JP2008240901A - Conical roller bearing - Google Patents

Conical roller bearing Download PDF

Info

Publication number
JP2008240901A
JP2008240901A JP2007082327A JP2007082327A JP2008240901A JP 2008240901 A JP2008240901 A JP 2008240901A JP 2007082327 A JP2007082327 A JP 2007082327A JP 2007082327 A JP2007082327 A JP 2007082327A JP 2008240901 A JP2008240901 A JP 2008240901A
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearing
oil
annular space
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007082327A
Other languages
Japanese (ja)
Inventor
Katsunori Sone
克典 曽根
Yasuhiko Shimizu
保彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007082327A priority Critical patent/JP2008240901A/en
Publication of JP2008240901A publication Critical patent/JP2008240901A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conical roller bearing having excellent durability and lubricity. <P>SOLUTION: The conical roller bearing includes a bent part 49 directed to an inner diameter in an end of a cage 40 and a plurality of partition plates 51 at equal intervals in a circumferential direction of an annular space 50 surrounded by the bent part 49. By so doing, the strength of the cage 40 can be enhanced. The annular space 50 functions as an oil sump to enhance the lubricity of the bearing immediately after start in particular. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、円すいころ軸受に関し、例えば鉄道車両の駆動装置用軸受に利用することができる。   The present invention relates to a tapered roller bearing and can be used, for example, as a bearing for a driving device of a railway vehicle.

図10に鉄道車両の駆動系周辺の概略構成を示す。図示のように、モータ等の駆動源101の出力は、継手102を介して小歯車103及び大歯車104を有する駆動装置105に伝達され、所定のギヤ比で減速された上で車軸106に伝達される。車軸106の両端には、台車枠108にばね107を介して支持された車箱109が配置される。車軸106は、車箱109内に配した軸受110により回転自在に支持され、且つ台車枠に対して適性位置に保持されている。   FIG. 10 shows a schematic configuration around the drive system of the railway vehicle. As shown in the figure, the output of a drive source 101 such as a motor is transmitted to a drive device 105 having a small gear 103 and a large gear 104 via a joint 102, and after being decelerated at a predetermined gear ratio, is transmitted to an axle 106. Is done. At both ends of the axle 106, a car box 109 supported by a carriage frame 108 via a spring 107 is disposed. The axle 106 is rotatably supported by a bearing 110 disposed in the car box 109 and is held at an appropriate position with respect to the carriage frame.

鉄道車両に用いられる主な軸受としては、車軸用110、駆動装置用111・112、およびモータ用113・114がある。車軸用軸受110としては、複列円筒ころ軸受や外向き型の複列円すいころ軸受が多く用いられ、その潤滑は軸受内部に封入したグリースで行う場合が多い。駆動装置用軸受111、112は、小歯車103と大歯車104の支持に用いられる軸受で、ギヤケース116内に収容され、何れも内向き形の複列円すいころ軸受が多く用いられる。駆動装置用軸受111・112の潤滑は、ギヤケース116に貯留した潤滑油117を大歯車104で跳ね上げて行う場合が多い。   Main bearings used in railway vehicles include axles 110, driving devices 111 and 112, and motors 113 and 114. As the axle bearing 110, a double-row cylindrical roller bearing or an outward-facing double-row tapered roller bearing is often used, and the lubrication is often performed with grease enclosed in the bearing. The drive device bearings 111 and 112 are bearings used to support the small gear 103 and the large gear 104, and are housed in the gear case 116, and inward double-row tapered roller bearings are often used. The drive device bearings 111 and 112 are often lubricated by splashing the lubricating oil 117 stored in the gear case 116 with the large gear 104.

特許文献1には、このような鉄道車両の駆動装置に用いられる円すいころ軸受の一例が示されている。   Patent Document 1 discloses an example of a tapered roller bearing used in such a railway vehicle drive device.

特開2001−317551号公報JP 2001-317551 A

鉄道車両の駆動装置用として使用される円すいころ軸受には、大きな衝撃荷重や激しい振動が加わるため、軸受の耐久性が重要となる。例えば、転動体を案内する保持器は、軸受の回転に伴って転動体から大きな衝撃荷重を受けるため、強度の向上が求められている。   Since tapered roller bearings used for railway vehicle drive devices are subjected to large impact loads and intense vibrations, the durability of the bearings is important. For example, a cage that guides a rolling element receives a large impact load from the rolling element as the bearing rotates, so that an improvement in strength is required.

また、上記のような鉄道車両、特に冬期の寒冷地を走行する鉄道車両の駆動装置では、長時間停止した後の発進時における円すいころ軸受の潤滑性が問題になることがある。すなわち、鉄道車両の駆動装置では、長時間停車することにより円すいころ軸受の内部の油がほとんど流れ落ちる。このような状態のまま発車すると、大歯車の回転により油浴の油が跳ね上げられて円すいころに十分な油が供給されるまでの間、円すいころは潤滑性に乏しい状態で駆動されることとなる。特に、低温状態では油の粘度が高まるため、大歯車が回転してもなかなか油浴から跳ね上げられず、円すいころに十分な油が供給されるまでに長時間を要する。このように潤滑不足の状態での走行が長期化すると、高負荷のかかる円すいころ大端面と内輪の大つば面との摺動部(図3にPで示す)に潤滑不良が生じ、この摺動部が摩耗したり、円すいころ軸受の回転トルクが上昇したりする不具合が生じる恐れがある。   In addition, in such a railway vehicle, particularly a railway vehicle driving device that travels in a cold region in winter, lubricity of the tapered roller bearing at the time of starting after stopping for a long time may be a problem. That is, in a railway vehicle drive device, the oil inside the tapered roller bearing almost flows down by stopping for a long time. If the vehicle departs in such a state, the tapered roller is driven with poor lubrication until the oil in the oil bath is sprung up by rotation of the large gear and sufficient oil is supplied to the tapered roller. It becomes. In particular, since the viscosity of the oil increases in a low temperature state, even if the large gear rotates, it is difficult to jump up from the oil bath, and it takes a long time to supply sufficient oil to the tapered rollers. When traveling in a state of insufficient lubrication for a long time as described above, poor lubrication occurs at the sliding portion (indicated by P in FIG. 3) between the large end face of the tapered roller and the large collar surface of the inner ring, which is under heavy load. There is a risk that the moving part may be worn out or the rotational torque of the tapered roller bearing may increase.

本発明の課題は、耐久性及び潤滑性に優れた円すいころ軸受を提供することにある。   The subject of this invention is providing the tapered roller bearing excellent in durability and lubricity.

上記の課題を解決するために、本発明は、内周に軌道面を有する外輪と、外周に軌道面を有する内輪と、内輪の軌道面と外輪の軌道面との間に転動自在に介在させた複数の円すいころと、円すいころを円周方向等間隔に保持する保持器とを備えた円すいころ軸受において、保持器の軸方向両端のうち、少なくとも一方の端部に内径向きの屈曲部を設け、この屈曲部の内側に形成される環状空間の円周方向複数箇所に仕切板を設けたことを特徴とする。   In order to solve the above problems, the present invention provides an outer ring having a raceway surface on the inner periphery, an inner ring having a raceway surface on the outer periphery, and a rollable interposition between the raceway surface of the inner ring and the raceway surface of the outer ring. In a tapered roller bearing comprising a plurality of tapered rollers and a cage for holding the tapered rollers at equal intervals in the circumferential direction, at least one end of the cage in the axial direction is bent at an inner diameter. And partition plates are provided at a plurality of locations in the circumferential direction of the annular space formed inside the bent portion.

このように、本発明の円すいころ軸受では、保持器の軸方向両端のうち、少なくとも一方の端部に内径向きの屈曲部を設け、さらに、屈曲部の内側に形成された環状空間の円周方向複数箇所に仕切板を設けることにより、仕切板が屈曲部分のリブとして機能するので、保持器の強度が高められる。尚、屈曲部の内側の領域とは、屈曲部ところの端面との間に形成された領域のことをいうものとする。   As described above, in the tapered roller bearing according to the present invention, at least one of the axial ends of the cage is provided with a bent portion directed toward the inner diameter, and the circumference of the annular space formed inside the bent portion. By providing the partition plates at a plurality of locations in the direction, the partition plates function as the ribs of the bent portions, so that the strength of the cage is increased. In addition, the area | region inside a bending part shall mean the area | region formed between the end surfaces of a bending part.

また、この環状空間を油溜りとして機能させることにより、軸受の潤滑性、特に始動直後の潤滑性を高めることができる。すなわち、例えば保持器の大径側の端部に屈曲部を設けることにより、円すいころ軸受が長時間停止することにより軸受内部の油が流れ落ちた場合であっても、環状空間の下方部に油を保持することができる。軸受が始動すると、環状空間に保持された油が保持器の回転に伴って上側に移動し、この油が重力により落ちて円すいころの大端面と内輪の大つば面との接触部P等に供給される(図3参照)。この接触部P等に確実に油を供給するためには、環状空間の下方部に保持した油を保持器の回転に伴って確実に上方位置まで移動させることが必要となる。例えば、図9に示すような仕切板のない保持器140では、保持器140が矢印Dの方向に回転しても、屈曲部149で形成された環状空間150の下方部に溜まった油が簡単に環状空間150から流出するため、油が軸受の上側に移動せず、摺動部に油が供給されない恐れがある。そこで、この環状空間の円周方向複数箇所に仕切板を設けることにより、環状空間に溜まった油の流出を遅らせることができるので、油をより一層上方に移動させることが可能となり、これにより摺動部に確実に油を供給することができる(図4参照)。   Further, by making this annular space function as an oil reservoir, it is possible to improve the lubricity of the bearing, particularly the lubricity immediately after starting. That is, for example, by providing a bent portion at the end on the large diameter side of the cage, even if the tapered roller bearing stops for a long time and the oil inside the bearing flows down, the oil is formed in the lower portion of the annular space. Can be held. When the bearing is started, the oil held in the annular space moves upward as the cage rotates, and this oil falls due to gravity, and contacts the contact portion P between the large end surface of the tapered roller and the large collar surface of the inner ring. Supplied (see FIG. 3). In order to reliably supply the oil to the contact portion P or the like, it is necessary to reliably move the oil held in the lower portion of the annular space to the upper position as the retainer rotates. For example, in the cage 140 without a partition plate as shown in FIG. 9, even if the cage 140 rotates in the direction of the arrow D, the oil accumulated in the lower part of the annular space 150 formed by the bent portion 149 is easy. Since the oil flows out of the annular space 150, the oil does not move to the upper side of the bearing, and the oil may not be supplied to the sliding portion. Therefore, by providing partition plates at a plurality of locations in the circumferential direction of the annular space, it is possible to delay the outflow of the oil accumulated in the annular space, so that the oil can be moved further upward. Oil can be reliably supplied to the moving part (see FIG. 4).

あるいは、この屈曲部で囲まれた環状空間に多孔性固形潤滑剤を取り付けることができる。多孔性固形潤滑剤とは、溶融した樹脂材料を発泡させながら固化することで多孔質化し、その多孔質部に潤滑成分を充填してなる固形潤滑剤であり、この多孔性固形潤滑剤からにじみ出た油が、円すいころの大端面と内輪の大つば面との摺動部に供給されることにより、軸受の潤滑性が高められる。この場合、環状空間に仕切板を設けることにより、多孔性固形潤滑剤と保持器との密着面が増すため、多孔性固形潤滑剤の保持力が高まる。特に、仕切板の円周方向間隔が内径側ほど縮小していると、仕切板が抜け止めとして機能することにより、多孔性固形潤滑剤の保持力がさらに高まる。   Alternatively, a porous solid lubricant can be attached to the annular space surrounded by the bent portion. A porous solid lubricant is a solid lubricant that is made solid by foaming and solidifying a molten resin material and filling the porous portion with a lubricating component. The porous solid lubricant exudes from this porous solid lubricant. The oil is supplied to the sliding portion between the large end surface of the tapered roller and the large collar surface of the inner ring, thereby improving the lubricity of the bearing. In this case, by providing the partition plate in the annular space, the adhesion surface between the porous solid lubricant and the cage is increased, so that the holding power of the porous solid lubricant is increased. In particular, when the circumferential interval of the partition plate is reduced toward the inner diameter side, the partition plate functions as a retainer, thereby further increasing the holding power of the porous solid lubricant.

この仕切板は、内径側ほど回転方向に先行させて設けてもよい。例えば環状空間が油溜りとなる場合、仕切板を内径側ほど回転方向に先行させて設けることにより、仕切板で回転方向に対して油を捕捉する凹部が形成され、油を確実に上方位置へ移動させることができる(図7参照)。   The partition plate may be provided so as to precede the inner diameter side in the rotation direction. For example, when the annular space is an oil reservoir, by providing the partition plate ahead of the inner diameter side in the rotation direction, a recess that captures oil in the rotation direction is formed by the partition plate, so that the oil is reliably moved to the upper position. It can be moved (see FIG. 7).

また、内径側ほど一方の回転方向に先行させた第1の仕切板と、内径側ほど他方の回転方向に先行させた第2の仕切板とを隣り合わせて配すると、軸受が何れの方向に回転する場合であっても、仕切板で回転方向に対して油を捕捉する凹部を形成することができる(図8参照)。   Also, if the first partition plate preceded in one rotation direction toward the inner diameter side and the second partition plate advanced in the other rotation direction toward the inner diameter side are arranged adjacent to each other, the bearing rotates in any direction. Even if it does, the recessed part which capture | acquires oil with respect to a rotation direction can be formed with a partition plate (refer FIG. 8).

このような円すいころ軸受を組み込んだ鉄道車両の駆動装置は、低温状態で長時間停止した直後であっても、潤滑不良を起こすことなく始動することができる。   A railcar drive device incorporating such a tapered roller bearing can be started without causing poor lubrication even immediately after being stopped for a long time at a low temperature.

以上のように、本発明によると、耐久性及び潤滑性に優れた円すいころ軸受を得ることができる。   As described above, according to the present invention, a tapered roller bearing having excellent durability and lubricity can be obtained.

以下、本発明の実施の形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す本発明の実施形態に係る円すいころ軸受1は、例えば図10に示すような鉄道車両の駆動装置105用の軸受111・112として使用される。この円すいころ軸受1は、外輪10と、内輪20と、複数の円すいころ30と保持器40を主要な構成要素としている。   The tapered roller bearing 1 according to the embodiment of the present invention shown in FIG. 1 is used as bearings 111 and 112 for a drive device 105 of a railway vehicle as shown in FIG. The tapered roller bearing 1 includes an outer ring 10, an inner ring 20, a plurality of tapered rollers 30 and a cage 40 as main components.

外輪10は内周に円すい状の軌道面12を有する。内輪20は外周に円すい状の軌道面22を有し、この軌道面22の大径側に大つば面24、小径側に小つば面26が設けられている。外輪10の軌道面12と内輪20の軌道面22との間に複数の円すいころ30が転動自在に配列される。複数の円すいころ30は保持器40によって所定の円周方向間隔に保持される。円すいころ30と、外輪10および内輪20の各軌道面12,22の各円すい角頂点は、図2に示すように、円すいころ軸受1の中心線上の一点Oで一致し、円すいころ30が各軌道面12,22に沿って転がり運動できるようになっている。   The outer ring 10 has a conical raceway surface 12 on the inner periphery. The inner ring 20 has a conical raceway surface 22 on the outer periphery, and a large collar surface 24 is provided on the large diameter side of the raceway surface 22 and a small collar surface 26 is provided on the small diameter side. A plurality of tapered rollers 30 are arranged between the raceway surface 12 of the outer ring 10 and the raceway surface 22 of the inner ring 20 so as to roll freely. The plurality of tapered rollers 30 are held by the retainer 40 at predetermined circumferential intervals. The tapered corners of the tapered rollers 30 and the raceways 12 and 22 of the outer ring 10 and the inner ring 20 coincide with each other at one point O on the center line of the tapered roller bearing 1, as shown in FIG. It can roll along the raceway surfaces 12 and 22.

保持器40は、円すいころ30の小端面31と摺接する小径環状部42と、円すいころ30の大端面32と摺接する大径環状部44と、これらを連結する柱部46とを備える。保持器40の軸方向両端には、その全周に内径向きの屈曲部48、49が設けられる。大径環状部44側の屈曲部49の内側には環状空間50が形成され、この環状空間50の円周方向複数箇所、本実施形態では円周方向等間隔の12箇所に仕切板51が設けられる(図4参照)。   The cage 40 includes a small-diameter annular portion 42 that is in sliding contact with the small end surface 31 of the tapered roller 30, a large-diameter annular portion 44 that is in sliding contact with the large end surface 32 of the tapered roller 30, and a column portion 46 that connects these. At both ends in the axial direction of the cage 40, bent portions 48 and 49 directed toward the inner diameter are provided on the entire circumference. An annular space 50 is formed inside the bent portion 49 on the large-diameter annular portion 44 side, and partition plates 51 are provided at a plurality of circumferential positions in the annular space 50, in this embodiment, at 12 circumferentially spaced intervals. (See FIG. 4).

保持器40は、例えば、プレス加工や切削加工で形成することができる。また、保持器40は全体を一体に形成する他、小径側の屈曲部48、大径側の屈曲部49、あるいは仕切板51を別体に形成し、溶接等で保持器40の所定箇所に固定してもよい。   The cage 40 can be formed by, for example, pressing or cutting. The cage 40 is not only formed as a whole, but also a small-diameter side bent portion 48, a large-diameter side bent portion 49, or a partition plate 51 is formed separately, and is attached to a predetermined portion of the cage 40 by welding or the like. It may be fixed.

このように、保持器40の大径側の端部に内径向きの屈曲部49を設け、さらに、この屈曲部49の内側に形成される環状空間50の円周方向複数箇所に仕切板51を設けることにより、仕切板51が屈曲部分のリブとして機能するので、保持器40の強度が高められる。また、保持器40の軸方向両端に屈曲部48、49を設けることにより、円すいころ軸受1の内部に過剰な油が流入することによるトルクの増大を防止することができる。   As described above, the bent portion 49 facing the inner diameter is provided at the end portion on the large diameter side of the cage 40, and the partition plates 51 are provided at a plurality of locations in the circumferential direction of the annular space 50 formed inside the bent portion 49. By providing, the partition plate 51 functions as a rib of the bent portion, so that the strength of the cage 40 is increased. Further, by providing the bent portions 48 and 49 at both axial ends of the cage 40, it is possible to prevent an increase in torque due to excessive oil flowing into the tapered roller bearing 1.

また、このように大径環状部44の端部に内径向きのフランジ状の屈曲部49を設けることで、以下のような効果を得ることができる。すなわち、図1に示す円すいころ軸受1を、図示の態様の上下方向で使用する場合、屈曲部49で形成される環状空間50の下方部に油を保持することができる(図1拡大図参照)。この軸受1が長時間停止した後に回転すると、環状空間50の下方部に保持した油が保持器40の回転に伴って上方へ移動する。上方へ移動した油は、重力により下方へ落ちて円すいころ30の大端面32と内輪20の大つば面24との摺動部Pに供給され、この部分を潤滑する(図3に矢印Aで示す)。あるいは、保持器40の柱部46を伝って流れ落ち、円すいころ30に供給されて、円すいころ30と外輪10の軌道面12あるいは内輪20の軌道面22との間を潤滑する(図3に矢印Bで示す)。   Further, by providing the flange-shaped bent portion 49 facing the inner diameter at the end of the large-diameter annular portion 44 as described above, the following effects can be obtained. That is, when the tapered roller bearing 1 shown in FIG. 1 is used in the vertical direction of the illustrated embodiment, oil can be held in the lower portion of the annular space 50 formed by the bent portion 49 (see the enlarged view of FIG. 1). ). When the bearing 1 rotates after being stopped for a long time, the oil retained in the lower portion of the annular space 50 moves upward as the retainer 40 rotates. The oil that has moved upward falls downward due to gravity and is supplied to the sliding portion P between the large end surface 32 of the tapered roller 30 and the large collar surface 24 of the inner ring 20, and this portion is lubricated (indicated by an arrow A in FIG. 3). Show). Or it flows down along the pillar part 46 of the holder | retainer 40, is supplied to the tapered roller 30, and lubricates between the tapered roller 30 and the track surface 12 of the outer ring | wheel 10, or the track surface 22 of the inner ring | wheel 20 (arrow in FIG. 3). B).

また、環状空間50に仕切板51を設けることにより、環状空間50の下方部に溜った油の流出を遅らせることができるので、油をより一層上方に移動させることが可能となり、これにより油を確実に摺動部P等に供給することができる(図4参照)。   Further, by providing the partition plate 51 in the annular space 50, it is possible to delay the outflow of the oil accumulated in the lower portion of the annular space 50, so that it is possible to move the oil further upward. It can be reliably supplied to the sliding portion P or the like (see FIG. 4).

このように、保持器40の大径環状部44の屈曲部49により形成された環状空間50に油を保持することにより、軸受1が長時間停止した後に始動する場合、軸受1の回転開始直後に摺動部Pに油を供給することができる。これにより、軸受1が例えば寒冷地を走行する鉄道車両の駆動装置に用いられ、夜間や定期点検時に長期間停止した直後に始動する場合であっても、軸受1に潤滑不良が生じる恐れを回避することができる。   In this way, when oil is held in the annular space 50 formed by the bent portion 49 of the large-diameter annular portion 44 of the retainer 40 and the bearing 1 is started after being stopped for a long time, immediately after the rotation of the bearing 1 is started. Oil can be supplied to the sliding portion P. As a result, the bearing 1 is used, for example, in a driving device for a railway vehicle that travels in a cold region, and avoids the possibility of poor lubrication in the bearing 1 even when the bearing 1 is started immediately after being stopped for a long time at night or during regular inspections. can do.

本発明の実施形態は上記に限られない。以下に、本発明の他の実施形態について説明する。尚、以下の説明において、上記の実施形態と同様の構成、機能を有する箇所には同一符号を付して説明を省略する。   The embodiment of the present invention is not limited to the above. Hereinafter, another embodiment of the present invention will be described. In the following description, parts having the same configuration and function as those of the above embodiment are denoted by the same reference numerals, and description thereof is omitted.

上記の実施形態では、保持器40の大径環状部44側の屈曲部49で形成された環状空間50で油を保持した場合を示したが、これに限られない。例えば、図5に示すように、環状空間50に多孔性固形潤滑剤60を取付けてもよい。このように、環状空間50に仕切板51を設けることにより、多孔性固形潤滑剤60と保持器40との密着面が増すため、多孔性固形潤滑剤60の保持力が高まる。また、図5に示す例では、仕切板51円周方向間隔が内径側ほど縮小しているため、仕切板51が抜け止めとして機能し、多孔性固形潤滑剤60の保持力がさらに高まる。さらに、多孔性固形潤滑剤60が仕切板51で仕切られているため、軸受が長時間停止しても多孔性固形潤滑剤60の内部に含浸した油が重力で下方部に偏在することを防止でき、多孔性固形潤滑剤60の全周から安定して潤滑成分を供給することができる。   In the above embodiment, the case where oil is held in the annular space 50 formed by the bent portion 49 on the large-diameter annular portion 44 side of the cage 40 has been described, but the present invention is not limited thereto. For example, as shown in FIG. 5, a porous solid lubricant 60 may be attached to the annular space 50. Thus, by providing the partition plate 51 in the annular space 50, the adhesion surface between the porous solid lubricant 60 and the cage 40 is increased, so that the holding force of the porous solid lubricant 60 is increased. Further, in the example shown in FIG. 5, since the partition plate 51 circumferential interval is reduced toward the inner diameter side, the partition plate 51 functions as a retainer and the holding power of the porous solid lubricant 60 is further increased. Furthermore, since the porous solid lubricant 60 is partitioned by the partition plate 51, even if the bearing is stopped for a long time, the oil impregnated inside the porous solid lubricant 60 is prevented from being unevenly distributed in the lower part due to gravity. In addition, the lubricating component can be stably supplied from the entire circumference of the porous solid lubricant 60.

ここで、多孔性固形潤滑剤とは、樹脂成分を発泡させて多孔質化し、その多孔質部に潤滑成分を充填させてなる固形潤滑剤である。多孔性固形潤滑剤は、軸受の回転時に加わる外力や毛細管現象等により、多孔質部に充填した潤滑成分が徐々に外部へにじみ出る。この多孔性固形潤滑剤からにじみ出た油が、円すいころ30の大端面32と内輪20の大つば面24との接触部や、柱部46を介して円すいころ30の外周面に供給されることにより、軸受1の潤滑が行われる。   Here, the porous solid lubricant is a solid lubricant obtained by foaming a resin component to make it porous, and filling the porous portion with the lubricant component. In the porous solid lubricant, the lubricating component filled in the porous portion gradually oozes out due to an external force applied during rotation of the bearing, a capillary phenomenon, or the like. Oil exuding from the porous solid lubricant is supplied to the outer peripheral surface of the tapered roller 30 via the contact portion between the large end surface 32 of the tapered roller 30 and the large collar surface 24 of the inner ring 20 or the column portion 46. Thus, the bearing 1 is lubricated.

多孔性固形潤滑剤は、樹脂成分の材料を適宜選択して樹脂成分の有する弾性を調整することにより、多孔性固形潤滑剤からにじみ出す潤滑成分の量を必要最小限にすることができる。よって、軸受内部に潤滑成分が必要以上に流入することがなく、軸受外部への潤滑成分の漏れ出しや、軸受内部の回転トルクの増大を防止できる。   The amount of the lubricating component that exudes from the porous solid lubricant can be minimized by appropriately selecting the resin component material and adjusting the elasticity of the resin component. Therefore, the lubrication component does not flow more than necessary into the bearing, and leakage of the lubrication component to the outside of the bearing and an increase in rotational torque inside the bearing can be prevented.

また、多孔性固形潤滑剤は、発泡により表面積が大きくなっているため、にじみ出した余剰の潤滑成分を再び発泡体の気泡内に一時的に保持することもできる。従って、多孔性固形潤滑剤からにじみ出す潤滑成分の量を安定させることができるため、長期間にわたって潤滑性能を維持できる。   In addition, since the porous solid lubricant has a large surface area due to foaming, the excess lubricating component that has oozed out can be temporarily held in the foam bubbles again. Accordingly, since the amount of the lubricating component that exudes from the porous solid lubricant can be stabilized, the lubricating performance can be maintained over a long period of time.

多孔性固形潤滑剤を構成する樹脂成分としては、樹脂(プラスチック)またはゴムなどのうち、エラストマーまたはプラストマーのいずれかまたは両方を、アロイまたは共重合成分として採用できる。   As a resin component constituting the porous solid lubricant, either or both of an elastomer and a plastomer can be adopted as an alloy or a copolymer component among resin (plastic) or rubber.

ゴムの場合は、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、ブチルゴム、ニトリルゴム、エチレンプロピレンゴム、シリコーンゴム、ウレタンエラストマー、フッ素ゴム、クロロスルフォンゴムなどの各種ゴムを採用できる。   In the case of rubber, various rubbers such as natural rubber, butadiene rubber, styrene butadiene rubber, chloroprene rubber, butyl rubber, nitrile rubber, ethylene propylene rubber, silicone rubber, urethane elastomer, fluorine rubber, and chlorosulfone rubber can be employed.

また、プラスチックの場合は、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアセタール樹脂、ポリアミド4,6樹脂(PA4,6)、ポリアミド6,6樹脂(PA6,6)、ポリアミド6T樹脂(PA6T)、ポリアミド9T樹脂(PA9T)などの汎用プラスチックやエンジニアリングプラスチックを採用できる。   In the case of plastics, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, polyacetal resin, polyamide 4,6 resin (PA4,6), polyamide 6,6 resin (PA6,6), polyamide General-purpose plastics and engineering plastics such as 6T resin (PA6T) and polyamide 9T resin (PA9T) can be used.

多孔性固形潤滑剤に用いる樹脂成分は上記プラスチックなどに限られることなく、軟質ウレタンフォーム、硬質ウレタンフォーム、半硬質ウレタンフォームなどのウレタンフォームなどを用いることもできる。   The resin component used for the porous solid lubricant is not limited to the above plastics, and urethane foams such as soft urethane foam, rigid urethane foam, and semi-rigid urethane foam can also be used.

また、多孔性固形潤滑剤に用いられる潤滑成分としては、発泡体を形成する固形物を溶解しないものであれば種類を選ばずに使用することができるが、例えば潤滑油、グリース、ワックスなどを単独もしくは混合して用いても良い。   In addition, as a lubricating component used in the porous solid lubricant, any kind can be used as long as it does not dissolve the solid material forming the foam. For example, lubricating oil, grease, wax and the like can be used. You may use individually or in mixture.

潤滑油としては、パラフィン系やナフテン系の鉱物油、エステル系合成油、エーテル系合成油、炭化水素系合成油、GTL基油、フッ素油、シリコーン油等の一般的に使用されている潤滑油またはそれらの混合油が挙げられる。   As lubricating oil, commonly used lubricating oils such as paraffinic and naphthenic mineral oils, ester synthetic oils, ether synthetic oils, hydrocarbon synthetic oils, GTL base oils, fluorine oils, silicone oils, etc. Or those mixed oils are mentioned.

グリースの増ちょう剤としては、リチウム石鹸、リチウムコンプレックス石鹸、カルシウム石鹸、カルシウムコンプレックス石鹸、アルミニウム石鹸、アルミニウムコンプレックス石鹸等の石鹸類、ジウレア化合物、ポリウレア化合物等のウレア系化合物が挙げられるが、特に限定されるものではない。   Examples of the thickener of the grease include soaps such as lithium soap, lithium complex soap, calcium soap, calcium complex soap, aluminum soap and aluminum complex soap, and urea compounds such as diurea compounds and polyurea compounds, but are particularly limited. Is not to be done.

このウレア系増ちょう剤としては、例えば、ジウレア化合物、ポリウレア化合物が挙げられるが、特に限定されるものではない。   Examples of the urea thickener include, but are not limited to, diurea compounds and polyurea compounds.

ジウレア化合物は、例えばジイソシアネートとモノアミンの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、ジフェニルジイソシアネート、フェニルジイソシアネート、ジフェニルメタンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、へキサンジイソシアネート等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、へキサデシルアミン、オクタデシルアミン、オレイルアミン、アニリン、p−トルイジン、シクロヘキシルアミン等が挙げられる。   The diurea compound is obtained, for example, by reaction of diisocyanate and monoamine. Diisocyanates include phenylene diisocyanate, diphenyl diisocyanate, phenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, hexane diisocyanate, and monoamines include octylamine, dodecylamine, hexadecylamine, octadecylamine, oleylamine, aniline, p-Toluidine, cyclohexylamine and the like can be mentioned.

ポリウレア化合物は、例えば、ジイソシアネートとモノアミン、ジアミンとの反応で得られる。ジイソシアネート、モノアミンとしては、ジウレア化合物の生成に用いられるものと同様のものが挙げられ、ジアミンとしては、エチレンジアミン、プロパンジアミン、ブタンジアミン、ヘキサンジアミン、オクタンジアミン、フェニレンジアミン、トリレンジアミン、キシレンジアミン等が挙げられる。グリースの基油としては、前述の潤滑油と同様のものを用いることができる。   The polyurea compound can be obtained, for example, by reacting diisocyanate with a monoamine or diamine. Examples of the diisocyanate and monoamine include those similar to those used for the production of the diurea compound. Examples of the diamine include ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, and xylenediamine. Is mentioned. As the base oil of the grease, the same lubricant oil as described above can be used.

また、ワックスとしては、炭化水素系合成ワックス、ポリエチレンワックス、脂肪酸エステル系ワックス、脂肪酸アミド系ワックス、ケトン・アミン類、水素硬化油などどのようなものでも良い。これらのワックスに使用する油成分としては前述の潤滑油と同様のものを用いることができる。   The wax may be any of hydrocarbon-based synthetic wax, polyethylene wax, fatty acid ester-based wax, fatty acid amide-based wax, ketone / amines, hydrogenated oil, and the like. As the oil component used for these waxes, the same oil components as those described above can be used.

以上述べたような潤滑成分には、さらに二硫化モリブデン、グラファイト等の固体潤滑剤、有機モリブデン等の摩擦調整剤、アミン、脂肪酸、油脂類等の油性剤、アミン系、フェノール系などの酸化防止剤、石油スルフォネート、ジノニルナフタレンスルフォネート、ソルビタンエステルなどの錆止め剤、イオウ系、イオウ−リン系などの極圧剤、有機亜鉛、リン系などの摩耗防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレンなどの粘度指数向上剤などの各種添加剤を含んでいても良い。   Lubricating components as described above include solid lubricants such as molybdenum disulfide and graphite, friction modifiers such as organic molybdenum, oily agents such as amines, fatty acids, and fats, and antioxidants such as amines and phenols. Agents, rust inhibitors such as petroleum sulfonate, dinonyl naphthalene sulfonate, sorbitan ester, extreme pressure agents such as sulfur and sulfur-phosphorus, antiwear agents such as organic zinc and phosphorus, benzotriazole, sodium nitrite, etc. Various additives such as viscosity index improvers such as metal deactivators, polymethacrylates and polystyrenes may be included.

樹脂成分を発泡させる手段としては周知の発泡手段を採用すればよく、例えば、水、アセトン、ヘキサン等の比較的沸点の低い有機溶媒を加熱し、気化させる物理的手法やエアーや窒素などの不活性ガスを外部から吹き込む機械的発泡方法、アゾビスイソブチロニトリル(AIBN)やアゾジカルボンイミド(ADCA)等のように温度や光によって分解し、窒素ガスなどを発生させる分解型発泡剤を使用する、などの方法が挙げられる。また、原料として反応性の高いイソシアネート基を持つ場合には、それと水分子との化学反応によって生じる二酸化炭素による化学的発泡を用いても良い。   As a means for foaming the resin component, a well-known foaming means may be employed. For example, a physical method for heating and vaporizing an organic solvent having a relatively low boiling point such as water, acetone, hexane, etc. A mechanical foaming method that blows active gas from the outside, such as azobisisobutyronitrile (AIBN) or azodicarbonimide (ADCA), which uses a decomposable foaming agent that decomposes by temperature or light and generates nitrogen gas, etc. And the like. Moreover, when it has a highly reactive isocyanate group as a raw material, you may use the chemical foaming by the carbon dioxide produced by the chemical reaction with it and a water molecule.

このような反応を伴う発泡を用いるには必要に応じて触媒を使用することが望ましく、例えば、3級アミン系触媒や有機金属触媒などが用いられる。   In order to use foaming accompanied by such a reaction, it is desirable to use a catalyst as necessary. For example, a tertiary amine catalyst or an organometallic catalyst is used.

3級アミン系触媒としてはモノアミン類、ジアミン類、トリアミン類、環状アミン類、アルコールアミン類、エーテルアミン類、イミダゾール誘導体、酸ブロックアミン触媒などが挙げられる。   Examples of the tertiary amine catalyst include monoamines, diamines, triamines, cyclic amines, alcohol amines, ether amines, imidazole derivatives, and acid block amine catalysts.

また、有機金属触媒としてはスタナオクタエート、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンマーカプチド、ジブチルチンチオカルボキシレート、ジブチルチンマレエート、ジオクチルチンジマーカプチド、ジオクチルチンチオカルボキシレート、オクテン酸鉛などが挙げられる。また、反応のバランスを整えるなどの目的でこれら複数種類を混合して用いても良い。   In addition, as organometallic catalysts, stanaoctate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin marker peptide, dibutyltin thiocarboxylate, dibutyltin maleate, dioctyltin dimarkaptide, dioctyltin thiocarboxylate, lead octenoate, etc. Is mentioned. Moreover, you may mix and use these multiple types for the purpose of adjusting the balance of reaction.

また、樹脂成分の多孔質部に潤滑剤を充填する方法としては、樹脂材料の固化後に充填する方法(後含浸)や、潤滑剤に浸漬した状態で樹脂材料の発泡及び固化を行う方法(発泡含浸)等が挙げられる。このうち、発泡含浸によると、樹脂成分の内部に潤滑油を高充填することができる。   In addition, as a method of filling the porous portion of the resin component with the lubricant, a method of filling the resin material after solidification (post-impregnation), or a method of foaming and solidifying the resin material while immersed in the lubricant (foaming) Impregnation) and the like. Among these, the foam impregnation can highly fill the inside of the resin component with lubricating oil.

多孔性固形潤滑剤は、型内に流し込んで成形してもよく、また常圧で固化した後に裁断や研削等で目的の形状に後加工することもできる。こうして多孔性固形潤滑剤を環状に成形し、保持器40の大径環状部44の内周面に油供給部60として取付ける。このとき、多孔性固形潤滑剤の内部への潤滑剤の充填は、保持器40に取付ける前に行っても良いし、保持器40に取付けた後に行っても良い。   The porous solid lubricant may be molded by pouring into a mold, or after solidifying under normal pressure, it can be post-processed into a desired shape by cutting or grinding. In this way, the porous solid lubricant is formed into an annular shape and attached to the inner peripheral surface of the large-diameter annular portion 44 of the cage 40 as the oil supply portion 60. At this time, the filling of the porous solid lubricant with the lubricant may be performed before being attached to the cage 40 or after being attached to the cage 40.

また、上記の実施形態では、保持器40の大径環状部44側に設けた屈曲部49で環状空間50を形成した場合を示しているが、これに限らず、例えば図6に示すように、小径環状部42側に設けた屈曲部48で環状空間50を形成してもよい。図6に示す例では、屈曲部48が、内径側に延びる部分と、軸方向で且つ軸受内部側に延びる部分とを有する。この屈曲部48による環状空間50を油溜りとして機能させる場合、例えば屈曲部48の軸受内部側の壁面48aに微小な凹凸を設けると、油の捕捉機能を向上させることができる。   In the above-described embodiment, the case where the annular space 50 is formed by the bent portion 49 provided on the large-diameter annular portion 44 side of the cage 40 is shown, but the present invention is not limited to this, for example, as shown in FIG. The annular space 50 may be formed by the bent portion 48 provided on the small diameter annular portion 42 side. In the example shown in FIG. 6, the bent portion 48 has a portion extending toward the inner diameter side and a portion extending in the axial direction and toward the bearing inner side. When the annular space 50 formed by the bent portion 48 functions as an oil reservoir, for example, by providing minute irregularities on the wall surface 48a on the bearing inner side of the bent portion 48, the oil trapping function can be improved.

また、上記の実施形態では、仕切板51が保持器40の半径方向に設けられているが、これに限らず、例えば図7に示すように、仕切板51を、内径側ほど回転方向Dに先行させて設けても良い。すなわち、保持器40の下端位置から回転方向Dに向けて90°の位置にある仕切板51(図7にRで示す)が、大径環状部44との間に油を捕捉する凹部52を形成するように設けられる。この凹部52で油を捕捉しながら保持器40が回転することにより、油を確実に保持器40の下端から90°以上の上方位置まで移動させることができる。   Moreover, in said embodiment, although the partition plate 51 is provided in the radial direction of the holder | retainer 40, it is not restricted to this, For example, as shown in FIG. It may be provided in advance. That is, the partition plate 51 (indicated by R in FIG. 7) located 90 ° from the lower end position of the retainer 40 in the rotation direction D has a recess 52 that captures oil between the large-diameter annular portion 44. It is provided to form. By rotating the retainer 40 while capturing oil in the recess 52, the oil can be reliably moved from the lower end of the retainer 40 to an upper position of 90 ° or more.

あるいは、図8に示すように、内径側ほど一方の回転方向D1に先行させた第1の仕切板51aと、内径側ほど他方の回転方向D2に先行させた第2の仕切板51bとを、円周方向で隣り合わせて配してもよい。これによると、例えば環状空間50を油溜りとして機能させる場合、保持器40が何れの方向に回転した場合でも、回転方向に対して油を捕捉する凹部を形成することができる。すなわち、保持器40がD1方向に回転した場合(図8の左側図で示す)、第1の仕切板51aと大径環状部44との間に凹部52が形成され、保持器40がD2方向に回転した場合(図8の右側図で示す)、第2の仕切板51bと大径環状部44との間に凹部52が形成される。   Alternatively, as shown in FIG. 8, the first partition plate 51a preceded in the one rotation direction D1 toward the inner diameter side, and the second partition plate 51b advanced in the other rotation direction D2 toward the inner diameter side. They may be arranged next to each other in the circumferential direction. According to this, for example, when the annular space 50 is made to function as an oil reservoir, a recess that captures oil in the rotation direction can be formed regardless of the direction in which the cage 40 rotates. That is, when the retainer 40 rotates in the D1 direction (shown in the left side view of FIG. 8), a recess 52 is formed between the first partition plate 51a and the large-diameter annular portion 44, and the retainer 40 is in the D2 direction. (Shown in the right side view of FIG. 8), a recess 52 is formed between the second partition plate 51b and the large-diameter annular portion 44.

以上の実施形態では、本発明の円すいころ軸受1が鉄道車両の駆動装置に使用される場合を示したが、これに限らず他の用途にも適用することができる。   In the above embodiment, the case where the tapered roller bearing 1 of the present invention is used in a drive device for a railway vehicle has been described. However, the present invention is not limited to this and can be applied to other applications.

本発明に係る円すいころ軸受の断面図である。It is sectional drawing of the tapered roller bearing which concerns on this invention. 円すいころ軸受の断面図である。It is sectional drawing of a tapered roller bearing. 円すいころ軸受の拡大断面図である。It is an expanded sectional view of a tapered roller bearing. 図3の円すいころ軸受の保持器をC方向から見た正面図である。It is the front view which looked at the retainer of the tapered roller bearing of FIG. 3 from the C direction. 他の実施形態の保持器の正面図である。It is a front view of the holder | retainer of other embodiment. 他の実施形態の円すいころ軸受の拡大段面図である。It is an enlarged step view of the tapered roller bearing of other embodiment. 他の実施形態の保持器の正面図である。It is a front view of the holder | retainer of other embodiment. 他の実施形態の保持器の正面図である。It is a front view of the holder | retainer of other embodiment. 従来の保持器の正面図である。It is a front view of the conventional cage | basket. 鉄道車両の駆動系を説明する側面図である。It is a side view explaining the drive system of a railway vehicle.

符号の説明Explanation of symbols

1 円すいころ軸受
10 外輪
20 内輪
30 円すいころ
40 保持器
42 小径環状部
44 大径環状部
46 柱部
48,49 屈曲部
50 環状空間
51 仕切板
60 多孔性固形潤滑剤
P 摺動部
DESCRIPTION OF SYMBOLS 1 Tapered roller bearing 10 Outer ring 20 Inner ring 30 Tapered roller 40 Cage 42 Small-diameter annular part 44 Large-diameter annular part 46 Column part 48, 49 Bending part 50 Annular space 51 Partition plate 60 Porous solid lubricant P Sliding part

Claims (6)

内周に軌道面を有する外輪と、外周に軌道面を有する内輪と、内輪の軌道面と外輪の軌道面との間に転動自在に介在させた複数の円すいころと、円すいころを円周方向等間隔に保持する保持器とを備えた円すいころ軸受において、
保持器の軸方向両端のうち、少なくとも一方の端部に内径向きの屈曲部を設け、この屈曲部の内側に形成される環状空間の円周方向複数箇所に仕切板を設けたことを特徴とする円すいころ軸受。
An outer ring having a raceway surface on the inner periphery, an inner ring having a raceway surface on the outer periphery, a plurality of tapered rollers interposed between the raceway surface of the inner ring and the raceway surface of the outer ring, and a tapered roller Tapered roller bearings with cages that hold at equal intervals in the direction,
Of the both axial ends of the cage, at least one end is provided with a bent portion facing the inner diameter, and partition plates are provided at a plurality of locations in the circumferential direction of the annular space formed inside the bent portion. Tapered roller bearing.
前記環状空間が油溜りとして機能する請求項1記載の円すいころ軸受。   The tapered roller bearing according to claim 1, wherein the annular space functions as an oil reservoir. 前記環状空間に多孔性固形潤滑剤を取り付けた請求項1記載の円すいころ軸受。   The tapered roller bearing according to claim 1, wherein a porous solid lubricant is attached to the annular space. 仕切板を、内径側ほど回転方向に先行させて配置した請求1〜3の何れかに記載の円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 3, wherein the partition plate is arranged so as to precede the inner diameter side in the rotation direction. 内径側ほど一方の回転方向に先行させた第1の仕切板と、内径側ほど他方の回転方向に先行させた第2の仕切板とを、円周方向で隣り合わせて配した請求項4記載の円すいころ軸受。   The first partition plate that is preceded in one rotation direction toward the inner diameter side and the second partition plate that is advanced in the other rotation direction toward the inner diameter side are arranged adjacent to each other in the circumferential direction. Tapered roller bearings. 請求項1〜5の何れかに記載の円すいころ軸受を組み込んだ鉄道車両の駆動装置。   A drive device for a railway vehicle incorporating the tapered roller bearing according to any one of claims 1 to 5.
JP2007082327A 2007-03-27 2007-03-27 Conical roller bearing Withdrawn JP2008240901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082327A JP2008240901A (en) 2007-03-27 2007-03-27 Conical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082327A JP2008240901A (en) 2007-03-27 2007-03-27 Conical roller bearing

Publications (1)

Publication Number Publication Date
JP2008240901A true JP2008240901A (en) 2008-10-09

Family

ID=39912499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082327A Withdrawn JP2008240901A (en) 2007-03-27 2007-03-27 Conical roller bearing

Country Status (1)

Country Link
JP (1) JP2008240901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8714832B2 (en) 2010-02-24 2014-05-06 Jtekt Corporation Conical roller cage
JP2018159411A (en) * 2017-03-22 2018-10-11 Ntn株式会社 Conical roller bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8714832B2 (en) 2010-02-24 2014-05-06 Jtekt Corporation Conical roller cage
JP2018159411A (en) * 2017-03-22 2018-10-11 Ntn株式会社 Conical roller bearing

Similar Documents

Publication Publication Date Title
JP2008240900A (en) Conical roller bearing
JP2011141023A (en) Bearing for transmission
JP2008082380A (en) Rolling bearing, roller with cage and main shaft support structure of wind power generator
JP2008169995A (en) Tapered roller bearing
JP2012072815A (en) Retainer for ball bearing and the ball bearing
JP2008215418A (en) Axle bearing for rolling stock
JP2008249105A (en) Roller bearing
JP2008249103A (en) Roller bearing
JP4202051B2 (en) Lubricant supply device, guide device equipped with the same, and lubricating grease used therefor
JP2008240901A (en) Conical roller bearing
JP2007247887A (en) Constant velocity universal joint
JP5600380B2 (en) Lubrication system
JP2012172830A (en) Retainer for ball bearing, and ball bearing
JP5346566B2 (en) Porous solid lubricant encapsulated bearing and method for manufacturing the same
JP2008249102A (en) Tapered roller bearing
JP2008089152A (en) Automobile driving shaft
JP2008275099A (en) Method of manufacturing constant velocity universal joint
JP2008297372A (en) Bearing holding porous solid lubricant sealed therein
JP7303659B2 (en) tapered roller bearing
JP2008069329A (en) Lubricant supplying material and linear motion device
JP4887127B2 (en) Foamed lubricant encapsulated bearing
JP2009138880A (en) Double row bearing
JP2008121765A (en) Bearing for idler pulley
JP5300214B2 (en) Porous solid lubricant and method for producing the same
JP2008281039A (en) Manufacturing method of constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601