JP2008241451A - Method for diagnosing anomaly of oil-filled electric apparatus - Google Patents

Method for diagnosing anomaly of oil-filled electric apparatus Download PDF

Info

Publication number
JP2008241451A
JP2008241451A JP2007082172A JP2007082172A JP2008241451A JP 2008241451 A JP2008241451 A JP 2008241451A JP 2007082172 A JP2007082172 A JP 2007082172A JP 2007082172 A JP2007082172 A JP 2007082172A JP 2008241451 A JP2008241451 A JP 2008241451A
Authority
JP
Japan
Prior art keywords
oil
ppm
btex
xylene
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007082172A
Other languages
Japanese (ja)
Inventor
Manabu Sato
学 佐藤
Mitsufumi Matsunaga
充史 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKA IND KK
Original Assignee
YUKA IND KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKA IND KK filed Critical YUKA IND KK
Priority to JP2007082172A priority Critical patent/JP2008241451A/en
Publication of JP2008241451A publication Critical patent/JP2008241451A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of detecting anomalies of oil-filled electric apparatuses, on the basis of the state of generation of BTEX in insulating oils of the electric apparatuses and estimating the form of the anomalies (for example, by electric discharge or overheating). <P>SOLUTION: An insulating oil is collected from an oil-filled electric apparatus as a sample. The contents of BTEX (benzene, toluene, ethylbenzene and xylene) in the sample are each measured to subsequently determine their distributions. The acquired contents and their distributions are each compared with and analyzed against the contents of BTEX and their distributions of a sample of which the form of anomalies is known to predict the presence or the absence of anomalies of the oil-filled electric apparatus and the form of the anomalies. It is preferable that each of the amounts of BTEX generated in the insulating oil be measured by solid phase micro extraction and gas chromatograph/mass spectrometry. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、変圧器、コンデンサー、OF(油浸)ケーブル等の油入電力機器の放電や過熱の異常を検出して診断する方法に関し、絶縁油中に生成するベンゼン、トルエン、エチルベンゼン、キシレンのそれぞれの生成量と生成量の分布に基づいて異常を診断するようにしたものである。   The present invention relates to a method for detecting and diagnosing abnormalities in discharge and overheating of oil-filled power devices such as transformers, capacitors, and OF (oil-immersion) cables, and relates to benzene, toluene, ethylbenzene, and xylene generated in insulating oil. Abnormalities are diagnosed based on the generation amount and the distribution of the generation amount.

変圧器、コンデンサー、OFケーブル等油入電力機器の保守には、放電や過熱の早期発見が重要である。
これまで、放電や過熱で生成するガスの絶縁油中濃度を測定し、ガス濃度比で判定する方法が使用されてきた(電協研第54巻第5号(1999)、IEC 60599−1999)。
Early detection of discharge and overheating is important for maintenance of oil-filled power equipment such as transformers, capacitors, and OF cables.
So far, a method has been used in which the concentration of gas generated by discharge or overheating is measured and the gas concentration ratio is determined (Denki Kenkyu vol. 54, No. 5 (1999), IEC 60599-1999). .

特に、異常過熱と放電の指標として絶縁油中に生成したアセチレンの濃度が使用されてきた。しかし、アセチレンは放電あるいは過熱いずれによっても生成するため、水素、エチレン、エタンなどほかの分解生成ガスとの比率で診断が行われている。
また、アセチレンは銅と反応して油中濃度が低下するため、必ずしも正確に状態を把握するとは限らない点が指摘されている。さらに、例えば変圧器の流動帯電のように、通常の油中アセチレン分析レベルでは検出が困難な場合もあり、より検出が容易な劣化指標が望まれている。
In particular, the concentration of acetylene produced in insulating oil has been used as an indicator of abnormal overheating and discharge. However, since acetylene is generated by either discharge or overheating, diagnosis is carried out in proportion to other decomposition products such as hydrogen, ethylene, and ethane.
Moreover, since acetylene reacts with copper and the concentration in oil falls, it has been pointed out that the state is not necessarily grasped accurately. Furthermore, there is a case where detection is difficult at a normal acetylene analysis level in oil, such as flow electrification of a transformer, and a deterioration index that is easier to detect is desired.

さらには、B型コンサベータをもつ変圧器の場合はタップチエンジャーで生成したアセチレンが本体油に透過してくるため、本体の放電を検出することが困難になることが指摘されている。   Furthermore, it has been pointed out that in the case of a transformer having a B-type conservator, it is difficult to detect the discharge of the main body because acetylene generated by the tap changer permeates the main body oil.

ところで、ベンゼン、トルエン、エチルベンゼン、キシレン(以下、BTEXと略称する。)がアーク放電によって絶縁油中に生成することが、Kraemerらによって報告されている(CIGRE 12−108, 1996)。
彼らは、オンロードタップチエンジャー(LTC)の接点切り替えにおけるアークの発生による接点摩耗に関して、アーク放電に伴いBTEXが生成することを見いだした。
BTEX、特にはベンゼン、トルエンの生成量が交換電流とスイッチング回数に比例して増加することを報告している。
Incidentally, it has been reported by Kraemer et al. That benzene, toluene, ethylbenzene, and xylene (hereinafter abbreviated as BTEX) are produced in insulating oil by arc discharge (CIGRE 12-108, 1996).
They found that BTEX was generated with arc discharge in terms of contact wear due to arc generation in on-road tap changer (LTC) contact switching.
It has been reported that the amount of BTEX, particularly benzene and toluene, increases in proportion to the exchange current and the number of switching.

しかしながら、Kraemerらの報告には、絶縁油中に生成したBTEXの生成状態と油入電気機器の異常形態とを関連ずける点はない。
電協研第54巻第5号(1999)、IEC 60599−1999 Kraemer et al、CIGRE 12−108,1996
However, the Kraemer et al. Report does not relate the state of BTEX generated in the insulating oil and the abnormal form of the oil-filled electrical device.
DENKOKEN Vol.54 No.5 (1999), IEC 60599-1999 Kraemer et al, CIGRE 12-108, 1996

よって、本発明における課題は、油入電気機器の絶縁油中のBTEXの生成状態から該電気機器の異常を検出し、さらに異常の形態(例えば、放電によるものか、過熱によるものか)を推定できる手法を提供することにある。   Therefore, the problem in the present invention is to detect an abnormality of the electric device from the state of generation of BTEX in the insulating oil of the oil-filled electric device, and to estimate the form of the abnormality (for example, due to discharge or overheating). It is to provide a technique that can be used.

かかる課題を解決するため、
請求項1にかかる発明は、絶縁油中に溶存するベンゼン、トルエン、エチルベンゼン、キシレンのそれぞれの生成量とこれらの生成量の分布から油入電気機器の異常を診断する方法である。
To solve this problem,
The invention according to claim 1 is a method for diagnosing an abnormality in an oil-filled electrical device from the production amounts of benzene, toluene, ethylbenzene, and xylene dissolved in insulating oil and the distribution of the production amounts.

請求項2にかかる発明は、絶縁油中のベンゼン、トルエン、エチルベンゼン、キシレンのそれぞれの生成量を、固相マイクロ抽出−ガスクロマトグラフィ−質量分析法で測定する請求項1記載の油入電気機器の異常を診断する方法である。   According to a second aspect of the present invention, there is provided the oil-filled electrical device according to the first aspect, wherein the production amounts of benzene, toluene, ethylbenzene, and xylene in the insulating oil are measured by solid phase microextraction-gas chromatography-mass spectrometry. This is a method for diagnosing abnormalities.

請求項3にかかる発明は、請求項2において、固相マイクロ抽出を温度20〜60℃の範囲で行うことを特徴とする油入電気機器の異常を診断する方法である。   The invention according to claim 3 is the method of diagnosing an abnormality of the oil-filled electrical device according to claim 2, wherein the solid-phase microextraction is performed in a temperature range of 20 to 60 ° C.

請求項4にかかる発明は、トルエン、エチルベンゼン、キシレンのそれぞれの生成量とその分布に基づいて、油入電気機器での放電と過熱を判別する請求項1ないし3のいずれかに記載の油入電気機器の異常を診断する方法である。   According to a fourth aspect of the present invention, there is provided the oil filler according to any one of the first to third aspects, wherein discharge and overheating in the oil-filled electrical device are discriminated based on respective production amounts and distributions of toluene, ethylbenzene, and xylene. This is a method for diagnosing abnormalities in electrical equipment.

請求項5にかかる発明は、トルエン、エチルベンゼン、キシレンのそれぞれ生成量とその分布に基づいて、油入電気機器での放電の大小・頻度を判別する請求項1ないし4のいずれかに記載の油入電気機器の異常を診断する方法である。   The invention according to claim 5 is an oil according to any one of claims 1 to 4, wherein the magnitude and frequency of discharge in an oil-filled electrical device are determined based on the respective production amounts and distribution of toluene, ethylbenzene, and xylene. This is a method for diagnosing abnormalities in input electrical equipment.

請求項6にかかる発明は、請求項4または5記載の方法において、油入電気機器の診断を、ベンゼン、トルエン、エチルベンゼン、キシレンの油中濃度と炭素数1〜3の炭化水素の油中ガスの分析結果とを合わせて行う油入電気機器の異常を診断する方法である。   According to a sixth aspect of the present invention, in the method according to the fourth or fifth aspect, the oil-filled electrical device is diagnosed by benzene, toluene, ethylbenzene, xylene in oil concentration and C1-C3 hydrocarbon gas in oil. This is a method of diagnosing an abnormality of an oil-filled electrical device that is performed in combination with the analysis results of

本発明によれば、油入電気機器の絶縁油中のBTEXのそれぞれの生成量とそれぞれの生成量分布状況に基づいて異常の有無以外に異常の形態を知ることができる。
また、絶縁油中のBTEXの生成量の測定に、固相マイクロ抽出−ガスクロマトグラフィ−質量分析法を用いるようにすれば、測定が簡単に短時間で実施できる。
ADVANTAGE OF THE INVENTION According to this invention, the form of abnormality other than the presence or absence of abnormality can be known based on each production amount of BTEX in insulating oil of oil-filled electrical equipment and each production amount distribution situation.
If solid phase microextraction-gas chromatography-mass spectrometry is used for measurement of the amount of BTEX produced in insulating oil, the measurement can be carried out easily and in a short time.

以下、本発明を詳しく説明する。
本出願人は、放電の形態、加熱温度によるBTEXの生成への影響を検討し、その絶縁油中での分布と生成量が放電・加熱の形態と条件によって異なり、診断に適用できる可能性をみいだした。
放電の形態は、油入電気機器でも変圧器、コンデンサー、ケーブル等、機器毎に異なり、コンデンサー、ケーブルは狭い電極間隙におかれた絶縁油が高電界下にさらされるため、無声放電により水素ガスが発生しやすく、さらに進展するとコロナ放電(部分放電)が起こる。また、不純物等が原因の絶縁不良による放電も報告されている。
The present invention will be described in detail below.
The present applicant examines the influence of the discharge type and heating temperature on the production of BTEX, and the distribution and generation amount in the insulating oil differ depending on the discharge and heating form and conditions, and the possibility of being applicable to diagnosis. I found it.
The form of discharge varies depending on the equipment, such as transformers, capacitors, and cables, even in oil-filled electrical equipment. Capacitors and cables are exposed to a high electric field by insulating oil placed in a narrow electrode gap. Corona discharge (partial discharge) occurs when it further develops. In addition, discharge due to poor insulation due to impurities or the like has been reported.

一方、変圧器の場合は、絶縁紙の油未含浸のためのボイド等による微少放電から、導体接触不良、巻線間絶縁不良等による中エネルギー放電あるいはアーク放電、流動帯電で発生・蓄積した静電気による直流絶縁破壊など、いろいろな放電が起こりうる。
この放電時のエネルギーにより絶縁油(主成分は炭素数20−30程度の炭化水素)の一部が分解し、水素とエチレン、メタン等が発生するが、エネルギーがある程度高い場合にはアセチレンが生成する。これを利用して前述の油中ガス分析による診断が行われている。
On the other hand, in the case of transformers, static electricity generated and accumulated by minute discharge due to voids due to oil not impregnated with insulating paper, medium energy discharge or arc discharge due to poor conductor contact, poor insulation between windings, etc. Various electric discharges such as direct current insulation breakdown due to can occur.
A part of insulating oil (main component is hydrocarbon with about 20-30 carbon atoms) is decomposed by the energy at the time of discharge, and hydrogen, ethylene, methane, etc. are generated, but acetylene is produced when the energy is high to some extent. To do. The diagnosis by the gas analysis in oil described above is performed using this.

また、過熱は、過負荷による導体の過熱、循環電流、異物による鉄心の過熱等があり、700℃以上の異常過熱まで起こると言われている。過熱によって絶縁油の熱分解が起こるが、生成物は温度によって異なり、高温下ではアセチレンまでが生成する。従って、アセチレンは放電、過熱いずれにおいても生成し、どちらの原因で生成したか不明の場合もある。   Further, overheating includes overheating of the conductor due to overload, circulating current, overheating of the iron core due to foreign matters, and the like, and it is said that overheating occurs at 700 ° C. or higher. Thermal decomposition of the insulating oil occurs due to overheating, but the product varies depending on the temperature, and up to acetylene is formed at high temperatures. Accordingly, acetylene is generated during both discharge and overheating, and it may be unclear whether it is generated.

こうした放電、過熱の形態によってBTEXがどのように生成するかを、実験室的に検討した。
図1は、JIC C2101に規定する鉱油系絶縁油(JIC C2320に規定する1種2号油)の交流絶縁破壊試験で絶縁破壊を繰り返し、絶縁油中に生成したBTEXのそれぞれの生成量とその分布を示すものである。
この絶縁破壊を伴う放電ではトルエンのみが生成し、ほかの成分は生成しなかった。絶縁破壊を繰り返すことにより、トルエンの生成量のみが増大した。
A laboratory study was conducted on how BTEX is generated by such discharge and overheating.
Fig. 1 shows the amount of BTEX produced in insulating oil by repeating the dielectric breakdown in the AC dielectric breakdown test of mineral oil-based insulating oil specified in JIS C2101 (Type 1 oil specified in JIS C2320). Distribution is shown.
In this discharge accompanied by dielectric breakdown, only toluene was produced and no other components were produced. By repeating the dielectric breakdown, only the amount of toluene produced increased.

数種類の異なる絶縁油(JIS C 2320 1種2号油でパラフィン系及びナフテン系の各原油から精製した鉱油系絶縁油2種、直鎖型及び分岐型のアルキルベンゼン)のいずれの場合もトルエンのみが生成した。このように交流絶縁破壊ではもっぱらトルエンが生成した。
また、こうした放電によるBTEXの生成が絶縁油の種類によらないことが確認された。
In some cases, only toluene is used in the case of several different types of insulating oils (JIS C 2320 Type 1 No. 2 oil, two types of mineral insulating oils refined from paraffinic and naphthenic crude oils, linear and branched alkylbenzenes). Generated. In this way, toluene was produced exclusively in the AC breakdown.
Moreover, it was confirmed that the production | generation of BTEX by such discharge does not depend on the kind of insulating oil.

図2では、鉱油系絶縁油(JIC C2320に規定する1種2号油)について各種の放電実験をおこない、放電後のBTEXの生成分布を比較した。アルゴン中のグロー放電を絶縁油の油面上で行い、油中に浸すことで消弧させた。これを繰り返すとおもにベンゼンとトルエンが生成し、エチルベンゼンと各キシレンは少量生成した。
部分放電(微少放電)においては、形態によってベンゼン又はトルエンのみが生成した。これをアセチレンの生成と対比させるとアセチレンが多い、すなわちエネルギーが高いと思われる部分放電でベンゼンが生成すると考えられた。
In FIG. 2, various discharge experiments were conducted for mineral oil-based insulating oil (Type 1 No. 2 oil defined in JIS C2320), and the generation distribution of BTEX after discharge was compared. A glow discharge in argon was performed on the oil surface of the insulating oil, and the arc was extinguished by being immersed in the oil. When this was repeated, mainly benzene and toluene were produced, and a small amount of ethylbenzene and each xylene was produced.
In the partial discharge (microdischarge), only benzene or toluene was generated depending on the form. When this was contrasted with the generation of acetylene, it was thought that benzene was generated in a partial discharge that was thought to have a high amount of acetylene, that is, high energy.

図2には絶縁油の過熱実験での結果も示した。300℃、450℃ではBTEXの生成は見られなかったが、750℃での過熱を繰り返すと、o−キシレン、p−キシレン、トルエン、エチルベンゼン、m−キシレンが生成した。
以上のように、放電の形態と過熱温度によって生成するBTEXの分布が異なり、生成量は各放電又は過熱の経過(時間又は累積頻度)によると考えられ、油中BTEXの生成分布と生成量による診断の可能性が示唆された。
FIG. 2 also shows the result of the overheating experiment of the insulating oil. The formation of BTEX was not observed at 300 ° C. and 450 ° C., but when overheating at 750 ° C. was repeated, o-xylene, p-xylene, toluene, ethylbenzene and m-xylene were produced.
As described above, the distribution of BTEX generated differs depending on the form of discharge and the overheating temperature, and the generation amount is considered to depend on the progress (time or cumulative frequency) of each discharge or overheating, depending on the generation distribution and generation amount of BTEX in oil. The possibility of diagnosis was suggested.

ついで、実際の稼働中の油入電気機器から採取した絶縁油中のBTEX分析結果を図3に要約した。
負荷時タップ切替器(LTC)の場合、ベンゼンとトルエンが主な生成物であり、図2に示したグロー放電と類似のパターンを示した。変圧器の場合、ベンゼン以外の成分が検出され、トルエンとp−キシレンが多かったが、機器により分布に差が見られた。
変圧器の場合、1種類の放電・過熱のみならず、複数の事象が発生していることも考えられ、時間的に生成物分布の変化を追跡することで、新たに生じた異常を検出することができる可能性がある。
Next, FIG. 3 summarizes the results of BTEX analysis in insulating oil collected from actual oil-filled electrical equipment in operation.
In the case of an on-load tap changer (LTC), benzene and toluene were the main products, and showed a pattern similar to the glow discharge shown in FIG. In the case of the transformer, components other than benzene were detected, and there were many toluene and p-xylene, but the distribution was different depending on the equipment.
In the case of a transformer, it is possible that not only one type of discharge / overheating but also multiple events have occurred, and by detecting changes in product distribution over time, new abnormalities are detected. Could be possible.

こうしたトレンド管理が容易なのは、銅と反応するアセチレンとは異なり、BTEXが化学的に安定であるために、絶縁油中に安定して存在し、生成したBTEXは累積して油中濃度が常に増大するためである。コンデンサーの場合、アセチレンが大量に生成しているものも含めてキシレン類とエチルベンゼンが生成し、p−キシレンが最も多かった。実験室での部分放電とは異なる分布であり、異なる放電又は過熱が起こっていることが考えられた。   This trend management is easy, unlike acetylene that reacts with copper, because BTEX is chemically stable, so it exists stably in insulating oil, and the concentration of BTEX that is generated increases constantly. It is to do. In the case of the condenser, xylenes and ethylbenzene were produced, including those in which a large amount of acetylene was produced, and p-xylene was the most. The distribution was different from the partial discharge in the laboratory, and it was considered that different discharges or overheating occurred.

このように想定される放電又は過熱のモデル実験後の絶縁油中のBTEX生成分布と生成量を分析し、稼働中の油入電気機器から採取した絶縁油中のBTEX生成分布と生成量と比較することにより、機器で生じている異常の有無、異常の形態を検出するための有用な手段がえられる。生成物分布から複数の事象が起こっていると推定された場合は、経時的に追跡することで最近の事象を解析することが可能といえる。   Analyzing BTEX generation distribution and generation amount in insulating oil after model experiment of discharge or overheating assumed in this way, and comparing with BTEX generation distribution and generation amount in insulating oil collected from operating oil-filled electrical equipment By doing so, useful means for detecting the presence / absence of an abnormality occurring in the device and the form of the abnormality can be obtained. If it is estimated from the product distribution that multiple events are occurring, it can be said that recent events can be analyzed by tracking them over time.

現在広く行われている油中ガス分析によるアセチレンの生成傾向は、BTEXと必ずしも合致するものでなく、生成のメカニズムが異なる可能性があることを示す。
このことは、稼働中の電気機器内の絶縁油中のBTEXを分析することによって、従来検出できなかったあるいは識別できなかった異常を検出しうる可能性がある。
また、必要により油中ガス分析結果とあわせることにより、異常の診断を従来のガス分析単独の診断よりも正確になし得る可能性があることを示すものである。
The tendency of acetylene formation by gas analysis in oil, which is currently widely used, does not necessarily match BTEX, indicating that the generation mechanism may be different.
This may be able to detect abnormalities that could not be detected or identified in the past by analyzing BTEX in the insulating oil in the electrical equipment in operation.
Moreover, it is shown that there is a possibility that abnormality diagnosis can be made more accurately than conventional gas analysis alone diagnosis by combining with the gas analysis result in oil if necessary.

絶縁油中のBTEX含有量の測定法は、種々の分析方法で実施できるが、固相マイクロ抽出−ガスクロマトグラフィー−質量分析法(SPME−GC−MS法)が、操作が容易で所要時間も短時間で済むために好適である。
SPMEでは、細いニードルの先端にファイバー状の固相が結合されたものを吸着又は分配の固定層として使用する。
The BTEX content in the insulating oil can be measured by various analytical methods, but solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS method) is easy to operate and requires a long time. It is suitable because it takes a short time.
In SPME, a fiber-like solid phase bonded to the tip of a thin needle is used as a fixed layer for adsorption or distribution.

サンプルの入った密封容器にニードルを挿入し、ニードル内に格納されたファイバーを出して、サンプル液の表面上にファイバーをサンプル液に接しない状態で(ヘッドスペース)配し、所定の温度で所定の時間保持することで、ヘッドスペース内の成分を固定層に吸着させる(ヘッドスペース抽出という)。   Insert the needle into the sealed container containing the sample, take out the fiber stored in the needle, and place the fiber on the surface of the sample liquid without contacting the sample liquid (headspace), and at a predetermined temperature. By holding for this time, the components in the head space are adsorbed to the fixed layer (referred to as head space extraction).

絶縁油中にファイバを浸して抽出すると、絶縁油が大量にファイバーに吸着されるため、対象成分の測定が困難になる。また、ヘッドスペース抽出を温度20℃〜60℃の範囲で行うことが好ましい。60℃を超えると絶縁油の一部が抽出されるため、測定を妨害する。20℃未満では対象成分の濃縮が困難になる。妨害成分の抽出を抑え、抽出時間を1時間以内に抑えるためには温度20℃〜60℃の範囲が必要である   If a fiber is immersed in and extracted from insulating oil, a large amount of insulating oil is adsorbed by the fiber, making it difficult to measure the target component. Moreover, it is preferable to perform head space extraction in the temperature range of 20 ° C to 60 ° C. If the temperature exceeds 60 ° C., a part of the insulating oil is extracted, which disturbs the measurement. If it is less than 20 ° C., it is difficult to concentrate the target component. A temperature range of 20 ° C to 60 ° C is required to suppress the extraction of interfering components and to keep the extraction time within one hour.

本発明に用いるSPMEファイバーとしては、市販のほとんどのファイバーを使用することができるが、脱着温度やくり返し使用可能な回数等を考慮すると、PDMS/DVB(ポリジメチルシロキサンをスチレンジビニルベンゼン吸着剤に担持させたもの)の使用がとくに好ましい。   As the SPME fiber used in the present invention, most commercially available fibers can be used. However, considering the desorption temperature and the number of times it can be used repeatedly, PDMS / DVB (polydimethylsiloxane is supported on the styrenedivinylbenzene adsorbent. The use of the above is particularly preferred.

ヘッドスペースの容積に対して絶縁油量が多いと平衡化に長時間が必要となるほか、ファイバーに抽出される量が必要以上に多くなり、GC−MS分離能が低下する。ヘッドスペース容量が絶縁油量に対して大きすぎると、平衡化と吸着に長時間を必要とする。好ましい絶縁油量とヘッドスペース容積は0.2−0.5mL/5−30mLの範囲である。   If the amount of insulating oil is large with respect to the volume of the head space, it takes a long time for equilibration, and the amount extracted to the fiber becomes larger than necessary, and the GC-MS separation performance is lowered. If the headspace capacity is too large for the amount of insulating oil, a long time is required for equilibration and adsorption. A preferable insulating oil amount and head space volume are in the range of 0.2-0.5 mL / 5-30 mL.

この後、ニードルを所定の温度に保持したGC−MS注入口に挿入して吸着成分を脱着させることで測定を行う。
GC−MS条件としては、対象成分の脱着に必要な注入部温度150−270℃、好ましくは230−250℃、カラムは一般的な極性または無極性カラムが使用できるが、少量の混入油分のパージのために250℃以上の耐熱性のあるカラムが好ましい。
Thereafter, the measurement is performed by inserting the needle into the GC-MS inlet held at a predetermined temperature and desorbing the adsorbed component.
As GC-MS conditions, the injection part temperature required for desorption of the target component is 150 to 270 ° C., preferably 230 to 250 ° C. The column can be a general polar or nonpolar column, but a small amount of contaminated oil is purged. Therefore, a column having a heat resistance of 250 ° C. or higher is preferable.

本発明では、キシレン異性体の分離が可能なCarbowax系のカラムが特に好ましく使用される。もちろん、分離カラムには充填カラム、キャピラリーカラムとも用いることができる。GC−MS分析はトータルイオンモード(TIM)で行うことも、選択イオンモード(SIM)で行うこともできる。   In the present invention, a Carbowax column capable of separating xylene isomers is particularly preferably used. Of course, the separation column can be a packed column or a capillary column. The GC-MS analysis can be performed in total ion mode (TIM) or in selected ion mode (SIM).

前者は油中成分の同定に好ましく使用され、後者は対象成分の高感度分析に特に適している。本発明にはSIMモードを使用するのが感度面から好ましい。モニターイオンをBTEXの分子イオンに絞ることにより、妨害成分の干渉を最小にすることができる。カラム温度はカラムに応じてBTEXが適切な時間に分離・溶出するような温度に設定し、これらが溶出した後に温度を上げて、少量の油成分を溶出させることが望ましい。   The former is preferably used for identification of components in oil, and the latter is particularly suitable for sensitive analysis of target components. In the present invention, the SIM mode is preferably used from the viewpoint of sensitivity. By confining the monitor ions to the molecular ions of BTEX, the interference of interference components can be minimized. The column temperature is preferably set to a temperature at which BTEX is separated and eluted at an appropriate time according to the column, and it is desirable to raise the temperature after elution of these to elute a small amount of oil components.

本発明におけるBTEXの測定には、ほかの方法を使用することも可能である。例えば、特開平8−72892号公報に示されたパージアンドトラップ抽出法とGC−MSを組み合わせる方法、HPLCによる方法などがあげられる。
しかし、前者では絶縁油が大量にGC−MSに注入されるおそれがあり、その場合は以後の測定に支障を来す。後者も油分からの分離が困難で、かつ感度的に不十分である。また固相を使用しないヘッドスペース抽出法は簡便であるが、濃縮手段でないために感度的に不十分である。
Other methods can be used for the measurement of BTEX in the present invention. For example, a method of combining the purge and trap extraction method and GC-MS disclosed in JP-A-8-72892, a method by HPLC, and the like can be mentioned.
However, in the former case, a large amount of insulating oil may be injected into the GC-MS. In this case, the subsequent measurement is hindered. The latter is also difficult to separate from oil and is insufficient in sensitivity. A headspace extraction method that does not use a solid phase is simple, but is not sensitive because it is not a concentration means.

このように、SPME−GC−MS法は、もっとも簡便で迅速な抽出・測定方法である。従来、この方法は水中の有機成分の抽出に用いられてきたが、抽出条件を最適化することで、絶縁油中の成分抽出にも適用できることを今回見いだしたものである。   Thus, the SPME-GC-MS method is the simplest and quickest extraction / measurement method. Conventionally, this method has been used for extraction of organic components in water. However, the present inventors have found that this method can be applied to extraction of components in insulating oil by optimizing the extraction conditions.

以下、具体例を示す。
[A]稼働中の油入電気機器から採取した絶縁油の分析を行った。
分析条件は、次の通りである。
SPMEファイバー:PDMS/DVB(スペルコ社製)
抽出温度:30℃(あらかじめ10分間静置して平衡化)、10分
絶縁油量:0.2 mL
ヘッドスペース:25 mL
GC−MS:島津製作所GC−MS QP5050
カラム:DB−Wax 内径0.25 mm 膜厚0.25 μm 長さ2 5m(J&W社製)
注入口温度:240℃
カラム温度:50℃
MS:SIMモード
Specific examples are shown below.
[A] The insulating oil collected from the oil-filled electrical equipment in operation was analyzed.
The analysis conditions are as follows.
SPME fiber: PDMS / DVB (manufactured by Spelco)
Extraction temperature: 30 ° C. (equilibrated by standing for 10 minutes in advance), 10 minutes
Insulating oil amount: 0.2 mL
Headspace: 25 mL
GC-MS: Shimadzu GC-MS QP5050
Column: DB-Wax ID 0.25 mm, film thickness 0.25 μm, length 25 m (manufactured by J & W)
Inlet temperature: 240 ° C
Column temperature: 50 ° C
MS: SIM mode

(1)負荷時タップ切替器A,B,Cから採取した絶縁油から、
トルエンが A:22.9ppm、B:29.7ppm、C:14.5ppm、
ベンゼンが A:5.0ppm、 B:5.1ppm、C:20.1ppm
検出されたほか、エチルベンゼン、3種のキシレンも少量(1ppm程度)検出された。
(1) From the insulating oil collected from the tap changer A, B, C when loaded,
Toluene is A: 22.9 ppm, B: 29.7 ppm, C: 14.5 ppm,
Benzene is A: 5.0 ppm, B: 5.1 ppm, C: 20.1 ppm
In addition to detection, a small amount (about 1 ppm) of ethylbenzene and three types of xylene were also detected.

(2)油中アセチレンが0.02−0.1%と微量検出された変圧器D,E,Fから採取した絶縁油から、
トルエンが D:8.6ppm、E:7.1ppm、F:12.7ppm,
p−キシレンが D:15.7ppm、E:6.3ppm、F:15.2ppm、
o−キシレンが D:6.6ppm、E:4.0ppm、F:6.4ppm、
m−キシレンが D:4.7ppm、E:2.7ppm、F:4.2ppm、
エチルベンゼンが D:5.2ppm、E:2.5ppm、F:3.8ppm、
検出された。ベンゼンは1ppm以下であった。
(2) From the insulating oil collected from the transformers D, E, and F, in which acetylene in the oil was detected in a small amount of 0.02-0.1%,
Toluene D: 8.6 ppm, E: 7.1 ppm, F: 12.7 ppm,
p-xylene is D: 15.7 ppm, E: 6.3 ppm, F: 15.2 ppm,
o-xylene D: 6.6 ppm, E: 4.0 ppm, F: 6.4 ppm,
m-xylene is D: 4.7 ppm, E: 2.7 ppm, F: 4.2 ppm,
Ethylbenzene has D: 5.2 ppm, E: 2.5 ppm, F: 3.8 ppm,
was detected. Benzene was 1 ppm or less.

(3)油中アセチレンが1ppm以上検出されたことから、内部放電の疑いのある変圧器G,Hの絶縁油から、
G:トルエン48.2ppm、p−キシレン2.4ppm、o−キシレン2.2ppm、m−キシレン0.7ppm、エチルベンゼン1.6ppm、
H:トルエン10.3ppm、p−キシレン14.5ppm、o−キシレン5.8ppm、m−キシレン4.5ppm、エチルベンゼン5.0ppmが検出された。ベンゼンは1ppm以下であった。
(3) Since 1 ppm or more of acetylene in the oil was detected, from the insulating oil of the transformers G and H suspected of internal discharge,
G: Toluene 48.2 ppm, p-xylene 2.4 ppm, o-xylene 2.2 ppm, m-xylene 0.7 ppm, ethylbenzene 1.6 ppm,
H: Toluene 10.3 ppm, p-xylene 14.5 ppm, o-xylene 5.8 ppm, m-xylene 4.5 ppm, and ethylbenzene 5.0 ppm were detected. Benzene was 1 ppm or less.

(4)アセチレンと水素の生成から放電の疑われる油浸コンデンサーI,J,Kから採取した絶縁油から、
トルエンが I:2.2ppm、J:1.8ppm、K:2.1ppm、
p−キシレンが I:11.4ppm、J:10.2ppm、K:12.2ppm、
o−キシレンが I:5.4ppm、J:4.6ppm、K:5.7ppm、
m−キシレンが I:3.2ppm、J:2.8ppm、K:3.5ppm、
エチルベンゼンが I:2.4ppm、J:2.2ppm、K:2.6ppmが検出された.ベンゼンは検出されなかった。
(4) From the insulating oil collected from oil immersion capacitors I, J, K suspected of discharging from the generation of acetylene and hydrogen,
Toluene I: 2.2 ppm, J: 1.8 ppm, K: 2.1 ppm,
p-xylene I: 11.4 ppm, J: 10.2 ppm, K: 12.2 ppm,
o-xylene I: 5.4 ppm, J: 4.6 ppm, K: 5.7 ppm,
m-xylene I: 3.2 ppm, J: 2.8 ppm, K: 3.5 ppm,
Ethylbenzene was detected at I: 2.4 ppm, J: 2.2 ppm, and K: 2.6 ppm. Benzene was not detected.

(5)アセチレン、エチレン等の生成パターンから過熱が疑われている変圧器L, Mから採取した絶縁油からは、BTEXは検出されなかった。       (5) BTEX was not detected from the insulating oil collected from the transformers L and M suspected of being overheated from the generation pattern of acetylene and ethylene.

[B]実験室で各種放電および加熱を行った絶縁油(JIS C2320 1種2号絶縁油)の分析を行った.分析条件は先と同様である。   [B] Insulating oil (JIS C2320 Type 1 No. 2 insulating oil) subjected to various discharges and heating in the laboratory was analyzed. The analysis conditions are the same as above.

(6)外径2mmのステンレス2線を電極として絶縁油の沿面上、5mmの間隔で保持し、アルゴンガス雰囲気下、交流9kVでグロー放電させながら油中に浸して消弧させた。これを300回くり返した後の絶縁油から
ベンゼン5.9ppm、トルエン4.1ppm,p−キシレン0.5ppm、o−キシレン0.3ppm、m−キシレン0.3ppm、エチルベンゼン1.2ppmが検出された.また、油中ガス分析の結果、アセチレン18.7ppmであった。
(6) A stainless steel 2 wire having an outer diameter of 2 mm was used as an electrode, held on the surface of the insulating oil at intervals of 5 mm, and immersed in oil while glow discharge at 9 kV AC in an argon gas atmosphere to extinguish the arc. 5.9 ppm of benzene, 4.1 ppm of toluene, 0.5 ppm of p-xylene, 0.3 ppm of o-xylene, 0.3 ppm of m-xylene, and 1.2 ppm of ethylbenzene were detected from the insulating oil after repeating this 300 times. . Moreover, it was 18.7 ppm in acetylene as a result of the gas analysis in oil.

(7)JIS C2101に規定される球形電極を使用する交流絶縁破壊試験を200回繰り返した後の絶縁油から、トルエン11.6ppmが検出され、ほかの成分はほとんど検出されなかった。また、油中ガス分析の結果、アセチレン110.6ppmが検出された。       (7) 11.6 ppm of toluene was detected from the insulating oil after repeating the AC dielectric breakdown test using a spherical electrode defined in JIS C2101 200 times, and other components were hardly detected. As a result of gas analysis in oil, 110.6 ppm of acetylene was detected.

(8)ASTM D887に規定される平板電極を用いて交流5kVで部分放電を120分間継続した後の絶縁油から、ベンゼン0.3ppm、アセチレン607.4ppmが検出されたが、ほかの成分はほとんど検出されなかった。       (8) 0.3 ppm of benzene and 607.4 ppm of acetylene were detected from insulating oil after partial discharge was continued for 120 minutes at 5 kV AC using a flat plate electrode specified in ASTM D887. Not detected.

(9)ASTM D2330に規定される同心円電極を使用したガス吸収試験を窒素雰囲気下で行い、水素ガスを40000ppm、80000ppm発生させた後の絶縁油から、トルエンがそれぞれ0.4ppm、0.5ppm、アセチレン0.8ml、6.2ppmが検出され、ほかの成分はほとんど検出されなかった。       (9) A gas absorption test using concentric electrodes as defined in ASTM D2330 is performed in a nitrogen atmosphere, and hydrogen is generated from 40000 ppm and 80000 ppm, and from the insulating oil, toluene is 0.4 ppm, 0.5 ppm, respectively. Acetylene 0.8 ml, 6.2 ppm was detected, and other components were hardly detected.

(10)窒素雰囲気下で、絶縁油に浸漬したカートリッジヒーターを用いて加熱試験をおこなった。8時間の加熱で300℃以下ではBTEXの生成は見られなかった。       (10) A heating test was conducted using a cartridge heater immersed in insulating oil under a nitrogen atmosphere. Generation of BTEX was not observed at 300 ° C. or less after heating for 8 hours.

(11)キューリーポイント誘導加熱器を用いて窒素雰囲気下で絶縁油の高温加熱を行った.特定のパイロフォイルを用いて所定の温度(450、760℃)に昇温し、15秒後に加熱を終了した。これを40回繰り返した後の絶縁油中には450℃ではBTEXの生成は見られず、760℃ではo−キシレンが2.4ppm、p−キシレンが0.9ppm、トルエンが0.8ppmが検出された。ほかの成分も少量(0.3ppm程度)検出された。       (11) High temperature heating of the insulating oil was performed in a nitrogen atmosphere using a Curie point induction heater. The temperature was raised to a predetermined temperature (450, 760 ° C.) using a specific pyrofoil, and heating was terminated after 15 seconds. In the insulating oil after repeating this 40 times, no BTEX was observed at 450 ° C, and at 760 ° C, 2.4 ppm of o-xylene, 0.9 ppm of p-xylene, and 0.8 ppm of toluene were detected. It was done. Other components were also detected in small amounts (about 0.3 ppm).

以上のように、種々の放電の形態によってBTEXの生成量と生成物分布は異なっている。また過熱でも300℃以下ではBTEXは生成しないが、700℃程度ではキシレン等の生成が見られた。アセチレンの生成傾向はBTEXと必ずしも合致するものでなく、生成のメカニズムが異なる可能性があることを示す。   As described above, the amount of BTEX produced and the product distribution differ depending on various discharge modes. In addition, BTEX was not generated at 300 ° C. or lower even with overheating, but generation of xylene or the like was observed at about 700 ° C. The tendency of acetylene formation does not necessarily match that of BTEX, indicating that the generation mechanism may be different.

このことは、稼働中の油入電気機器のBTEXを分析することによって、従来検出できなかったあるいは識別できなかった異常を検出しうる可能性がある。
また、必要により油中ガス分析結果とあわせることにより、異常の診断を従来のガス分析単独の診断よりも正確になし得る可能性があることを示すものである。SPME−GC−MS法は、そのための簡易なBTEXの分析法となる。
By analyzing the BTEX of the oil-filled electrical device in operation, there is a possibility that an abnormality that could not be detected or identified in the past can be detected.
Moreover, it is shown that there is a possibility that abnormality diagnosis can be made more accurately than conventional gas analysis alone diagnosis by combining with the gas analysis result in oil if necessary. The SPME-GC-MS method is a simple BTEX analysis method for that purpose.

JIC C2101に規定する鉱油系絶縁油(JIC C2320に規定する1種2号油)の交流絶縁破壊試験で絶縁破壊を繰り返した場合に生成したBTEXの生成量と分布を示すグラフである。It is a graph which shows the production | generation amount and distribution of BTEX produced | generated when the dielectric breakdown was repeated by the alternating current dielectric breakdown test of the mineral oil type | system | group insulation oil prescribed | regulated to JIC C2101 (Type 1 No. 2 oil prescribed | regulated to JIC C2320). 鉱油系絶縁油(JIC C2320に規定する1種2号油)について各種の放電、過熱実験を実施した後のBTEXの生成分布を示すグラフである。It is a graph which shows the production | generation distribution of BTEX after implementing various discharge and overheating experiment about mineral oil type | system | group insulation oil (1 type 2 oil prescribed | regulated to JIS C2320). 実際の稼働中の油入電気機器から採取した絶縁油中のBTEXの生成量とその分布を示すグラフである。It is a graph which shows the production | generation amount of BTEX in the insulation oil extract | collected from the oil-filled electrical equipment in operation, and its distribution.

Claims (6)

絶縁油中に溶存するベンゼン、トルエン、エチルベンゼン、キシレンのそれぞれの生成量とこれらの生成量の分布から油入電気機器の異常を診断する方法。   A method of diagnosing abnormalities in oil-filled electrical equipment from the amount of benzene, toluene, ethylbenzene, and xylene dissolved in insulating oil and the distribution of these amounts. 絶縁油中のベンゼン、トルエン、エチルベンゼン、キシレンのそれぞれの生成量を、固相マイクロ抽出−ガスクロマトグラフィ−質量分析法で測定する請求項1記載の油入電気機器の異常を診断する方法。   The method for diagnosing an abnormality of an oil-filled electrical device according to claim 1, wherein the production amounts of benzene, toluene, ethylbenzene, and xylene in the insulating oil are measured by solid phase microextraction-gas chromatography-mass spectrometry. 請求項2において、固相マイクロ抽出を温度20〜60℃の範囲で行うことを特徴とする油入電気機器の異常を診断する方法。   The method for diagnosing an abnormality of an oil-filled electrical device according to claim 2, wherein the solid-phase microextraction is performed in a temperature range of 20 to 60 ° C. トルエン、エチルベンゼン、キシレンのそれぞれの生成量とその分布に基づいて、油入電気機器での放電と過熱を判別する請求項1ないし3のいずれかに記載の油入電気機器の異常を診断する方法。   The method for diagnosing abnormality in an oil-filled electrical device according to any one of claims 1 to 3, wherein discharge and overheating in the oil-filled electrical device are discriminated based on respective production amounts and distributions of toluene, ethylbenzene, and xylene. . トルエン、エチルベンゼン、キシレンのそれぞれ生成量とその分布に基づいて、油入電気機器での放電の大小・頻度を判別する請求項1ないし4のいずれかに記載の油入電気機器の異常を診断する方法。   The abnormality of the oil-filled electrical device according to any one of claims 1 to 4, wherein the magnitude and frequency of discharge in the oil-filled electrical device are determined based on the respective production amounts and distributions of toluene, ethylbenzene, and xylene. Method. 請求項4または5記載の方法において、油入電気機器の診断を、ベンゼン、トルエン、エチルベンゼン、キシレンの油中濃度と炭素数1〜3の炭化水素の油中ガスの分析結果とを合わせて行う油入電気機器の異常を診断する方法。   6. The method according to claim 4 or 5, wherein the diagnosis of the oil-filled electrical device is performed by combining the concentration in oil of benzene, toluene, ethylbenzene and xylene and the analysis result of the gas in oil of hydrocarbon having 1 to 3 carbon atoms. A method for diagnosing abnormalities in oil-filled electrical equipment.
JP2007082172A 2007-03-27 2007-03-27 Method for diagnosing anomaly of oil-filled electric apparatus Withdrawn JP2008241451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082172A JP2008241451A (en) 2007-03-27 2007-03-27 Method for diagnosing anomaly of oil-filled electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082172A JP2008241451A (en) 2007-03-27 2007-03-27 Method for diagnosing anomaly of oil-filled electric apparatus

Publications (1)

Publication Number Publication Date
JP2008241451A true JP2008241451A (en) 2008-10-09

Family

ID=39912984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082172A Withdrawn JP2008241451A (en) 2007-03-27 2007-03-27 Method for diagnosing anomaly of oil-filled electric apparatus

Country Status (1)

Country Link
JP (1) JP2008241451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213116A1 (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Temperature estimation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213116A1 (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Temperature estimation method
JPWO2017213116A1 (en) * 2016-06-07 2019-02-14 三菱電機株式会社 Temperature estimation method

Similar Documents

Publication Publication Date Title
Duval The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers
JP4873433B2 (en) Diagnostic method for oil-filled electrical equipment
Amimoto et al. Concentration dependence of corrosive sulfur on copper-sulfide deposition on insulating paper used for power transformer insulation
Amimoto et al. Duration and mechanism for suppressive effect of triazole-based passivators on copper-sulfide deposition on insulating paper
Jovalekic et al. Dissolved gas analysis of alternative dielectric fluids under thermal and electrical stress
Martin et al. Preliminary results for dissolved gas levels in a vegetable oil-filled power transformer
Arora Different DGA techniques for monitoring of transformers
Jovalekic et al. Gassing behavior of various alternative insulating liquids under thermal and electrical stress
JP5705388B1 (en) Diagnostic method for oil-filled electrical equipment
Narang et al. Fault detection techniques for transformer maintenance using Dissolved Gas analysis
Wan et al. Influence of copper ions in transformer oil properties and adsorption treatment
JP4994899B2 (en) Flow electrification diagnosis method for oil-filled electrical equipment
JP2007317836A (en) Diagnosis method of oil-filled transformer
Zainuddin Study of surface discharge behaviour at the oil-pressboard interface
Samarasinghe et al. Investigating passivator effectiveness for preventing silver sulfide corrosion in power transformer on-load tap changers
Gorgan et al. Calculation of power transformers health indexes
Schaut et al. Effects of Irgamet 30 as additive in transformer oil
Khiar et al. Sulfur corrosion mechanism in power transformers and its detection techniques: A review
Qian et al. Study on aging characteristics and chemical composition of hydrogenated transformer oil
JP2008241451A (en) Method for diagnosing anomaly of oil-filled electric apparatus
Mehanna et al. The minimum concentration of 1, 2, 3-benzotriazol to suppress sulfur corrosion of copper windings by DBDS in mineral transformer oils
Scatiggio et al. Oils with presence of corrosive sulfur: mitigation and collateral effects
Przybyłek et al. Concentration analysis of gases formed in mineral oil, natural ester, and synthetic ester by discharges of high energy
WO2011152177A1 (en) Diagnosis method and diagnosis apparatus for oil-filled electrical apparatus
Wang et al. Comparison of online and lab DGA methods for condition assessment of mineral and vegetable transformer oils

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601