JP2008240184A - Method for producing cloth - Google Patents

Method for producing cloth Download PDF

Info

Publication number
JP2008240184A
JP2008240184A JP2007080977A JP2007080977A JP2008240184A JP 2008240184 A JP2008240184 A JP 2008240184A JP 2007080977 A JP2007080977 A JP 2007080977A JP 2007080977 A JP2007080977 A JP 2007080977A JP 2008240184 A JP2008240184 A JP 2008240184A
Authority
JP
Japan
Prior art keywords
fabric
polyamide
cloth
feeling
nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007080977A
Other languages
Japanese (ja)
Inventor
Shingo Matsumoto
真吾 松本
Sumio Hishinuma
澄男 菱沼
Koichi Matsumoto
晃一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007080977A priority Critical patent/JP2008240184A/en
Publication of JP2008240184A publication Critical patent/JP2008240184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cloth constituted with a nano fiber, having a fine wooly feeling and soft touch feeling, and rich in esthetic property. <P>SOLUTION: This method for producing the cloth consisting of the nano fibers is characterized by spinning a polymer alloy fiber consisting of thermoplastic polymers of which at least one component consists of a polyamide component, dissolving and removing the components other than the polyamide component after forming the cloth to make nanofibers having 10 to 200 nm number-average single fiber diameter, then treating the fabric with a polyamide-swelling agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ナノファイバーを用いた布帛の製造方法に関するものである。   The present invention relates to a method for producing a fabric using nanofibers.

従来、衣料用途や寝装用途に用いられる織物や編物の布帛においては、ファッション性の多様化に伴い、表面に微毛感を有し、かつ、ふくらみ感のある風合いのものが人気を博している。この微毛感を有する素材の製造方法としては、熱収縮率の異なる糸を混繊し、製織後の熱処理により片側の糸を収縮させる方法や、その生地を起毛加工やサンディング加工により毛羽立てることが通常良く行われている。さらに、微毛感を追求するため混繊糸の表面に浮き出る糸に単糸繊度が1〜0.2デシテックス級のマイクロファイバーの細い繊維のものを使用したり、また、更には0.1〜0.02デシテックスの海島繊維の超極細糸を用い微毛感を付与しているものである。また、ポリエステルとナイロンの分割型極細複合糸をナイロンの膨潤剤で処理し、極細のポリエステルとナイロンに割繊し、かつナイロンを収縮させフィブリル化型複合繊維とし混繊糸と同様の効果を得る方法も特開昭63−6130号公報に開示されている。   In the past, fabrics and knitted fabrics used for clothing and bedding have become popular because of the diversification of fashion, with a texture that has a fine hair feel and a bulge. ing. As a method for producing this material having a feeling of fine hair, a method in which yarns having different heat shrinkage rates are mixed, a yarn on one side is shrunk by heat treatment after weaving, and the fabric is fluffed by raising or sanding. Is usually done well. Further, in order to pursue a fine hair feeling, the yarn that floats on the surface of the blended yarn can be one having a fine fiber of 1 to 0.2 decitex grade microfiber, or 0.1 to 0.1 A super-fine yarn of 0.02 decitex sea-island fiber is used to give a fine hair feeling. In addition, polyester-nylon split ultrafine composite yarn is treated with a nylon swelling agent, split into ultrafine polyester and nylon, and the nylon is shrunk to obtain a fibrillated composite fiber that has the same effect as mixed yarn A method is also disclosed in JP-A-63-6130.

しかしながら混繊糸や割繊糸を用いても十分な微毛感が得られず、かつ、生地が厚くなる、単糸繊度の異なるものを混繊しているためイラツキと呼ばれる色の濃淡が表面に現れ審美性にかけるなど十分満足できるものではなかった。
特開昭63−6130号公報
However, even if blended yarn or split filament yarn is used, sufficient fine hair feel is not obtained, and the fabric becomes thicker, and the different shades of single yarn fineness are mixed, so the shade of color called irritability is on the surface It was not satisfactory enough to appear in aesthetics.
JP 63-6130 A

本発明は上記の課題を解決しようとするものであり、ドライな微毛感のあるタッチを有しながら、極めて緻密なコンパクト感のある張り、腰のある風合いを兼備した布帛の製造方法を提供することを目的とする。   The present invention is intended to solve the above-described problem, and provides a method for producing a fabric having a dry, fine hairy touch, and having a very compact and compact feeling of tension and waist. The purpose is to do.

本発明は上記課題を達成するために、下記の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

(1) 少なくとも1成分がポリアミドである熱可塑性ポリマーからなるポリマーアロイ繊維を製糸し、次いで布帛形成後にポリアミド成分以外の成分を溶解、除去して数平均による単繊維直径が10〜200nmのナノファイバーにせしめ、その後、該布帛をポリアミド膨潤剤により処理することを特徴とする布帛の製造方法。   (1) Nanofibers having a number average single fiber diameter of 10 to 200 nm by spinning a polymer alloy fiber made of a thermoplastic polymer of which at least one component is polyamide, and then dissolving and removing components other than the polyamide component after forming the fabric. A method for producing a fabric, characterized in that the fabric is then treated with a polyamide swelling agent.

(2) 該熱可塑性ポリマーがポリ乳酸とポリアミドとからなることを特徴とする上記(1)に記載の布帛の製造方法。   (2) The method for producing a fabric according to the above (1), wherein the thermoplastic polymer comprises polylactic acid and polyamide.

本発明により、ドライで微細な起毛感を有し、かつ、ソフトな風合いを有する布帛を得ることができ、高付加価値を有する繊維製品への展開が可能となる。   According to the present invention, it is possible to obtain a fabric having a dry and fine raised feeling and having a soft texture, and can be developed into a textile product having high added value.

本発明でいうナノファイバーとは、数平均による単繊維直径が10〜200nmの繊維のことをいう。
かかる単繊維繊度は従来の超極細糸に比べ1/100〜1/100000という細さであり、単繊維直径が小さくなることで糸に膨らみを付与した際に従来にない微毛感を付与することができるものである。
The nanofiber as used in the field of this invention means the fiber whose number average single fiber diameter is 10-200 nm.
The single fiber fineness is 1/100 to 1/100000 compared to the conventional ultra-fine yarn, and when the swell is imparted to the yarn due to the small single fiber diameter, an unprecedented fine hair feeling is imparted. It is something that can be done.

かかるナノファイバーとしての繊維の総繊度としては10〜600デシテックスであることが、風合いの点から好ましい。10デシテックス未満のものは布帛の強度が低くなる傾向があり、また、600デシテックスを越える場合は厚地となりすぎ、衣料、寝装、インテリア用途としては用いにくい場合がある。   The total fineness of the fibers as such nanofibers is preferably 10 to 600 dtex from the viewpoint of texture. Those having less than 10 dtex tend to have low fabric strength, and those having more than 600 dtex are too thick to be used for clothing, bedding, and interior use.

ナノファイバーを構成する熱可塑性ポリマーについては30重量%以上がポリアミドであることが、紡糸性、強度、ヤング率が低くソフトな風合いが得られること、ポリアミド膨潤剤効果の点から好ましい。30重量%未満のものはナノファイバーの含有率が低くなり本発明の効果が出にくくなる、強度が低下するなどの問題がでる。   About 30% by weight or more of the thermoplastic polymer constituting the nanofiber is preferably polyamide from the viewpoints of spinnability, strength, Young's modulus and a soft texture, and polyamide swelling agent effect. If it is less than 30% by weight, the content of nanofibers is lowered, and the effects of the present invention are hardly produced, and the strength is lowered.

また、ナノファイバーを構成するポリアミド成分以外の成分の溶解・除去率は、ポリアミド膨潤剤での収縮率・膨らみ感を考慮し、50〜100%の範囲で適宜選定すればよく、より好ましくは70〜100%、さらには90〜100%溶出・除去することが好ましい。   In addition, the dissolution / removal rate of components other than the polyamide component constituting the nanofiber may be appropriately selected within a range of 50 to 100%, more preferably 70 in consideration of the shrinkage rate and the feeling of swelling with the polyamide swelling agent. It is preferable to elute and remove -100%, more preferably 90-100%.

次いで、かかるナノファイバーを用いた布帛とは織物、編物、不織布などの形態を有するものをいう。本発明の効果を最大限に発揮させるには表面が平滑な形態である織物が特に好ましい。更に織物組織としては平織、繻子織、綾織が特に好ましい。   Next, the fabric using such nanofibers refers to a fabric having a form such as a woven fabric, a knitted fabric, or a nonwoven fabric. In order to maximize the effects of the present invention, a woven fabric having a smooth surface is particularly preferable. Further, as the fabric structure, plain weave, satin weave and twill weave are particularly preferable.

布帛を構成するナノファイバーは他繊維との交織、配列、混繊糸使いなどで使用でき、混率としてはタッチ、風合い効果から布帛に少なくとも30重量%以上含有させることが好ましい。更には60%以上含有させることが好ましい。ナノファイバーが30%に満たない場合は表面の微細な毛羽感のタッチが得られず、また、風合いが硬くなる場合がある。   The nanofibers constituting the fabric can be used for interweaving with other fibers, arrangement, blended yarns, etc., and the mixing ratio is preferably at least 30% by weight or more in the fabric from the touch and texture effects. Furthermore, it is preferable to contain 60% or more. When the nanofiber is less than 30%, a touch with a fine fluff feeling on the surface cannot be obtained, and the texture may become hard.

本発明の製造方法においては、まず、少なくとも1成分がポリアミドである2成分以上の熱可塑性ポリマーからなるポリマーアロイ繊維を紡糸、製糸する。最終的にナノファイバーとなるポリマーとしては紡糸性(耐熱性)、糸強度、耐溶解性(難溶解性)の特性が必要となるが、膨潤剤で膨潤するポリアミドである必要がある。ナノファイバーとともに用いる他の成分としてはナノファイバーと同時に紡糸ができ、布帛にした後に溶剤で簡単に溶解、除去されるポリマーが用いられるが、この成分としてはポリ乳酸、共重合ポリエステル、ポリビニルアルコール等が好ましい。ナノファイバーとこれらの溶解されるポリマーの好ましい組み合わせと溶剤の例を示すと、ナノファイバー/溶解ポリマー(溶剤)の順に、ポリアミド/ポリ乳酸(熱アルカリ溶液)、ポリアミド/芳香族ポリエステル(熱アルカリ溶液)、ポリアミド/共重合ポリエステル(熱アルカリ溶液)等である。   In the production method of the present invention, first, a polymer alloy fiber composed of two or more thermoplastic polymers, at least one of which is polyamide, is spun and produced. The polymer that finally becomes a nanofiber requires properties of spinnability (heat resistance), yarn strength, and dissolution resistance (hard solubility), but it must be a polyamide that swells with a swelling agent. As other components used together with nanofibers, polymers that can be spun simultaneously with nanofibers and easily dissolved and removed with a solvent after making into a fabric are used, such as polylactic acid, copolyester, polyvinyl alcohol, etc. Is preferred. Examples of preferred combinations and solvents of nanofibers and these dissolved polymers are shown in the order of nanofiber / dissolved polymer (solvent), polyamide / polylactic acid (thermal alkali solution), polyamide / aromatic polyester (thermal alkali solution). ), Polyamide / copolyester (thermal alkali solution), and the like.

この中で更に好ましくは、ポリマー間の融点が近いために紡糸性がよく、且つ布帛での溶解、除去性に優れた特性を持つ、ポリアミド/ポリ乳酸(熱アルカリ溶液)の組み合わせが最適である。ナノファイバーになるポリアミド成分としてはナイロン−6、66、4、7、8、10、12、ポリメタキシレンアジパミド、ポリパラキシレンデカンアミド、およびこれらを成分とするコポリマーなどが例示されるが、結晶性の違いにより、かかる収縮処理で十分な収縮が得られない場合もあり、特にナイロン−6或いはナイロン−66が好ましい。   Of these, the combination of polyamide / polylactic acid (hot alkaline solution) is most preferable because it has good spinnability due to the close melting point between the polymers, and excellent dissolution and removal properties in the fabric. . Examples of polyamide components that become nanofibers include nylon-6, 66, 4, 7, 8, 10, 12, polymetaxylene adipamide, polyparaxylene decanamide, and copolymers containing these as components. Depending on the difference in crystallinity, sufficient shrinkage may not be obtained by such shrinkage treatment, and nylon-6 or nylon-66 is particularly preferred.

次いでかかる多成分を適宜混合したナノアロイ繊維を用いて、布帛を形成後に加工工程で不要成分を溶解、除去し、熱可塑性ポリマーの数平均による単繊維直径が10〜200nmであるナノファイバーの布帛にする。   Next, by using nanoalloy fibers in which such multicomponents are appropriately mixed, unnecessary components are dissolved and removed in a processing step after forming the fabric, and a nanofiber fabric having a single fiber diameter of 10 to 200 nm based on the number average of the thermoplastic polymer is obtained. To do.

次いで、ポリアミド膨潤剤により膨潤処理を行う。ポリアミドの膨潤剤としてはベンジルアルコール、β−フェニルエチルアルコール、フエノール、m−クレゾール、蟻酸、酢酸等が挙げられ、水溶液又は水性エマルジョンとして用いることが好ましい。特に上記の中でも取扱いが比較的容易な点からベンジルアルコールの水性エマルジョンを用いる方法が織物の収縮性の点で好ましい。   Next, a swelling treatment is performed with a polyamide swelling agent. Examples of polyamide swelling agents include benzyl alcohol, β-phenylethyl alcohol, phenol, m-cresol, formic acid, acetic acid and the like, and it is preferably used as an aqueous solution or an aqueous emulsion. Among these, the method using an aqueous emulsion of benzyl alcohol is preferable from the viewpoint of shrinkability of the fabric because it is relatively easy to handle.

また、膨潤剤の処理濃度としては2〜15%とすることが緻密化と風合いのバランスから好ましく、織物に含まれるポリアミド繊維の割合や繊度によって、かかる処理濃度を調整する。   The treatment concentration of the swelling agent is preferably 2 to 15% from the balance of densification and texture, and the treatment concentration is adjusted according to the ratio and fineness of the polyamide fibers contained in the fabric.

また、処理温度は80℃〜120℃が好ましく、この処理によりポリアミド繊維を収縮し、布帛を緻密化させることができる。収縮処理温度が80℃に満たない場合は緻密化しにくく、また120℃を越える温度では風合いが硬くなり過ぎ、衣料として使いにくくなる場合がある。   The treatment temperature is preferably 80 ° C. to 120 ° C. This treatment can shrink the polyamide fibers and densify the fabric. When the shrinkage treatment temperature is less than 80 ° C., it is difficult to densify, and when the temperature exceeds 120 ° C., the texture becomes too hard and it may be difficult to use as clothing.

処理方法としては液流処理、或いはパディング/拡布連続処理等が適用できるが、収縮が大きく、緻密化できる方法として、バッチ式である液流染色機を用いた液流処理が好ましい。   As the treatment method, liquid flow treatment or continuous padding / spreading treatment can be applied. However, as a method capable of causing large shrinkage and densification, liquid flow treatment using a batch type liquid dyeing machine is preferable.

次いで、染色工程においては、染色温度は80℃〜130℃が好ましい。80℃に満たない場合は十分な発色が得られにくく、また、130℃を越える温度ではポリアミド繊維が加水分解され、強力低下や風合いを硬化させる場合がある。染色方法は無地染めの場合は液流染色機で分散染料と酸性染料で染色することが好ましい。プリントの場合は染着性をよくするために、印捺後のスチーミングに飽和蒸気のHPスチーマーを用いることが好ましい。   Next, in the dyeing step, the dyeing temperature is preferably 80 ° C to 130 ° C. When the temperature is less than 80 ° C., it is difficult to obtain a sufficient color, and when the temperature exceeds 130 ° C., the polyamide fiber is hydrolyzed and the strength may be lowered or the texture may be cured. In the case of plain dyeing, the dyeing method is preferably dyed with a disperse dye and an acid dye by a liquid dyeing machine. In the case of printing, a saturated steam HP steamer is preferably used for the steaming after printing in order to improve the dyeing property.

本発明の布帛は、婦人衣料、紳士衣料、スポーツ衣料用途に用いた場合、本発明の効果を最大限に発揮できることから好ましい。具体的には婦人衣料としてはブラウス、ワンピース、コート、ハーフコート、パンツ等、紳士衣料ではカジュアルシャツ、ライダースーツ、スラックス等、スポーツ衣料としてはブルゾン、パーカー、ジャンパー、シャツ等に好適に用いられる。   The fabric of the present invention is preferable because the effects of the present invention can be maximized when used for women's clothing, men's clothing, and sports clothing. Specifically, women's clothing is suitably used for blouses, dresses, coats, half coats, pants, etc. Men's clothing is casual shirts, rider suits, slacks, etc., and sports clothing is suitably used for blousons, hoodies, jumpers, shirts, and the like.

本発明を実施例で詳細に説明する。なお、実施例中の測定方法、評価方法は以下の方法を用いた。
実施例1
1.ポリマーアロイ繊維の製糸
溶融粘度250Pa・s(262℃、剪断速度121.6sec−1)、融点220℃のナイロン−6(40重量%)、溶融粘度250Pa・s(262℃、剪断速度121.6sec−1)、 融点220℃のポリ乳酸(60重量%)を用いて2軸押し出し混練機で 260℃で混練してポリマーアロイチップを得た。このポリマーアロイを275℃の溶融部で溶融し、17ホールの口金を用いて、紡糸温度280℃で紡糸、900m/分で巻き取った。そして、これを第1ホットローラーの温度を90℃、第2ホットローラーの温度を130℃として、延伸倍率が3.2倍となるよう延伸熱処理し、 56dtex、17フィラメント、強度4.3cN/dtex、伸度37%、U%2.5%の優れた特性を有するポリマーアロイ繊維を得た。
The present invention will be described in detail with reference to examples. In addition, the measuring method and the evaluation method in an Example used the following methods.
Example 1
1. Polymer alloy fiber spinning Melt viscosity 250 Pa · s (262 ° C., shear rate 121.6 sec −1 ), Melting point 220 ° C. nylon-6 (40 wt%), Melt viscosity 250 Pa · s (262 ° C., shear rate 121.6 sec) -1 ) A polyalloy chip having a melting point of 220 ° C. (60% by weight) was kneaded at 260 ° C. with a biaxial extrusion kneader to obtain a polymer alloy chip. This polymer alloy was melted at a melting portion of 275 ° C., and spun at a spinning temperature of 280 ° C. using a 17-hole die and wound at 900 m / min. Then, the temperature of the first hot roller is set to 90 ° C., the temperature of the second hot roller is set to 130 ° C., and the drawing heat treatment is performed so that the draw ratio becomes 3.2 times. 56 dtex, 17 filament, strength 4.3 cN / dtex A polymer alloy fiber having excellent properties of 37% elongation and 2.5% U% was obtained.

2.ポリマーアロイ繊維の製布
かかるポリマーアロイ繊維56dtex、17フィラメントを経糸および緯糸に用いて、幅166cm、経糸密度180本/吋、緯糸密度110本/吋の平織組織に製織した。
2. Fabrication of polymer alloy fibers Using such polymer alloy fibers 56 dtex, 17 filaments for warp and weft, weaving into a plain weave structure having a width of 166 cm, a warp density of 180 yarns / 吋, and a weft density of 110 yarns / 吋.

3.布帛の加工
得られた生機を95℃×2分間拡布連続精練機の“ソフサー”(ニッセン(株)製)で精練した(精練浴:ソーダ灰0.2%、界面活性剤:0.1%)。次いで常法に従って、130℃×3分間、乾燥機“SSDドライヤー”(ニッセン(株)製)で乾燥した。
3. Fabric Processing The resulting raw machine was scoured with “Softer” (manufactured by Nissen Co., Ltd.), a continuous scourer for spreading at 95 ° C. for 2 minutes (scouring bath: 0.2% soda ash, surfactant: 0.1%) ). Subsequently, it was dried with a dryer “SSD dryer” (manufactured by Nissen Co., Ltd.) at 130 ° C. for 3 minutes according to a conventional method.

次いで液流染色機で、1.5%カセイソーダ溶液を用いて、95℃°×30分間、ポリ乳酸成分を溶解、除去処理した。その後、乾燥し、ポリ乳酸成分が完全に溶解、除去していることを確認した(生地の減量率:60.0%)。   Next, the polylactic acid component was dissolved and removed with a liquid dyeing machine using a 1.5% caustic soda solution at 95 ° C. × 30 minutes. Thereafter, it was dried, and it was confirmed that the polylactic acid component was completely dissolved and removed (weight reduction rate of the dough: 60.0%).

引き続き、液流染色機を用い、9%ベンジルアルコール溶液で100℃×20分、液流処理した。得られた織物を、幅方向、長さ方向に緊張することなくピンテンターを用い、160℃で乾熱セットした。   Subsequently, using a flow dyeing machine, a liquid flow treatment was performed with a 9% benzyl alcohol solution at 100 ° C. for 20 minutes. The obtained fabric was dry-heat set at 160 ° C. using a pin tenter without tension in the width direction and the length direction.

次いで、上記の液流染色機を用いてブルーの含金酸性染料で染色品のL値が51%になるように、100℃×60分の条件で染色、常法で洗浄し乾燥した。   Next, using the above-described liquid dyeing machine, the dyed product was dyed with a blue metal-containing acid dye so that the L value of the dyed product was 51%, washed at 100 ° C. for 60 minutes, washed in a conventional manner, and dried.

次いで常法に従ってピンテンターで150℃×40秒で仕上げセットし、仕上げた。仕上げ幅127cm、経糸密度228本/2.54cm、緯糸密度126本/2.54cmであった。   Then, according to a conventional method, the finish setting was performed with a pin tenter at 150 ° C. × 40 seconds to finish. The finished width was 127 cm, the warp density was 228 / 2.54 cm, and the weft density was 126 / 2.54 cm.

処理後の織物中のナイロン−6からなるナノファイバーの総繊度は22.4dtexであった。単繊維の数平均による単繊維直径は100nmレベルであった。ナノファイバーの数平均による単繊維直径は以下の方法により測定した。   The total fineness of the nanofibers made of nylon-6 in the treated woven fabric was 22.4 dtex. The single fiber diameter based on the number average of single fibers was at the 100 nm level. The single fiber diameter based on the number average of the nanofibers was measured by the following method.

得られた布帛の超薄切片を切り出し、透過型電子顕微鏡(TEM、日立社製H−7100FA型)による布帛断面写真を撮影した。次いで得られた写真を用い、無作為抽出した300本の単繊維断面における直径を、画像処理ソフト(WinROOF)により測定した。同様に布帛の他の超薄切片写真を5枚撮影し、それぞれ300本の単繊維断面における直径を測定し、合計1500本の単繊維直径を求め、その平均値を数平均による単繊維直径とした。また、コントラストが低い場合は、リンタングステン酸により金属染色した。
4.布帛の評価
上記仕上げ品の風合いについて官能評価を行った結果、微毛感があり風合いがソフトで極めて良好な織物であった。実施例1の微毛感を有する織物表面を、走査型顕微鏡を用いて撮影したものを図1(拡大倍率200倍)、図2(拡大倍率1000倍)に示す。
比較例1
膨潤加工をしないことを除く以外は、実施例1に従ってナノファイバーの織物を染色し、仕上げた。実施例1と同様の官能評価の結果、表面に微毛感がなく風合いがやや硬いものであった。
An ultrathin section of the obtained fabric was cut out, and a cross-sectional photograph of the fabric was taken with a transmission electron microscope (TEM, H-7100FA type manufactured by Hitachi, Ltd.). Subsequently, using the obtained photograph, the diameter in the section of 300 single fibers extracted at random was measured by image processing software (WinROOF). Similarly, five other ultra-thin section photographs of the fabric were taken, each of which measured the diameter at the cross section of 300 single fibers to obtain a total of 1500 single fiber diameters, and the average value was calculated as the number average single fiber diameter. did. When contrast was low, metal staining was performed with phosphotungstic acid.
4). Evaluation of Fabric As a result of sensory evaluation of the texture of the finished product, the fabric was very good with a fine hair feeling and a soft texture. The surface of the fabric having the fine hair feeling of Example 1 taken with a scanning microscope is shown in FIG. 1 (magnification 200 times) and FIG. 2 (magnification 1000 times).
Comparative Example 1
A nanofiber fabric was dyed and finished according to Example 1 except that it was not swollen. As a result of the same sensory evaluation as in Example 1, the surface had no fine hair feeling and the texture was slightly hard.

比較例1の織物表面を走査型顕微鏡を用いて撮影したものを図3(拡大倍率:200倍)、図4(拡大倍率:1000倍)に示す。   Images of the surface of the fabric of Comparative Example 1 taken using a scanning microscope are shown in FIG. 3 (magnification: 200 times) and FIG. 4 (magnification: 1000).

図1〜4から明らかなように、実施例1により得られた織物は、構成する単糸が収縮すると共に膨らみがあり、比較例1により得られた織物とは全く異なることが判る。   As is apparent from FIGS. 1 to 4, the woven fabric obtained by Example 1 is completely different from the woven fabric obtained by Comparative Example 1 because the constituting single yarn contracts and swells.

本発明の実施例1により得られた織物の走査型顕微鏡による織物表面写真(200倍に拡大)である。It is the textile surface photograph (enlarged 200 times) of the textile fabric obtained by Example 1 of this invention by the scanning microscope. 本発明の実施例1により得られた織物の走査型顕微鏡による織物表面写真(1000倍に拡大)写真である。It is a fabric surface photograph (enlarged 1000 times) photograph of the fabric obtained by Example 1 of the present invention by a scanning microscope. 比較例1により得られた織物の走査型顕微鏡による織物表面写真(200倍に拡大)である。2 is a fabric surface photograph (enlarged 200 times) of the fabric obtained in Comparative Example 1 with a scanning microscope. 比較例2により得られた織物の走査型顕微鏡による織物表面写真(1000倍に拡大)である。4 is a fabric surface photograph (enlarged 1000 times) of a fabric obtained by Comparative Example 2 using a scanning microscope.

Claims (2)

少なくとも1成分がポリアミドである熱可塑性ポリマーからなるポリマーアロイ繊維を製糸し、次いで布帛形成後にポリアミド成分以外の成分を溶解、除去して数平均による単繊維直径が10〜200nmのナノファイバーにせしめ、その後、該布帛をポリアミド膨潤剤により処理することを特徴とする布帛の製造方法。 A polymer alloy fiber made of a thermoplastic polymer, at least one component of which is a polyamide, is formed, and then components other than the polyamide component are dissolved and removed after forming the fabric to form nanofibers having a single fiber diameter of 10 to 200 nm by number average. Thereafter, the fabric is treated with a polyamide swelling agent. 該熱可塑性ポリマーがポリ乳酸とポリアミドとからなることを特徴とする請求項1に記載の布帛の製造方法。 The method for producing a fabric according to claim 1, wherein the thermoplastic polymer comprises polylactic acid and polyamide.
JP2007080977A 2007-03-27 2007-03-27 Method for producing cloth Pending JP2008240184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080977A JP2008240184A (en) 2007-03-27 2007-03-27 Method for producing cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080977A JP2008240184A (en) 2007-03-27 2007-03-27 Method for producing cloth

Publications (1)

Publication Number Publication Date
JP2008240184A true JP2008240184A (en) 2008-10-09

Family

ID=39911854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080977A Pending JP2008240184A (en) 2007-03-27 2007-03-27 Method for producing cloth

Country Status (1)

Country Link
JP (1) JP2008240184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338363A1 (en) * 2008-10-22 2011-06-29 Teijin Fibers Limited Slippage prevention tape and textile product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338363A1 (en) * 2008-10-22 2011-06-29 Teijin Fibers Limited Slippage prevention tape and textile product
EP2338363A4 (en) * 2008-10-22 2014-05-28 Teijin Ltd Slippage prevention tape and textile product

Similar Documents

Publication Publication Date Title
JP4571541B2 (en) Method for producing moisture-permeable and waterproof polyester fabric
TWI250239B (en) A composite sheet used for artificial leather with low elongation and excellent softness
JP2011012367A (en) Fabric having excellent lightness and textile product
KR20100102601A (en) Process for production of fabrics, fabrics and textile goods
JP5034412B2 (en) Fabric comprising nanofiber and method for producing the same
JP2010095813A (en) Woven and knitted fabric of multilayer structure and textile product
JP5216970B2 (en) Polyester knitted fabric, production method thereof and textile product
JP2008240184A (en) Method for producing cloth
JP5495286B2 (en) Method for producing hair knitted fabric, hair knitted fabric and textile product
JP3994814B2 (en) Dyed fabric and method for producing the same
JP3912065B2 (en) Polyester blended yarn and false twisted yarn
JP2004060066A (en) Dyed woven fabric and method for producing the same
JP5495290B2 (en) Clothing side and clothing
JP4189117B2 (en) Peach skin tone false twist composite yarn and method for producing woven or knitted fabric using the same
JP2007119948A (en) Split type conjugate fiber
JP2009084748A (en) Combined filament yarn using polymer alloy fiber and woven fabric formed of the same
JP2804784B2 (en) Manufacturing method of breathable waterproof cloth
WO2022113695A1 (en) Woven/knitted article
JP2009155791A (en) Process for production of fabric, fabric and textile good
JP4699072B2 (en) Stretch polyester composite fiber
JP2006322079A (en) Polyamide woven or knitted fabric and method for producing the same
JP2005015969A (en) Nano-porous fiber composite woven or knitted fabric
JP4202210B2 (en) Mixed yarn, woven and knitted fabric, and sewn products with an worn appearance
JP2010111962A (en) Method for producing stone-like fabric, stone-like fabric, and textile product
JP2009084747A (en) Twisted yarn of polymer alloy fiber and woven fabric formed of the same