inspection region of the retardation film Telephoto imaging with the angle fluctuation in the imaging direction within the inspection area within 2 degrees,
An optical unevenness detection method for detecting a luminance fluctuation component from luminance information of a captured image obtained.
請求項5記載の光学ムラ検出方法であって、
前記位相差フィルムを異なる複数の方向から撮像し、各撮像方向に対する撮像画像からそれぞれ輝度変動成分を検出する光学ムラ検出方法。
An optical unevenness detection method according to claim 5,
An optical unevenness detection method in which the retardation film is imaged from a plurality of different directions, and a luminance variation component is detected from each captured image in each imaging direction.
請求項5又は請求項6記載の光学ムラ検出方法であって、
1回の撮像で前記位相差フィルムの少なくとも20cm角の領域を撮像する光学ムラ検出方法。
The optical unevenness detection method according to claim 5 or 6,
An optical unevenness detection method for imaging at least a 20 cm square region of the retardation film by one imaging.
請求項5〜6又は請求項7記載の光学ムラ検出方法であって、
前記位相差フィルムを特定の複数方向からなる代表撮像方向に傾斜させて撮像し、
各代表撮像方向の撮像画像の輝度値から、前記各代表撮像方向の中間の傾斜方向に対する輝度値を補間処理して求め、該補間処理で得られた輝度情報から前記輝度ムラ成分を検出する光学ムラ検出方法。
An optical unevenness detection method according to claim 5-6 or claim 7,
Inclining the retardation film in a representative imaging direction consisting of a plurality of specific directions, and imaging,
An optical for detecting the luminance unevenness component from the luminance information obtained from the luminance information obtained by the interpolation processing from the luminance value of the captured image in each representative imaging direction to obtain a luminance value with respect to an intermediate inclination direction of each representative imaging direction. Unevenness detection method.
請求項8記載の光学ムラ検出方法であって、
前記位相差フィルムに対面する任意の位置で観察される前記照明光の透過光画面を、前記補間処理して得られた輝度情報から合成して作成し、この透過光画面の合成画像の輝度情報から前記輝度ムラ成分を検出する光学ムラ検出方法。
An optical unevenness detection method according to claim 8,
The transmission light screen of the illumination light observed at an arbitrary position facing the retardation film is synthesized from the luminance information obtained by the interpolation process, and the luminance information of the composite image of the transmission light screen An optical unevenness detecting method for detecting the luminance unevenness component from
JP2007085295A 2007-03-28 2007-03-28 Apparatus and method for detecting optical unevenness Pending JP2008241607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085295A JP2008241607A (en) 2007-03-28 2007-03-28 Apparatus and method for detecting optical unevenness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085295A JP2008241607A (en) 2007-03-28 2007-03-28 Apparatus and method for detecting optical unevenness

Publications (1)

Publication Number Publication Date
JP2008241607A true JP2008241607A (en) 2008-10-09

Family

ID=39913129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085295A Pending JP2008241607A (en) 2007-03-28 2007-03-28 Apparatus and method for detecting optical unevenness

Country Status (1)

Country Link
JP (1) JP2008241607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230368A (en) * 2009-03-26 2010-10-14 Toppan Printing Co Ltd Device for inspecting color filter substrate and method for inspecting defect
JP2013088128A (en) * 2011-10-13 2013-05-13 Toray Eng Co Ltd Film thickness non-uniformity examination apparatus
CN105699054A (en) * 2016-01-29 2016-06-22 歌尔声学股份有限公司 An illuminant surface luminescence uniformity detection apparatus, method and system
WO2016141723A1 (en) * 2015-03-10 2016-09-15 中国海洋大学 Apparatus and method for detecting target image of large non-uniform light field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230368A (en) * 2009-03-26 2010-10-14 Toppan Printing Co Ltd Device for inspecting color filter substrate and method for inspecting defect
JP2013088128A (en) * 2011-10-13 2013-05-13 Toray Eng Co Ltd Film thickness non-uniformity examination apparatus
WO2016141723A1 (en) * 2015-03-10 2016-09-15 中国海洋大学 Apparatus and method for detecting target image of large non-uniform light field
CN105699054A (en) * 2016-01-29 2016-06-22 歌尔声学股份有限公司 An illuminant surface luminescence uniformity detection apparatus, method and system

Similar Documents

Publication Publication Date Title
TWI394431B (en) Evaluation method of stereoscopic image display panel and system of the same
TWI414780B (en) Inspection system
TWI242171B (en) Method and system for evaluating moving image quality of displays
JP3937024B2 (en) Detection of misalignment, pattern rotation, distortion, and misalignment using moiré fringes
JP2006242821A (en) Imaging method of optical panel, inspection method of optical panel, imaging device of optical panel and inspection device of optical panel
JP4581927B2 (en) Display device glare measuring method and device
TWI663577B (en) Demura system for non-planar screen
US11360304B2 (en) Image distortion detection method and system
JP2010522347A (en) Universal test system that controls multiple parameters related to the operation of various types of equipment displaying optoelectronic information
US20070164776A1 (en) Device and method for measuring gray to gray transition response time
JP2012215486A (en) Surface property measuring apparatus and comprehensive evaluation method for surface property
TWI231705B (en) Apparatus and method to evaluate the quality of animation
JP2007322162A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
CN106405826A (en) Galvanometer scanning system and scanning method for dual optical path imaging
JP2008241607A (en) Apparatus and method for detecting optical unevenness
CN102595178A (en) Field-butting three-dimensional display image correction system and method
TW201013172A (en) Lens testing device with variable testing patterns
JP2012085225A (en) Image quality adjustment system and image quality adjustment method
KR20010113515A (en) Device for detecting tilt angle of optical axis and image measuring apparatus equipped therewith
KR20080088511A (en) Motion picture image processing system and motion picture image processing method
US7834996B2 (en) Inspection apparatus and method
JPH0735645A (en) Apparatus for inspecting liquid crystal panel
JP5557586B2 (en) Surface texture measuring device and surface texture measuring method
JP2001059795A5 (en)
JP3343445B2 (en) LCD panel image quality inspection system