JP2008240910A - Oil-impregnated sintered bearing - Google Patents

Oil-impregnated sintered bearing Download PDF

Info

Publication number
JP2008240910A
JP2008240910A JP2007082407A JP2007082407A JP2008240910A JP 2008240910 A JP2008240910 A JP 2008240910A JP 2007082407 A JP2007082407 A JP 2007082407A JP 2007082407 A JP2007082407 A JP 2007082407A JP 2008240910 A JP2008240910 A JP 2008240910A
Authority
JP
Japan
Prior art keywords
oil
bearing
impregnated
sintered
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007082407A
Other languages
Japanese (ja)
Inventor
Toshihiko Tanaka
敏彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007082407A priority Critical patent/JP2008240910A/en
Publication of JP2008240910A publication Critical patent/JP2008240910A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain prevention of generation of noise and suppression of slide abrasion by improving sliding characteristics at slide starting especially under low temperature environment at slide starting of an oil-impregnated sintered bearing. <P>SOLUTION: At the inside of the oil-impregnated sintered bearing, a large number of pores 3 exist singly or in the state that the plurality of pores 3 are communicated with each other. A large number of pores 3 are impregnated with a lubricant, and on the surface of the pores 3, a covering film (oil-repellent cover film) 5 indicating oil-repellency relative to the lubricant to be impregnated is formed. The oil-repellent covering film 5 is formed not only on a surface of the pore 3 at a bearing central part but also on a surface of the pore 3 opened to the bearing surface. The oil-repellent covering film 5 is removed from the bearing surface for substantially sliding/supporting the shaft, and an outer surface of the sintered body containing Fe and Cu as main components constitutes the bearing surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、焼結含油軸受に関する。   The present invention relates to a sintered oil-impregnated bearing.

焼結含油軸受は、支持すべき軸との相対回転に伴い、内部に含浸した潤滑油の滲み出しにより軸との摺動部に油膜を形成し、この油膜によって軸を支持するものである。この種の軸受は、非常に安価で製作可能であり、またボールベアリング等に比べて使用時の静粛性に優れていることから、例えば自動車用の電装モータなど、多数個を必要とし、人の操作快適性に影響を及ぼす駆動機構等に好適に用いられている。   In the sintered oil-impregnated bearing, an oil film is formed on a sliding portion with respect to the shaft by the seepage of the lubricating oil impregnated in the interior with relative rotation with the shaft to be supported, and the shaft is supported by this oil film. This type of bearing can be manufactured at a very low cost, and is superior in quietness when used compared to a ball bearing or the like. It is suitably used for a drive mechanism that affects operational comfort.

ところで、上述の用途で焼結含油軸受を使用する場合、使用時の異音発生、特に低温環境時の異音(鳴き音とも呼ばれる)発生が問題となる。焼結含油軸受は、上述の如く内部に含浸した潤滑油の滲み出しにより軸との摺動部に油膜を形成し、かかる油膜で軸を支持するものであるが、低温時には潤滑油と焼結金属との線膨張係数の違いから潤滑油が軸受内部に引き込まれ易く、油膜の形成が不十分となるためである。   By the way, when a sintered oil-impregnated bearing is used in the above-described application, the generation of abnormal noise during use, particularly the generation of abnormal noise (also referred to as squeal noise) in a low temperature environment becomes a problem. Sintered oil-impregnated bearings are those in which an oil film is formed on the sliding part of the shaft by the seepage of the lubricating oil impregnated inside as described above, and the shaft is supported by such an oil film. This is because the lubricating oil is easily drawn into the bearing due to the difference in coefficient of linear expansion from that of metal, and the formation of an oil film becomes insufficient.

かかる問題を解決するための手段として、例えば特開2003−120674号公報(特許文献1)には、Cu合金相の中にFe粒子が分散した複合組織をなし、かつFe相内およびCu合金相内に気孔を設けた組織図形とすることで、有効多孔率を20〜30%と高めに設定しつつも、通気度を6〜50×10-11cm2に抑え、摺動による油の過剰な滲み出しを抑制した焼結含油軸受が提案されている。 As means for solving such a problem, for example, Japanese Patent Application Laid-Open No. 2003-120673 (Patent Document 1) discloses a composite structure in which Fe particles are dispersed in a Cu alloy phase, and in the Fe phase and the Cu alloy phase. By making the structure figure with pores in the inside, while setting the effective porosity as high as 20-30%, the air permeability is suppressed to 6-50 × 10 −11 cm 2 , and excess oil due to sliding Sintered oil-impregnated bearings that suppress excessive bleeding have been proposed.

また、特開2004−138215号公報(特許文献2)には、焼結含油軸受の気孔の形態が鳴き音の発生と密接な関係を有するとの知見に基づき、軸受内周面の画像を画像解析装置によって解析して得られる気孔の円相当直径として、軸受内径と支持すべきシャフトとの間の直径クリアランスの4倍以下である気孔の合計面積が、画像面積の7%以下になっていることを特徴とする焼結含油軸受が提案されている。
特開2003−120674号公報 特開2004−138215号公報
Japanese Patent Application Laid-Open No. 2004-138215 (Patent Document 2) provides an image of the inner peripheral surface of the bearing based on the knowledge that the pore shape of the sintered oil-impregnated bearing has a close relationship with the generation of squeal noise. As the equivalent circle diameter of the pores obtained by the analysis by the analyzer, the total area of the pores, which is 4 times or less the diameter clearance between the bearing inner diameter and the shaft to be supported, is 7% or less of the image area. A sintered oil-impregnated bearing characterized by this is proposed.
JP 2003-120664 A JP 2004-138215 A

しかしながら、特許文献1に記載の焼結含油軸受では、なじみ性向上のために摺動面に露出するCu合金の割合を高めており、軸と軸受の摺動接触を前提としている。また、できる限り多くの潤滑油を保持しつつも軸受の通気度を低く抑えることを狙って、摺動面での開孔形態を調整しているが、かかる構成のみで十分な潤滑油膜の形成が図られるとは言い難い。これは、特許文献2にて指摘されているように、低温使用時、軸受摺動面に少量の潤滑油が存在することで急激な摩擦係数の低下を招き、却って異音発生の温床となる恐れがあるためである。   However, in the sintered oil-impregnated bearing described in Patent Document 1, the ratio of the Cu alloy exposed on the sliding surface is increased in order to improve the conformability, and the sliding contact between the shaft and the bearing is assumed. In addition, the shape of the hole on the sliding surface is adjusted with the aim of keeping the air permeability of the bearing low while retaining as much lubricant as possible. Is hard to say. As pointed out in Patent Document 2, when a low temperature is used, the presence of a small amount of lubricating oil on the bearing sliding surface causes a rapid decrease in the coefficient of friction, and on the contrary, it becomes a hotbed that generates abnormal noise. Because there is a fear.

特許文献2に記載の焼結含油軸受は、この点を改良したものであり、軸受とシャフトとの隙間になるべく潤滑油を残さないよう、摺動面上に開孔する気孔のサイズおよびその割合を規定している。しかしながら、鳴き音の発生を避けるために摺動面の潤滑油を少なくしているため、低温時には軸と軸受が無潤滑に近い状態で摺動することになる。これでは、摺動摩耗が避けられず、繰り返し使用されることで、軸受性能の低下、ひいては軸受寿命の低下を引き起こすおそれがある。   The sintered oil-impregnated bearing described in Patent Document 2 is an improvement of this point, and the size and ratio of the pores opened on the sliding surface so as not to leave as much lubricating oil as possible in the gap between the bearing and the shaft. Is stipulated. However, since the lubricating oil on the sliding surface is reduced in order to avoid the generation of squeal noise, the shaft and the bearing slide in a state close to no lubrication at low temperatures. In this case, sliding wear is unavoidable, and repeated use may lead to a decrease in bearing performance and a decrease in bearing life.

以上の事情に鑑み、本発明では、焼結含油軸受の摺動開始時、特に低温環境下での摺動開始時における摺動特性を改善することにより、異音の発生防止と摺動摩耗の抑制とを図ることを技術的課題とする。   In view of the above circumstances, the present invention improves the sliding characteristics at the start of sliding of a sintered oil-impregnated bearing, particularly at the start of sliding in a low temperature environment, thereby preventing abnormal noise and reducing sliding wear. It is a technical issue to suppress it.

前記課題を解決するため、本発明は、原料粉末を圧粉成形し、焼結して得られるもので、その内部に多数の気孔を有すると共に相手部材を支持するための軸受面を有し、かつ内部気孔に潤滑油を含浸させてなる焼結含油軸受において、内部気孔を構成する表面に、潤滑油に対して撥油性を示す撥油性被膜が形成されていることを特徴とする焼結含油軸受を提供する。   In order to solve the above problems, the present invention is obtained by compacting and sintering a raw material powder, and has a bearing surface for supporting a mating member while having a large number of pores therein, A sintered oil-impregnated bearing in which internal pores are impregnated with a lubricating oil, wherein an oil-repellent coating that exhibits oil repellency to the lubricating oil is formed on the surface constituting the internal pores. Provide bearings.

このように、本発明は、潤滑油の保持部となる内部気孔の表面改質を行うことで、潤滑油の内部への引き込み作用を抑制したことを技術的な特徴とするものであり、詳細には以下に述べる本発明者の知見に基づき得られたものである。   As described above, the present invention is technically characterized by suppressing the pulling action of the lubricating oil into the interior by performing the surface modification of the internal pores serving as the holding portion of the lubricating oil. Is obtained based on the knowledge of the present inventor described below.

すなわち、焼結含油軸受本体がその内部に有する多数の気孔には、大小様々のものが存在しかつこれら気孔が複雑につながり合っている。そのため、かかる気孔中を潤滑油が流れるには、気孔表面に対する濡れ性が良好であることが必要となる。本発明者は、この潤滑油保持構造の特殊性に着目し、潤滑油を保持すべき内部気孔の表面性状を、使用する潤滑油に対して撥油性を示すように改質することで、潤滑油の気孔表面に対する濡れ性を意図的に低下させ、気孔表面を伝って生じる潤滑油の流動を抑制することとした。   That is, the large number of pores in the sintered oil-impregnated bearing main body have various sizes and are intricately connected. Therefore, in order for the lubricating oil to flow through the pores, it is necessary that the wettability with respect to the pore surface is good. The present inventor paid attention to the particularity of the lubricating oil retaining structure, and modified the surface properties of the internal pores that should retain the lubricating oil so as to exhibit oil repellency with respect to the lubricating oil used. The wettability of the oil to the pore surface was intentionally reduced to suppress the flow of the lubricating oil generated along the pore surface.

具体的には、焼結含油軸受本体の内部気孔の表面に、潤滑油に対して撥油性を示す撥油性被膜を形成することで、かかる気孔に含浸された潤滑油が気孔表面に対して弾かれるので、比較的小径の気孔を介した潤滑油の内部気孔間の移動が抑制される。そのため、例えば温度低下に伴い潤滑油が中心に向けて収縮しようとする場合、撥油作用を付与した細孔部により潤滑油の収縮が阻害され、潤滑油が軸受深部(中心部)にまで引き込まれるのを防ぐことができる。これにより、軸受面上に相当量の潤滑油を残すことができ、あるいは軸受面上に潤滑油がない場合でも軸受面直下の表層部にある潤滑油が早期に滲み出し、油膜の形成を図ることができる。従って、低温時であっても、摺動開始時における油膜形成が可能となり、異音の発生を防止し、かつ摩耗を抑えることができる。   Specifically, by forming an oil-repellent film that exhibits oil repellency to the lubricating oil on the surface of the internal pores of the sintered oil-impregnated bearing body, the lubricating oil impregnated in the pores is elastic against the pore surface. Therefore, the movement of the lubricating oil between the internal pores through the relatively small-diameter pores is suppressed. For this reason, for example, when the lubricating oil tends to shrink toward the center as the temperature decreases, the shrinkage of the lubricating oil is hindered by the pores imparted with oil repellency, and the lubricating oil is drawn into the bearing deep portion (center portion). Can be prevented. As a result, a considerable amount of lubricating oil can be left on the bearing surface, or even when there is no lubricating oil on the bearing surface, the lubricating oil in the surface layer portion immediately below the bearing surface oozes out early, and an oil film is formed. be able to. Therefore, an oil film can be formed at the start of sliding even at low temperatures, so that abnormal noise can be prevented and wear can be suppressed.

また、この場合、軸受面は原料粉末の焼結体で形成されていることが好ましい。上述の通り、撥油性被膜は潤滑油に対して撥油性を示すので、軸受面に撥油性被膜が形成されると、潤滑油膜の形成が阻害されるおそれがあるからである。従い、内部気孔表面には撥油性被膜を形成しつつも、軸受面には撥油性被膜を形成せずにしておくのが好ましい。   In this case, the bearing surface is preferably formed of a sintered material powder. As described above, the oil-repellent film exhibits oil repellency with respect to the lubricating oil, and therefore, if the oil-repellent film is formed on the bearing surface, the formation of the lubricating oil film may be hindered. Accordingly, it is preferable to form an oil-repellent coating on the surface of the internal pores but not to form an oil-repellent coating on the bearing surface.

このように、軸受面が撥油性被膜で覆われることなく、焼結体で構成されることを考慮した場合、焼結体を構成する原料粉末には、FeもしくはFe系合金粉末と、CuもしくはCu系合金の一方又は双方を主成分として含むものが好ましい。軸受面を構成する焼結体の外表面に耐摩耗性に優れたFeもしくはFe系合金、あるいは摺動時のなじみ性に優れたCuもしくはCu系合金成分が露出していることで、良好な油膜形成を図ると共に、固体摺動潤滑を確保することができる。特に成形性や焼結性と併せて考慮するのであれば、比較的Cu粉末もしくはCu系合金粉末の配合割合を多め、例えば45wt%以上80wt%以下に設定するのがよい。   Thus, when considering that the bearing surface is composed of a sintered body without being covered with an oil-repellent coating, the raw material powder constituting the sintered body includes Fe or Fe-based alloy powder, Cu or Those containing one or both of Cu-based alloys as main components are preferred. Fe or Fe-based alloy with excellent wear resistance, or Cu or Cu-based alloy component with excellent conformability during sliding is exposed on the outer surface of the sintered body constituting the bearing surface. While forming an oil film, solid sliding lubrication can be ensured. In particular, if consideration is given in combination with formability and sinterability, it is preferable to set the mixing ratio of the Cu powder or the Cu-based alloy powder relatively high, for example, 45 wt% or more and 80 wt% or less.

含浸すべき潤滑油としては、低温環境下における潤滑特性や流動性等の観点から、PAO系潤滑油、あるいはエステル系潤滑油などが好適に使用可能である。また、この場合、これらPAO系潤滑油やエステル系潤滑油に対して撥油性を有するフッ素系材料で撥油性被膜が形成されていることが好ましい。また、フッ素系材料で形成される撥油性被膜であれば、撥油性と共に高い摺動特性を有するので、仮に軸受面の全面あるいは一部が撥油性被膜で覆われていた場合であっても摺動性の低下を考慮することなく使用することができる。   As the lubricating oil to be impregnated, PAO-based lubricating oil, ester-based lubricating oil, or the like can be suitably used from the viewpoint of lubricating characteristics and fluidity in a low temperature environment. In this case, it is preferable that the oil-repellent coating is formed of a fluorine-based material having oil repellency with respect to these PAO-based lubricants and ester-based lubricants. In addition, an oil-repellent coating formed of a fluorine-based material has high sliding characteristics as well as oil repellency. Therefore, even if the entire bearing surface or a part of the bearing surface is covered with the oil-repellent coating, It can be used without considering the decrease in mobility.

上記構成の撥油性被膜を備えた焼結含油軸受は、例えばこの焼結含油軸受を組み込んでなり、低温環境下での使用が想定される自動車用の電装モータ、あるいはこれ以外の用途にかかるモータとして好適に提供することができる。   The sintered oil-impregnated bearing provided with the oil-repellent coating film having the above-described configuration is, for example, an electric motor for automobiles that incorporates the sintered oil-impregnated bearing and is expected to be used in a low temperature environment, or a motor for other applications. Can be suitably provided.

以上より、本発明によれば、焼結含油軸受の摺動開始時、特に低温環境下での摺動開始時における摺動特性を改善することにより、異音の発生防止と摺動摩耗の抑制とを図ることができる。   From the above, according to the present invention, by improving the sliding characteristics at the start of sliding of the sintered oil-impregnated bearing, particularly at the start of sliding in a low temperature environment, the generation of abnormal noise and the suppression of sliding wear are achieved. Can be planned.

以下、本発明の一実施形態を図1〜図3に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る焼結含油軸受1の断面図を示している。同図における焼結含油軸受1は円筒状をなし、焼結金属で形成されている。また、焼結含油軸受1はその内部に多数の気孔3を有し、これら多数の気孔3に潤滑油を含浸した構成をなす。焼結含油軸受1の内周には、支持すべき軸2(同図中1点鎖線)の外周面と摺動する軸受面4が設けられる。軸受面4には多数の気孔3が開孔しており(図3にて後述する表面開孔6)、軸2の相対回転に伴い、軸2の外周面と対向する軸受面4の表面開孔6を介して軸受内部の気孔3に保持されている潤滑油が滲み出すようになっている。   FIG. 1 shows a cross-sectional view of a sintered oil-impregnated bearing 1 according to an embodiment of the present invention. The sintered oil-impregnated bearing 1 in the figure has a cylindrical shape and is formed of sintered metal. Further, the sintered oil-impregnated bearing 1 has a large number of pores 3 therein, and the large number of pores 3 are impregnated with lubricating oil. On the inner periphery of the sintered oil-impregnated bearing 1, a bearing surface 4 that slides with the outer peripheral surface of the shaft 2 to be supported (one-dot chain line in the figure) is provided. A large number of pores 3 are formed in the bearing surface 4 (surface openings 6 to be described later with reference to FIG. 3), and the surface of the bearing surface 4 that faces the outer peripheral surface of the shaft 2 is opened as the shaft 2 rotates relatively. Lubricating oil retained in the pores 3 inside the bearing is oozed out through the holes 6.

図2は、図1における領域A、すなわち焼結含油軸受1の中心部の拡大断面図である。同図に示すように、焼結含油軸受1の内部には、多数の気孔3が単独もしくは複数つながった状態で存在する。これら多数の気孔3を構成する表面(内表面)には、焼結含油軸受1に含浸される潤滑油に対して撥油性を示す被膜(撥油性被膜)5が形成される。   FIG. 2 is an enlarged cross-sectional view of the area A in FIG. 1, that is, the central portion of the sintered oil-impregnated bearing 1. As shown in the figure, inside the sintered oil-impregnated bearing 1, a large number of pores 3 are present in a single state or in a state of being connected to a plurality. On the surface (inner surface) constituting these numerous pores 3, a film (oil-repellent film) 5 showing oil repellency to the lubricating oil impregnated in the sintered oil-impregnated bearing 1 is formed.

この撥油性被膜5は、軸受中心部の気孔3の表面だけでなく、例えば図3に示すように、軸受面4上に開孔する気孔3(表面開孔6)の表面にも形成されている。この実施形態では、軸2を実質的に摺動支持する軸受面4からは撥油性被膜5が取り除かれており、例えばFeおよびCuを主成分とする焼結体の外表面が露出した構成となっている。   The oil-repellent coating 5 is formed not only on the surface of the pore 3 at the center of the bearing, but also on the surface of the pore 3 (surface opening 6) that opens on the bearing surface 4 as shown in FIG. Yes. In this embodiment, the oil-repellent coating 5 is removed from the bearing surface 4 that substantially supports the shaft 2 to slide, and the outer surface of the sintered body mainly composed of Fe and Cu, for example, is exposed. It has become.

上記構成の焼結含油軸受1は、例えば原料粉末を圧粉成形する工程(a)、圧粉成形体を焼結する工程(b)、焼結体にサイジングを施す工程(c)、焼結体の内部気孔表面に撥油性被膜を形成する工程(d)、および潤滑油を含浸する工程(e)とを経て製造される。以下、各工程を詳細に説明する。   The sintered oil-impregnated bearing 1 having the above-described configuration includes, for example, a step (a) of compacting a raw material powder, a step (b) of sintering a compacted body, a step (c) of sizing the sintered body, and sintering. It is manufactured through a step (d) of forming an oil-repellent film on the surface of the internal pores of the body and a step (e) of impregnating the lubricating oil. Hereinafter, each process will be described in detail.

(a)圧粉成形工程
まず、原料となる金属粉末を成形金型内部に充填し、これを圧縮成形することで完成品に近い形状の圧粉成形体を得る。原料粉末には、例えばFe粉末と、Cu粉末とを同程度配合したものが用いられるが、何れか一方の金属粉末のみを原料粉末として用いることもできる。もちろん、FeやCu以外の金属粉末(Fe系合金粉末やCu系合金粉末を含む)を原料に用いることもでき、これら複数種の金属粉末を混合したものを原料として用いることもできる。また、主成分となる金属粉末間のバインダとしての作用を期待して、Sn粉末などの低融点金属を添加したり、成形時もしくは使用時の摺動性改善を図る目的で黒鉛やMoS2、MnS、ステアリン酸亜鉛等の粉末状固体潤滑剤を添加することも可能である。
(A) Powder compacting process First, the metal powder used as a raw material is filled in a molding die, and a compact compact having a shape close to that of a finished product is obtained by compression molding. As the raw material powder, for example, a mixture of Fe powder and Cu powder to the same extent is used, but only one of the metal powders can be used as the raw material powder. Of course, metal powders other than Fe and Cu (including Fe-based alloy powders and Cu-based alloy powders) can be used as raw materials, and a mixture of these multiple types of metal powders can also be used as raw materials. In addition, with the aim of acting as a binder between the metal powders as the main component, a low melting point metal such as Sn powder is added, and graphite or MoS 2 , for the purpose of improving the slidability at the time of molding or use, It is also possible to add a powdery solid lubricant such as MnS or zinc stearate.

(b)焼結工程
上記工程(a)で得られた圧粉成形体を、主成分となる金属粉末の焼結温度まで加熱することで焼結し、焼結体を得る。なお、使用する金属粉末の種類によっては、焼結による浸炭作用を避けるため、かかる焼結作業を非浸炭雰囲気下で行うことも可能である。
(B) Sintering process The compacting body obtained at the said process (a) is sintered by heating to the sintering temperature of the metal powder used as a main component, and a sintered compact is obtained. Depending on the type of metal powder used, the sintering operation can be performed in a non-carburizing atmosphere in order to avoid the carburizing action due to sintering.

(c)サイジング工程
上記工程(b)で得られた焼結体に対し、適当な金型を用いて圧迫力を付与することで、焼結体を所定形状に整形すると共に、その寸法を所定範囲内に仕上げる。
(C) Sizing step By applying a pressing force to the sintered body obtained in the step (b) using an appropriate mold, the sintered body is shaped into a predetermined shape, and the dimensions thereof are predetermined. Finish within range.

(d)撥油性被膜形成工程
上記(a)〜(c)の工程を経て、完成品の形状(図1に示す形状)に仕上がった焼結体に対して撥油性被膜を形成する。具体的には、減圧環境下において、使用する潤滑油に対して撥油性を示す材料を混合した溶剤中に焼結体を一定時間浸漬させる。その後、当該溶剤を除去することで、多数の気孔3のうち、表面開孔6と連続する気孔3を構成する表面に撥油性材料からなる撥油性被膜5が形成される(図2を参照)。撥油性を示す材料としては、潤滑油の種類にもよるが、例えばPTFEなどフッ素系の材料が好適に用いられる。
(D) Oil-repellent film formation process An oil-repellent film is formed with respect to the sintered compact finished in the shape of a finished product (shape shown in Drawing 1) through the above-mentioned process (a)-(c). Specifically, in a reduced pressure environment, the sintered body is immersed for a certain time in a solvent in which a material exhibiting oil repellency is mixed with the lubricating oil to be used. Thereafter, by removing the solvent, an oil-repellent film 5 made of an oil-repellent material is formed on the surface of the pores 3 that are continuous with the surface openings 6 among the many pores 3 (see FIG. 2). . As a material exhibiting oil repellency, although it depends on the type of lubricating oil, for example, a fluorine-based material such as PTFE is preferably used.

また、上述のように、焼結体を撥油剤溶液中に浸漬させて撥油性被膜5を形成する場合、軸受内部の気孔3表面だけでなく、軸受面4や、軸受面4上の表面開孔6を含む焼結体の全ての外表面に撥油性被膜5が形成される。このうち、軸受面4上に形成された撥油性被膜5は、例えば後述する潤滑油含浸工程(e)を経て図1に示す製品が完成した後、適当なななじみ運転等を行うことで、剥離除去することが可能である。あるいは、サイジング工程(c)を工程(d)の後に行うことで、サイジングピンの圧迫力あるいは回転力により軸受面4上の撥油性被膜を剥離除去することも可能である。   Further, as described above, when the sintered body is immersed in the oil repellent solution to form the oil repellent coating 5, not only the surface of the pores 3 inside the bearing but also the bearing surface 4 and the surface opening on the bearing surface 4 are opened. The oil repellent coating 5 is formed on all outer surfaces of the sintered body including the holes 6. Among these, the oil-repellent coating 5 formed on the bearing surface 4 is subjected to, for example, an appropriate familiar operation after the product shown in FIG. 1 is completed through a lubricating oil impregnation step (e) described later, It can be peeled off. Alternatively, by performing the sizing step (c) after the step (d), the oil-repellent coating on the bearing surface 4 can be peeled and removed by the pressing force or rotational force of the sizing pin.

(e)潤滑油含浸工程
上記工程(d)で得られた焼結体の内部に潤滑油を含浸する。具体的には、工程(d)と同様、減圧環境下において、当該焼結体を潤滑油で満たした潤滑油浴中に一定時間浸漬させることで、軸受内部の気孔3に潤滑油を含浸させる。使用する潤滑油としては、特に低温時における潤滑特性や粘性抵抗に優れたPAO系潤滑油やエステル系潤滑油が使用可能である。また、この際、潤滑油の気孔3への含浸を確実かつ短時間で行うため、潤滑油を加熱した状態で含浸作業を行うようにしてもよい。
(E) Lubricating oil impregnation step Lubricating oil is impregnated into the sintered body obtained in the step (d). Specifically, as in the step (d), the pores 3 in the bearing are impregnated with the lubricating oil by immersing the sintered body in a lubricating oil bath filled with the lubricating oil for a certain period of time in a reduced pressure environment. . As the lubricating oil to be used, PAO-based lubricating oils and ester-based lubricating oils having excellent lubricating characteristics and viscous resistance at low temperatures can be used. At this time, in order to impregnate the pores 3 of the lubricating oil reliably and in a short time, the impregnation operation may be performed while the lubricating oil is heated.

そして、含浸作業後、適当な油除去装置を用いて油切り作業を行う。これにより、軸受内部の気孔3に含浸させた潤滑油はそのままに、表面に付着した余分な潤滑油のみが除去される。   And after an impregnation operation | work, an oil removal operation | work is performed using a suitable oil removal apparatus. Thereby, only the excess lubricating oil adhering to the surface is removed while leaving the lubricating oil impregnated in the pores 3 inside the bearing.

上記構成の焼結含油軸受1において、軸2の相対回転に伴い、多数の気孔3に保持された潤滑油が表面開孔6を介して軸受面4上に滲み出す。これにより、軸2と焼結含油軸受1との間に潤滑油の膜が形成され、この潤滑油膜を介して軸2が回転自在に支持される。   In the sintered oil-impregnated bearing 1 having the above-described configuration, the lubricating oil retained in the numerous pores 3 oozes out onto the bearing surface 4 through the surface openings 6 as the shaft 2 rotates relatively. As a result, a lubricating oil film is formed between the shaft 2 and the sintered oil-impregnated bearing 1, and the shaft 2 is rotatably supported via the lubricating oil film.

また、低温環境時、多数の気孔3に含浸された潤滑油はその線膨張係数の違いから焼結含油軸受1の本体内部(中心部)に向けて収縮しようとするが、軸受内部の気孔3表面には、撥油性被膜5が形成されている。そのため、撥油作用を有する気孔3、特に他の気孔3と比べて小径の気孔3により潤滑油の収縮が阻害され、潤滑油が軸受深部(中心部)にまで引き込まれるのを可及的に防ぐことができる。従って、軸受面4上に相当量の潤滑油が残ることで、あるいは軸受面4上に潤滑油がない場合でも軸受面4直下の表層部にある気孔3に潤滑油が残ることで早期に油膜の形成を図ることができ、これにより異音の発生を極力回避でき、また摩耗の抑制を図ることができる。   Further, in a low temperature environment, the lubricating oil impregnated in a large number of pores 3 tends to shrink toward the inside (center portion) of the sintered oil-impregnated bearing 1 due to the difference in linear expansion coefficient. An oil repellent coating 5 is formed on the surface. Therefore, the shrinkage of the lubricating oil is inhibited by the pores 3 having an oil repellent effect, particularly the pores 3 having a smaller diameter than the other pores 3, and the lubricating oil is drawn as far as possible into the bearing deep portion (center portion). Can be prevented. Therefore, an oil film is quickly obtained by leaving a considerable amount of lubricating oil on the bearing surface 4 or by leaving the lubricating oil in the pores 3 in the surface layer portion immediately below the bearing surface 4 even when there is no lubricating oil on the bearing surface 4. Therefore, the generation of abnormal noise can be avoided as much as possible, and the wear can be suppressed.

また、この実施形態では、軸受面4には撥油性被膜5を形成しないようにし、焼結体を構成するFeもしくはCu成分を軸受面4上に露出させた構成とした。かかる構成とすることで、軸受面4上に滲み出た潤滑油の油膜形成が可能となり、良好な摺動潤滑を実現することができる。また、軸受面をFeもしくはCu成分からなる焼結体で形成することで、良好な油膜形成を図ると共に、固体摺動潤滑を確保することができる。もちろん、この実施形態のように、撥油性被膜5を比較的摺動性に優れたフッ素系材料で形成するのであれば、この撥油性被膜5で軸2との摺動潤滑を確保することができるため、必ずしも撥油性被膜5を除去せずともよい。   In this embodiment, the oil repellent coating 5 is not formed on the bearing surface 4, and the Fe or Cu component constituting the sintered body is exposed on the bearing surface 4. By adopting such a configuration, it is possible to form an oil film of the lubricating oil that has oozed out on the bearing surface 4 and to realize good sliding lubrication. In addition, by forming the bearing surface with a sintered body made of Fe or Cu component, it is possible to form a good oil film and ensure solid sliding lubrication. Of course, as in this embodiment, if the oil-repellent coating 5 is formed of a fluorine-based material having relatively excellent sliding properties, the oil-repellent coating 5 can ensure sliding lubrication with the shaft 2. Therefore, the oil-repellent coating 5 does not necessarily have to be removed.

なお、撥油性被膜5は、少なくとも軸受内部の気孔3表面に形成されていればよく、軸受本体(焼結体)との間にそれほど高い付着性は要求されない。むしろ、この実施形態のように、一旦軸受面4上に撥油性被膜5を形成して、その後にこの撥油性被膜5を除去するのであれば、付着力は小さいほうが好ましい。   The oil-repellent coating 5 only needs to be formed at least on the surfaces of the pores 3 inside the bearing, and so high adhesion to the bearing body (sintered body) is not required. Rather, if the oil-repellent coating 5 is once formed on the bearing surface 4 and then the oil-repellent coating 5 is removed as in this embodiment, it is preferable that the adhesion is small.

また、撥油性被膜5の厚みも、潤滑油に対する撥油性を発現できる程度(潤滑油を弾く程度)であればよい。あまりに撥油性被膜5が厚いと気孔3が小さくなり、結果的に軸受内部に向けて働く引き込み力(毛細管力)の増大につながるため、かかる点を考慮して適切な厚みを設定することも肝要である。   Moreover, the thickness of the oil-repellent coating 5 should just be a grade which can express the oil repellency with respect to lubricating oil (a grade which repels lubricating oil). If the oil-repellent coating 5 is too thick, the pores 3 will be reduced, resulting in an increase in the pulling force (capillary force) acting toward the inside of the bearing. Therefore, it is important to set an appropriate thickness in consideration of this point. It is.

また、この実施形態では、焼結工程(b)後に、撥油性被膜5を形成するようにしたので、焼結温度まで加熱されることにより被膜材が消失してしまうことがない。そのため、撥油性被膜材料として比較的安価な汎用品を使用することができ、製造コストへの負担を小さく抑えることができる。   In this embodiment, since the oil-repellent coating 5 is formed after the sintering step (b), the coating material is not lost by heating to the sintering temperature. Therefore, a relatively inexpensive general-purpose product can be used as the oil-repellent coating material, and the burden on the manufacturing cost can be kept small.

また、この実施形態では、減圧した状態の焼結体に対して潤滑油を含浸させるようにしたので、気孔3の表面に撥油性被膜5を形成した後であっても、圧力差による引き込み力で確実に気孔3内を潤滑油で満たすことができる。もちろん、上述の如く、加熱により潤滑油の粘度を低下させた状態で含浸させるのであればなおよい。   In this embodiment, since the sintered body in a decompressed state is impregnated with the lubricating oil, even after the oil-repellent coating 5 is formed on the surface of the pores 3, the pulling force due to the pressure difference Thus, the pores 3 can be reliably filled with the lubricating oil. Of course, as described above, it is even better if the impregnation is performed while the viscosity of the lubricating oil is lowered by heating.

また、上記実施形態では、サイジング工程(c)の後に撥油性被膜5を形成したが、撥油性被膜5を形成した後に、サイジングを施すことも可能である。サイジング前に、例えばフッ素系材料等を溶かした溶液を含浸させるのであれば、比較的大径かつ多数の表面開孔6が残存する段階で上記溶液を含浸させることができる。そのため、かかる含浸作業を容易かつ短時間に行うことができる。   Moreover, in the said embodiment, although the oil-repellent film 5 was formed after the sizing process (c), after forming the oil-repellent film 5, it is also possible to give sizing. If, for example, a solution in which a fluorine-based material or the like is dissolved is impregnated before sizing, the solution can be impregnated at a stage where a relatively large diameter and many surface openings 6 remain. Therefore, such impregnation work can be performed easily and in a short time.

以上の説明に係る焼結含油軸受1は、例えば自動車の電装モータ用として、特に−30℃以下の低温環境下で使用される場合に好適に使用できる。もちろん、低温環境下で使用される用途に限らず、他の用途にも好適に使用することが可能である。   The sintered oil-impregnated bearing 1 according to the above description can be suitably used, for example, for an electric motor of an automobile, particularly when used in a low temperature environment of −30 ° C. or lower. Of course, it can be suitably used for other applications as well as applications used in a low temperature environment.

以下、本発明の一実施例を説明する。具体的には、図1に例示する形状のサーボモータ用軸受(内径φ2mm)に本発明を適用した場合の詳細を説明する。   An embodiment of the present invention will be described below. Specifically, the details when the present invention is applied to the servo motor bearing (inner diameter φ2 mm) having the shape illustrated in FIG. 1 will be described.

(1)粉末混合
まず、Fe粉末およびCu粉末を主成分とする原料粉末を用意する。具体的には、全混合粉末に対して、
a−1)100メッシュ篩下の還元Fe粉が25〜30%、
a−2)300メッシュ篩下の還元Fe粉が10〜15%、
b−1)100メッシュ篩下の電解Cu粉が38〜43%、
b−2)200メッシュ篩下の噴霧Cu粉が15〜20%、
c)350メッシュ篩下の噴霧Sn粉が1〜2%、
d)天然黒鉛粉が0.5〜1.0%、
e)ステアリン酸亜鉛が0.3〜1.0%
となるよう上記a)〜e)の材料を配合したものを、V型混合機に投入し、所定時間(0.5時間〜1時間)混合することで原料粉末を得る。
(2)圧粉成形
上記工程(1)で得られた原料粉末(混合粉)を金型内に充填し、上下方向から(完成品の軸方向に沿って)圧縮することで圧粉成形体を得る。この際、圧粉成形体の密度が6.0〜6.6g/cm3の範囲に収まるよう調整する。
(3)焼結
上記工程(2)で得られた圧粉成形体をメッシュベルト式連続炉に投入し、所定時間加熱(850℃〜900℃)した後、冷却し焼結体を得る。この際、焼結作業は還元雰囲気下(RXガス雰囲気下)で行う。
(4)サイジング
上記工程(3)で得られた焼結体を金型内に供給し、上下方向から加圧することで所定の形状に整形すると共にその寸法を許容範囲内に仕上げる。
(5)フッ素コーティング
フッ素系溶剤中に1〜10%のPTFE、およびフッ素油を分散させた混合液中に上記工程(4)で得られた焼結体を浸漬させる。この際、周辺雰囲気を10-1Torrにまで減圧する。この状態で30分保持した後に常圧に戻し、上記混合液中から被処理物(焼結体)を取出す。その後、かかる焼結体を50℃の恒温槽で1時間乾燥させる。これにより、フッ素系溶剤が蒸発し、焼結体の表面および内部気孔にPTFEとフッ素油とからなる薄膜(撥油性被膜)が形成される。
(6)含油
上記工程(5)で得られた焼結体を70℃に加熱した状態の潤滑油浴中に浸漬させ、周辺雰囲気を10-1Torrまで減圧する。1時間保持した後に常圧に戻し、含油後の焼結体を潤滑油浴中から取出す。潤滑油にはPAO系又はエステル系、40℃の粘度が61.2〜74.8mm2/sを使用するのが一般的であり、今回はNOK(株)製のオールタイムJ652を使用する。
(1) Powder mixing First, the raw material powder which has Fe powder and Cu powder as a main component is prepared. Specifically, for all mixed powders,
a-1) 25-30% of reduced Fe powder under 100 mesh sieve,
a-2) 10-15% of reduced Fe powder under 300 mesh sieve,
b-1) 38 to 43% of electrolytic Cu powder under 100 mesh sieve
b-2) Sprayed Cu powder under 200 mesh sieve is 15-20%,
c) 1-2% sprayed Sn powder under 350 mesh sieve,
d) 0.5 to 1.0% of natural graphite powder,
e) Zinc stearate 0.3-1.0%
The mixture of the materials a) to e) described above is put into a V-type mixer and mixed for a predetermined time (0.5 hour to 1 hour) to obtain a raw material powder.
(2) Powder compacting The raw material powder (mixed powder) obtained in the above step (1) is filled in a mold and compressed from the vertical direction (along the axial direction of the finished product). Get. Under the present circumstances, it adjusts so that the density of a compacting body may be settled in the range of 6.0-6.6 g / cm < 3 >.
(3) Sintering The green compact obtained in the above step (2) is put into a mesh belt type continuous furnace, heated for a predetermined time (850 ° C. to 900 ° C.), and then cooled to obtain a sintered body. At this time, the sintering operation is performed under a reducing atmosphere (RX gas atmosphere).
(4) Sizing The sintered body obtained in the above step (3) is supplied into a mold and pressed from above and below to be shaped into a predetermined shape and finish its dimensions within an allowable range.
(5) Fluorine coating The sintered body obtained in the step (4) is immersed in a mixed solution in which 1 to 10% of PTFE and fluorine oil are dispersed in a fluorinated solvent. At this time, the ambient atmosphere is depressurized to 10 −1 Torr. After maintaining in this state for 30 minutes, the pressure is returned to normal pressure, and the object to be treated (sintered body) is taken out from the mixed solution. Thereafter, the sintered body is dried in a thermostatic bath at 50 ° C. for 1 hour. As a result, the fluorinated solvent evaporates, and a thin film (oil-repellent coating) made of PTFE and fluorine oil is formed on the surface and internal pores of the sintered body.
(6) Oil impregnation The sintered body obtained in the above step (5) is immersed in a lubricating oil bath heated to 70 ° C., and the ambient atmosphere is reduced to 10 −1 Torr. After holding for 1 hour, the pressure is returned to normal pressure, and the sintered body after oil impregnation is taken out from the lubricating oil bath. It is common to use PAO-based or ester-based lubricant having a viscosity at 40 ° C. of 61.2 to 74.8 mm 2 / s as the lubricating oil, and this time, All Time J652 manufactured by NOK Corporation is used.

上記工程(1)〜(6)を経て得られた焼結含油軸受は、軸受面となる内周面に、面積比で15〜35%、かつ開孔径が100μm以下の表面開孔を有する。   The sintered oil-impregnated bearing obtained through the above steps (1) to (6) has a surface opening having an area ratio of 15 to 35% and an opening diameter of 100 μm or less on the inner peripheral surface serving as a bearing surface.

本発明の一実施形態に係る焼結含油軸受の縦断面図である。It is a longitudinal cross-sectional view of the sintered oil-impregnated bearing which concerns on one Embodiment of this invention. 図1中の領域Aの拡大断面図であって、焼結含油軸受の内部空孔の構造を説明するための図である。FIG. 2 is an enlarged cross-sectional view of a region A in FIG. 1 for explaining a structure of internal holes of a sintered oil-impregnated bearing. 図1中の領域Bの拡大断面図であって、焼結含油軸受の軸受面周辺部の構造を説明するための図である。FIG. 2 is an enlarged cross-sectional view of a region B in FIG. 1 for explaining the structure of the periphery of the bearing surface of the sintered oil-impregnated bearing.

符号の説明Explanation of symbols

1 焼結含油軸受
2 軸
3 気孔
4 軸受面
5 撥油性被膜
6 表面開孔
1 Sintered oil-impregnated bearing 2 Shaft 3 Pore 4 Bearing surface 5 Oil repellent coating 6 Surface opening

Claims (6)

原料粉末を圧粉成形し、焼結して得られるもので、その内部に多数の気孔を有すると共に相手部材を支持するための軸受面を有し、かつ前記内部気孔に潤滑油を含浸させてなる焼結含油軸受において、
前記内部気孔を構成する表面に、前記潤滑油に対して撥油性を示す撥油性被膜が形成されていることを特徴とする焼結含油軸受。
It is obtained by compacting and sintering the raw material powder. It has a large number of pores inside and a bearing surface for supporting the mating member, and the internal pores are impregnated with lubricating oil. In the sintered oil impregnated bearing
A sintered oil-impregnated bearing, wherein an oil-repellent coating film that exhibits oil repellency to the lubricating oil is formed on a surface that constitutes the internal pores.
前記軸受面が前記原料粉末の焼結体で形成されている請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the bearing surface is formed of a sintered body of the raw material powder. 前記原料粉末が、FeもしくはFe系合金粉末と、CuもしくはCu系合金粉末の一方又は双方を主成分として含む請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the raw material powder contains one or both of Fe or Fe-based alloy powder and Cu or Cu-based alloy powder as a main component. 前記撥油性被膜がフッ素系材料で形成されている請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the oil-repellent coating is formed of a fluorine-based material. 前記潤滑油がPAO系あるいはエステル系潤滑油である請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the lubricating oil is a PAO-based or ester-based lubricating oil. 請求項1〜5の何れかに記載の焼結含油軸受を備えたモータ。   A motor comprising the sintered oil-impregnated bearing according to any one of claims 1 to 5.
JP2007082407A 2007-03-27 2007-03-27 Oil-impregnated sintered bearing Withdrawn JP2008240910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082407A JP2008240910A (en) 2007-03-27 2007-03-27 Oil-impregnated sintered bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082407A JP2008240910A (en) 2007-03-27 2007-03-27 Oil-impregnated sintered bearing

Publications (1)

Publication Number Publication Date
JP2008240910A true JP2008240910A (en) 2008-10-09

Family

ID=39912507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082407A Withdrawn JP2008240910A (en) 2007-03-27 2007-03-27 Oil-impregnated sintered bearing

Country Status (1)

Country Link
JP (1) JP2008240910A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164038A (en) * 2009-01-19 2010-07-29 Daikin Ind Ltd Expander
JP2013092163A (en) * 2011-10-24 2013-05-16 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing and production method therefor
CN103221702A (en) * 2010-11-17 2013-07-24 斗山英维高株式会社 Sliding bearing having improved lubrication characteristics
WO2013137347A1 (en) * 2012-03-13 2013-09-19 Ntn株式会社 Sintered bearing and manufacturing method for same
JP2013216972A (en) * 2012-03-13 2013-10-24 Ntn Corp Method for manufacturing sintered bearing
WO2013141953A3 (en) * 2012-03-23 2013-11-28 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
US8940361B2 (en) 2012-03-23 2015-01-27 Massachusetts Institute Of Technology Self-lubricating surfaces for food packaging and food processing equipment
US9254496B2 (en) 2011-08-03 2016-02-09 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and methods of manufacturing same
US9427679B2 (en) 2013-04-16 2016-08-30 Massachusetts Institute Of Technology Systems and methods for unipolar separation of emulsions and other mixtures
US9498934B2 (en) 2013-02-15 2016-11-22 Massachusetts Institute Of Technology Grafted polymer surfaces for dropwise condensation, and associated methods of use and manufacture
US9585757B2 (en) 2013-09-03 2017-03-07 Massachusetts Institute Of Technology Orthopaedic joints providing enhanced lubricity
US9625075B2 (en) 2012-05-24 2017-04-18 Massachusetts Institute Of Technology Apparatus with a liquid-impregnated surface to facilitate material conveyance
US9947481B2 (en) 2014-06-19 2018-04-17 Massachusetts Institute Of Technology Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
CN109642611A (en) * 2016-09-06 2019-04-16 Ntn株式会社 Sliding bearing
CN109844335A (en) * 2016-10-26 2019-06-04 大冶美有限公司 Sintered metal bearing
CN111957954A (en) * 2019-05-20 2020-11-20 海安县鹰球粉末冶金有限公司 Manufacturing process of powder metallurgy oil-retaining bearing
US10882085B2 (en) 2012-11-19 2021-01-05 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US11058803B2 (en) 2012-05-24 2021-07-13 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces
US11079141B2 (en) 2013-12-20 2021-08-03 Massachusetts Institute Of Technology Controlled liquid/solid mobility using external fields on lubricant-impregnated surfaces
US11105352B2 (en) 2012-06-13 2021-08-31 Massachusetts Institute Of Technology Articles and methods for levitating liquids on surfaces, and devices incorporating the same
US11492500B2 (en) 2012-11-19 2022-11-08 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US11933551B2 (en) 2011-08-05 2024-03-19 Massachusetts Institute Of Technology Liquid-impregnated surfaces, methods of making, and devices incorporating the same
US12005161B2 (en) 2023-05-15 2024-06-11 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164038A (en) * 2009-01-19 2010-07-29 Daikin Ind Ltd Expander
CN103221702A (en) * 2010-11-17 2013-07-24 斗山英维高株式会社 Sliding bearing having improved lubrication characteristics
US9254496B2 (en) 2011-08-03 2016-02-09 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and methods of manufacturing same
US9381528B2 (en) 2011-08-03 2016-07-05 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and methods of manufacturing same
US11933551B2 (en) 2011-08-05 2024-03-19 Massachusetts Institute Of Technology Liquid-impregnated surfaces, methods of making, and devices incorporating the same
JP2013092163A (en) * 2011-10-24 2013-05-16 Hitachi Powdered Metals Co Ltd Oil-impregnated sintered bearing and production method therefor
EP2826876A4 (en) * 2012-03-13 2016-08-31 Ntn Toyo Bearing Co Ltd Sintered bearing and manufacturing method for same
JP2013216972A (en) * 2012-03-13 2013-10-24 Ntn Corp Method for manufacturing sintered bearing
WO2013137347A1 (en) * 2012-03-13 2013-09-19 Ntn株式会社 Sintered bearing and manufacturing method for same
US11351608B2 (en) 2012-03-13 2022-06-07 Ntn Corporation Sintered bearing and manufacturing method for same
US8940361B2 (en) 2012-03-23 2015-01-27 Massachusetts Institute Of Technology Self-lubricating surfaces for food packaging and food processing equipment
US9309162B2 (en) 2012-03-23 2016-04-12 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
US9371173B2 (en) 2012-03-23 2016-06-21 Massachusetts Institute Of Technology Self-lubricating surfaces for food packaging and food processing equipment
WO2013141953A3 (en) * 2012-03-23 2013-11-28 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
US10968035B2 (en) 2012-03-23 2021-04-06 Massachusetts Institute Of Technology Self-lubricating surfaces for food packaging and food processing equipment
US11684705B2 (en) 2012-05-24 2023-06-27 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces
US9625075B2 (en) 2012-05-24 2017-04-18 Massachusetts Institute Of Technology Apparatus with a liquid-impregnated surface to facilitate material conveyance
US11058803B2 (en) 2012-05-24 2021-07-13 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces
US11105352B2 (en) 2012-06-13 2021-08-31 Massachusetts Institute Of Technology Articles and methods for levitating liquids on surfaces, and devices incorporating the same
US10882085B2 (en) 2012-11-19 2021-01-05 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US11492500B2 (en) 2012-11-19 2022-11-08 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US9498934B2 (en) 2013-02-15 2016-11-22 Massachusetts Institute Of Technology Grafted polymer surfaces for dropwise condensation, and associated methods of use and manufacture
US9427679B2 (en) 2013-04-16 2016-08-30 Massachusetts Institute Of Technology Systems and methods for unipolar separation of emulsions and other mixtures
US10155179B2 (en) 2013-04-16 2018-12-18 Massachusetts Institute Of Technology Systems and methods for unipolar separation of emulsions and other mixtures
US9975064B2 (en) 2013-04-16 2018-05-22 Massachusetts Institute Of Technology Systems and methods for unipolar separation of emulsions and other mixtures
US9585757B2 (en) 2013-09-03 2017-03-07 Massachusetts Institute Of Technology Orthopaedic joints providing enhanced lubricity
US11079141B2 (en) 2013-12-20 2021-08-03 Massachusetts Institute Of Technology Controlled liquid/solid mobility using external fields on lubricant-impregnated surfaces
US9947481B2 (en) 2014-06-19 2018-04-17 Massachusetts Institute Of Technology Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
CN109642611B (en) * 2016-09-06 2021-05-25 Ntn株式会社 Sliding bearing
CN109642611A (en) * 2016-09-06 2019-04-16 Ntn株式会社 Sliding bearing
CN109844335A (en) * 2016-10-26 2019-06-04 大冶美有限公司 Sintered metal bearing
US10865828B2 (en) 2016-10-26 2020-12-15 Diamet Corporation Oil-impregnated sintered bearing
CN109844335B (en) * 2016-10-26 2020-09-01 大冶美有限公司 Sintered oil-retaining bearing
CN111957954A (en) * 2019-05-20 2020-11-20 海安县鹰球粉末冶金有限公司 Manufacturing process of powder metallurgy oil-retaining bearing
US12005161B2 (en) 2023-05-15 2024-06-11 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces

Similar Documents

Publication Publication Date Title
JP2008240910A (en) Oil-impregnated sintered bearing
CN109014218B (en) Sintered bearing
JP4886545B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP5772498B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
CN110043564B (en) Method for manufacturing sintered bearing, and vibration motor
JP6921046B2 (en) Manufacturing method of sintered bearing
JP4380274B2 (en) Method for producing ferrous copper-based sintered oil-impregnated bearing alloy
JP6816079B2 (en) Vibration motor
JP5267756B1 (en) Sliding member and bearing
JP6302259B2 (en) Manufacturing method of sintered bearing
JP2014211227A (en) Oil-impregnated sintered bearing and method of manufacturing the same
JP2008019929A (en) Oil-impregnated sintered bearing
JPH07118777A (en) Sliding member
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
EP3424623B1 (en) Cu-based sintered sliding material and production method therefor
JP2016065638A (en) Sliding member and method of manufacturing the same
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
WO2021070712A1 (en) Sintered oil-containing bearing
JP2008240909A (en) Sintered oil retaining bearing
JP2010249242A (en) Oil-impregnated sintered bearing and method for manufacturing the same
JP2010270786A (en) Sintered metal bearing
JP2019207030A (en) Sintered bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601